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THE ROpC2nq-GRADED HOMOTOPY OF HF2

GUOQI YAN

Abstract. We give an explicit formula for the ROpC2n q-graded homotopy of HF2.

Contents

1. Introduction 1
2. Computations in the second row 3
3. Sample computations for n “ 1, 2 4
4. Statement and proof of the main theorem 5
5. More sample computations for n “ 3, 4 10
6. Duality 10
References 12

1. Introduction

ROpGq-graded homotopy groups of genuine equivariant spectra are known to be very difficult
to compute. Even in the case of a cyclic group G “ Cpn , no inductive formula is known. Explicit
formulas are only known for n “ 2, see [Zen17],[Geo19] and [Yan22].

In this paper we provide an explicit inductive formula for ROpC2nq-graded homotopy of HF2,
where F2 is the constant Mackey functor for F2. The main theorem of this paper is Theorem 7.
There are mainly two reasons for the ROpC2nq-graded homotopy ofHF2 to be computable: Firstly,
we can avoid additive extentions by working over the field F2. Secondly, the Mackey functor F2 is
constant, which enables us to deduce information from quotient groups.

The result in this paper adds new computations to the database of equivariant computations,
where we can say something in general for a particular family of groups (cyclic 2-groups in this
paper). Previously, the only such computations that people know for a certain family of groups,
not for a specific group, is the computation of the ROpCˆn

2 q-graded homotopy of HF2, by Holler
and Kriz [HK17].

There could be several applications of our results. In [HK01], Hu and Kriz explored Real-
oriented cohomology theories. The genuine C2-equivariant Steenrod algebra has several remarkable
properties, including providing us a genuine C2-equivariant Adams spectral sequence. The results
in this paper would be an essential ingredient to the genuine C2n -equivariant Steenrod algebra and
Adams spectral sequences. In [May20],[HM20], Eric Hogle and Clover May discovered the freeness
theorems for the group C2 and coefficient F2. Our result will provide information to possible
generalizations of the freeness theorems. More generally, Mike Hill [Hil22] developed a concept
of R-free spectrum. For such a G-spectrum E, its R-homology will splits as the R-homology of
induced representation spheres. When R “ HF2, our result will provide complete descriptions of
the homology of HF2-free spectra.

Date: Monday 6th February, 2023.

1

http://arxiv.org/abs/2302.01490v1


2 GUOQI YAN

The main tool we will use is the following Tate square introduced in [GM95]

(1) Hh

»

��

// H

��

// rH

��
Hh

// Hh // Ht

.

Here H “ HF2, Hh “ EG` ^ H,Hh “ F pEG`, Hq, Ht “ Hh ^ ĄEG and rH “ H ^ ĄEG.
Recall the real representation ring of C2n

ROpC2nq “ Zt1, α, λn´2, ¨ ¨ ¨ , λ1, λ0u,

where α is the one-dimensional sign representation, the λk’s are rotations of the two-dimensional

real plane, by e
2πi

2n´k for each k, and ZS means the free abelian group generated by the set S. Thus
the stablizer of each non-zero vector of λk is C2k .

To illustrate the method of inducing from quotient groups, let us suppose that we already know

π
C

2n´1

‹ HF2. Let ε : C2n Ñ C2n{C2 “ C 1
2n´1 (here we use C 1

2n´1 to denote the quotient group, to
distinguish from the subgroup) be the canonical projection. Pulling back along ε gives us a map
of representation rings

(2) ε˚ : ROpC 1
2n´1q Ñ ROpC2nq

where we have ε˚p1q “ 1, ε˚pαq “ α and ε˚pλiq “ λi`1. Using the language of [LMSM86, Ch.2], let

U be a complete C2n -universe. Let i : UC2 Ñ U be the inclusion, ε˚ : SpC
1

2n´1UC2 Ñ SpC2nUC2

be the functor that regards a C 1
2n´1-spectrum as a C2n -spectrum, then we have the following two

adjunctions and an isomorphism:

(3) ri˚ε
˚SV , HsC2n

U – rε˚SV , i˚HsC2n

UC2
– rSV , pi˚HqC2s

C1

2n´1

UC2
– rSV , Hs

C1

2n´1

UC2
.

