8. Equivariant Homotopy Theory

8.1. Generalities.

Let G be a compact Lie group. We consider various categories obtainable
from G-spaces:
G-Top : The category of G-spaces and G-maps.
G—Topo : The category of G-spaces with base point o (always fixed
under G) and base-point preserving G-maps.
G-Top (2): Pairs (X,A) of G-spaces and G-maps of pairs.

G—TopO(Z): Pairs of pointed G-spaces.

All these categories have their associated notion of homdopy. For sets

of G-homotopy classes we use the following notation (resprectively):

[X'Y]G ! [X’Y]g ’

[(xo2, ], (2, v,a]2.

Usually we restrict to suitable subcategories, using notation that
should be self-explanatory, e. g. G-CW for the category of G-CW com-
plexes (to be defined later), G—CWO, G-CW(2), G-CWO(2). The standard
constructions of homotopy theory using the unit interval , like suspension,
‘mapping cone, path space can be done in G-Top, G-Topo, etc. using
trivial G-action on I = [0,1] . There are resulting Barrat-Puppe se-
guences and their Eckmann-Hilton duals for fibrations. A G-cofibration
i : A—> X should have the homotopy extension property in G-Top, a G-
fibration p : E—» B should have the homotopy lifting in G-Top. Of
course the problem remains to characterise G-cofibrations etc. in terms
of other data, e. g. by considering fixed point sets. This is very im-
portant and we return to such questions from time to time (see e. g.
the discussion of G-ENR's in I. 5.2). The general theme is to reduce

equivariant problems to problems in ordinary topology and the general
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method will be: induction over the orbit types. For a single orbit type
one often has a problem about ordinary bundles (e. g. existence of
sections). A basic example of this procedure is the construction and
classification of G-maps via sections of an auxiliary map. We describe

this transition.

Let X and Y be G-spaces. For a G-map £ : X —> Y we must have Gx<<G

for all x & X. Therefore we consider the subspace ”
(8.1.1) 1Y) = {6 e} e xxy.

This is a G-subspace of X x Y with the diagonal action. Let (X;Y) be
the orbit space. The projection X x Y induces

(8.1.2) q : {X;Y) > X/G.

The G-map £ : X —> Y induces X —»I(X,Y) : x+—> (X,fx) and by passing

to orbit spaces we obtain a section s X/G —» (X;Y) of g.

£

Proposition 8.1.3. The assignment fi— s_. induces a bijection between

£

f1,f2 : X —) Y are G-homotopic if and only if the corresponding sections

are homotopic.

Proof. We claim that

(8.1.4) p

(X;¥) —————> X/G
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is a pull-back diagram. Let Z — (X;Y) be the pull-back of p along qg.
Since I(X,Y) -—» X is isovariant we obtain from the commutative diagram
8.1.4 a G-map I(X,Y) ~—3 2 over (X;Y) which is bijective. In any pull-

back diagram

4 — X
l

a | P
l !
B ———» X/G

the map g is canonically homeomorphic to the orbit map Z ——>» Z/G. Since
X and Y are assumed to be Hausdorff spaces the spaces I(X,Y),Z and their
orbit spaces are Hausdorff and the orbit maps are proper (Bourbaki [32] ’
III § 4.1. Prop. 2). By Bourbaki [32] , I § 10.1. Prop. 5 the map

I(X,Y) — 2 is proper and therefore, being bijective, a homeomorphism.

Now given a section s : X/G —> (X;¥Y) we have in the pull-back 8.1.4
the indupced section t : X —» I{X,Y¥) which composed with the projection
I(X,Y) — Y yields a G-map fs : X —» Y. (Verify that t is a G-map.)
The correspondences S i—3» fs’ f - Sg are seen to be mutually inverse.

A G-homotopy X x I —> Y induces a section (XxI)/G —» (XxI;¥) which, via
canonical homeomorphisms (XxI)/G ¥ X/G x I and (XxI;Y) & (X;¥Y) x I

corresponds to a homotopy of sections (and vice versa).

We now explain the principle of constructing G-maps via induction
over orbit-types. Suppose that Or is a finite set of conjugacy classes
of subgroups of G. We can choose an admissible indexing
Or = {(H1) ’ (H2) yeser (Hk) } , this meaning that (Hj) < (Hi) implies
i « j. If the G-space X has finite orbit type we always choose an ad-
missible indexing of is set of orbit types Or(X). Let £ : X—3Y be a

G-map between spaces of finite orbit-type. Let
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Or (X) v Or(Y)

fap,ooomp

be an admissible ordering. Define a filtration of X by closed G-sub-

spaces

X1CX2C...CXk= X

Xi= {xEleor some j £ i (GX) = (Hj)} .

