Due Wednesday, September 22 at the beginning of class. All chapter and exercise numbers refer to Silverman's *A Friendly Introduction to Number Theory*, 4th edition.

- (1) Suppose $a, m, n \in \mathbb{N}$. Use the Euclidean algorithm to prove $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$.
- (2) The Riemann zeta function $\zeta(s)$ is given by the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

when s > 1. Use the fundamental theorem of arithmetic to prove $\zeta(s)$ can also be written as

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

when s > 1. (Note: \prod is an *infinite product*. Hint: Expand each term in the product using the formula for the sum of a geometric series.)

- (3) Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficients and $a_n \neq 0$. Suppose p(r/s) = 0, where r and s are integers such that gcd(r, s) = 1. The rational root theorem states that $r \mid a_0$ and $s \mid a_n$.
 - (a) Prove the rational root theorem. (Hint: set p(r/s) = 0 and clear denominators.)
 - (b) Use the rational root theorem to prove $\sqrt{2}$ and $\sqrt[5]{9}$ are irrational.
 - (c) Suppose $m, n \in \mathbb{N}$ and $\sqrt[n]{m}$ is rational. Prove that $\sqrt[n]{m}$ is in fact an integer.
- (4) Show that every odd prime p may be written uniquely as a difference of squares, i.e. there exists a unique pair $(a, b) \in \mathbb{N}^2$ with a > b such that $p = a^2 b^2$.
- (5) Ex. 8.2
- (6) Ex. 8.4(d)–(e)
- (7) Ex. 9.2
- (8) Ex. 9.3. Additionally, prove a formula for the value of $(m-1)! \mod m$ when m is composite.
- (9) Find the last digits in the ordinary decimal representations of 2^{400} and 3^{400} .
- (10) Suppose p is a prime other than 2 or 5. Prove that p divides infinitely many of the integers 1, 11, 111, 1111,