Here the first adjunction is change of universe, the second is the pullback and fixed-point adjunc-
tion, and the third isomorphism comes from the fact that

pi˚HC2n
qC2 “ HC1

2n´1
P SpC

1

2n´1UC2 ,

which is true precisely because F2 is constant. Here we used the notation HK to denote the K-
equivariant HF2. In (2), the image of ε˚ are the virtual C2n -representations that does not contain
λ0. If we denote

‹Kλ0
“ Zt1, α, λn´2, ¨ ¨ ¨ , λ1u Ă ROpC2nq

to be the subgroup, then we get

(4) πC2n

‹Kλ0

H
ε˚

ÐÝ
–

π
C

2n´1

‹ H

from (3). By (2), the classes aλi
, uλi

on the right will respectively correspond to aλi`1
, uλi`1

on
the left, and the classes aα, uα on the right will respectively correspond to the elements with the
same name on the left. Thus, more explicitly, (4) means

πC2n

jaα`in´3λn´2`¨¨¨`i0λ1
H

ε˚

ÐÝ
–

π
C

2n´1

jaα`in´3λn´3`¨¨¨`i0λ0
H for j, ik P Z.

We will call (4) the induction formula.

Notations. We use γ to denote the generator of C2n . We use rxs to denote a polynomial generator,
and xyy for an additive generator. For simplicity, all super-indices like i, j, k has range ě 1. For
example, the notation F2xΣ´1 1

ai
λ0

yru˘
α sx1, aαy means the classes Σ´1 1

ai
λ0

us
α,Σ

´1 1
ai
λ0

us
αaα for all

i ě 1, s P Z. F2

ru˘
α ,u

˘

λ0
s

ruα,uλ0
s will mean the quotient as a vector space. For the generators aλi

, uλi
, aα, uα,

we refer to [HHR16] for details. Our classes are the images of the classes there under the map
HZ Ñ HF2 except uα, which is not Z-orientable but F2-orientable.
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2. Computations in the second row

We start the computation from the Borel spectrum Hh. EG has free cells in all dimensions,
and its cellular chain provides a free ZrGs-resolution of Z. From there we derive the homotopy
fixed-point spectral sequence

Theorem 1. The ROpC2nq-graded homotopy fixed point spectral sequence (HFPSS) for HF2 takes
the form [Gre18, Def 1.4]

(5) E
V,s
2 “ HspC2n ;π

C2n {e
V Hq ñ π

C2n {C2n

V ´s Hh, |dr| “ pr ´ 1, rq

This is a spectral sequence of algebras and it collapses at E2 since π
G{e
V H is concentrated in

virtual representations with underlying degree 0. The strong convergence is guaranteed by [Boa99,
Thm 7.1] and the remark below it. Both the E2 and the target are uλi

, uα-local, for all i, see
[Yan22]. The group cohomology with F2-coefficients are

H˚pC2;F2q “ F2rxs, |x| “ 1 for n “ 1

H˚pC2n ;F2q “ F2rys b Λxzy, |y| “ 2, |z| “ 1 for n ě 2

where Λ denote the exterior algebra. It is easily checked that x converges to aα

uα
in the first case and

y, z converge to
aλ0

uλ0

, aα

uα
respectively in the second case. Recall the gold relations from [HHR17,

Lem 3.6]

aλi
uλj

“ 2i´jaλj
uλi

, for n ´ 2 ě i ą j ě 0

a2αuλj
“ 2n´1´jaλj

u2α, for n ´ 2 ě j ě 0

which holds in the C2n -equivariant homotopy of HZ. Now since we are working with HF2, these

relations in πC2n

‹
HF2 become

(6)
aλi

uλj
“ 0, for n ´ 2 ě i ą j ě 0

a2αuλj
“ 0, for n ´ 2 ě j ě 0,

which drastically simplifies our computation. We will refer these relations as the gold relations in
this paper. In particular, since Hh is uα, uλi

-local for each i, we have

Proposition 2. The ROpC2nq-graded homotopy of Hh is

π
C2n

‹ Hh “ F2raα, u
˘
α s if n “ 1

π
C2n

‹ Hh “ F2raα, aλ0
s{pa2αqru˘

α , u
˘
λ0
, ¨ ¨ ¨ , u˘

λn´2
s if n ě 2.

When n “ 1, we have the model S8α » ĆEC2, and the maps H Ñ rH and Hh Ñ Ht are

localizations at aα. When n ě 2, we have the model S8λ0 » ČEC2n . Thus the maps above are
localizations at aλ0

.

Proposition 3. The ROpC2nq-graded homotopy of Ht is

π
C2n

‹ Ht “ F2ra˘
α , u

˘
α s if n “ 1

πC2n

‹ Ht “ F2raα, a
˘
λ0

s{pa2αqru˘
α , u

˘
λ0
, ¨ ¨ ¨ , u˘

λn´2
s if n ě 2.

