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1. INTRODUCTION

RO(G)-graded homotopy groups of genuine equivariant spectra are known to be very difficult
to compute. Even in the case of a cyclic group G = Cpn, no inductive formula is known. Explicit
formulas are only known for n = 2, see [Zenl17],[Geol9] and [Yan22].

In this paper we provide an explicit inductive formula for RO(Cyn )-graded homotopy of HF;,
where [y is the constant Mackey functor for Fp. The main theorem of this paper is Theorem [7l
There are mainly two reasons for the RO(Cyn )-graded homotopy of HF; to be computable: Firstly,
we can avoid additive extentions by working over the field Fo. Secondly, the Mackey functor Fy is
constant, which enables us to deduce information from quotient groups.

The result in this paper adds new computations to the database of equivariant computations,
where we can say something in general for a particular family of groups (cyclic 2-groups in this
paper). Previously, the only such computations that people know for a certain family of groups,
not for a specific group, is the computation of the RO(C5")-graded homotopy of HF3, by Holler
and Kriz [HKIT].

There could be several applications of our results. In [HKO0I], Hu and Kriz explored Real-
oriented cohomology theories. The genuine Cs-equivariant Steenrod algebra has several remarkable
properties, including providing us a genuine Cs-equivariant Adams spectral sequence. The results
in this paper would be an essential ingredient to the genuine Cs»-equivariant Steenrod algebra and
Adams spectral sequences. In [May20],[HM20], Eric Hogle and Clover May discovered the freeness
theorems for the group C: and coefficient Fy. Our result will provide information to possible
generalizations of the freeness theorems. More generally, Mike Hill developed a concept
of R-free spectrum. For such a G-spectrum F, its R-homology will splits as the R-homology of
induced representation spheres. When R = HIFy, our result will provide complete descriptions of
the homology of HIF;-free spectra.

Date: Monday 6t February, 2023.


http://arxiv.org/abs/2302.01490v1

2 GUOQI YAN

The main tool we will use is the following Tate square introduced in [GM95]

(1) H, ——>H——>H .

|

H,——H'— > Ht

Here H = HFy, Hy, = EGy A H,H" = F(EG,,H),H" = H" A EG and H = H A EG.
Recall the real representation ring of Can

RO(CQ") = Z{la a, A'n,va Tty Alv )\0}7
where « is the one-dimensional sign representation, the A\;’s are rotations of the two-dimensional

real plane, by ean% for each k, and ZS means the free abelian group generated by the set .S. Thus
the stablizer of each non-zero vector of Ay is Coe.

To illustrate the method of inducing from quotient groups, let us suppose that we already know
7TS2TL71H]F2. Let € : Con — Con /Cy = C},,_, (here we use CJ,_, to denote the quotient group, to
distinguish from the subgroup) be the canonical projection. Pulling back along & gives us a map
of representation rings

(2) e* : RO(Cj,—1) — RO(Can)
where we have e*(1) = 1,e*(a) = e and *()\;) = \;11. Using the language of [LMSMS86] Ch.2], let
U be a complete Con-universe. Let i : U2 — U be the inclusion, ¢* : ‘S‘pC;n*lUc2 — SpCen e

be the functor that regards a Cj,_,-spectrum as a Can-spectrum, then we have the following two
adjunctions and an isomorphism:

, Can % 777Can . Con— Con—
(3) [ixc®™ SV H]p" = [*SY,i*H] %, =[SV, (i*H)“?] 2" i
Here the first adjunction is change of universe, the second is the pullback and fixed-point adjunc-
tion, and the third isomorphism comes from the fact that

((*He, )™ = Hoy | € SpPrrU,

=~ [SY, H]

1

which is true precisely because Fy is constant. Here we used the notation Hx to denote the K-
equivariant HF,. In (), the image of €* are the virtual Can-representations that does not contain
Ao. If we denote

*J->\0 = Z{l, a, )\n_g, cee 7)\1}‘ [ RO(CQH)

to be the subgroup, then we get
%
(4) o H T H

from @B). By (@), the classes ay,,us, on the right will respectively correspond to ay,,,,ux,,, on
the left, and the classes aq, uq on the right will respectively correspond to the elements with the
same name on the left. Thus, more explicitly, () means

027171

an H E*
jaa+in—3An—3+:-+ioAo

Jaa+in—3An—2+-+ioA1

We will call (@) the induction formula.

