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RO(C2)-GRADED COHOMOLOGY OF C2-EQUIVARIANT

EILENBERG-MAC LANE SPACES

UĞUR YİĞİT

Abstract. In this paper, we calculate RO(C2)-graded cohomology of C2-
equivariant Eilenberg-Mac Lane spaces K(Z/2, n+σ) for n ≥ 0. These can be

used to give the relation between equivariant lambda algebra and equivariant
Adams resolution and equivariant unstable Adams spectral sequence, which
are defined in author‘s dissertation.
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1. Introduction

An ordinary cohomology theory H⋆
G(− : M) on G-spaces with Mackey functor

M coefficients and graded by real orthogonal representations is defined by Lewis,
May and Mcclure [8]. In this paper, we compute the RO(C2)-graded cohomology
of the C2-equivariant Eilenberg-Mac Lane spaces with the constant Mackey functor
M = Z/2 coefficients, which are crucial to give the relation between the equivari-
ant lambda algebra and the equivariant unstable Adams resolution and equivariant
unstable Adams spectral sequence, which is given by Mahowald [12] in the clas-
sical case. Throughout this paper, H⋆(−) denotes the ordinary RO(C2)-graded
cohomology of a C2-space with the constant Mackey functor coefficients Z/2.

To compute the RO(C2)-graded cohomology of the C2-equivariant Eilenberg-
Mac Lane spaces with the constant Mackey functor M = Z/2 coefficients, we use
Borel theorem 17 for the path-space fibration

ΩK(Z/2, V ) −→ P (K(Z/2, V )) −→ K(Z/2, V ).

for V = σ + n, where n ≥ 0.

Key words and phrases. Equivariant Cohomology, Equivariant Steenrod algebra, Equivariant
Eilenberg-Mac Lane Spaces.
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2 UĞUR YİĞİT

If we knew H⋆(K(Z/2, nσ)) for n ≥ 2, one could use the Eilenberg-Moore spec-

tral sequence [4, Chapter 5], the Borel theorem, and the RO(G)-graded Serre spec-
tral sequence of Kronholm [7, Theorem 1.2.] for the path-space fibration

ΩK(Z/2, V ) −→ P (K(Z/2, V )) −→ K(Z/2, V ).

This paper is organized as follows. In section 2, we provide the basic equivariant
topology tools, and C2-equivariant cohomology MC2

2 of a point, and equivariant
connectivity of G-spaces. In section 3, we descripe equivariant Steenrod squares,
C2-equivariant Steenrod algebra AC2

and axioms of it. In section 4, we give the
definition of the equivariant Eilenberg-Mac Lane spaces with some properties, and
the fixed point sets of the equivariant Eilenberg-Mac Lane spaces that is very useful
to compute the cohomology of them. In section 5, we compute the RO(C2)-graded
C2-equivariant cohomology of some C2-equivariant Eilenberg-Mac Lane spaces KV

for real orthogonal representations V = σ+n, n ≥ 0. Also, we give some conjectures
and future directions for the other cases.
Notation. We provide here notation used in this paper for convenience.

• V = rσ+s, a real orthogonal representation of C2, which is a sum of r-copy
of the sign representation σ and s-copy of the trivial representation 1.

• ρ = σ + 1, the regular representation of C2.
• RO(C2), the real representation ring of C2.
• SV , the equivariant sphere which is the one-point compactification of V .
• πC2

V (X), the V -th C2-equivariant homotopy group of a topological C2-space
X .

• πS
rσ+s, the C2-equivariant stable homotopy groups of spheres.

• Σσ(X), the σ-th suspension of X .
• Ωσ(X), all continuous functions from Sσ to X .
• H⋆

G(− : M), RO(G)-graded ordinary equivariant cohomology with Mackey
functor M coefficients.

• MC2

2 , RO(C2)-graded C2-equivariant cohomology of a point.
• AC2

, C2-equivariant Steenrod algebra.
• K(M,V ) or shortly KV , the V th equivariant Eilenberg-Mac Lane space
with a Mackey functor M .

• πG
V (X), C2-equivariant homotopy of a G-space X as a Mackey functor.

• SqkC2
, C2-equivariant Steenrod squaring operations for k ≥ 0.

• RP∞
tw , the space of lines in the complete universe U = (Rρ)∞, which is

equivalent to K(Z/2, σ).

Acknowledgements. I would like to thank Michael A. Hill for valuable conversa-
tions and providing me some suggestions for calculations, andWilliam Kronholm for
producing the action of Steenrod squares on the cohomology ring of RP∞

tw . Lastly
and most importanly, I would like to state my gratitude to my advisor, Douglas
C. Ravenel, for his patience, support, and encouragement throughout my graduate
studies, and numerous beneficial conversations and suggestions. The work in this
paper was part of the author’s dissertation while at the University of Rochester.