Through the connecting homomorphism in the second row of (1), we deduce

Corollary 4. The ROpC2nq-graded homotopy of Hh is

π
C2n

‹ Hh “ F2xΣ´1 1

aiα
yru˘

α s if n “ 1

π
C2n

‹ Hh “ F2xΣ´1 1

aiλ0

yru˘
α , u

˘
λ0
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy if n ě 2.

From the above we get
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Corollary 5. We have

π
C2n

‹Kλ0

Hh “ F2xΣ´1p
uα

aα
qiy if n “ 1,

πC2n

‹Kλ0

Hh “ F2xΣ´1p
uλ0

aλ0

qiyru˘
α , u

˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy if n ě 2.

3. Sample computations for n “ 1, 2

The cases n “ 1, 2 are too simple to fit in the general pattern in Theorem 7. Thus we record
them here. For n ě 1, let δn be the connecting homomorphism

δn : πC2n

‹
rH Ñ π

C2n

‹´1Hh.

We use Kn and Cn to denote the kernel and cokernel respectively.
Now we start with n “ 1, then

πC2

˚ Hh “ F2xΣ´1p
uα

aα
qiy

and πC2

˚ H “ F2x1y. Since H Ñ rH is a ring map, the identity 1 P πC2

0 H should map to the identity,

thus not killed by elements from πC2

˚ Hh. We get πC2

˚
rH “ F2ruα

aα
s and thus

πC2

‹
rH “ F2ruα, a

˘
α s

by aα-periodicity. The connecting homomorphism δ1 : πC2

‹
rH Ñ πC2

‹´1Hh maps

F2ruαsxa´i
α y ÞÑ F2ruαsxΣ´1a´i

α y.

We get
πC2

‹ H “ K1 ‘ C1 “ F2raα, uαs

‘ F2xΣ´1a´i
α u´j

α y.

When n “ 2, we have

πC4

‹Kλ0

Hh “ F2xΣ´1p
uλ0

aλ0

qiyru˘
α sx1, aαy

From the induction formula (4) we get

(7)
πC4

‹Kλ0

H “ F2raα, uαs

‘ F2xΣ´1a´i
α u´j

α y.

The map πC4

‹Kλ0

Hh Ñ πC4

‹Kλ0

H is 0. To prove it we need a lemma

Lemma 6. For n ě 1, and all the homotopy Mackey functor we discuss in this paper, kerpaαq “

imptrC2n

C
2n´1

q and impaαq “ kerpC2n

C
2n´1

q.

Proof. Apply r´, S´V ^HF2sC2n to the following cofiber sequence and its Spanier-Whitehead dual

S´1 aαÝÝÑ Sα´1 Ñ C2n{C2n´1`
res

ÝÝÑ S0 aαÝÝÑ Sα.

�

Now for degree reason, using divisibility and linearity, we only need to consider the possibility

Σ´1p
uλ0

aλ0

qu´3
α aα

?
ÝÑ Σ´1a´1

α u´1
α .

Now both classes are killed by aα, thus hit by trC4

C2
. They both live in degree π2´2α, and uα is a

unit on the C2-level. Thus the problem reduces to whether the map πC2

0 Hh Ñ πC2

0 H is 0 or not.

We know from the C2 case that this map is 0. We conclude that the map πC4

‹Kλ0

Hh Ñ πC4

‹Kλ0

H is

0. Then we have
πC4

‹
rH “ pΣπC4

‹Kλ0

Hhqra˘
λ0

s ‘ πC4

‹Kλ0

Hra˘
λ0

s.
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by aλ0
-periodicity of rH . For the connecting homomorphism, we first look at classes in pΣπC4

‹Kλ0

Hhqra˘
λ0

s.

We get
F2xui

λ0
yraλ0

sru˘
α sx1, aαy P K2,

and quotient by classes of pΣπC4

‹Kλ0

Hhqra˘
λ0

s leave us with

F2xΣ´1a´i
λ0

yru˘
α sx1, aαy(8)

‘F2xΣ´1a´i
λ0
u

´j
λ0

yru˘
α sx1, aαy(9)

in C2. Elements in (9) cannot be hit under δ2 because of the negative powers of uλ0
. The classes

F2xΣ´1a´i
λ0

yruαsx1, aαy

are hit under δ2 by classes from πC4

‹Kλ0

Hra˘
λ0

s, and we are left with

F2xΣ´1a´i
λ0

y
ru˘

α s

ruαs
x1, aαy P C2,

and
F2raα, uαsraλ0

s

‘F2ruαsx
ai`1
α

a
j
λ0

y

‘xΣ´1a´i
α u´j

α yra˘
λ0

s

in K2. In summary, we have

(10)

πC4

‹
H “F2raα, uα, aλ0

, uλ0
s{pa2αuλ0

q

‘F2xui
λ0

yraλ0
s
ru˘

α s

ruαs
x1, aαy

‘F2ruαsx
ai`1
α

a
j
λ0

y

‘F2xΣ´1a´i
α u´j

α yra˘
λ0

s

‘F2xΣ´1a´i
λ0
u

´j
λ0

yru˘
α sx1, aαy

‘F2xΣ´1a´i
λ0

y
ru˘

α s

ruαs
x1, aαy.

