Math 201

Final Exam ANSWERS

December 13, 2015

1. (1 points)

(a) $\binom{15}{4}$.
(b) The number of subsets where none of $1,2,3,4,5$ appear is $\binom{10}{4}$, hence the number of subsets where at least one of $1,2,3,4,5$ appears is $\binom{15}{4}-\binom{10}{4}$.

2. (1 points)

(a) $4 / 52$.
(b) The number of all possible orderings is 52 !. The number of orderings where the first ace is on the 8 th position can be counted as follows: there cannot be any aces in the first 7 slots, so they have to come from the remaining 48 cards. There are $48 \cdot 47 \cdots \cdot 42=\frac{48!}{41!}$ ways to choose the first 7 cards. The 8th card must be an ace, and there are 4 choices. They remaining 44 cards can come in any order, so there are 44 ! ways to choose the rest. Thus, there are $\frac{48!}{4!!} 4 \cdot 44$!, which implies the probability of the first ace being in the 8 th position is

$$
\frac{48!\cdot 4 \cdot 44!}{41!\cdot 52!}
$$

3. (1 points)

$P(A \cup B)=P(A)+P(B)-P(A B)=P(A)+P\left(B A^{c}\right)=P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)=P(A)+$ $P\left(B \mid A^{c}\right)(1-P(A))=0.7+0.2(1-0.7)=0.76$.

4. (1 points)

(a) Let X be the number of defects. X is $\sim \operatorname{Ber}(100,0.05)$, so the expected number is $100 * 0.05=5$.
(b) $P(X \leq 1)=P(X=0)+P(X=1)=0.95^{100}+\binom{100}{1} 0.95^{99} 0.05^{1}$.
(c) X can be approximated by a Poisson $(100 \cdot 0.05)=\operatorname{Poisson}(5)$ random variable. Thus $P(X \leq 4)=\sum_{i=0}^{4} P(X=i) \approx \sum_{i=0}^{4} e^{-5} \frac{5^{i}}{i!}$.

5. (1 points)

(a) $1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} c x^{n} d x=c x^{n+1} /\left.(n+1)\right|_{0} ^{1}=c /(n+1)$, so $c=(n+1)$.
(b) $P(X>a)=\int_{a}^{1}(n+1) x^{n} d x=\left.x^{n+1}\right|_{a} ^{1}=1-a^{n+1}$.
(c) $\lim _{n \rightarrow \infty} P(X>a)=\lim _{n \rightarrow \infty} 1-a^{n+1}=1$ since $0<a<1$.
6. (1 points)
$P(X>0)=P\left(\frac{X-\mu}{\sigma}>\frac{0-\mu}{\sigma}\right)=P\left(\frac{X-\mu}{\sigma}>-1\right)$. Since $\frac{X-\mu}{\sigma}$ is a standard normal, we get $P(X>0)=\Phi(-1)$.

7. (1 points)

(a) It is easy to see that $f(x, y) \geq 0$. It remains to show $\iint f(x, y) d x d y=1$. We have $\iint f(x, y) d x d y=\int_{0}^{1} \int_{0}^{1-y} 24 x y d x d y=\int_{0}^{1} 12(1-y)^{2} y d y=\int_{0}^{1} 12 y-24 y^{2}+12 y^{3} d y=\left(6 y^{2}-\right.$ $\left.8 y^{3}+3 y^{4}\right)\left.\right|_{0} ^{1}=6-8+3=1$.
(b) We have $P(Y>1 / 2)=\int_{1 / 2}^{1} \int_{0}^{1-y} 24 x y d x d y=\left.\left(6 y^{2}-8 y^{3}+3 y^{4}\right)\right|_{1 / 2} ^{1} \neq 0$. Similarly $P(X>1 / 2) \neq 0$, however $P(X>1 / 2, Y>1 / 2)=0$, so X and Y are not independent.

8. (1 points)

(a) $M_{X+Y}(t)=E\left[e^{(X+Y) t}\right]=E\left[e^{X t} e^{Y t}\right]$. If X and Y are independent, then so are $e^{X t}$ and $e^{Y t}$. Thus $E\left[e^{X t} e^{Y t}\right]=E\left[e^{X t}\right] E\left[e^{Y t}\right]=M_{X}(t) M_{Y}(t)$.
(b) The moment generating function of X is $M_{X}(t)=E\left[e^{X t}\right]=\sum_{k=0}^{\infty} e^{k t} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!}=e^{-\lambda_{1}} \sum_{k=0}^{\infty} \frac{\left(\lambda_{1} e^{t}\right)^{k}}{k!}=$ $e^{-\lambda_{1}} e^{\lambda_{1} e^{t}}=e^{\lambda_{1}\left(e^{t}-1\right)}$. Similarly $M_{Y}(t)=e^{\lambda_{2}\left(e^{t}-1\right)}$. Using part (a) we get $M_{X+Y}(t)=$ $e^{\lambda_{1}\left(e^{t}-1\right)} e^{\lambda_{2}\left(e^{t}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)}$.
(c) Since $e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)}$ is the moment generating function of a Poisson $\left(\lambda_{1}+\lambda_{2}\right)$ random variable, that must be the distribution of $X+Y$.