H for j, i € Z.

Notations. We use v to denote the generator of Co». We use [z] to denote a polynomial generator,

and (y) for an additive generator. For simplicity, all super-indices like 4, j, k has range > 1. For

example, the notation Fo(S™'——)[uf](1,as) means the classes L1 —1-us, X~ S-ufa, for all
Ao

al al

Ao Ao
. [ufuf] . .
1=>1,seZ. Fo [ uk“] will mean the quotient as a vector space. For the generators ay,, ux,, Ga, Ua,
aUXg

we refer to [HHRI6| for details. Our classes are the images of the classes there under the map
HZ — HIF5 except uq, which is not Z-orientable but Fa-orientable.
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2. COMPUTATIONS IN THE SECOND ROW

We start the computation from the Borel spectrum H”. EG has free cells in all dimensions,
and its cellular chain provides a free Z[G]-resolution of Z. From there we derive the homotopy
fixed-point spectral sequence

Theorem 1. The RO(Can)-graded homotopy fized point spectral sequence (HFPSS) for HFy takes
the form |[Grel8, Def 1.4]

(5) EY* = H*(Con;my>"/°H) = wy>" /" H |d,| = (r — 1,7)

—S

This is a spectral sequence of algebras and it collapses at Fo since 7T‘Cj/ “H is concentrated in
virtual representations with underlying degree 0. The strong convergence is guaranteed by [Boa99,
Thm 7.1] and the remark below it. Both the F5 and the target are uy,,uq-local, for all i, see
[Yan22]. The group cohomology with Fa-coefficients are

H*(Cy;F9) = Fa[z], |z =1 forn=1
H*(Cgn;Fa) = Fao[y] @ A, [yl = 2,|2| =1 forn > 2
where A denote the exterior algebra. It is easily checked that x converges to 2= in the first case and
Y, z converge to %, % yespectively in the second case. Recall the gold relations from [HHRI17,
0 @
Lem 3.6]
ayux; = 2i7ja>\juAi, forn—2>=2i>35>0
azaly, = 2"*17jaAju2a, form—2>35>=0
which holds in the Csn-equivariant homotopy of HZ. Now since we are working with HIF, these
relations in WSQ" HIF; become

axuy, =0, forn—22i>3520
j b

(6)
which drastically simplifies our computation. We will refer these relations as the gold relations in
this paper. In particular, since H" is u,,uy,-local for each i, we have
Proposition 2. The RO(Can)-graded homotopy of H" is

79 HY = Folag,ut] ifn=1

m H" = Falaa, ax )/(@Q)[ug us, - 03, ] ifn > 2

=
azqux; =0, forn—2>35>0

When n = 1, we have the model S®% ~ E’E’;, and the maps H — H and H" — H! are
localizations at a,. When n > 2, we have the model S®* ~ EC5.. Thus the maps above are
localizations at ay,.

Proposition 3. The RO(Can)-graded homotopy of H* is
7 HE = Folat,uf] ifn=1
79 HY = Falag,at /(@) [u,uf o uk ] ifn>2.

[e3%

Through the connecting homomorphism in the second row of (), we deduce

Corollary 4. The RO(Can)-graded homotopy of Hy, is

1

T Hy =Fo(S7 ' —)[ul] ifn=1
1

Wgzn Hy, =Fy(x7! o >[u§,u;\—r0, e ,ufn72]<1, aey if n=2.
Ao

From the above we get
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Corollary 5. We have
n —1,Ua 4 .
ngx Hy = F2<E 1(CL_) > lfn =1,

(o3

T Hy = FaS T (200 ud uf ok aey ifn =2

CL)\O

3. SAMPLE COMPUTATIONS FOR n = 1,2

The cases n = 1,2 are too simple to fit in the general pattern in Theorem [[l Thus we record
them here. For n > 1, let §,, be the connecting homomorphism

8y : w2 H — " Hy,.