4. Statement and proof of the main theorem

For x P π
C2n

‹ H , let Dpx, nq be the set of classes in π
C2n

‹ H which are infinitely divisible by x.

Equivalently, it is the kernel of the algebraic completion map π
C2n

‹ H Ñ pπC2n

‹ Hq^
x . For example,

Dpaα, 1q is the set of classes
F2xΣ´1a´i

α uj
αy.

Dpaλ0
, 2q include the last four summands in (10) as well as the classes F2ruα, aλ0

sxaiαyiě2 in the
positive cone.

Theorem 7. For n ě 3, the ROpC2nq-graded homotopy of HF2 has the structure as follows. It is
the direct sum of the following summands (we refer to them as part p1q ´ p4q)

(1) The positive cone, denoted by πC2n

pos H;

(2) Dpaλ1
, nq ´ πC2n

pos H;

(3) Dpaλ0
, nq ´ Dpaλ1

, nq ´ πC2n

pos H;
(4) The classes that are not in Dpaλ0

, nq.

There are n2 ` 2n´ 2 summands in the above presentation. Here the minus sign means taking the
difference of the sets involved, where we identify vector spaces with their sets of basis. Each part
has explicit formulas as follows. For a closed formula of part p2q, see Remark 2.
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(1) The positive cone of πC2n

‹ H is

πC2n

pos H “ F2raλ0
, aλ1

, ¨ ¨ ¨ , aλn´2
, aα, uλ0

, uλ1
, ¨ ¨ ¨ , uλn´2

, uαs{paλi
uλj

“ 0, for n ´ 1 ě iyj ě 0q.

Here for simplicity we used the notation aλn´1
“ a2α in the gold relation.

(2) Dpaλ1
, nq can be computed inductively as Dpaλ1

, nq “ ε˚pDpaλ0
, n ´ 1qqra˘

λ0
s. Here ε˚ is

the map in (4) which identifies π
C

2n´1

‹ H as a subset of πC2n

‹Kλ0

H by renaming.

(3) The following 2n summands consists of the direct sum of the following 3 blocks

B1 “ F2ruαsx
ai`1
α

a
j
λ0

y

‘ F2xa´i
λ0

yp
raλ1

, ¨ ¨ ¨ , aλn´2
s

x1y
ruλ1

, ¨ ¨ ¨ , uλn´2
sraαsq{tgold relationsu,

B2 “ F2xΣ´1a´i
λ0

yx1, aαyxu´j
λ0

yruλ1

˘, ¨ ¨ ¨ , u˘
λn´2

, u˘
α s

‘ F2xΣ´1a´i
λ0

yx1, aαyxu´j
λ1

yruλ2

˘, ¨ ¨ ¨ , u˘
λn´2

, u˘
α s

‘ ¨ ¨ ¨

‘ F2xΣ´1a´i
λ0

yx1, aαyxu´j
λn´2

yru˘
α s

‘ F2xΣ´1a´i
λ0

yx1, aαyxu´j
α y

B3 “ F2

ru˘
α s

ruαs
xui

λn´2
y

raλ1
s

x1y
ra˘

λ0
sx1, aαy

‘ F2

ru˘
λn´2

, u˘
α s

ruλn´2
, uαs

xui
λn´3

y
raλ1

s

x1y
ra˘

λ0
sx1, aαy

‘ ¨ ¨ ¨

‘ F2

ru˘
λn´2

, ¨ ¨ ¨ , u˘
λ2
, u˘

α s

ruλn´2
, ¨ ¨ ¨ , uλ2

, uαs
xui

λ1
y

raλ1
s

x1y
ra˘

λ0
sx1, aαy.

(4) The following pn ´ 1q summands,

F2

ru˘
α s

ruαs
xui

λn´2
yraλ0

sx1, aαy

‘F2

ru˘
α , u

˘
λn´2

s

ruα, uλn´2
s

xui
λn´3

yraλ0
sx1, aαy

‘ ¨ ¨ ¨

‘F2

ru˘
α , u

˘
λn´2

, ¨ ¨ ¨ , u˘
λ1

s

ruα, uλn´2
, ¨ ¨ ¨ , uλ1

s
xui

λ0
yraλ0

sx1, aαy.