2. Preliminaries

In this section we give the main tools that are used in the rest of the article.
Let X be a G-space, where G = C2 is a cyclic group with generator γ such that
γ2 = e. The group C2 has two irreducible real representations, namely the trivial
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representation denoted by 1 (or R) and the sign representation denoted by σ (or
R−). The regular representation is isomorphic to ρC2

= 1+ σ (it is denoted by ρ if
there is no confusion). Thus the representation ring RO(C2) is free abelian of rank
2, so every representation V can be expressed as V = rσ + s.

Definition 1. A G-universe is a countably infinite-dimensional G-representation
which contains the trivial G-representation and which contains infinitely many
copies of each of its finite-dimensional subrepresentations. Also, a complete

G-universe is just a G-universe that contains infinitely many copies of every irre-
ducible G-representation.

Definition 2. A G-spectrum E on a G-universe U is a collection EV of based
G-spaces together with basepoint-preserving G-maps

σV,W : ΣW−V EV −→ EW

whenever V ⊂ W ⊂ U , where W − V denotes the orthogonal complement of V in
W . It is required that σV,V is identity, and the commutativity of the diagram

ΣW−V ΣV−UEU ΣW−V EV

EW

ΣW−V σU,V

σU,W σV,W

for U ⊂ V ⊂ W ⊂ U .

Definition 3. If the adjoint structure maps

σ̃V,W : EV −→ ΩW−V EW

are weak homotopy equivalences for V ⊂ W ⊂ U , then a G-spectrum is called
G− Ω-spectrum.

A G-spectrum indexed on a complete(trivial) G-universe is called genuine(naive).
For an actual representation V of G and a G-space X , the V -th homotopy group

of X is the Mackey functor πV (X) determined by

πV (X)(G/H) = [SV , X ]H

for every H < G.
For a virtual representation V ∈ RO(G) and a G-spectrum E, the V -th homo-

topy group of E is the Mackey functor πV (E) determined by

πV (E)(G/H) = colimnπ0(Ω
V +WnEWn

)H

where {Wn|n ∈ N} is an increasing sequence of representations

· · · ⊂ Wn ⊂ Wn+1 ⊂ · · ·

such that any finite dimensional representation V of G admits an equivariant em-
bedding in some Wn.

Lewis, May and Mcclure [8] defined an ordinary cohomology theory H⋆
G(− : M)

on G-spaces with Mackey functor M coefficients and the graded by real orthogonal
representations.
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Throughout this paper, the Mackey functor will typically be the constant Mackey
functor M = Z/2, which can be given the following diagram in Lewis notation.

(2.1) Z/2

Id
��
Z/2

Id

GG

0

UU

The ordinary equivariant cohomology MC2

2 of a point with this coefficient is
given in the Figure 1 below. Every • in the figure represents a copy of Z/2.

As you see in the Figure 1 below, there are two elements of interest. The inclusion
map of the fixed point set (the north and south poles) a : S0 −→ Sσ defines an

element in πC2

−σ(S
−0), and we will use the same symbol for its mod 2 Hurewicz

image. It is called an Euler class. One can show that

HC2

1 (Sσ;Z/2) = HC2

1−σ(S
−0;Z/2) = Z/2

and we denote its generator by u. Dually, we have a ∈ Hσ
C2

(S−0;Z/2) and u ∈

Hσ−1
C2

(S−0;Z/2). These are the analog of elements ρ and τ in real motivic homotopy
theory, respectively.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

1

u

u2

a

ua
a2

θ
au

θ
au2

θ
a2u

Figure 1. The equivariant cohomology MC2

2 of a point

The coordinate (x, y) represents degree (x − y) + σy, which is convenient with
the motivic bidegree. Red and blue lines represent multiplication by u and a,
respectively.

Now, we will give the definition of equivariant connectivity of G-spaces.
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Definition 4. [10]

(i) A function ν∗ from the set of conjugacy classes of subgroups of G to the
integers is called a dimension function. The value of ν∗ on the conju-
gacy class of K ⊂ G is denoted by νK . Let ν∗ and µ∗ be two dimension
functions. If νK ≥ µK for every subgroup K, then ν∗ ≥ µ∗. Associated
to any G-representation V is the dimension function |V ∗| whose value at
K is the real dimension of the K-fixed subspace V K of V . The dimension
function with constant integer value n is denoted n∗ for any integer n.

(ii) Let ν∗ be a non-negative dimension function. If for each subgroup K
of G, the fixed point space Y K is νK -connected, then a G-space Y is
called G-ν∗-connected. If A G-space Y is G-0∗-connected, then it is
called G-connected. Also, if it is G-1∗-connected, it is called simply

G-connected. A G-space Y is homologically G-ν∗-connected if, for
every subgroup K of G and every integer m with 0 ≤ m ≤ νK , the homol-
ogy group HK

m (Y ) is zero.

