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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 116, Number 2, October 1992

 ON THE THOM SPECTRA OVER Q (SU (n) / SO (n))
 AND MAHOWALD'S Xk SPECTRA

 DUNG YUNG YAN

 (Communicated by Frederick R. Cohen)

 ABSTRACT. The Thom spectra M(n) ( 2k < n < 2k+? - 1) induced from

 Q(SU(n)/ SO(n)) -* BO is a wedge of suspensions of Mahowald's Xk spectra
 that is induced from QJ2k IS2 - Q23 BO, where Ji is the ith stage of
 the James construction.

 Given a connected H-space L and an H-map f: L -* BO, the resulting

 Thom spectrum T(f) is a ring spectrum with a two-sided unit [1, 5]. If L and
 BO admit associating homotopies compatible under f, then T(f) is an asso-
 ciative ring spectrum, and if L has higher multiplicative structure compatible
 with BO under f, then T(f) has analogous structure in the multiplication of

 T(f) .
 T(f) is ( -1 )-connected and 7o(T(f)) is either Z or Z/2. If f is nonori-

 entable, i.e., f*(wl) $ 0, then 7ro(T(f)) = Z/2. Otherwise 7ro(T(f)) = Z .
 For our purpose a ring spectrum is a spectrum with a multiplication that is

 associative and with a two-sided unit, but not necessarily commutative. Fur-
 thermore "a ring map" will mean "a map between two ring spectra that is multi-
 plicative and carries the unit," otherwise "a map" even between two ring spectra
 is not necessarily multiplicative.

 Let j:S1 -* BO represent the generator of 7r I(BO) = Z/2. Since BO is
 a double loop space there is an induced map y: *2S3 - BO. Then one takes
 the composite map W2k-1S2 ,_ 2S3 -) BO, where Ji is the i th stage of the
 James construction. These maps result in Thom spectra which will be denoted
 by Xk due to Mahowald [1, 3, 4, 5]. Also let

 Q (SU(n)/ SO(n)) -* Q(SU / SO) = BO

 be the usual inclusion map. These maps yield the Thom spectra M(n). In the
 present note, we intend to show M(n) is a wedge of suspensions of Xk for
 2k < n < 2k+1 - 1, which reflects a well-known splitting in the complex case
 originally due to Ravenel, elucidated by Hopkins [2]. An application of this
 paper will appear in [8].

 Received by the editors March 13, 1991.
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 568 DUNG YUNG YAN

 Theorem 1. M(n) is a wedge of suspensions of Xk for 2k < n < 2k+I - 1.

 From now on all unstated coefficient groups are Z/2. A is the mod 2 dual
 Steenrod algebra, and let Xi E A21'1 be the generator defined by Milnor. Then

 as an algebra A = Z/2[ 1 I2,2 3, . . . ], and the coproduct is determined by

 A5k = ?ko42-i (. The Thom spectra M(n) and Xk are ring spectra, so
 one will know that H* (M(n)), H. (Xk) are (left) A comodule algebras in the
 following two propositions.

 Proposition 2 [1, 5]. As a subcomodule algebra of A, it follows that H* (Xk)-
 Z/2[41,, 2, *-- - ,k]

 There is a well-known inclusion Rpn-1 -* Q(SU(n)/ SO(n)) such that

 H* ((SU(n)/SO(n))) Z/2[Ci, c2, ***, cn-I, lc1 = i

 ci is induced from the IRPi 1 < i < n - 1, and

 H* (Q(SU(n)/ SO(n))) H* (BO)

 is injective. The Thom isomorphism yields

 H* (M(n)) -_ Z/2[el , C2, * ,Cn-J.]

 Since H* (Q(SU(n)/SO(n))) injects in H*(BO), H*(M(n)) -* H*(MO) is an
 injection. It is an isomorphism for * < n - 1. To get the mod two homology
 splitting of M(n) over the dual Steenrod algebra, recall the splitting of H* (MO)
 over the dual Steenrod algebra

 H* (MO) _Z/2[41, , 2 S.. I * O$Z/2 Z/2[fli/i 0 21 - 1], li =,

 and J3i has the trivial coaction over the dual Steenrod algebra.

 Note. We actually choose the above splitting from the following isomorphism
 (as comodule algebras)

 7r* (MO) OZ/2 H*(M(y)) h. 0y. 1 H* (MO) (S$J/2 H* (MO) mH* (MO),

 where h*: 7r* (MO) H* (MO) is the mod 2 Hurewicz map, M(y) is the Thom
 spectrum from y: 23- BO, y*: H*(M(y)) -* H*(MO) is the map induced
 from y: Q23- BO, and m is the multiplication map.