Remark 1. Each summand in part p4q has to modulo the non-negative powers of the u’s since
they are included in the positive cone. Also notice that the n “ 2 case can also fit in our theorem
if we regard the second summand of B1 as 0.

Remark 2. Part p2q can also be expressed as closed formulas. For each n, Dpaλ0
, nq consists of

part p2q, p3q and amλ0
times of elements in B1 for suitable m such that the resulting elements live in

the positive cone. These are the elements that will make up part p2q (and part of π
C

2n`1

pos ) for the

group C2n`1 . If we use Part
C2n

piq , i “ 2, 3 to denote the part p2q and p3q for C2n . Then the closed
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formula will be

Part
C2n

p2q “ppε˚qn´3PartC8

p2qqra˘
λn´4

, ¨ ¨ ¨ , a˘
λ0

s

‘ppε˚qn´3PartC8

p3qqra˘
λn´4

, ¨ ¨ ¨ , a˘
λ0

s

‘ppε˚qn´4PartC16

p3q qra˘
λn´5

, ¨ ¨ ¨ , a˘
λ0

s

‘ ¨ ¨ ¨

‘ppε˚q2Part
C

2n´2

p3q qra˘
λ1
, a˘

λ0
s

‘ppε˚qPart
C

2n´1

p3q qra˘
λ0

s

for n ě 4. Here pε˚qi means the iteration of the renaming process.

We will prove the theorem by induction. First recall the definition of the positive cone

πC2n

pos H “ ‘
nPZ,miě0

π
C2n

n´m0λ0´m1λ1´¨¨¨´mn´2λn´2´mn´1α
H.

It is a subring of πC2n

‹ H and has a particularly easy description. The entire homotopy group is an
algebra over this subring.

Lemma 8. We have Dpaλ1
, nq Ă Dpaλ0

, nq.

Proof. As mentioned before, aλ1
“ 0 in π

C2n

‹ Hh. Since classes in π
C2n

‹ H are from a quotient (also

a subspace since we are working with vector spaces) of πC2n

‹ Hh or a subspace of πC2n

‹
rH , if we take

x P Dpaλ1
, nq, it cannot come from π

C2n

‹ Hh. Thus x is lifted from π
C2n

‹
rH , where x generates an

aλ0
-tower xxyra˘

λ0
s. Again, since these classes are divisible by aλ1

, it cannot hit anything under

the connecting homomorphism δn. We deduce that if x P Dpaλ1
, nq, then xxyra˘

λ0
s P πC2n

‹
H , thus

x P Dpaλ0
, nq. �

Lemma 9. Dpaλ1
, nq can be computed inductively as Dpaλ1

, nq “ ε˚pDpaλ0
, n´ 1qqra˘

λ0
s. Here ε˚

is the map in (4) which identifies π
C

2n´1

‹ H as a subset of πC2n

‹Kλ0

H by renaming.

Proof. We have already proved in the previous lemma that any x P Dpaλ1
, nq generates an infinite

aλ0
-tower xxyra˘

λ0
s P π

C2n

‹ H . Let ĞDpaλ1
, nq Ă Dpaλ1

, nq be the subset

ĞDpaλ1
, nq “ ty P Dpaλ1

, nq|y does not involve the class aλ0
u.

Then ĞDpaλ1
, nqra˘

λ0
s “ Dpaλ1

, nq, and ĞDpaλ1
, nq “ ε˚pDpaλ0

, n ´ 1qq. �

Proof. (of Theorem (7))
Direct computations in the next section shows the theorem is true when n “ 3. Assume it is true
for n ´ 1. We prove it for n as follows.

We first show that the map π
C2n

‹Kλ0

Hh Ñ π
C2n

‹Kλ0

H is 0. Classes on the left hand side are

πC2n

‹Kλ0

Hh “ F2xΣ´1p
uλ0

aλ0

qiyru˘
α , u

˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy

from Corollary (5). They must map to classes that are infinitely divisible by uα, uλ1
, ¨ ¨ ¨ , uλn´2

.
By the induction formula (4),

π
C2n

‹Kλ0

H
ε˚

ÐÝ
–

π
C

2n´1

‹ H,

they translate to infinitely uα, uλ0
, ¨ ¨ ¨ , uλn´3

-divisible classes in π
C

2n´1

‹ H . By induction, the only
infinitely uλ0

-divisible classes live in B2 of part p3q. By an examination of degrees, as well as using
divisibility and linearity, we are left to show that the maps

