Due Monday, September 13 at the beginning of class.

- (1) Prove every prime of the form 3k + 1 is also of the form 6k + 1.
- (2) Prove any positive integer of the form 3k + 2 has a prime factor of the same form. Prove the same claim for positive integers of the form 4k + 3 and 6k + 5.
- (3) If gcd(a,b) = p, where p is prime, what are the possible values of $gcd(a^2,b)$? $gcd(a^3,b)$? $gcd(a^2,b^3)$?
- (4) Suppose $gcd(a, p^2) = p$ and $gcd(b, p^3) = p^2$, where p is prime. Evaluate $gcd(ab, p^4)$ and $gcd(a + b, p^4)$.
- (5) Find an integer n such that $\frac{n}{2}$ is a square, $\frac{n}{3}$ is a cube, and $\frac{n}{5}$ is a fifth power.
- (6) Suppose $a \mid bc$ and gcd(a, b) = 1. Show $a \mid c$.