(iii) Let ν∗ be a non-negative dimension function and let f : Y −→ Z be a
G-map. If, for every subgroup K of G,

(fK)∗ : πm(Y k) −→ πm(ZK)

is an isomorphism for every integer m with 0 ≤ m < νK and an epi-
morphism for m = νK , then f is called G-ν∗-equivalence. A G-pair
(Y,B) is said to be G-ν∗-connected if the inclusion of B into Y is a
G-ν∗-equivalence. The notions of homology G-ν∗-equivalence and of
homology G-ν∗-connectedness for pairs are defined similarly, but with
homotopy groups replaced by homology groups.

(iv) Let V be a G-representation. For each subgroup K of G, let V (K) be
the orthogonal complement of V K ; then V (K) is a K-representation. If
πK
V (K)+m(Y ) is zero for each subgroup K of G and each integer m with

0 ≤ m ≤ |V K |, the G-space Y is called G-V -connected. Similarly,
if HG

V (K)+m(Y ) is zero for each subgroup K of G and each integer m

with 0 ≤ m ≤ |V K |, then the G-space Y is called homologically G-

V -connected.

(v) Let V be a G-representation. A G-0∗-equivalence f : Y −→ Z is said to be
a G-V -equivalence if, for every subgroup K of G, the map

f∗ : πK
V (K)+m(Y ) −→ πK

V (K)+m(Z)

is an isomorphism for every integer m with 0 ≤ m < |V K | and an epimor-
phism for m = |V K |. A homology G-V -equivalence is defined similarly.
A G-pair (Y,B) is called G-V -connected (respectively, homologically

G-V -connected) if the inclusion of B into Y is a G-V -equivalence (re-
spectively, homology G-V -equivalence).
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3. C2-Equivariant Steenrod Algebra

The analog of the mod 2 Steenrod algebra is defined by Voevodsky [19] in the
motivic case, and Po Hu and Igor Kriz [5] in the equivariant case. The two descrip-
tions are essentially the same.

One has squaring operations SqkC2
for k ≥ 0, whose degrees

|SqkC2
| =

{

i(1 + σ) for k = 2i
i(1 + σ) + 1 for k = 2i+ 1.

Sq0C2
= 1 as in the classical case. The C2-equivariant Steenrod algebra acts on

the coefficient ring MC2

2 by

(3.1) SqkC2
(u) =







u for k = 0
a for k = 1
0 else.

(3.2) Sq2m+δ
C2

(u2l+ǫ) =

(

2l+ ǫ

2m+ δ

)

u2l+ǫ−m−δa2m+δ

The difficulty in deriving the formula 3.2 is the C2-equivariant Cartan formula 3.7,
3.8. Since

|Sq2m+δ
C2

| = m(1 + σ) + δ for 0 ≤ δ ≤ 1,

we have
(3.3)







∆(Sq2m+1
C2

) =
∑

0≤i≤2m+1 Sq
i
C2

⊗ Sq2m+1−i
C2

∆(Sq2mC2
) =

∑

0≤j≤m Sq2iC2
⊗ Sq2m−2j

C2
+ u

∑

1≤j≤m Sq2j−1
C2

⊗ Sq2m−2j+1
C2

.

The terms divisible by u make things difficult. Here we are using cohomological
degree, so |u| = σ − 1. Note that

|u−mSq2m+δ
C2

| = m(1− σ) +m(1 + σ) + δ = 2m+ δ

and define

Sq2m+δ := u−mSq2m+δ
C2

.

We will see that these operations satisfy the classical Cartan formula. We have

∆(Sq2m+1) = u−m∆(Sq2m+1
C2

)

= u−m
∑

0≤i≤2m+1

SqiC2
⊗ Sq2m+1−i

C2

=
∑

0≤i≤2m+1

u−⌊i/2⌋SqiC2
⊗ u−⌊(2m+1−i)/2⌋Sq2m+1−i

C2

=
∑

0≤i≤2m+1

SqiC2
⊗ Sq2m+1−i

C2

since ⌊i/2⌋+ ⌊(2m+ 1− i)/2⌋ = m. And also,

∆(Sq2m) = u−m∆(Sq2mC2
)
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= u−m
∑

0≤j≤m

Sq2jC2
⊗ Sq2m−2j

C2
+ u1−m

∑

1≤j≤m

Sq2j−1
C2

⊗ Sq2m−2j+1
C2

=
∑

0≤j≤m

u−jSq2jC2
⊗ uj−mSq2m−2j

C2
+

∑

1≤j≤m

u1−jSq2j−1
C2

⊗ uj−mSq2m−2j+1
C2

=
∑

0≤j≤m

Sq2jC2
⊗ Sq2m−2j

C2
+

∑

1≤j≤m

Sq2j−1
C2

⊗ Sq2m−2j+1
C2

=
∑

0≤i≤2m

SqiC2
⊗ Sq2m−i

C2
.

Now, if we use homological degree, then

|Sqm| = −m, |a| = −σ, and |u| = 1− σ.