Then X, N X, is the orbit bundle X '
i i-1 (H)

G-maps £, : X, —»Y.. If a G-map k : X. ,—Y,
i i i i-1 i~

H = Hi' The G-map f induces

1 is given we are

interested in its extensions K : Xi—)Yi.

Proposition 8.1.5. The extensions K of k are in bijective correspondence

with the NH/H-extensions e : XI:lI —> Y? of ko X}'1{—1 -— YI;I_.l

(H = Hi).

Proof. Given K we have e = KH and since GXH = Xi\ Xi—1 the G-map K 1is
uniquely determined by KH. Now suppose we are given an NH/H-map

e : XIi{ ——)Y}.Il extending kH. We define a map

E : Xi——) Yi by

E(x) = K(x) if x €X;
H
E(x) = gel(y) if x =gy, yex; -

We have to show that E is well-defined and continuous. If x = g1y1=g2y2
H H _ _ _
and y, € X;_, then Y, X 4 and g1e(y1) = g1K(y1) = K(g1y1) K(x)
H
= gze(yz) because K is a G-map. If x = g,¥, = 9,¥, and y1,yzeX§{\ X 4

then 9, = g2n with n € NH and therefore
g.elyy) = gynely,;) = gyelny,) = g,ely,)

because e is an NH-map. Hence E is well-defined. E is continuous on the
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closed subsets Xi—1 and GX?, hence continuous.

We combine 8.1.3 and 8.1.5 in the following manner: The action of

H H .
NH/H on Xi \Xi is free. Hence we are in the following situation: Let

-1
(X,A) and (Y,B) be pairs of G-spaces (A and B closed subspaces). The
action of G on X~ A and Y~B shall be free. We want to extend G-maps

f : A—?B to G-maps F : X — Y. By 8.1.3 we have to extend a partial
section of (X;Y) — X/G given over A/G (a closed subspace of X/G) to a
section. But over (X~ A)/G we have an ordinary fibre bundle with fibre
Y (locally trivial by the slice theorem). (See Bredon [3?], II. 2 for
the special case of free acdons.) So one usually encounters a seguence

of fibre bundle problems and moreover one has to deal with the singular

behaviour of (X;Y) —> X/G over A and near A.

8.2. Homotopy equivalences.

We show that under suitable hypotheses a G-map f : X — Y is a G-homo-
topy equivalence if and only if the fixed point mappings fH are ordinary

homotopy equivalences. This holds in particular if X and Y are G-ENR's.

An assertion as above should be true if X and Y are free G-spaces.
This is a fibre bundle problem. A free G-space X is called numerable
if X —» X/G is a numerable principal G-bundle in the sense of Dold
[71] ; 1. e. locally trivially over an open cover which has a subordi-

nate locally finite partition of unity.

Proposition 8.2.1, Let £ : X—> Y be a G-map from a G-space to a

numerable free G-space Y. Then f is a G-homotopy equivalence if and

only if £ is an ordinary homotopy equivalence.

Proof. Certainly X must be a free G-space. Since X maps into a locally
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trivial space if is itself locally trivial (Bredon fB?ﬂ , IT. 3.2).
Moreover X -—» X/G is numerable, by pulling back a numeration of
Y —3Y/G. Let EG —% BG be the universal principal G-bundle (this is

numerable, Dold [?1] ; 8). Consider the following diagram of G-maps

We show that pr and id x f are G-homotopy equivalences. The map

(idxf) /G

(EG x X)/G ————3 (EG x Y)/G

N /

AN S
N

BG

is a fibre-wise map over BG between fibrations. The induced map on each
fibre is an ordinary homotopy equivalence because f is. By Dold [71] B
6.3. and 8., (id x f)/G is a fibre homotopy equivalence and by the
covering homotopy theorem for bundle maps Dold [?11 , 7.8, the map

id x £ is a bundle equivalence hence a G-homotopy equivalence. A simi-
lar argument applies to pr: The map (EG x X)/G —» X/G is a fibration
with contractible fibre EG hence a homotopy equivalence (actually
shrinkable, Dold [?1], 3.2). Now apply the covering homotopy theorem

for bundle maps again.

Proposition 8.2.2. Given a diagram of G-spaces and G-maps
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v

m
pod
B ———
hol
M D &
oy

and a G-homotopy Hy @ hia = pfA. Assume that Ac X is a G-cofibration.

Then there exists a G-map f : X — ¥ extending f, and a G-homotopy

H : h ® pf extending HA provided

(a) p is an equivariant homotopy egquivalence

or (b) p is an ordinary homotopy equivalence and X~A is a

numerable free G-space.

Proof. Replace p by the equivariantly homotopy eguivalent G-fibration

q : E—>72, where E is the path-space
1 I
E= {wyezx¥ |wil) =py]} , atwy) =wo).

The G-action on E is given by g(w,y) = (g-w,gy), where (g-w) (t) = gw(t).

