Due Wednesday, September 22 at the beginning of class. All chapter and exercise numbers refer to Silverman's A Friendly Introduction to Number Theory, 4th edition.
(1) Suppose $a, m, n \in \mathbb{N}$. Use the Euclidean algorithm to prove $\operatorname{gcd}\left(a^{m}-1, a^{n}-1\right)=a^{\operatorname{gcd}(m, n)}-1$.
(2) The Riemann zeta function $\zeta(s)$ is given by the formula

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

when $s>1$. Use the fundamental theorem of arithmetic to prove $\zeta(s)$ can also be written as

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

when $s>1$. (Note: Π is an infinite product. Hint: Expand each term in the product using the formula for the sum of a geometric series.)
(3) Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients and $a_{n} \neq 0$. Suppose $p(r / s)=0$, where r and s are integers such that $\operatorname{gcd}(r, s)=1$. The rational root theorem states that $r \mid a_{0}$ and $s \mid a_{n}$.
(a) Prove the rational root theorem. (Hint: set $p(r / s)=0$ and clear denominators.)
(b) Use the rational root theorem to prove $\sqrt{2}$ and $\sqrt[5]{9}$ are irrational.
(c) Suppose $m, n \in \mathbb{N}$ and $\sqrt[n]{m}$ is rational. Prove that $\sqrt[n]{m}$ is in fact an integer.
(4) Show that every odd prime p may be written uniquely as a difference of squares, i.e. there exists a unique pair $(a, b) \in \mathbb{N}^{2}$ with $a>b$ such that $p=a^{2}-b^{2}$.
(5) Ex. 8.2
(6) Ex. 8.4(d)-(e)
(7) Ex. 9.2
(8) Ex. 9.3. Additionally, prove a formula for the value of $(m-1)!\bmod m$ when m is composite.
(9) Find the last digits in the ordinary decimal representations of 2^{400} and 3^{400}.
(10) Suppose p is a prime other than 2 or 5 . Prove that p divides infinitely many of the integers $1,11,111$, $1111, \ldots$