We know that

(3.4) SqmC2
(u) =







u for m = 0
a for m = 1
0 else.

Consider the total Steenrod operation

(3.5) Sqt =
∑

i≥0

tiSqi,

where t is a dummy variable. Although this sum is infinite, it yields a finite sum
when applied to any monomial in a and u. The classical Cartan formula satisfied
by operations Sqi implies that it is a ring homomorphism, meaning that

Sqt(xy) = Sqt(x)Sqt(y).

Then 3.4 implies that

Sqt(u) = u+ ta

Sqt(u
l) = (u+ ta)l

=
∑

0≤m≤l

(

l

m

)

tmul−mam

=
∑

0≤m≤l

tmSqm(ul).

Hence, Sqm(ul) is the coefficient of tm in the first sum above.
It follows that

Sq2m+δ(u2l+ǫ) =

(

2l + ǫ

2m+ δ

)

u2l+ǫ−2m−δa2m+δ

Sq2m+δ(u2l+ǫ) = umSq2m+δ(u2l+ǫ)

=

(

2l + ǫ

2m+ δ

)

u2l+ǫ−m−δa2m+δ.

As a result, we have the following:

Lemma 5.

Sq2m+δ
C2

(u2l+ǫ) =

(

2l+ ǫ

2m+ δ

)

u2l+ǫ−m−δa2m+δ.
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The natural action of the Steenrod algebra in homology is on the right, not on
the left. Classically, the mod p cohomology of a space or a spectrum X is a left
module over the Steenrod algebra A, so there is a map

cX : A⊗H∗X → H∗X.

The Steenrod algebra has a multiplication

φ∗ : A⊗A → A

(the symbol φ∗ and its dual φ∗ are taken from Milnor’s paper [14]) and the following
diagram commutes

(3.6)

A⊗A⊗H∗X A⊗H∗X

A⊗H∗X H∗X.

φ∗⊗H∗X

A⊗cX cX

cX

Milnor defines a right action of A on H∗X by the rule

〈xa, y〉 = 〈x, ay〉 ∈ Fp

for x ∈ H∗X, a ∈ A and y ∈ H∗X , where the brackets denotes the evaluation of
the cohomology class on the right on the homology class on the left. Milnor denotes
by λ∗ the resulting map

H∗X ⊗A → H∗X.

The same thing happens in the C2-equivariant case. For example, we have

(u2)Sq3C2
= (u2)Sq1C2

Sq2C2
= 0

because (u2)Sq1C2
= 0. And,

(u2)χ(Sq3C2
) = (u2)Sq2C2

Sq1C2
= (ua2)Sq1C2

= a3,

where χ(−) means the conjugate Steenrod operations. Hence, 3.2 should really
read as

(u2l+ǫ)Sq2m+δ
C2

=

(

2l+ ǫ

2m+ δ

)

u2l+ǫ−m−δa2m+δ.

For example,

SqlC2
(u−1) =

(

−1

l

)

alu−1−l

=







































(

−1
0

)

u−1 = u−1 for l = 0

(

−1
1

)

au−2 = au−2 for l = 1

(

−1
2

)

a2u−3 = a2u−3 for l = 2

0 for l ≥ 3

Action on the other elements is determined by the Cartan formula (iv) given
below. We now give axioms for the squares SqkC2

. For the motivic case, you can
check Voevodsky paper [19]. But, the Adem relation is fixed by Joël Riou in [17].

(i) Sq0C2
= 1 and Sq1C2

= βC2
, Bockstein homomorphism.

(ii) βSq2kC2
= Sq2k+1

C2
.
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(iii) βSq2k+1
C2

= 0.
(iv) (Cartan formula)

(3.7) Sq2kC2
(xy) =

k
∑

r=0

Sq2rC2
(x)Sq2k−2r

C2
(y) + u

k−1
∑

s=0

Sq2s+1
C2

(x)Sq2k−2s−1
C2

(y)

(3.8) Sq2k+1
C2

(xy) =

2k+1
∑

r=0

SqrC2
(x)Sq2k+1−r

C2
(y) + a

k−1
∑

s=0

Sq2s+1
C2

(x)Sq2k−2s−1
C2

(y)

(v) (Adem relation) If 0 < i < 2j, then when i+ j is even

SqiC2
SqjC2

=

[i/2]
∑

k=0

(

b− 1− k

i− 2k

)

uǫSqi+j−k
C2

SqkC2

where

ǫ =

{

1 for k is odd and i and j are even
0 else

when i+ j is odd

SqiC2
SqjC2

=

[i/2]
∑

k=0

(

j − 1− k

i− 2k

)

Sqi+j−k
C2

SqkC2
+ a

∑

k=odd

ε Sqi+j−k
C2

SqkC2

where

ε =

{

(

j−1−k
i−2k

)

for i is odd
(

j−1−k
i−2k−1

)

for j is odd

(vi) If x has a degree kσ + k, then Sq2kC2
(x) = x2.