9. (1 points)

(a) $\operatorname{Cov}\left(X_{i}-\bar{X}, \bar{X}\right)=\operatorname{Cov}\left(X_{i}, \bar{X}\right)-\operatorname{Cov}(\bar{X}, \bar{X})=\sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j} / n\right)+\operatorname{Var}(\bar{X})$. In the remaining sum all the terms are zero except the one where $j=i$ since the X_{i} 's are independent. Thus, the sum is $\operatorname{Cov}\left(X_{i}, X_{i} / n\right)=\operatorname{Var}\left(X_{i}\right) / n$. For the same reason, $\operatorname{Var}(\bar{X})=\sum_{j=1}^{n} \operatorname{Var}\left(X_{j} / n\right)=n \operatorname{Var}\left(X_{i} / n\right)=\operatorname{Var}\left(X_{i}\right) / n$. Hence $\operatorname{Cov}\left(X_{i}-\bar{X}, \bar{X}\right)=0$.
(b) No. For example take $n=2$ and X_{1}, X_{2} i.i.d. $\operatorname{Ber}(1 / 2)$. Then $P\left(X_{1}-\bar{X}=0, \bar{X}=0\right)=$
$P\left(\frac{X_{1}-X_{2}}{2}=0, \frac{X_{1}+X_{2}}{=} 0\right)=P\left(X_{1}=0, X_{2}=0\right)=1 / 4, P(\bar{X}=0)=\boldsymbol{\top}\left(\frac{X_{1}+X_{2}}{2}=0\right)=P\left(X_{1}=\right.$ $\left.0, X_{2}=0\right)=1 / 4$ and $P\left(X_{1}-\bar{X}=0\right)=P\left(X_{1}=X_{2}\right)=1 / 2$, so $P\left(X_{1}-\bar{X}=0, \bar{X}=0\right) \neq$ $P\left(X_{1}-\bar{X}=0\right) P(\bar{X}=0)$, which implies $X_{1}-\bar{X}$ and \bar{X} are not independent. However, they are uncorrelated, as part (a) shows.

10. (1 points)

(a) Let S_{n} be the sum of the 10 dice. Let X_{1} the value of the first die roll. We have $E\left[S_{n}\right]=10 E\left[X_{1}\right]=10 \cdot 3.5=35$ and $\operatorname{Var}\left(S_{n}\right)=10 \operatorname{Var}\left[X_{1}\right]=10\left(E\left[X_{1}^{2}\right]-E\left[X_{1}\right]^{2}\right)=$ $10\left(\sum_{i=1}^{6} i^{2} / 6-(7 / 2)^{2}\right)=175 / 6$. Thus $P\left(30<S_{n}<40\right)=P\left(-\frac{5}{\sqrt{175 / 6}}<\frac{S_{n}-E\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left[S_{n}\right]}}<\frac{5}{\sqrt{175 / 6}}\right)$, which, by the central limit theorem can be approximated by $\Phi\left(\frac{5}{\sqrt{175 / 6}}\right)-\Phi\left(-\frac{5}{\sqrt{175 / 6}}\right)=$ $\Phi(\sqrt{6 / 7})-\Phi(-\sqrt{6 / 7})$.
(b) $P\left(X_{1} \ldots X_{100} \leq a^{100}\right)=P\left(\log _{a}\left(X_{1} \ldots X_{100}\right) \leq \log _{a} a^{100}\right)=P\left(\log _{a} X_{1}+\cdots+\log _{a} X_{100} \leq\right.$ 100). The random variables $Y_{i}=\log _{a} X_{i}$ are iid, so the central limit theorem apples to them. Let $\mu=E\left[Y_{1}\right]=\sum_{i=1}^{6} \frac{\log _{a} i}{6}=\frac{\log _{a} 21}{6}$ and $\sigma^{2}=\operatorname{Var}\left[Y_{1}\right]=\sum_{i=1} \frac{\left(\log _{a} i\right)^{2}}{6}$. Then $P\left(X_{1} \ldots X_{100} \leq a^{100}\right)=P\left(\frac{Y_{1}+\cdots+Y_{100}-100 \mu}{\sigma} \leq \frac{100-100 \mu}{\sigma}\right) \approx \Phi\left(\frac{100-100 \mu}{\sigma}\right)$.