Let r : F.—3 X be the G-fibration over X induced by, i. e.

F = {(x,w,y) € X x 2ix ¥ |w(o) = hix), w(1) = p(y)}

r{x,w,y} = x.

Define k ¢+ A ——> F by k(a)

(a,wa.fA(o) ) with

h(a) o £t s 1/2

HA(a,Zt—H

ST

Then k is an equivariant section of r over A. From the description of F
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above we see that the theorem is proved if we can extend k to an equi-

variant section of r over X.

Since A<C X is a G~cofibration, there is an equivariant map u : X—1I
and a G-homotopy K : X x I —>» X such that Acu_1 (o), Ri{x,0) = %,
K(a,t) = a for all aeh and t€I, and K(x,1)€ A for xeu | [0,1[ (this
is the equivariant analogue of Str¢m/;f1:‘;]e also tom Dieck-Kamps-Puppe

[30], § 3). Put u = u! [0,1[ . Extend k to an equivariant section r

over U by k(x) = (x,wx,fAK(x,I)) with

hK(x,2t) o £t £ 1/2
w_(t) = X €U

HA(K(X,1) ,2t=1)

N —

-1

The restriction r =r (X~A) —>»X~A is G-shrinkable:

x~a f fxsa

Since p is a homotopy equivalence and a G-fibration it is shrinkable
(pold [#1], 6.2), hence the induced r is shrinkable (Dold (#1] . 3.».

Hence Ty is a homotopy eguivalence and by 8.2.1 (in case (b)) G-

homotopy equivalence, and, being a G-fibration, Tyon is shrinkable.

(In case (a) r is induced from the G-shrinkable gq). G-Shrinkable

X~ A

means: There exists an eguivariant section t of r and a G-homotopy

XNA
over X~ A L from the identity to try ac The required equivariant section
s of r over X is now given by
t{xX) X € XNTU
s(x) = L(k(x) ,max [2u(x)—‘|,0] ) xeU~NA
k(%) Xg A

Proposition 8.2.3., Let p : (X,A) —» (Y,B) be a G-map such that

Py = ij : A—>B is a G-homotopy equivalence and p is an ordinary

homotopy equivalence. Suppose that XNA and Y\B are numerable free
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G-spaces and AcX, BCY are G-cofibrations. Then any G-~homotopy inverse

homotopy Hy = idB > Py 9 to 2 G-homotopy H : idY > pg.

Proof. We apply 8.2.2 (b) to the diagram

>
~

_—>

B < Y
i

and obtain a G-extension g : Y —3X of dg and H : Y x I — Y of iHB such
that H : idY ¥ pg. Hence (p,pA)(q,qB) ~ id as maps between G-pairs.
Since p was an ordinary homotopy equivalence g must be an ordinary
homotopy equivalence. Hence we can apply 8.2.2 (b) once more to find

an extension p : X-— Y of Pa such that (q,qB)(ﬁ,pA) ~ id as maps of

G-pairs. Hence (q,qB) is a G-homotopy equivalence of G-pairs with G-

homotopy inverse (p,pA).

Proposition 8.2.4. Let £ : X-— Y be a G-map such that for all H < G

the map fH is an ordinary homotopy equivalence. Suppose that for all

H
H< G X are numerable free NH/H-spaces and G(XH\ XH)C‘SX ’

H'YH

G(YH\ YH)G GYH are G-~cofibrations. Suppose moreover that X and Y have

finite orbit-type. Then f is a G-homotopy equivalence.

Proof. Choose an admissible indexing of Or(X)wv Or(Y) as explained in
8.1. We have the associated filtration (Xn) and (Yn) of X and Y and we
show by induction over n that fn : Xn-——9 Yn is a G-homotopy equivalence.

The induction starts, using 8.2.1. Suppose I _, is a G-homotopy equi-

valence with inverse hn_1 . Using 8.2.3 we see that hi_1 can be extended
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to an NH/H-homotopy inverse of fﬁ if X~ Xn = X

-1 (H) * By 8.1.5 we find

the required of fn'

Remark 8.2.5. The hypotheses of 8.2.4 are satisfied if X and Y are
G~ENR's. This follows from the theorem of Jaworowski 5.2.6 and the

fact that an inclusion of G-ENR's is a G-cofibration.

We also mention a theorem of Segal-James [401], Theorem 1.1, giving

another variant of 8.2.4.

Proposition 8.2.6. Let X and Y be G-ANR's. Then a G-map £ : X —>» Y is

a G-homotopy equivalence if the map £ XH-——% YHgg a homotopy equi-

valence for all closed subgroups H of G.