(vii) (instability) If x has a degree V , V < kσ + k then Sq2kC2
(x) = 0, where

V < V
′

if and only if V
′

= V +W for some actual representations W with
positive degree.

Note that setting u = 1 and a = 0 reduces the Cartan formula (iv) to the classical
Cartan formula, and Adem relation (v) to the classical Adem relation.

Examples 6. We have

Sq1C2
SqnC2

=

{

Sqn+1
C2

for n is even
0 for n is odd

Sq2C2
SqnC2

=















Sqn+2
C2

+ uSqn+1
C2

Sq1C2
for n ≡ 0 mod 4

Sqn+1
C2

Sq1C2
for n ≡ 1 mod 4

uSqn+1
C2

Sq1C2
for n ≡ 2 mod 4

Sqn+2
C2

+ Sqn+1
C2

Sq1C2
for n ≡ 3 mod 4

and

Sq3C2
SqnC2

=















Sqn+3
C2

+ aSqn+1
C2

Sq1C2
for n ≡ 0 mod 4

Sqn+2
C2

Sq1C2
for n ≡ 1 mod 4

aSqn+1
C2

Sq1C2
for n ≡ 2 mod 4

Sqn+2
C2

Sq1C2
for n ≡ 3 mod 4
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Now, let SqIC2
denote Sqi1C2

Sqi2C2
· · ·SqinC2

for a sequence of integers I = (i1, · · · , in).
The sequence I is said to be admissible if is ≥ 2is+1 for all s ≥ 1, where is+1 = 0.

The operations SqIC2
with admissible I are called admissible monomials. We also

call Sq0C2
admissible, where Sq0C2

= SqIC2
for empty I.

Lemma 7. The admissible monomials form a basis for the C2-equivariant Steenrod
algebra AC2

as a H⋆(pt)-module.

Proof. The proof follows from the Adem relations and the Cartan formula as in the
classical case. �

For the graded AC2
-module structure and Hopf algebra structure of equivariant

Steenrod algebra, one can look [16]. We will now give unstable module structure
of it.

Definition 8. An AC2
-module is unstable if it satisfies the preceeding instability

condition (vii).

We define the excess of SqkC2
to be the degree of SqkC2

e(SqkC2
) =

{

iρ for k = 2i
iρ+ 1 for k = 2i+ 1.

So, e(SqkC2
) = |SqkC2

|. Then the excess of SqIC2
= Sqi1C2

Sqi2C2
· · ·SqikC2

to be

e(SqIC2
) =

∑

j

e(Sq
ij
C2

)− ρe(Sq
ij+1

C2
)

where ρ(rσ + s) = (r + s)ρ.

Examples 9.

• The monomial with e(SqIC2
) = 0 is Sq0C2

.

• The monomials with e(SqIC2
) = 1 are Sq1C2

, Sq2C2
Sq1C2

, Sq4C2
Sq2C2

Sq1C2
, · · ·

• There is no monomial with e(SqIC2
) = σ.

• The monomials with e(SqIC2
) = 2 are Sq3C2

Sq1C2
, Sq6C2

Sq3C2
Sq1C2

, Sq12C2
Sq6C2

Sq3C2
-

Sq1C2
, · · ·

• The monomials with e(SqIC2
) = ρ are Sq2C2

, Sq4C2
Sq2C2

, Sq8C2
Sq4C2

Sq2C2
, · · ·

• There is no monomial with e(SqIC2
) = 2σ,

• The monomials with e(SqIC2
) = 3 are Sq7C2

Sq3C2
Sq1C2

, Sq11C2
Sq5C2

Sq2C2
Sq1C2

,
· · ·

• The monomials with e(SqIC2
) = 2 + σ are Sq3C2

, Sq4C2
Sq1C2

, Sq5C2
Sq2C2

,

Sq6C2
Sq3C2

, Sq6C2
Sq2C2

Sq1C2
, Sq8C2

Sq4C2
Sq1C2

, · · ·

• There is no monomial with e(SqIC2
) = 1 + 2σ.

Remark 10. There is no monomial with e(SqIC2
) = rσ + s if r > s.

Let tj,k = Sqj2
k−1

C2
· · ·SqjC2

. Then the set of elements with total excess 1 is

{t1,k1
|k1 > 0} .

The set of elements with total excess 2 is
{

t1+2k1 ,k2+1t1,k1
|k1, k2 ≥ 0

}

.
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The set of elements with total excess 3 is
{

t1+2k2+2k1+k2 ,k3+1t1+2k1 ,k2
t1,k1

|k1, k2, k3 ≥ 0
}

.

