MATH 238, FALL 2023, HOMEWORK \#2

ALEX IOSEVICH

Problem \#1: Show that a connected planar graph satisfies

$$
n-e+f=2,
$$

where n is the number of vertices, e is the number of edges, and f is the number of faces.

Problem \#2: Show that in a planar connected graph,

$$
3 f \leq 2 e
$$

Problem \#3: Show that the lower bound on the crossing number of a connected graph with $e \geq 4 n$ edges,

$$
\operatorname{cr}(G) \geq c \frac{e^{3}}{n^{2}}
$$

cannot, in general, be improved.
Problem \#4: Prove that the upper bound on the number of incidences between n points and m lines,

$$
I(P, L) \leq 4\left(n+m+(n m)^{\frac{2}{3}}\right)
$$

cannot, in general, be improved (up to constants).
Problem \#5: Prove that the bound in the previous problem still holds, possibly with a bigger constant, if lines are replaced by translates of a fixed parabola, or translates of a fixed circle.

Problem \#6: Prove that \mathbb{Z}_{p}, p prime, is a field.
Problem \#7: Prove that if $x \in \mathbb{Z}_{p}^{d}, p$ prime, $\|x\|=x_{1}^{2}+\cdots+x_{d}^{2}$, and A is an orthogonal d by d matrix over \mathbb{Z}_{p}, then

$$
\|A x\|=\|x\| .
$$

Problem \#8: Prove that if $p \equiv 1 \bmod 4$, then there exists $i \in \mathbb{Z}_{p}, p$ prime, such that $i^{2}=-1$.

Problem \#9: i) Construct a subset \mathbb{Z}_{p}^{d}, p prime, such that

$$
\mathcal{E}(E) \equiv\left|\left\{\left(x, y, x^{\prime}, y^{\prime}\right) \in E^{4}: x+y+x^{\prime}+y^{\prime}\right\}\right| \leq C|E|^{2},
$$

where C is independent of p.
ii) Construct a subset \mathbb{Z}_{p}^{d}, p prime, such that

$$
\mathcal{E}(E) \geq c|E|^{3}
$$

with c independent of p.
iii) Given any $a \in[2,3]$, construct a subset \mathbb{Z}_{p}^{d}, p prime, such that

$$
\frac{1}{C}|E|^{a} \leq \mathcal{E}(E) \leq C|E|^{a}
$$

with C, c independent of p.
Problem $\# 10$: Show that there exists $E \subset \mathbb{Z}_{p}^{d}, p$ prime, such that

$$
|\widehat{E}(m)| \leq C p^{-d}|E|^{\frac{1}{2}}
$$

with C independent of p DOES NOT hold, yet

$$
\mathcal{E}(E) \leq C|E|^{2}
$$

with C independent of p.
Problem \#11: Prove that if H is a k-dimensional subspace of \mathbb{Z}_{p}^{d}, p prime, then

$$
\widehat{H}(m)=q^{-(d-k)} H^{\perp}(m),
$$

where H^{\perp} is the perpendicular subspace.
Problem \#12: i) Prove that if $E \subset \mathbb{Z}_{p}^{d}, d \geq 2$, and

$$
P=\left\{x \in \mathbb{Z}_{p}^{d}: x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2}\right\}
$$

then

$$
|\{(x, y) \in E \times E: x-y \in P\}|=|E|^{2} p^{-1}+R
$$

where

$$
|R| \leq p^{\frac{d-1}{2}}|E|
$$

Conclude that if $|E|>p^{\frac{d+1}{2}}$, then $(E-E) \cap P$ is not empty.
ii) Replace the paraboloid P by a $(d-1)$-dimensional hyper-plane H. Is it still true that if $|E|>p^{\frac{d+1}{2}}$, then $(E-E) \cap H$ is not empty? Prove or disprove.

