## Due Monday, September 13 at the beginning of class.

(1) Prove every prime of the form $3 k+1$ is also of the form $6 k+1$.
(2) Prove any positive integer of the form $3 k+2$ has a prime factor of the same form. Prove the same claim for positive integers of the form $4 k+3$ and $6 k+5$.
(3) If $\operatorname{gcd}(a, b)=p$, where $p$ is prime, what are the possible values of $\operatorname{gcd}\left(a^{2}, b\right) ? \operatorname{gcd}\left(a^{3}, b\right) ? \operatorname{gcd}\left(a^{2}, b^{3}\right)$ ?
(4) Suppose $\operatorname{gcd}\left(a, p^{2}\right)=p$ and $\operatorname{gcd}\left(b, p^{3}\right)=p^{2}$, where $p$ is prime. Evaluate $\operatorname{gcd}\left(a b, p^{4}\right)$ and $\operatorname{gcd}\left(a+b, p^{4}\right)$.
(5) Find an integer $n$ such that $\frac{n}{2}$ is a square, $\frac{n}{3}$ is a cube, and $\frac{n}{5}$ is a fifth power.
(6) Suppose $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Show $a \mid c$.