The C2-equivariant mod 2 dual Steenrod algebra (one can check [16], or [5] for
details) is

AC2 = MC2

2 [τi, ξi]/(τ
2
i + aτi+1ηR(u)ξi+1)

such that

ηR(u) = u+ aτ0

ηR(a) = a

|ξi| = (2i − 1)ρ

|τi| = 1 + |ξi|

∆(ξi) =

i
∑

j=0

ξ2
j

i−j ⊗ ξj , where ξ0 = 1

∆(τi) = τi ⊗ 1 +
i

∑

j=0

ξ2
j

i−j ⊗ τj .

4. Equivariant Eilenberg-Mac Lane Spaces

For each Mackey functor M , there is an Eilenberg-Mac Lane G-spectrum HM
which has the property as Mackey functors

πG
n (HM) =

{

M n = 0
0 n ∈ Z, n 6= 0

One can check [13, Chapter XIII, page 162] for the proof of the existence.
Let M be a Mackey functor, the V th space in the Ω-spectrum for HM is called

an equivariant Eilenberg-Mac Lane space of type K(M,V ), which is a classifying
space for the functor HV

G (−;M). That is, given any real orthogonal representations
V , W , there is a G-homotopy equivalence K(M ;V ) ≃ ΩWK(M,V +W ) satisfying
various compatibility properties. Such spaces are constructed in [9], or one can look
[3] for a construction with a different method. Here, I will give the definition of
them for consistency.

Definition 11. [9] Let V be a real orthogonal representation with |V G| ≥ 1 and
M be a Mackey functor. An equivariant Eilenberg-Mac Lane space K(M,V ) is a
based, (|V ∗|−1)-connected G-space with the G-homotopy type of a G-CW complex
such that πG

V (K(M,V )) = M , and for πG
V+k(K(M,V )) = 0 k 6= 0.

Remark 12. One can ask what πG
V+nσ(K(M,V )) is for n > 0. Our main interest

is K(Z/2, V ). Then,

πC2

V+nσ(K(Z/2, V ))(C2/e) = πe
V +nσ(K(Z/2, V )) = 0

and

πC2

V+nσ(K(Z/2, V ))(C2/C2) = πC2

V +nσ(K(Z/2, V ))

∼= H̃C2

V +nσ(S
V ;Z/2)
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∼= H̃C2

nσ (S
0,0;Z/2)

∼= HC2

nσ (∗;Z/2)

So, as a Mackey functor, the homotopy πG
V +nσ(K(M,V )) is one of the

Z/2

��
0

Id

DD

UU
or 0

��
0

Id

DD

WW

depending on the dimension of the representation V and n.

As mentioned before, one can check [9] for existence and some properties of these
spaces.

Another approach to construct equivariant Eilenberg-Mac Lane spaces is Dos
Santos [3] approach. As we know in the classical case, the free abelian group on
the n-sphere is a model for the Eilenberg-Mac Lane space K(Z, n), and the free F2-
vector space on the n-sphere is a model for the Eilenberg-Mac Lane space K(F2, n).
Dos Santos constructed a topological abelian group M ⊗X in [3, Definition 2.1.],
which is the equivariant generalization of previous sentence for a Mackey functorM ,
and proved an RO(G)-graded version of equivariant Dold-Thom theorem proved by
Lima-Filho for Z-graded case in [11].

Let M be a Z[G]-module, M be the Mackey functor associated to M : the value of
M on G/H is MH and the value on the projection G/K −→ G/H , for K < H < G,
is the inclusion of MH →֒ MK . We define M ⊗ X as the Z[G]-module with a
topology as follows([3, Definition 2.1.]): Let (X, ∗) be a based G-set, M ⊗X denote
the Z[G]-module

⊕

x∈X−{∗}M . The action of g ∈ G is given by (g.m)x = g.mg−1.x,

where mx denotes the xth coordinate of m ∈
⊕

x∈X−{∗}M . Given (X, ∗) a based

G-space, M ⊗X can be equivalently defined as the quotient

M ⊗X = ∐n≥0M
n ×Xn/ ∽,

where ∽ is the equivalence relation generated by:

(i) (r, φ∗x) ∽ (φ∗r, x), for each based map φ : {0, · · · , n} −→ {0, · · · ,m},
n,m ∈ N, where φ∗x = x ◦ φ, and (φ∗r)i =

∑

k∈φ−1(i) rk.

(ii) ((r, r′), (x, ∗)) ∽ (r, x), for each r ∈ Mn, r′ ∈ M , x ∈ X .

We give the discrete topology to M and endow M ⊗X with the quotient topology
corresponding to the relation ∽.

We can define Eilenberg-Mac Lane spaces as KV = M ⊗ SV . In our case,

Km+nσ = Z/2⊗ Sm+nσ.

Theorem 13. [3] Let X be a based G-CW-complex and let V be a finite dimensional
G-representation, then M ⊗X is an equivariant infinite loop space and there is a
natural equivalence

πG
V (M ⊗X) ∼= H̃G

V (X ;M)

As a corollary to this theorem we have that M ⊗ SV is a K(M,V ) space (as
Definition 11). Thus we have a simple model for the equivariant Eilenberg-Mac
Lane spectrum HM .
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Examples 14.

