Due Wednesday, September 29 at the beginning of class. All chapter and exercise numbers refer to Silverman's A Friendly Introduction to Number Theory, 4th edition.
(1) Let p be a prime. Recall that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ when $0 \leq k \leq n$.
(a) Show $\binom{p-1}{k} \equiv(-1)^{k} \bmod p$ when $0 \leq k \leq p-1$.
(b) Show $\binom{p}{k} \equiv 0 \bmod p$ when $1 \leq k \leq p-1$.
(c) Prove that if $a^{p} \equiv b^{p} \bmod p$, then $a^{p} \equiv b^{p} \bmod p^{2}$.
(2) Let p be an odd prime.
(a) Show that $\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv(-1)^{\frac{p+1}{2}} \bmod p$. (Hint: apply the result of Ex. 9.2 from Problem Set 2.)
(b) Show that $x^{2} \equiv-1 \bmod p$ has a solution if $p \equiv 1 \bmod 4$.
(c) Prove the converse: if $x^{2} \equiv-1 \bmod p$ has a solution, then $p \equiv 1 \bmod 4$. (Hint: raise both sides to a power and apply Fermat's Little Theorem.)
(3) If $\operatorname{gcd}(a, n)=1$, we define the order of the number $a \bmod n$ to be the least natural number k such that $a^{k} \equiv 1 \bmod n$. For example, the order of $3 \bmod 8$ is $2 \operatorname{since} 3^{2} \equiv 1 \bmod 8$.
(a) Determine the orders of the following numbers.
(i) $2 \bmod 27$
(ii) $14 \bmod 31$
(b) Show that the order of $a \bmod n$ divides $\varphi(n)$.
(c) Explain why order is not defined if $\operatorname{gcd}(a, m)>1$.
(4) Ex. 11.2
(5) Ex. 11.3. Additionally, prove that if $d \mid n$, then $\varphi(d) \mid \varphi(n)$.
(6) Ex. 11.13