We use K,, and C), to denote the kernel and cokernel respectively.
Now we start with n = 1, then

Ua\;
Tt Hy = Fo(37 (—2))

and 752 H = Fy(1). Since H — Hisa ring map, the identity 1 € m; €2 H should map to the identity,
thus not killed by elements from 7$2Hj,. We get 752 H = Fo[4=] and thus
7r*2H = Fy[uq, at]
by aq-periodicity. The connecting homomorphism d; : 7r€2f_~l — 7T€2_1H h Maps
Folual{ag") = Falua(E™ ag").
We get
7T€2H = Kl (—BCl = Fg[aa,ua]
DFE tag u?).
When n = 2, we have
L1 U G
T Hn = a7 ()DL, 00
0

From the induction formula ) we get
7T*J_>\ H = TFslaq, uq]

DFHE tag ug?.

The map ngk H, — 7T*J_>\ H is 0. To prove it we need a lemma

(7)

Lemma 6. Forn > 1, and all the homotopy Mackey functor we discuss in this paper, ker(aq) =

zm(t?”cwfl) and im(aq) = keT((Cjw,l)-

Proof. Apply [—, S~V A H Fy] C2n t0 the following cofiber sequence and its Spanier-Whitehead dual
ST e S0l Cgn JCona . —55 §Y 225 G,

]
Now for degree reason, using divisibility and linearity, we only need to consider the possibility
U
-1 ( Uxo Yus KR - 1 ;1
CL)\O

Now both classes are killed by a,, thus hit by trg;*. They both live in degree m3_o4, and u, is a

unit on the Cy-level. Thus the problem reduces to whether the map 752 Hjy, — 752 H is 0 or not.

We know from the Cs case that this map is 0. We conclude that the map ngk Hp, — 7T€j_>\ His
0 0

0. Then we have

T H = (2753 Hy)[at ]@wm Hlai .
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Aol

by ax,-periodicity of H. For the connecting homomorphism, we first look at classes in (wa‘i o Hp)la Nl

We get ‘
Fauj,ax | [ug (1, aa) € Ko,
and quotient by classes of (Eﬂ',,(M Hh)[a/\ ] leave us with

(8) Fa(S ™ ax)[ug K1, aa)

(9) OF (5 aytuy H[uE](L, aa)

in Cy. Elements in ([@) cannot be hit under d2 because of the negative powers of uy,. The classes
Fa(S ™ a3 ual(1 a0

are hit under d; by classes from WE‘L\DH [a;\—ro], and we are left with

Fo(x ! ﬂ>[“§]<1 Ye
2 [Ua] , Ao 2,

Fslaq, ua] [ax,]
OFafual(%)

CL)\O
& ag "y a, ]

and

in Ks. In summary, we have

7T§4H =[Fy [CLa, Uy AXg 5 ’LL)\O]/(CLZU)\D)

@F2<uﬁo>[axo]%<1aaa>
ai+1
Folta (==
o F: | ]<ai0>
@F2<2_1 Uy >

[ax,]
SF2(E™ aA0“A§>[ uz {1, aa)
i [uz]

D agg L

®F (X" a

4. STATEMENT AND PROOF OF THE MAIN THEOREM

For z € 752" H, let D(x,n) be the set of classes in 75" H which are infinitely divisible by z.
Equivalently, it is the kernel of the algebraic completion map 7TC2"H — (7 32" H)”. For example,
D(aq, 1) is the set of classes

FolXta, ul ).
D(ay,,?2) include the last four summands in (I0) as well as the classes Fo[uq, ax, [{a’, Yi=2 in the
positive cone.