8.3. Obstruction theorv.

According to 8.1.5 the basic extension problem in equivariant homotopy

theory may be formulated as follows:

Extension problem: Given G-spaces A< X, A closed in X, and Y and a G-

map £ : A —> Y. Suppose G acts freely on X~ A. Can f be extended to a
G-map F : X —> Y¥? If F exists, how can one classify G-homotopy classes

of such extensions?

We want to reduce these problems to problems in classical obstruction
theory, as presented in the books by Steenrod [154ﬂ or Baues [17] .
By 8.1.3 we have to consider g : (X;Y) —— ¥X/G with given partial
section s : A/G ——3» (X Y) corresponding to f and we have to extend
this section over X/G. This looks like a problem in obstruction theory,
but the additional technical problem that arises comes from the fact
that g is not, in general, a fibration. Over (X~ A)/G, g is the fibre

bundle ((X\NA)x Y)/G -—>» (X NA)/CG with fibre Y, but when we approach
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A/G the fibre change (the fibration has "singularities"). One possibili-
ty to circumvent this problem is to assume that the section s has an
extension to a neighbourhood, i. e. the G-map f may be extended to a
neighbourhood. This is the case when Ac X is a G-retract of a neigh-
bourhood an in particular when Ac¢X is a G-cofibration, or when Y is a
G-ANR and X is normal. (This extension property is the definition of a

G ANR in Palais fﬂzHﬂ , 1.6. In particular a G-ENR is a G-ANR.)

Proposition 8.3.1. Let (X,A) be a relative G-CW-complex of dimension

$ n with free G-action on X~ A. Let Y be a G-gpace which is n-connected

and n-gimple (n21). Then anv G-map f : A — Y has an extension F:X-— Y.

The G-homotopy classes rel. A of such extengions correspond bijectively

+

elements of Hn(X/G, A/G: VnY) (where singular cohomology with

suitable local coefficients is used).

Remarks. The assumption about (X,A) means that X is obtained from A by
attaching cells G x D.l for i £ n. Then (X/G,A/G) is an ordinary relative
CW-complex of dimension € n. The inclusion A¢ X is a G-cofibration, in
fact a strong neighbourhood deformation retract (in G-Top): There

exists a G-neighbourhocod U of A in X such that A¢ U is a G-homotopy
equivalence rel. A. Over X~ A we have the local coefficient system
((x~n) x Vn Y)/G —> (X ~A)/G where the G-action on Y induces an
action on WnY. By excision

g (x/G, A/G; ® ¥) ¥ H'(X~A/G, U~A/G; W Y) and in the latter group

we use the local coefficient system just defined.

Proof. Using 8.1 the problem is translated into a section extension

problem and then classical obstruction theory is applied.

One of the immediate applications of obstruction theory is a proof

of H. Hopf's theorem which determines the homotopy classes of maps
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from an n-manifold into an n-sphere. We generalize this to the equi-

variant situation in the next section.

8.4.The equivariant Hopf theorem.

A classical theorem of H. Hopf asserts that the homotopy classes of a
closed connected orientable n-manifold M into the n-sphere are charac-
terized by their degree and every integer occurs as degree of a suitable
map. If M and s carry free actions of a finite group G then the equi-
variant homotopy classes are still determined by their degree, but no
longer does every integer occur as a degree (e. g. if G = Z/pZ and

M= gl as G-spaces then the degree must be congruent one modulo p). We

shall describe in this section the straighforward generalization to

transformation groups, using the obstruction theory of 8.3.

We give the data needed to state the results. Let X be a G-CW-complex
of finite orbit type. Then XP is a WH-complex (WH := NH/H). We assume
that all XH are finite-dimensional. If H is an isotropy group of X we
let n(H)be the dimension of XH. For simplicity we assume that n(H) > 1.
If H £ K then we should have n(H) » n(K), for H,K € Iso(X) of course.

f
n(B)  JH ~ ) H .
We assume that H (X :2) £ Z. The action of WH on X then induces a

homomorphism e, . : WH —» 2% = {+ 1} = Aut 2 which is called the

orientation behaviour of X at H. We put % = UXK, K % H; this is a WH-

subspace of XH. The map ey x defines a WH-module ZH X which we use for
n (H}

xBwn, % sz, ).

local coefficients in order to define the group H HoX

We assume that this cohomology group is isomorphic to Z if WH is finite.

But be have the

Lemma 8.4.1. If under the assumption above n(H) 2 n(K)+2 for all

n (H)

K > H, K# H, KelIso(X) then H (XH/WH, iH/WH;zH y T oz,

, X

Proof. Using the exact cohomology sequence of the pair we see that it
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suffices to show that Hn(H)(XH/WH;Z ) ¥ 2. We look at cellular co-

H, X

chains HOInWH(Cn(H) (XH), z Y. If n(H) 2 n(K) + 1 for Kp»H, K # H,

K € Iso(X) then Cn(

H,X

H)(XH) is a free WH-module (for WH finite) hence the

trace map which makes cochains WH-equivariant is surjective, hence the

n (H) (H)(XH/WHrz ) is surjective. The compo-

transfer H (XH;Z)-——) e 4. %

sition of this map with the map in the other direction induced by

H . , . .
X — XH/WH is multiplication by [WH| . So we only show that the group

in question is torsion free. But one shows easily, using the trace

operator that

Homw(ZH,ZH) «— Homw(cn,ZH) — Homw(cn—l'ZH)
is exact.

