Due Wednesday, November 17 at the beginning of class. All chapter and exercise numbers refer to Silverman's A Friendly Introduction to Number Theory, 4th edition.
(1) Ex. 24.2
(2) Ex. 24.4(b)
(3) Ex. 24.5
(4) Ex. 24.6
(5) Fix an integer $n \geq 1$. Suppose $A_{1}=x_{1}^{2}+n y_{1}^{2}$ and $A_{2}=x_{2}^{2}+n y_{2}^{2}$ with $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Z}$.
(a) Use matrix determinants to show that the product $A_{1} A_{2}$ is also of the form $x^{2}+n y^{2}$ for some $x, y \in \mathbb{Z}$.
(b) Use the magnitude of complex numbers to show that the product $A_{1} A_{2}$ is also of the form $x^{2}+n y^{2}$ for some $x, y \in \mathbb{Z}$.
(6) Suppose $n=a^{2}+b^{2}$ and $\operatorname{gcd}(a, b)=1$. Suppose p is an odd prime that divides n. Prove that $p \equiv 1 \bmod 4$.
(7) Ex. 35.6
(8) Ex. 35.8