Theorem 7. For n = 3, the RO(Can)-graded homotopy of HFy has the structure as follows. It is
the direct sum of the following summands (we refer to them as part (1) — (4))

(1) The positive cone, denoted by 752" H ;

(2) D(a’)\l’ ) ;%sn H;

(3) D(CL)\O,’II) - D(a>\l7n) - Tr;%sn H;

(4) The classes that are not in D(ax,,n).
There are n? + 2n — 2 summands in the above presentation. Here the minus sign means taking the
difference of the sets involved, where we identify vector spaces with their sets of basis. Fach part
has explicit formulas as follows. For a closed formula of part (2), see Remark[2
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(1) The positive cone of 75" H is

;%:H FQ[G’)\oaakla AN, oy Aoy UNg, UNy, "t auAn—zaua]/(a’)\iuAj = O,fOT n—12> Z>j = O)

Here for simplicity we used the notation ay, , = asq in the gold relation.

(2) D(ax,,n) can be computed inductively as D(ay,,n) = 5*(D(a,\0,n - 1))[% |. Here e* is
the map in ({{)) which identifies 7T* “YH as a subset of 7r*“ H by renaming.

(8) The following 2n summands consists of the direct sum of the following 3 blocks
ai+1

By = Falua (=5

ay,

@F2<G;§>(W[u>\l, <, [aal)/{gold relations},

By = Fo(S7 a3 (1, a)(uyDlun =, ui i3]
OF(E g XL aa)(uyDlun,®, -y uy, ]
®F2(S " ay )1, aa)(uy)luz]

DF(E a3, X1, a0 Xug’)
[ug] <uz >[a>\1] [aJ_r ]<1 a >
[ua] =2y KR

i lax.]; +
(W, ) g o3, KL ao)

)

Bs =T,

~Anop? el
[u)\n72 ) ua]

[uiﬂ,---,Ui,u;—r] i [ ]
[Ur, s ,UAQ,ua]< W 1

(a3, J{1, aq).

(4) The following (n — 1) summands,

[ua

L, oo

]FQ[ N
[u;_rv X, ]
[

(Ul _laa )1, aa)

27 7
ne2]
(_B.
[uauf o]
i n2 =l 1,aq).
@ 2[u0¢7u)\n727'.' 7u>\1]<UAO>[a>\O]< ¢ >

Remark 1. Fach summand in part (4) has to modulo the non-negative powers of the u’s since
they are included in the positive cone. Also notice that the n = 2 case can also fit in our theorem
if we regard the second summand of By as 0.

Remark 2. Part (2) can also be expressed as closed formulas. For each n, D(ay,,n) consists of
part (2),(3) and aX. times of elements in By for suitable m such that the resulting elements live in

the positive cone. These are the elements that will make up part (2) (and part of mp 2"“) for the
group Con+1. If we use Part(ci" i = 2,3 to denote the part (2) and (3) for Con. Then the closed
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formula will be

Part(c;?)" =((e*)"~ 3Part(c;8))[ SWDTRER ,aj\—ro]
&) Partles, - af]
S PartG ik, .- o)
@ -

D((e*)? Part(:f)" lay, . ax ]
B((e*)PartC ) [ak ]

for n.= 4. Here (¢*)" means the iteration of the renaming process.

We will prove the theorem by induction. First recall the definition of the positive cone

an Caon
Tpos H = neZ,GrL)niZO N—MoA0—MIAL— " —Mp_2Ap_2—Mp_1Q

It is a subring of 7752” H and has a particularly easy description. The entire homotopy group is an
algebra over this subring.

Lemma 8. We have D(ay,,n) < D(ax,,n).

Proof. As mentioned before, ay, = 0 in 7T 2" Hp,. Since classes in 7T* " H are from a quotlent (also

a subspace since we are working with vector spaces) of 7r*2" Hp ora subspace of 7r*2" H if we take

Cgl

x € D(ay,,n), it cannot come from WCQ" Hj,. Thus z is lifted from 7;*" H, where x generates an

ay,-tower <x>[aj{0]. Again, since these classes are divisible by ay,, it cannot hit anything under
the connecting homomorphism §,,. We deduce that if z € D(ay,,n), then <:E>[a§0] e 752" H, thus
x € D(ay,,n). O

Lemma 9. D(ay,,n) can be computed inductively as D(ay,,n) = e*(D(ax,,n — 1))[@%0]. Here ¢*

Can
* g

on—1

is the map in (§) which identifies WS H as a subset of w H by renaming.