We now continue to describe data. Let Y be another G-space. We assume

that v is n(H)-connected and W i o= 7 for H € Iso(X). Then

n (H)
n(H) , H ~ . . . . *
;2 = 2 and we obtain the orientation behaviour ey Y:WH-—Q Z

for all H € Iso(X). We orient X

H (Y

of Y at H. We assume that eH,X = eH,Y

n(H)(XH

be choosing a generator of H ;2) for every H and similarly for Y.

We assume that X and Y have been oriented. Then given a G-map f: X—Y
the fixed point mapping fH : XH-——é YH has a well-defined degree

d(fH) € 7.

Theorem 8.4.1. Under the assumption above the eguivariant homotopy set

[X,Y] G is not empty. Elements [£] € [X,Y] g are determined by the

set of degrees d(fH), H € Iso X, WH finite. The degree d(fH) is modulo

{WH! determined by the d(fK), K » B, K # H and fixing these d(fK) the

possible d(fH) fill the whole residue class mod |WH].

Proof. We order the isotropy types (Hl)""’(Hr) of X such that

(Hi) < (Hj) implies i » j. Let (H) = (Hi) and suppose that we already
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have a G-map £ : U &X SR X1 — > Y. We want to extend this G-
jei

map to Xi' As we have explained in 8.1 the homotopy classes rel Xi—l

of such extension correspond to WH-extensions of fl?H to XH. The

obstructions to such extensions lie in Hl(XH/WH,iH/WH; ™ (YH)) and

i-1
these groups are all zero by our assumptions. Hence there exists at
least one extension.

Given two WH-maps f,g : XH———) YH

with £]% = g'iH the obstructions
against a homotopy between them lie in the groups
i H _
BT (X /WH, XH/WH; Vi(YH)) and these groups are all zero except for
- R Hy _ _
n(H) = 1 and WH finite where ﬂ‘n(H)(Y ) = ZH,Y = ZH,X and the group
is Z by assumption. Hence we get a single integer d(f,g) as an obstruc-

tion. We claim that d(f,g) is divisible by [WH| and moreover

d(f,g) = d(f) - d(g). We look at the natural map

o¥ P Fwm, Xamr oz, ) —— RGO TN

By naturality of the obstruction class d(£f,g) is mapped onto the
obstruction against a non-equivariant homotopy between f and g and

this is by the dassical Hopf theorem just the difference of the degrees.
We have already seen above that image p* e |WH| Z. Together with 8.3.1,

applied to this induction step,this finishes the proof of 8.4.1.

8.5. Geometric modules over the Burnside ring.

wWe shall prove in this section that the Burnside ring A{G) is iso-
morphic to stable cohomotopy of spheres in dimension zero via the
Lefschetz-Dold index, see 7.6.7. The proof will be computational but
gives at the same time information about certain other modules over

A{G). We recall



215

Theorem 8.5.1. If we assign to a compact G-ENR X the Lefschetz-Dold in-

dex I(X)we obtain a well-defined map I, : A(G) ——)wg. This map is

an isomorphism of rings.

Proof. If H is a closed subgroup of G we define a ring homomorphism
dH : a;é ——Z by assigning to x € a)g, represented by f : Vc-——9 vc,
the degree of the H-fixed point map fH. Recall that we introduced in
section 5 a homomorphism YH : A {GY— 2 = LX} F———%'X(XH), where X

denotes the Euler characteristic.

We show: Let X be a compact G-ENR. Then dHI(X) = )C(XH). By 7.6.8
we have dHI(X) = I(XH) € u’ili ¥ 7. The fixed point index I(XH) of
id(x) is the Euler characteristic of X° (compare Dold [#5] ., XII 6.6
and [76] Y. This proves dHI(X) = X.(XH). By 8.4.1 the elements of
w g are detected by the maps dH. From the definition of the Burnside
ring we now obtain that IG is a well-defined injective ring homomorphisms.
That this map is also surjective will follow if we show that the dH(x)

satisfy congruences analogous to 5.8.5. (See 8.5.9) We shall prove

this in a moment for a slightly more general situation.

Remark 8.5.2. If £ : X —3» X is an endomorphism of the compact G-ENR X
then the Lefschetz-Dold index of (X,f) is an element of w g = A(Q).
By 5.5.1 this index element is a linear combination of homogeneous

spaces. It is a non-trivial exercise for the reader to figure out which

linear combination this is.

