Due Wednesday, September 29 at the beginning of class. All chapter and exercise numbers refer to Silverman's *A Friendly Introduction to Number Theory*, 4th edition.

- (1) Let p be a prime. Recall that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ when $0 \le k \le n$.
 - (a) Show $\binom{p-1}{k} \equiv (-1)^k \mod p$ when $0 \le k \le p-1$.
 - (b) Show $\binom{p}{k} \equiv 0 \mod p$ when $1 \le k \le p 1$.
 - (c) Prove that if $a^p \equiv b^p \mod p$, then $a^p \equiv b^p \mod p^2$.
- (2) Let p be an odd prime.
 - (a) Show that $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv (-1)^{\frac{p+1}{2}} \mod p$. (Hint: apply the result of Ex. 9.2 from Problem Set 2.)
 - (b) Show that $x^2 \equiv -1 \mod p$ has a solution if $p \equiv 1 \mod 4$.
 - (c) Prove the converse: if $x^2 \equiv -1 \mod p$ has a solution, then $p \equiv 1 \mod 4$. (Hint: raise both sides to a power and apply Fermat's Little Theorem.)
- (3) If gcd(a, n) = 1, we define the *order* of the number $a \mod n$ to be the least natural number k such that $a^k \equiv 1 \mod n$. For example, the order of $3 \mod 8$ is $2 \operatorname{since} 3^2 \equiv 1 \mod 8$.
 - (a) Determine the orders of the following numbers.
 - (i) $2 \mod 27$
 - (ii) 14 mod 31
 - (b) Show that the order of $a \mod n$ divides $\varphi(n)$.
 - (c) Explain why order is not defined if gcd(a, m) > 1.
- (4) Ex. 11.2
- (5) Ex. 11.3. Additionally, prove that if $d \mid n$, then $\varphi(d) \mid \varphi(n)$.
- (6) Ex. 11.13