Proof. We have already proved in the previous lemma that any x € D(ay,,n) generates an infinite
ay,-tower <x>[a;\—r e Wgan. Let D(ax,,n) < D(ax,,n) be the subset

D(ax,,n) = {y € D(ax,,n)|y does not involve the class ay, }.
Then D(a)\l,n)[a;\—ro] = D(ax,,n), and D(ay,,n) = e*(D(ax,,n —1)). O

Proof. (of Theorem (7))
Direct computations in the next section shows the theorem is true when n = 3. Assume it is true
for n — 1. We prove it for n as follows.

We first show that the map 71',,(M Hy, — 7§

o H is 0. Classes on the left hand side are
0

n _1,u i
T Hy = Fo(S 1(a_io) ut uf - ub (L an)

0

from Corollary ([B)). They must map to classes that are infinitely divisible by wq, ux,, - ,ux
By the induction formula (@),

n—2"

*
me H ‘E: Ty H,
they translate to infinitely wqa, un,, -, ux, _,-divisible classes in 7T ~' H. By induction, the only
infinitely u,-divisible classes live in By of part (3). By an examination of degrees, as well as using
divisibility and linearity, we are left to show that the maps

1, UNo\i —i—1 ? i =
(11) b 1(a—>\0)lu)\f N 1a>\fu)\11
0
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in degrees (i + 1)A; — 3,4 > 1 are 0. We show it by computing the Mackey functors 7T8+1))\ _H =
ng (SGH+DAL Fy),i > 1. Since S (i+DA1 are Cyn-CW complexes of dimension bigger than or equal

to 4, and we care only about their third cohomology, these values does not depend on i and we
only need to compute ng (§2*1:Fy). Now we look at the top two levels of the cellular chain of

fixed-point Mackey functors computing the cohomology, we have

=0 0
Fy — > Fy[Can /C5]C2 Fa[Can /C5]C2" Fa[Can /C5]C2" Fa[Can /C5]C2"

() )

1— - 1—
Fy — s Fy[Can /Co]Can-1t — % Fy[Can /Ca]Cont =% Fy[Con /Co]Con—1t — > Fy[Cipn /C5]Can—

Here N = 149472+ +~2 =L We deduce H3(Cyn/Cyn) = Fo({N) and H3(Cyn /Con-1) =
Fo(N), and res = 1,tr = 0 in the above diagram. Notice that i("}w_ A=A for i =3, i, M = 2a

and Zc A1 =¥\ = 2. Induction shows that WCQ" 3 H is

Fo

é
<

y

with resg =1 trc = 0,4 > 3. Thus whether the map ([ is 0 or not is reduced to the
Cy-level, Wthh is already shown to be 0.
Now we know that the map 7T*L/\ Hy — 7r*“ H is 0. Since H is ax,-local, we get

)
|
5

(12) 7 H = (5a$2n Hy)[af @7y Hlai ]

*1xg
Here ¥ means taking the preimage under the connecting homomorphism

8y s 72 H — 2" Hy,.

We use K,, and C), to denote the kernel and cokernel respectively. For elements in 7r* Do Hpla A0]
an easy examination shows we are left with

(13) Folujlaruz, uy,, -+ s uy, )1, aa) € Ky,
and
(14) Fo(S ™ ayDlud, vy, uy, 11, aa)

(15) ®F2<E_1a;§ugj>[u§, uj{l, e ,uj{nﬁ](l, Aoy
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in C,,. Note classes in ([IH]) can never be hit by ¢,, because of the negative powers of uy,. They are
the first summands of By. The classes in ([3)) splits as

F2<u§\0>[a)\0] [UOH UNyy -ty u)\n—2]<17 a’O¢>
) [i ilv,_,vui 2]
BF(u Marg] A2 (1, ag).