 Proposition 3. H*(M(n)) - Z/2[4,, 42, .--, Jp]?Z/2Z/2[yi/i $ 21-1], 2P < n,
 i < n - 1, I1y I = i, and yi has the trivial coaction over A.

 Proof. Since H* (M(n)) -* H* (MO) is injective and isomorphic for * < n - 1
 it follows that H* (M(n)) is a left Z/2[41 , 2, ... , Xp] comodule algebra from
 the splitting of H* (MO). Moreover it maps onto Z/2[41, 42, ..., p. Hence,
 by a theorem of Milnor and Moore [6],

 H* (M(n)) - Z/2[4i, 2 . * * ] ?'Z/2 C
 as left Z/2[41, 42, ..., Xp] comodule algebras, where

 C = Z/2 Mz/2[4,, 12, .., (pl H* (M(n))-

 An easy counting argument shows that C must have the indicated form. 5

 Before going to the Thom splitting results, we would like to prove the follow-
 ing property.

This content downloaded from 
������������128.151.124.135 on Fri, 03 Feb 2023 16:36:47 UTC������������ 

All use subject to https://about.jstor.org/terms



 ON THE THOM SPECTRA OVER Q (SU (n) / SO (n)) AND MAHOWALD'S Xk SPECTRA 569

 Proposition 4. Xk and M(n) are noncommutative ring spectra for k > 1 and
 n > 2 respectively.

 The proof uses the following result.

 Theorem 5 [2, 2.2.1]. Let E be a commutative ring spectrum. If 74 (E) contains
 an invertible element of order two then E is weakly equivalent to a wedge of
 suspensions of Eilenberg-Mac Lane spectra.

 Also recall that Xk is taken to be the Thom spectrum induced from

 QJ2k-1S2 ) Q2S3 - BO,

 and we know that Q2S3 -) BO induces the mod 2 Eilenberg-Mac Lane spectrum

 H(Z/2) [1, 4, 5], hence one has the ring map Xk -* H(Z/2) that induces the
 natural embedding of mod 2 homology.

 Proof of Proposition 4. Since the pull back of the first Stiefel-Whitney class is
 nonzero for QJ2k- S2 -) BO (k > 1), then 7ro(Xk) = Z/2, i.e., the unit is
 the invertible element of order two. If Xk were a commutative ring spectrum,
 then Xk would be a wedge of suspensions of Eilenberg-Mac Lane spectra. So
 if the cohomology of Xk was a free module over the Steenrod algebra, then
 one would have the ring map Xk -) H(Z/2), which would induce cohomology
 invective, a contradiction. An analogous argument holds for M(n). E

 Theorem 6. M(2k+1 - 1) is a wedge of suspensions of Xk .

 Lemma 7. The usual inclusion SU(n)/ SO(n) -* SU(n + 1)/ SO(n + 1) induces
 an isomorphism on 7* for * < n - 1, an epimorphism for * = n if n is odd and
 n > 3, and an isomorphism on 7r* for *< n - 2, an epimorphism for * = nI-
 if n > 3.

 To prove the lemma, we quote the classical Zeeman's comparison theorem
 [9]. A homomorphism between two spectral sequences (both are 1st quadrant
 spectral sequences). That is to say,

 frq: Er Epq (r=2,3,..., oo and -oo<p, q<oo),

 fnA: An )An (n=O, I,.)

 fp:Bp ,Bp (p=O,l,~...)

 fqC:CqCq (q=O, 1 ...

 where An = ep+q=n Eq, Bp = Ep0, Cq = E2q, and the same definitions
 as for An, Bp, Cq. Furthermore the spectral sequences satisfy the following
 commutative diagram with rows exact:

 O ) Ep20E q - Epq - Tor(E%2_0,EOq) -2 0

 O , EoP 0 9EO, q 2 EP -* Tor(EP1 0, EO, q) * 0
 We say that fA is an isomorphism up to dimension N if fnA is an isomor-

 phism for each n ( 0 < n < N ). Then
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 570 DUNG YUNG YAN

 Theorem 8 [9]. If fA, fc are isomorphisms up to dimensions N and Q re-
 spectively, then fB is an isomorphism up to dimension P = min(N, Q). If,
 further, fpA1 is onto, then fp+1 is onto.