(11) Σ´1p
uλ0

aλ0

qiu´i´1
λ1

?
ÝÑ Σ´1a´i

λ1
u´1
λ1
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in degrees pi ` 1qλ1 ´ 3, i ě 1 are 0. We show it by computing the Mackey functors πC2n

pi`1qλ1´3
H “

H3
C2n

pSpi`1qλ1 ;F2q, i ě 1. Since Spi`1qλ1 are C2n -CW complexes of dimension bigger than or equal

to 4, and we care only about their third cohomology, these values does not depend on i and we
only need to compute H3

C2n
pS2λ1 ;F2q. Now we look at the top two levels of the cellular chain of

fixed-point Mackey functors computing the cohomology, we have

F2
N //

1

��

F2rC2n{C2sC2n
1´γ“0 // F2rC2n{C2sC2n

N“0 // F2rC2n{C2sC2n
1´γ“0 //

res

��

F2rC2n{C2sC2n

F2
N //

0

UU

F2rC2n{C2sC2n´1
1´γ // F2rC2n{C2sC2n´1

N“0 // F2rC2n{C2sC2n´1
1´γ //

tr

UU

F2rC2n{C2sC2n´1

Here N “ 1 ` γ ` γ2 ` ¨ ¨ ¨ ` γ2n´1´1. We deduce H3pC2n{C2nq “ F2xNy and H3pC2n{C2n´1q “
F2xNy, and res “ 1, tr “ 0 in the above diagram. Notice that i˚

C
2i
λ1 “ λ1 for i ě 3, i˚

C4
λ1 “ 2α

and i˚
C2

λ1 “ i˚
eλ1 “ 2. Induction shows that πC2n

2λ1´3H is

F2

1

��
F2

0

UU

...

1

��
F2

0

VV

��
0

UU

��
0

VV

with res
C

2i

C
2i´1

“ 1, tr
C

2i

C
2i´1

“ 0, i ě 3. Thus whether the map (11) is 0 or not is reduced to the

C4-level, which is already shown to be 0.

Now we know that the map π
C2n

‹Kλ0

Hh Ñ π
C2n

‹Kλ0

H is 0. Since rH is aλ0
-local, we get

(12) πC2n

‹
rH “ pΣπC2n

‹Kλ0

Hhqra˘
λ0

s ‘ πC2n

‹Kλ0

Hra˘
λ0

s.

Here Σ means taking the preimage under the connecting homomorphism

δn : πC2n

‹
rH Ñ π

C2n

‹´1Hh.

We use Kn and Cn to denote the kernel and cokernel respectively. For elements in π
C2n

‹Kλ0

Hhra˘
λ0

s,

an easy examination shows we are left with

(13) F2xui
λ0

yraλ0
sru˘

α , u
˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy P Kn,

and

F2xΣ´1a´i
λ0

yru˘
α , u

˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy(14)

‘F2xΣ´1a´i
λ0
u

´j
λ0

yru˘
α , u

˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
sx1, aαy(15)
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in Cn. Note classes in (15) can never be hit by δn because of the negative powers of uλ0
. They are

the first summands of B2. The classes in (13) splits as

F2xui
λ0

yraλ0
sruα, uλ1

, ¨ ¨ ¨ , uλn´2
sx1, aαy

‘F2xui
λ0

yraλ0
s
ru˘

α , u
˘
λ1
, ¨ ¨ ¨ , u˘

λn´2
s

ruα, uλ1
, ¨ ¨ ¨ , uλn´2

s
x1, aαy.

The first summands together with π
C2n

‹Kλ0

Hraλ0
s (see the next paragraph) makes up the new positive

cone for C2n . The second summand are the last summands in part p4q. Note that

πC2n

pos H “ F2raλ1
, ¨ ¨ ¨ , aλn´2

, aα, uλ1
, ¨ ¨ ¨ , uλn´2

, uαs{tgold relationsuraλ0
s

‘ F2xui
λ0

yraλ0
sruα, uλ1

, ¨ ¨ ¨ , uλn´2
sx1, aαy.

Now we look at elements from π
C2n

‹Kλ0

Hra˘
λ0

s. Since the target of δn only consists of negative

powers of aλ0
, we have π

C2n

‹Kλ0

Hraλ0
s P Kn. For π

C2n

‹Kλ0

Hxa´i
λ0

y, firstly, we have the following maps

ruλ1
, ¨ ¨ ¨ , uλn´2

, uαsxa´i
λ0

yx1, aαy ÞÑ ruλ1
, ¨ ¨ ¨ , uλn´2

, uαsxΣ´1a´i
λ0

yx1, aαy.