[uav Uny, 7u)\n—2]
The first summands together with 7r* Do HJay,] (see the next paragraph) makes up the new positive
cone for Can. The second summand are the last summands in part (4). Note that

12)2: H = FQ [a)\n G, oy Aoy Uy, UN, o, uﬂt]/{g()ld relations}[‘”\o]

@ Falul,lano][va, ury, - un, )1, aa).

Can

*ing H[af ]. Since the target of &, only consists of negative

Now we look at elements from 7

powers of ay,, we have wfﬂoH [ax,] € K. For wfi’: H <a§;>, firstly, we have the following maps

[UAU L, UN, g u(l]<a;(f><1a aOt> g [u)\n UM, g ua]<271a;3><15 aOt>'
By the gold relation and that every spectrum in the second row of the Tate square is uy,-local, we
see

(16) agq =ay, =0, forn—2>2i>0

in 7T* " Hy,. Thus we get the following classes in K,

(17) Falua]{at);j=2(az,)

—i [a)\u T 7a)\77,72] .
(18) ®<QAO>(T[UAN e LU, s ][@a])/{gold relations}.
Here W denotes the augmentation ideal of the Fa-algebra map

]F2|:a/>\17 e 7a>\n,2] - ]F27 a}\i = O

They are the classes in B; in part (3).
We are still left to consider part (4), Bs and the rest of the summands of By. By induction
assumption, part (4) for Con—1 has the following (n — 2) summands (we renamed them through e*

so that we can regard them as a subset of WST;O H)

P, oKL ao)
i o, )
[

» Uy

[ i 1 a,
(19) OF; o e=tndu, a1 aa)
D
[u, u;rn REERRINE Y 1‘
EB]FQ [UOU u)‘n—27 cee 7u>\2] <u}\1>[a>\1]<1, aa>.

Since ay, = 0in WSQ" Hy, classes with positive powers of ay, will be in K,,, and they are the classes
that make up Bs. Classes in ([I9) without ay,, together with their counterparts in the positive
cone for Cyn-1 (again renamed through €*), will hit classes in ([4) when paired with a;[f. The
classes in (I4) that are killed in this way are

Falu (0 ani e, lox, 1, 0
OF [, uf,_ M ar )l lax K1, aa)
D[ o un IS a0 lan, 1, ).
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Now the classes Fa[uq]{a}, M1, a0) € Tpis Can i (ay, S will also kill the corresponding classes in (I4)
and the quotient classes are the rest summands of By. Classes in (I9) paired with [ay,] make up
the classes in part (4). O

5. MORE SAMPLE COMPUTATIONS FOR n = 3,4

In this section, we provide the computation for n = 3,4. The n = 3 case is the starting case of
our induction proof of theorem (), thus we computed it by hand and present it here. The n = 4
case is used to illustrate how to use our induction methods quickly to compute for bigger n.

Proposition 10. We have

WSSH = Folan, @, Arg, Ua, Un, s Ur, |/{gold Telations}
L2) © Falaf ay))[uallaz, ]
L3) ® Fo(S " ag uy?) (a3 ][a3]
L4) @ Fo(S " ay [ uy D [u (1, an)[as ]
L5) ®Fo(S a3 uy X1, an)las ]
L6) @ Falay ™ ay) [ua]
)

~ o~ o~ o~ o~ o~

LT)®TF, [<1>] [u, ][aal/{gold relations}(ay’ )

-1 t ot
(20) (L8) @ Fo(% a30u§0><1aaa>[uha al

(L9) ®Fo(X ™ —

(L a)[ug]

)\0 )\1

(L10) @ Fo(x™" ><1 o)

[uz]
[ua]
[ug]

>\0

< i >[CL)\1] [a;\_ro]<1;aa>

@
ut
(L12) ® u“] Cuy, lax, )1, aa)

[
) oL )

(L11) @ F,

(L13) @ F,

In the above presentation, (L2) — (L5) are part (2), (L6)—(L11) are part (3), and (L12)— (L13)
are part (4).