 Proof of Lemma 7. Consider the following diagram with each row and each
 column a fibration:

 SO(n) - SO(n+ 1) ) Sn

 1 I
 SU(n) - SU(n + 1) ) s2n+l

 I I
 SU(n)/SO(n) - SU(n + 1)/SO(n + 1)

 It follows from the fibrations that

 H*(SO(n), Z) H* (SO(n + 1), Z)

 is an isomorphism for * < n - 2, a surjection for * = n - 1, and

 H* (SU (n) , Z) ) H* (SU (n + 1), Z)

 is an isomorphism for * < 2n - 1. In order to let Zeeman's comparison work,
 we use the Z/p coefficient for each prime p in the Serre spectral sequences.
 Then to prove the second statement is easy. Since n - 2 < n - 1 < 2n - 1
 for n > 3, from Theorem 8 the map SU(n)/ SO(n) -* SU(n + 1)/ SO(n + 1)
 induces an isomorphism on H*( , Z/p) for * < n - 2 and a surjection on
 Hn- 1 ( , Z/p) for each prime p . Since the integral homology of SU(n)/ SO(n)
 and SU(n + 1)/ SO(n + 1) are of finite type, a trivial application of the mapping
 cylinder of

 SU(n)/ SO(n) -* SU(n + 1)/ SO(n + 1),

 one can show SU(n)/ SO(n) -* SU(n + 1)/ SO(n + 1) induces an isomorphism
 on H* ( , Z) for * < n - 2 and a surjection for * = n - I . Hence by Hurewicz's
 theorem the map induces an isomorphism on 7r* for * < n - 2 and a surjec-
 tion for * = n - 1. This proves the second statement. In the first statement,
 if one can show Hn -I(SO(n), Z) - Hn -I(SO(n + 1), Z) is an isomorphism
 when n is odd and n > 3, i.e., H*(SO(n), Z) -* H*(SO(n + 1), Z) is an iso-
 morphism for * < n - 1, then by Theorem 8 again the map SU(n)/ SO(n) -)
 SU(n + 1)/SO(n + 1) induces an isomorphism on H*( , Z/p) for * <
 n - 1 and a surjection on Hn( , Z/p) for each prime p since n - 1 <
 n < 2n - 1. Therefore, with an argument analogous to the one above we

 can prove the first statement. So it remains to prove that H-I (SO(n), Z) -+)
 Hn -(SO(n + 1), Z) is an isomorphism when n is odd. In the following para-
 graph we will use the integral coefficients.

 By the Whitehead theorem and the long exact sequence of the pair (SO(n+ 1),
 SO(n)) one has

 Hn(SO(n + 1), SO(n)) 8 Hn_ (SO(n)) ) HnI(SO(n + 1)) ) 0.
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 ON THE THOM SPECTRA OVER Q (SU (n) / SO (n)) AND MAHOWALD'S Xk SPECTRA 571

 Let SO'(n + 1) = Kn U SO(n) where Kn is the n-skeleton of SO(n + 1). Then
 for the triple (SO(n+ 1), SOn(n+ 1), SO(n)) we also have a long exact sequence

 - Hn(SOn(n + 1), SO(n)) ) Hn(SO(n + 1), SO(n))
 ) Hn(SO(n + 1), SOn(n + 1)) , .

 From the cellular homology, Hn(SO(n + 1), SOn(n + 1)) = 0. So the first
 map is surjective. Again from the cellular homology, the well-known CW-
 decomposition of SO(n + 1) = O(n + 1)/O(1) [7], and the fact that n is odd
 (n > 3), one has

 Z - H(Rpn , RPn-1) - Hn(SOn(n + 1), SO(n)) - Z
 \\ j- onto

 Hn(SO(n + 1), SO(n))

 Hence

 Hn(Rpn 11Rpn-i) onto Hn(SO(n + 1), SO(n))

 Hn I (Rpn I { - I (SO(n))

 But H, (RPn-1) = O since n is odd and n > 3. So a = O, therefore

 Hn-l(SO(n)) -'-e H,_i(SO(n + 1)).

 This completes the proof. 5

 Lemma 9. There is a ring map of ring spectra f: Xk -* M(2k+1 - 1) such that
 H* (Xk) is isomorphic onto Z/2[ki, 42, * *k] of

 H, (M(2k+l - 1)) - Z/2[1, 2, . .,k] Z/2 Z/2[vi I i $ 2' - 1]

 under *, that is, f* projects the mod 2 homology of Xk onto a wedge summand
 of the mod 2 homology of M(2k+1 - 1).