By the gold relation and that every spectrum in the second row of the Tate square is uλ0
-local, we

see

(16) a2α “ aλi
“ 0, for n ´ 2 ě i ě 0

in π
C2n

‹ Hh. Thus we get the following classes in Kn

F2ruαsxajαyjě2xa´i
λ0

y(17)

‘xa´i
λ0

yp
raλ1

, ¨ ¨ ¨ , aλn´2
s

x1y
ruλ1

, ¨ ¨ ¨ , uλn´2
sraαsq{tgold relationsu.(18)

Here
raλ1

,¨¨¨ ,aλn´2
s

x1y denotes the augmentation ideal of the F2-algebra map

F2raλ1
, ¨ ¨ ¨ , aλn´2

s Ñ F2, aλi
ÞÑ 0.

They are the classes in B1 in part (3).
We are still left to consider part p4q, B3 and the rest of the summands of B2. By induction

assumption, part p4q for C2n´1 has the following pn´ 2q summands (we renamed them through ǫ˚

so that we can regard them as a subset of πC2n

‹Kλ0

H)

(19)

F2

ru˘
α s

ruαs
xui

λn´2
yraλ1

sx1, aαy

‘F2

ru˘
α , u

˘
λn´2

s

ruα, uλn´2
s

xui
λn´3

yraλ1
sx1, aαy

‘ ¨ ¨ ¨

‘F2

ru˘
α , u

˘
λn´2

, ¨ ¨ ¨ , uλ2

˘s

ruα, uλn´2
, ¨ ¨ ¨ , uλ2

s
xui

λ1
yraλ1

sx1, aαy.

Since aλ1
“ 0 in π

C2n

‹ Hh, classes with positive powers of aλ1
will be in Kn, and they are the classes

that make up B3. Classes in (19) without aλ1
, together with their counterparts in the positive

cone for C2n´1 (again renamed through ε˚), will hit classes in (14) when paired with a´i
λ0
. The

classes in (14) that are killed in this way are

F2ru˘
α sxΣ´1a´i

λ0
yxui

λn´2
yraλ1

sx1, aαy

‘F2ru˘
α , u

˘
λn´2

sxΣ´1a´i
λ0

yxui
λn´3

yraλ1
sx1, aαy

‘ ¨ ¨ ¨

‘F2ru˘
α , u

˘
λn´2

, ¨ ¨ ¨ , uλ2

˘sxΣ´1a´i
λ0

yxui
λ1

yraλ1
sx1, aαy.



10 GUOQI YAN

Now the classes F2ruαsxa´i
λ0

yx1, aαy P π
C

2n´1

pos Hxa´i
λ0

y will also kill the corresponding classes in (14)
and the quotient classes are the rest summands of B2. Classes in (19) paired with raλ0

s make up
the classes in part p4q. �

5. More sample computations for n “ 3, 4

In this section, we provide the computation for n “ 3, 4. The n “ 3 case is the starting case of
our induction proof of theorem (7), thus we computed it by hand and present it here. The n “ 4
case is used to illustrate how to use our induction methods quickly to compute for bigger n.

Proposition 10. We have

(20)

πC8

‹ H “ F2raα, aλ1
, aλ0

, uα, uλ1
, uλ0

s{tgold relationsu

pL2q ‘ F2xai`1
α a

´j
λ1

yruαsra˘
λ0

s

pL3q ‘ F2xΣ´1a´i
α u´j

α yra˘
λ1

sra˘
λ0

s

pL4q ‘ F2xΣ´1a´i
λ1
u

´j
λ1

yru˘
α sx1, aαyra˘

λ0
s

pL5q ‘ F2xΣ´1a´i
λ1
u´j
α yx1, aαyra˘

λ0
s

pL6q ‘ F2xai`1
α a

´j
λ0

yruαs

pL7q ‘ F2

raλ1
s

x1y
ruλ1

sraαs{tgold relationsuxa´j
λ0

y

pL8q ‘ F2xΣ´1 1

aiλ0
u
j
λ0

yx1, aαyru˘
λ1
, u˘

α s

pL9q ‘ F2xΣ´1 1

aiλ0
u
j
λ1

yx1, aαyru˘
α s

pL10q ‘ F2xΣ´1 1

aiλ0
u
j
α

yx1, aαy

pL11q ‘ F2

ru˘
α s

ruαs
xui

λ1
y

raλ1
s

x1y
ra˘

λ0
sx1, aαy

pL12q ‘ F2

ru˘
α s

ruαs
xui

λ1
yraλ0

sx1, aαy

pL13q ‘ F2

ru˘
λ1
, u˘

α s

ruλ1
, uαs

xui
λ0

yraλ0
sx1, aαy.