The isomorphism of Theorem 8.5.1 is natural, i. e. commutes with the
various restriction and induction processes. If f : G —> K 1is a
continuous homomorphism then we obtain by pull-back along f homomor-

phisms f*: (.)KO — ) wg and f*: A(K) —>»A(G) and we have
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G K*

1R

+ :
The adjointness [G Ay X,YJ g [X,Y] g for a pointed H-space X and a

pointed G-space Y together with the G-homeomorphism
+ +
G Ag X — G/H A X : (g,x) ——{(g,gx)
for a G-space X induces an isomorphism
~ o
T wile/m).

If we compose this with the transfer induced by G/H — Point we get

the induction

Note that we also have a map
o
1 o8] ° a [e/g] — W 2 (G/H)

which assigns to a submersion f : M —— G/H the Lefschetz-Dold index

In 5.12 we constructed an isomorphism i A —s A fe/u] .

Tg- B
C L .G .G
Proposition 8.5.3. I [C/H] ig = ig IH
. .G .G _ .G . .G
1ndH i, =1 1ndH.

Proof. This follows from properties 7.6.8 of the transfer.

Finally we mention that the maps I, are compatible with the multi-

H

plicative induction. If H has finite index in G we showed in 5.12
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that the multiplicative induction X ——y Hom_ (G, X) induced a map

H

A(H) — A(G). This map is transformed under the isomorphisms Iy Ig

into a map w; —_— wg

presentatives: Note that HomH(G,X) as a space is just I (gH x

which has the following description on re-

HX) , the

product taken over the cosets G/H: but this formulation also indicates
the G-action. If now X is a pointed H-space then we can similarly form
the smashed product A (gH xHX) with G-action defined similarly. This
gives a functor from pointed H-spaces to pointed G-spaces which maps

H-homotopies to G-homotopies. If V is an H-module then A (gH xHVC) is
they one-point-compactification of the induced representation Hom (G v).

The map in question is now induced by [v© ,VC]g —-—)[/\(gH x. V%),

H

A (gH xHV ]O [(HomH(G,V))C, (Hom (G,V))CJg. More generally,

H

multiplicative induction is a map wg(x) —> wg(HomH(G,X))- The

reader may check that multiplicative induction is compatible with the

Lefschetz index.
Suppose now that we given complex representations V and W such that

(8.5.4) dim v = dim W' for all H<G.

We call “)o( = NS(VC,WC) the wg—module for o = V-W. For each H« G

we have a degree map

{(8.5.5) d r W

x ,H o —> Z : [f]}——)degree £,

The degree is computed with respect to the canonical orientations of

(VH)C, (WH)C which are induced by the complex structure. By 8.4.1 the

maps do( H detect the elements of ux . So we ask: What are the

relations between the possible degrees d (x)? The assignment

o  H

(H) —> 4& o H(X) is a continuous function. Therefore we obtain an in-
?

jective map
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8.5.6 B .
( ) ay w, — c$.2)
We want to describe the image by congruence relations.

Theorem 8.5.7. There exists a collection of integers ny K(« ), depending

on & , (H) € $(3), and (K) with H normal in K and K/H cyclic, such

that n “(H,H) = 1 and such that the following holds: x & C(@,Z) is

contained in the image of d« if and only if:

Z ) g (x) x(K) =0 mod |NE/E|.

The sum is taken over the conjugacy classes (K) such that H is normal
in

1

K and K/H is cyclic.

Proof. We first show that any set of congruence relations of the type

considered in 8.5.7 suffices to the describe the module “)d . Later

we derive specific congruences as indicated, using K-theory.

Suppose we are given for each (H) € ¢ a map r c(¢,2) —> z/1wHl

H
of the form

{8.5.8) rH(z) = z(H) + 2 Ny z (K) mod |WH]

where the ng, g are integers and the sum is taken over the conjugacy
L]

classes (K) such that H is normal in K and K/H is a non-trivial cyclic

group. Suppose that for « = E-F with dim EH = dim FH the image of

dd is contained in

Cy = {zeco.n| medd r ) =o}

Then we claim d = .
im ” u)“ <3«
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Given z € Ce( . We have to show that for a suitable U there exists a
map f : S(E® U) —> S(F @ U) such that for each (H) € ¢ degree £ = z (H) .
To begin with we choose U large enough so as to satisfy the following

conditions:

i) Iso(E @ U) = Iso(F @ U)
ii) (1), (G) € Iso(E @& U)
iii) (K), (L) € Iso(E & U) > (KAL) € Iso(E @ U)
iv) Choose an integer n # o such that x = nz is contained in Co'
Then there shall exist a representative S(E @ U) — S(F & U)

for x € uo.