(i) K(Z/2, 1) is RP∞, with trivial action.

(ii) Recall that RP∞
tw = P(U) is the space of lines in the complete universe

(Definition 1)

U = (Rρ)∞

[13]. The cohomology of RP∞
tw is calculated by Kronholm in [?]. The space

RP∞
tw is equivalent to K(Z/2, σ), since it is equivalent to Z/2⊗ Sσ.

Theorem 15. [6] H⋆(RP∞
tw)

∼= H⋆(pt)[c, d]/(c2 = ac + ud), where deg(c)=σ, and
deg(d)=ρ.

Now, we will give a structure of fixed points of equivariant Eilenberg-Mac Lane
spaces, which is useful to calculate the cohomology of them.

Theorem 16. [2, Corollary 10]

(i) (K(Z/2, rσ + s))e ≃ K(Z/2, r + s).

(ii) (K(Z/2, rσ + s))C2 ≃ K(Z/2, s)× · · · ×K(Z/2, r + s).

5. Cohomology of Eilenberg-Mac Lane Spaces

In classical case the cohomology of Eilenberg- Mac Lane spaces Kn with Z/2-
coefficients, which is given by Serre in [18] is a polynomial ring

H∗(Kn;Z/2) = P (SqI(ιn)|e(I) < n)

where I are admissible sequences, ιn is the fundamental class, and e(SqI) =
∑

j(ij−

2ij+1). We thought that we can give similar description for RO(C2)−graded C2-
equivariant cohomology of C2-equivariant Eilenberg-Mac Lane spaces, but these are
more complicated than we expect.

Let sV,l is the operation that sends x to x2l for x ∈ HV . It is possible to express
sV,l as a linear combination of Steenrod operations.

sV,0 = 1

If x ∈ Ha+bσ, and b = r1 + ⌊a+b
2 ⌋, then (u−r1x)2 = Sqa+b

C2
(u−r1x), so

x2 = u2r1Sqa+b
C2

(u−r1x)

By using C2-equivariant Cartan formula and the formula 3.2

Sq2m+δ
C2

(u2l+ǫ) =

(

2l+ ǫ

2m+ δ

)

u2l+ǫ−m−δa2m+δ

one has general formula for Sqa+b
C2

(u−r1x). By iterating this method one can find a

formula for every x2l , so sV,l exist. For example, if x ∈ H3+σ, then

(ux)2 = Sq4C2
(ux) =

2
∑

r=0

Sq2rC2
(u)Sq4−2r

C2
(x) +

1
∑

s=0

Sq2s+1
C2

(u)Sq3−2s
C2

(x)

= uSq4C2
(x) + uaSq3C2

(x)

Thus

x2 = u−1Sq4C2
(x) + u−1aSq3C2

(x).
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The set of elements xi whose finite distinct products form a basis for a graded
ring A is called a simple system of generators. For example, a polynomial

algebra k[x] has a simple system of generators
{

x2i | i ≥ 0
}

.

Theorem 17. (Borel) Let F → E → B be a C2-fibration with E contractible.
Suppose that H⋆(F ) has a simple system {xi} of transgressive generators. Then
H⋆(B) is a polynomial ring in the {Σ(xi)}.

E2-page of RO(G)-graded Serre spectral sequence of Kronholm [7] depends only
on the total degree of representations, not the dimension of twisted part. The proof
of the theorem is completely same as the classical case. See, for example, [15, Page
88, Theorem 1].

A simple system of generators for H⋆(Kσ) ∼= H⋆(pt)[c, d]/(c2 = ac+ ud) is
{

c, d2
l

|l ≥ 0
}

= {c, s1+σ,l(d)|l ≥ 0}

By applying the Borel Theorem to the path space fibration

Kσ → P (Kρ) → Kρ

we have
H⋆(Kρ) = P (xρ, sρ,l(x1+ρ)|l ≥ 0).

A simple system of generator for H⋆(Kρ) is
{

x2j

ρ , (sρ,l(x1+ρ))
2j |j, l ≥ 0

}

=
{

sρ,j(xρ), s2lρ+1,jsρ,l(x1+ρ)|j, l ≥ 0
}

where |sρ,l(x1+ρ)| = 2lρ+ 1. Then,

H⋆(K1+ρ) = P (sρ,j(x1+ρ), s2lρ+1,jsρ,l(x2+ρ)|j, l ≥ 0).

