Due Monday, December 6 at 11:59pm. Please turn in via email or in my mailbox in Hylan 913. All chapter and exercise numbers refer to Silverman's A Friendly Introduction to Number Theory, 4th edition.
(1) Ex. 36.5(a)
(2) Ex. 28.5
(3) Ex. 28.7
(4) Ex. 29.6

Definition. The order of a point P of an elliptic curve E is the smallest positive integer k such that $k P=\mathcal{O}$.
(5) Consider the point $P=(3,8)$ on the cubic curve

$$
y^{2}=x^{3}-43 x+166
$$

Compute $2 P, 4 P$, and $8 P$. Determine the order of P.
(6) Let E be an elliptic curve $y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Q}$ and $\Delta(E) \neq 0$.
(a) Find a polynomial whose roots are the x-coordinates of all points in $E(\mathbb{C})$ with order 3. (Hint: if $3 P=\mathcal{O}$, then $2 P=-P$.)
(b) Find an upper bound bound on the number of points in $E(\mathbb{C})$ with order 3 .
(c) For the particular curve $y^{2}=x^{3}+1$, find all points of order 3 .
(d) REMOVED
(7) REMOVED
(8) Consider the elliptic curve $y^{2}=x^{3}+2 x+3$. Find all solutions modulo $2,3,5,7$, and 11 . In each case find a point of maximal order.
(9) Consider the elliptic curve $y^{2}=x^{3}+33 x+69$. The points $P=(72,20)$ and $Q=(82,46)$ are solutions modulo 97.
(a) Compute the following points of E modulo 97.
(i) $2 P$
(ii) $5 P$
(iii) $7 P$
(iv) $10 P$
(v) $Q-10 P$
(vi) $Q-20 P$
(vii) $Q-40 P$
(b) Use the coordinates found in part (a) to compute $k \in \mathbb{Z}$ such that $Q \equiv k P \bmod 97$. (Hint: Two of the points in part (a) are congruent mod 97. If you did not observe this, check your work.)