Once (iv) is satisfied for U it is also satisfied for any U' containing

U as a direct summand. Hence by enlarging U we can also satisfy (i) -

(iii}.
We set X = S(E® U) and Y = S(F @ U). Let Iso(x) = {(8), ..., (H)}]
where (Hi) > (Hj) implies i< j. If X, = {x € X l (GX) = (Hj) for some

j€1i } we construct inductively G-maps fr : Xr —> Y such that

v) degree fC = z(L)  if (L) € ¢, (L) > (H)), isr

or if (L) > (H__,), (L) € ¢.

r+1

L

Note that Xr = XL for such L. Put H = H The G-extensions

r+1°

fr+1 : Xr+1 —> Y of fr correspond via restriction bijectively to the
H

. H H . . . JH
WH-extensions h : X' ——3 Y of fr = fr [XH- XH->Y where XH = X'n Xr'
The obstructions to the existence of h lie in H*(XH/HN,XH/NHr ﬂ‘*_l(YH)) '

as in 8.4. These groups are zero by our assumptions. Let f£-+1 be a WH-

H

extension of f;r' Let f1 : X —3 Y be a map with fl = f]j:+1 which exists

by the same obstruction argument. Then, if (H) € 4), we have for the

fixed point degrees



220

K
+ 2 Ny ok a(f

1) Z 0 mod |WH] .

= z(K) so that in this case d{f', ,) = z(H) mod |WHI.

By induction d4(f 1

1)

Since WH acts freely on XH\ XH we can alter f£+ rel X. to an NH-map

1 H
n " — < H — ]
fr+1 so that d(fr+1) = z(H). Let fr+1 be the map with fr+1lx = fr+1
. 5 H _ , . L _
if (#) ¢ & and fr+l| X' o= £, if (H) ¢ ¢. Then a(f/,,) = z(L) when-
ever (L) 2 (Hi), i€ r+l. Suppose (L) > (Hr+1), (L) e ¢ Since
Iso(X) = Iso(Y) is closed under intersections there exists a unique
isotropy group (P) = (HS) such that (P) 2 (L) and (P) €& ¢, XL = XP,
L _ P L P _
Y~ = Y , degree fr+1 = degree fr+1 = z(P). We have to show z(L) = z(P).
But by (iv) above nz is represented by a map g : X —> Y hence gp = gL
implies nz (L) = nz(P). This finishes the proof of dd Wy = Cy +

We now derive specific functions of the type 8.5.8. Let £ : E — F
be a proper G-map between complex G-modules. Let C<G be a topological-

ly cyclic group with generator h. Put E = EC [2:] EC, jE : Ecc E. We

apply equivariant K-theory with compact support and obtain for

¢ % *
£%. KC(F) —> KC(E) and (fc)* the equality j; £ = Jp (fc)*. Let

AE) € KG(E) be the Bott class, a free R(G)-generator of K(,(E). Then

we define a ¢ R(G) by £% X(E) = a A(F) and obtain (alc) A (EC): 3\_ (F )

1 1

deqgree fc. We evaluate characters at h and use ?\_1(EC) (h) # 0. If G

o)

is finite then Z geg 2(9) = 0 mod lGgl. If C ¢ G is cyclic and c®its

* = Z ~ _ =
set of generators we put a” (C) = ae c*a(q) . With n(E-F,C) decx

A (FI(@/A_(EJ) (@) we obtain
C
a (C) = n(E-F,C) degree f
alg) = Z 1eli INcl'l a¥ (c) = o moa |cl.

By elementary Galois theory n(E-F,C) is an integer. We apply these

considerations to fH considered as WH-map and obtain
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Brk/m aie®) 5 o moa JwH|

Z . |NH/NH A NK]| n(E
where the sum is taken over the NH-conjugacy classes (K} with Hq K and

K/H cyclic. This yvields the desired functions 8.5.8.

Remark 8.5.9. Comparing the case E = F of the above congruences with

5.8.5 we see that the map I, of 8.5.1 is surjective.

G

8.6. Prime ideals of equivariant cohomotopy rings.

Let X be a compact G-ENR, G finite. We are going to determine the prime

2(xy.

ideal spectrum of the ring w .

The orbit category 0(X) of X shall have as objects the G-homotopy

classes of maps G/H —» X and as morphisms from u : G/H —3» X to

v : G/K ——> X the G-homotopy classes t : G/H —» G/K such that vt = u.

If u : G/H —» X is given we have the induced ring homomorphism

u¥ . w? x)y —> wg(G/H) and the maps u*combine to a ring homo-
morphism
o . o
(8.6.1) P oW G(X) —_— lim cJG(G/H)
where the limit (= inverse limit) is taken over the category O0(X). Let

Spec ¥ Dbe the induced map of prime ideal spectra.