To compute for Cyg, one notices that (L2) — (L11), after renaming through e*, are all infinitely
divisible by ay, for Cyg (which is ay, for Cg), thus contributes to part (2) of 7$'® H by adding
[ai]. Together with the positive cone, part (3) and (4), which are provided by explicit formulas,

we get TS H.

6. DuALITY

Consider the following subspace of the positive cone

Iy [akm Uay UNy g5 7u)\0]<1a aoc>'
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Its direct sum with part (4) is

Folua]
OF2[ug (uly,_,[ar )1, aa)
(21) OF:[ug, uy, ]l lan (L, aq)
@

(—B]F2 [u§7 u§n727 T 7u;\i1]<u§\0>|:a>\0]<17 a’O¢>'

It is not a coincidence that these classes look like the classes in By with every element being taken
its inverse and a little shift. They are related by Anderson duality. A close examination and a
simple cellular calculation shows that we have

FQ* * = 2
29 7TC2n H=1-2 3 3
(22) Aoz {0, otherwise.

with 7§,2", H = Fo(¥ 71 1225 That is, we have

a)\o U
HFy* ~ 2720 [Ty,
1 aq
axg o
Recall that for any injective abelian group A, the functor Homap(—, A) is exact, and X —
Hompp(m—4(X), A) defines a cohomology theory on the category of G-spectra, thus represented

by a G-spectrum I4. The groups Q and Q/Z are injective, thus we have Ig and Igz. Iz is defined
by the fiber sequence

For convenience, we denote A = X!

IZ g IQ - IQ/Z'

The Anderson dual of a G-spectrum E is defined by Iz(E) = F(E,Iz). We have the following
result on the Anderson dual, from [Zenl7, Prop 4.20]

Proposition 11. For G-spectra E and X, we have a short exact sequence of RO(Can)-graded
Mackey functors

0 — Extp(Ex_1(X),Z) — Iz(E)*(X) — Homy(Ex(X),Z) — 0.

Here Exty,, Homy, are the levelwise functors. For example, the Mackey functor Extr,(Eyx_1(X),Z)
is obtained by applying Ext!(—,Z) : Ab — Ab to each level of Ex_1(X) and use the contravariance
in the first variable to get the restrictions and transfers.

From the easy fact that Hom(F2, Q) = 0, Hom(F2, Q/Z) = Fo*, where Fy™* is the levelwise dual
of Fa, we get o o o o

Iz(HFy) ~ ST HF* ~ 220 gy,

In this paper we only care about the Con/Can-level of the Mackey functors in (IIJ). Pluging in
E=HFy, X = SY. and evaluating at the Can /Can-level, we get a short exact sequence of abelian
groups

0 — Bat'(ny* H,Z) — n5>"\_ H — Homuy(rg>" H,7) — 0.

Since WSZ”H is always 2-torsion, the last group becomes 0 and we get an isomorphism

(23) Ext!(nQ*" H,Z) — w2, H.
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This isomorphism gives the duality between (2I]) and Bs. For convenience, we call it D. We have
the following readily seen duality under D

[Boa99]
[Geol9]
[GMY5]

[Grel8]

[HHR16]
[HHR17]

[Hil22]
[HKO1]

[HK17]
[HM20]

[LMSMS86]

[May20]
[Yan22]

[Zen17]

D(1) = A, D(A) = 1, D(an) = Afag = £ ———|
aAUua

k Tn—1 in—2 .. 11 .10 _ k in—1,,n—2 .. 1,10
D(ay, ug uy' u)\lqu)—A/(a)\ou; uy' el uy ),

k ,in_1,tn-2 i1 40\ _ ko ip_1,,in—2 i1, io
D(aqay, ug u)\nﬂ---uhu)\o)—A/(aaaAouoj‘ “Anﬂ"'UAlqu)'
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