A simple system of generators for H⋆(K1+ρ) is
{

(sρ,jx1+ρ)
2k , (s2jρ+1,jsρ,lx2+ρ)

2k |j, l, k ≥ 0
}

=
{

s2jρ+1,ksρ,jx2+σ, s2j(2lρ+1)+1,ks2lρ+1,jsρ,lx2+ρ|j, l, k ≥ 0
}

where |s2lρ+1,jsρ,lx2+ρ| = 2j(2lρ+ 1) + 1. Then,

H⋆(K2+ρ) = P (s2jρ+1,ksρ,jx2+ρ, s2j(2lρ+1)+1,ks2lρ+1,jsρ,lx3+ρ|j, l, k ≥ 0).

Thus, by iterating this process, one can find the RO(C2)-graded cohomology of
C2-equivariant Eilenberg-Mac Lane spaces Kn+σ

H⋆(Kn+σ)

for n ≥ 0.

Conjecture 18. We know that

H∗(K1) = P (x1)

H∗(Kσ) = P (xσ, x1+σ)/(x
2
σ + axσ + ux1+σ).

If we knew H⋆(K1+k(σ−1)) for all k ≥ 0, then we could use the Borel theorem to
find H⋆(K1+m+k(σ−1)) for m ≥ 0.

We conjectured that H⋆(K1+k(σ−1)) is a polynomial algebra on k + 1 generators
with k relations, saying that the square of each of the first k generators is a linear
combination of the other generators. The dimensions of the first k generators of
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the H⋆(K1+k(σ−1)) are obtained by adding σ − 1 to those of the generators of the

H⋆(K1+(k−1)(σ−1)), and the dimension of the last generator is kσ + 2k − k.

Example 19. Let k = 3. Then

H∗(K3σ−2) = P (x3σ−2, x3σ−1, x3σ+1, x3σ+5)/(x
2
3σ−2+· · · , x2

3σ−1+· · · , x2
3σ+1+· · · )

where the other terms in the relations are linear. The resulting simple system of
generators is

{x3σ−2, x3σ−1, x3σ+1} ∪ {x2i

3σ+5|i ≥ 0}.

Now, we give another useful lemma for computations, which is the cohomology
analogous of the Lemma 2.7. in [1].

There is a forgetful map

Φe : HV
C2

(X ;Z/2) −→ H |V |(Xe;Z/2)

from the equivariant cohomology to the non-equivariant cohomology with Z/2-
coefficients. And also, we have a fixed point map

ΦC2 : HV
C2

(X ;Z/2) −→ H |V C2 |(XΦC2 ;Z/2)

where XΦC2 is a geometric fixed point of a G-space X . Now, I will state the lemma,
whose proof is the analog of Lemma 2.7. in [1].

Lemma 20. Let X be a genuine C2-spectrum, and suppose that {bi} is a set of
elements of H⋆(X) such that

(i) {Φe(bi)} is a basis of H∗(Xe), and
(ii) {ΦC2(bi)} is a basis of H∗(XΦC2)

Then H⋆(X) is free over H⋆(pt) with the basis {bi}.

One project is to finish calculations of the RO(C2)−graded C2-equivariant co-
homology of C2-equivariant Eilenberg-Mac Lane spaces by using Caruso theorem
16 and lemma 20, and then Eilenberg-Moore spectral sequences of Michael A. Hill
[4, Chapter 5].

Conjecture 21. H⋆(Krσ+s) is a polynomial algebra on certain C2-equivariant
Steenrod operations SqIC2

(ιrσ+s) divided by certain powers of u, where e(I) < rσ+s,

and ιrσ+s is the fundamental class, and V < V
′

if and only if V
′

= V + W for
some actual representations W with positive degree.

Example 22. H⋆(K(Z/2, 1+σ)) is the polynomial algebra generated by elements

SqI(ι1+σ), where I is admissible and e(I) < 1 + σ. So, it is a polynomial algebra

P (Sq0(ι1+σ), Sq
2Sq1(ι1+σ), Sq

4Sq2Sq1(ι1+σ), · · · ).

Then, it is shortly

P (xρ, x1+2ρ, x1+4ρ, x1+8ρ, · · · ).

By now, we have calculated the cohomology of K(Z/2, n + σ) for n ≥ 0. To

calculate other cases, if knew H∗(Knσ) for n ≥ 2, we could use the Eilenberg-
Moore spectral sequence [4, Chapter 5] anf the Borel theorem for the path-space
fibration

ΩK(Z/2, V ) −→ P (K(Z/2, V )) −→ K(Z/2, V ).
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For example, for the path-space fibration

K(Z/2, σ) −→ P (K(Z/2, 1 + σ)) −→ K(Z/2, 1 + σ).

E∞-term of the Eilenberg-Moore spectral sequence is

E∞ = E(xσ , xρ, x2ρ, x4ρ, · · · )

with the relations
x2
σ = axσ + ux1+σ

x2
1+σ = x2+2σ

x2
2+2σ = x4+4σ

...

x2
2iρ = x2i+1ρ

...

for i ≥ 0. As a result, H⋆(K(Z/2, σ), Z/2) is a quadratic extension of a polynomial
algebra, as it has already known.
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