In the above presentation, pL2q´pL5q are part p2q, pL6q´pL11q are part p3q, and pL12q´pL13q
are part p4q.

To compute for C16, one notices that pL2q ´ pL11q, after renaming through ε˚, are all infinitely

divisible by aλ1
for C16 (which is aλ0

for C8), thus contributes to part p2q of πC16

‹ H by adding

ra˘
λ0

s. Together with the positive cone, part p3q and p4q, which are provided by explicit formulas,

we get πC16

‹ H .

6. Duality

Consider the following subspace of the positive cone

F2raλ0
, uα, uλn´2

, ¨ ¨ ¨ , uλ0
sx1, aαy.
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Its direct sum with part p4q is

(21)

F2ruαs

‘F2ru˘
α sxui

λn´2
yraλ0

sx1, aαy

‘F2ru˘
α , u

˘
λn´2

sxui
λn´3

yraλ0
sx1, aαy

‘ ¨ ¨ ¨

‘F2ru˘
α , u

˘
λn´2

, ¨ ¨ ¨ , u˘
λ1

sxui
λ0

yraλ0
sx1, aαy.

It is not a coincidence that these classes look like the classes in B2 with every element being taken
its inverse and a little shift. They are related by Anderson duality. A close examination and a
simple cellular calculation shows that we have

(22) πC2n

λ0´˚H “

#
F2

˚, ˚ “ 2,

0, otherwise.

with π
C2n

λ0´2H “ F2xΣ´1 1
aλ0

aα

uα
y. That is, we have

HF2
˚ » Σ2´λ0HF2.

For convenience, we denote Λ “ Σ´1 1
aλ0

aα

uα
.

Recall that for any injective abelian group A, the functor HomAbp´, Aq is exact, and X ÞÑ
HomAbpπ´˚pXq, Aq defines a cohomology theory on the category of G-spectra, thus represented
by a G-spectrum IA. The groups Q and Q{Z are injective, thus we have IQ and IQ{Z. IZ is defined
by the fiber sequence

IZ Ñ IQ Ñ IQ{Z.

The Anderson dual of a G-spectrum E is defined by IZpEq “ F pE, IZq. We have the following
result on the Anderson dual, from [Zen17, Prop 4.20]

Proposition 11. For G-spectra E and X, we have a short exact sequence of ROpC2nq-graded
Mackey functors

0 Ñ ExtLpE‹´1pXq,Zq Ñ IZpEq‹pXq Ñ HomLpE‹pXq,Zq Ñ 0.

HereExtL, HomL are the levelwise functors. For example, the Mackey functor ExtLpE‹´1pXq,Zq
is obtained by applying Ext1p´,Zq : Ab Ñ Ab to each level of E‹´1pXq and use the contravariance
in the first variable to get the restrictions and transfers.

From the easy fact that HompF2,Qq “ 0, HompF2,Q{Zq “ F2
˚, where F2

˚ is the levelwise dual
of F2, we get

IZpHF2q » Σ´1HF2
˚ » Σ1´λ0HF2.

In this paper we only care about the C2n{C2n -level of the Mackey functors in (11). Pluging in
E “ HF2, X “ S0, and evaluating at the C2n{C2n -level, we get a short exact sequence of abelian
groups

0 Ñ Ext1pπC2n

‹´1H,Zq Ñ π
C2n

λ0´1´‹
H Ñ HomAbpπ

C2n

‹ H,Zq Ñ 0.

Since πC2n

‹ H is always 2-torsion, the last group becomes 0 and we get an isomorphism

(23) Ext1pπC2n

‹´1H,Zq
–

ÝÑ
D

πC2n

λ0´1´‹
H.
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This isomorphism gives the duality between (21) and B2. For convenience, we call it D. We have
the following readily seen duality under D

Dp1q “ Λ, DpΛq “ 1, Dpaαq “ Λ{aα “ Σ´1 1

aλ0
uα

,

Dpakλ0
uin´1

α u
in´2

λn´2
¨ ¨ ¨ui1

λ1
ui0
λ0

q “ Λ{pakλ0
uin´1

α u
in´2

λn´2
¨ ¨ ¨ui1

λ1
ui0
λ0

q,

Dpaαa
k
λ0
uin´1

α u
in´2

λn´2
¨ ¨ ¨ui1

λ1
ui0
λ0

q “ Λ{paαa
k
λ0
uin´1

α u
in´2

λn´2
¨ ¨ ¨ui1

λ1
ui0
λ0

q.
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