 Proof. Using Lemma 7, it is easy to see SU(2k+l - 1)/ SO(2k+l - 1) -* SU/SO
 induces an isomorphism on 7r, for * < 2k+1 - 2 and an epimorphism for
 * = 2k+I - 1 when k > 1. It is known that the CW-complex J2k -S2 has
 dimension 2k+1 - 2, hence we have the following lifting (up to homotopy).

 SU(2k+l - 1)/SO(2k+l - 1)

 f

 J2k1S -+ SU/SO

 Looping the diagram and then Thomifying the resulting diagram, one has

 M(2k+l - 1)

 f I

 Xk ' MO
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 572 DUNG YUNG YAN

 This ring map f: Xk -* M(2k+l - 1) is the desired one. Since each map in
 the above diagram is a ring map and H*(Xk) -> H*(MO), H*(M(2k+l - 1)) I
 H* (MO) are invective, it follows that f* maps H* (Xk) onto Z/2[ 1, 42,*,.
 This completes the proof. 0

 Proof of Theorem 6. Since

 70 (M(2k+l - 1)) = 7o(MO) = Z/2, not only are M(2k+I - 1) and MO 2-local but also 7r*(M(2k+l - 1)), 7(*(MO)
 are of characteristic 2. And the natural ring map M(2k+l - 1) - MO induces

 an isomorphism on H*( , Z/2) for * < 2k+1 - 2. So 7r*(M(2k+l - 1))
 7r* (MO) is an epimorphism for * < 2k+ 1 - 2. Therefore, in the splitting

 H*(M(2k+l - 1)) - Z/2[k1 42, * ... *,k] 0Z/2 Z/2[Y2, Y4, . , * * Y2k+l-2],

 each polynomial generator in Z/2[L2, Y4, ... , Y2k+1 2] is a mod 2 Hurewicz
 image. Finally, construct ring spectra L2k+l -1 out of suitable wedges of spheres,
 satisfying

 H* (L2k+1 ) I Z/2[Y2, V4 , * V , *"2k+1 -2]-

 Using Lemma 9, one has the map

 Xk A L2k+l-l ) M(2k+l - 1) A M(2k+l -1) - M(2k+l -1),

 where the last map is the multiplication map. By the construction, it follows
 that the above map induces isomorphism on mod 2 homology, hence, by the
 Hurewicz theorem, the map is an equivalence since Xk A L2k+1 -1, M(2k+l - 1)
 are 2-local. This completes the proof. E

 Proof of Theorem 1 . Again, construct a ring spectra L, out of suitable wedges
 of spheres, satisfying

 H*(Ln)-Z/2[pi I ii#2'-1 < i<n-i], 2k < n <2k+1 - 1.

 Obviously, we have a map gn: L2k+l - I-* Ln . Then using Theorem 6, one yields
 a map

 M(n) -M(2k+l - 1) Xk A L2k+l1 Agn Xk A Ln,

 the first map is from the natural inclusion

 Q(SU(n)/SO(n)) ) Q(SU(2k+l - 1)/SO(2k+l - 1)).

 It is trivial to check the mod 2 homology is an isomorphism, hence an equiva-
 lence. 0

 We finish the paper by pointing out a remark.

 Remark 10. Under the splitting of Theorem 6, i.e., M(2k+l - 1) is a wedge of

 suspensions of Xk, one has Xk f M(2k+l - 1) P) Xk and Pf 1, where
 f is the ring map in Lemma 9. Then

 (a) P carries the unit.
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 ON THE THOM SPECTRA OVER Q (SU (n) / SO (n)) AND MAHOWALD'S Xk SPECTRA 573

 (b) The following diagram commutes

 Xk -L---> M(2k+l - 1) ' Xk

 H(Z/2) - MO - H(Z/2)

 where MO , H(Z/2) is the Thom class.

 (c) P*:H*(M(2k+l - 1)) -? H*(Xk) is a ring map.

 Proof. (a) is obvious. For (b), the first commutative diagram is induced from

 sk-I S2 ) Q(SU(2k+l - 1)/ SO(2k+l - 1))

 I I
 n2S3 ) BO

 This diagram is actually induced from the diagram in the proof of Lemma 9.
 The second commutative diagram is due to

 HO(M(2k+l - 1)) [M(2k+l - 1), H(Z/2)]o

 -Homz/2(H*(M(2k+l - 1), Z/2), Z/2) _ Z/2,
 and both maps from M(2k+l - 1) to H(Z/2) are essential maps. To prove (c),
 from (b), one knows the map

 H* (M(2k+l - 1)) P- H*(Xk) ' H* (H(Z/2))

 is a ring map. But the second map is the natural embedding. So P* is a ring
 map. E3
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