Theorem 8.6.2. The kernel of v is the nilradical of g(X) . For each

Xx € lim w g(G/H) there exists an n € W with x" € image v . The map »

induces a homeomorphism Spec ¥ of prime ideal spectra.

Next we show that taking prime ideal spectra commutes with taking
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limits over the category O(X). The canonical maps lim w g(G/H)-9 UE;UVH)
induce a continuous map o colim Spec Q):(G/H)———) Spec 1lim a)g(G/H).

Theorem 8.6.3. The map M is a homeomorphism.

We now enter the proofs of these Theorems.

Recall that one has Bredon cohomoloqgy [36] H*(X;a;) of X with coeffi-
cient system & given by w : G/H —> &?g(G/H) on objects and induced
maps (see also Brocker [33] or Illman for an exposition of

this cohomology theory). Let
e: wo(x) — BO(X; @)

be the edge-homomorphism associated to the Atiyah-Hirzebruch spectral
sequence of u:g(—). More directly: HO(X;c») is canonically isomorphic

to lim w ?(G/H) and under this isomorphism e corresponds to » .

Propogsition 8.6.4. (i) The map e @ Q is an isomorphism.

(o]
+
[t}

(ii) The torsion subgroup of w g(X) as abelian group is equal t
nilradical of the ring w g(X).

Proof. (i) If e @ QO is an isomorphism for a space X then also for any
G-retract of X. Since any G-ENR is a retract of a finite G-CW-complex
(dominated by a finite G-CW-complex suffices and this is easier to see)
it is enough to consider finite G-CW-complexes. But e is a natural
transformation of half-exact homotopy functors, so by a standard compa-
rison theorem (see e. g. Dold [72] ) it suffices to show that e @ O
is an isomorphism on cells. This is true for zero-cells by the very
i—l)

definition of HO(X; w ). If i » o then H°(G/H x (D',s ;W) = 0 by

the dimension axiom of this equivariant cohomology theory. On the other
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hand
o i Li-1 ~ o, 1 . i-1, ~ H
w (G/H x (D7,8777)) = @ (D75 ) T oW
and by the splitting theorem of Segal [1451 , (see also tom Dieck
[63] , Satz 2) we have

H . +
wi = ®(K) w, (BWK )

(the product is over conjugacy classes (K) of subgroups of H; WK=NK/K,
NK normalizer of K in H). But a)i(BWK+) is for i » o a torsion

group.

(ii) The kernel of e is the nilradical of u)g(X). The nilradical is
certainly contained in this kernel because HO(X;uJ) is contained in

2

in product of rings of the type Q)G

G/H) and these rings have no
(non-zero) nilpotent elements (being isomorphic to the Burnside ring
A(H).) On the other hand the kernel consists precisely of elements of
skeleton filtration one hénce consists of nilpotent elements. (See

Segal F14Z] for an analogous statement.) Since HO(X;w) is torsion-

free we have Torsion w Z(X) < Nil u)g(x). Tensoring the exact sequence

0 — 3% Nil ug(x) —_ wg(X) — B (X w)

with Q and using (i) we obtain (ii).

Note that Proposition 8.6.4 proves the first statement of Theorem

8.6.2. We now come to the second statement.

Proposition 8.6.5. The map e : u)g(x)—————; HO(X;oJ) has "nilpotent

i. e. a suitable power of every element of HO(XIQJ) i

cokernel",

contained in the image of e.
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Proof. (Compare Quillen D12¥] ). If the assertion of the Proposition
is true for X then also for any G-retract of X. Since X is a compact
G-ENR it is a retract of a compact differerdable G-manifold withboundary.
So we need only prove the Proposition for those X which are locally
contratible (i. e. each orbit of X is a G-deformation retract of a
neighbourhood). If X is G-homotopy equivalent to an orbit then the map
e is an isomorphism. Now assume that X = Ulu ce. U Un’ the Ui being
compact G-ENR's which are G-homotopy equivalent to an orbit. Assume
that the Proposition is true for X1 = Ulu ‘e uUn:1We consider the
following diagram of Mayer-Vietoris seguences where HO(X) = HO(X:¢0)

and ei are instances of the transformation e.

o o] o] [0}
@) > wZX) @ W) s WOl AT

e ey @ e,

o —» B2 — 5 H(X) ® HO(U) ——— (X AU
t! s’

Given x.eHO(X) we put t'(x) = (xl,x By induction hypothesis there

2)'

exists k such that

ok k _ky, _
t'x = (xl,xz) = (elul,e2u2)
for suitable u; . By exactness s'x? = s'xg hence su, = suy + n, where n

is a suitable nilpotent element by Proposition 8.6.4. Suppose nl = 0.

Then for p » t, with z = sUuy.

(z+n)P = ZP +(§)zp_1n + .. +(t§1)zp~t+1nt_1.

By Proposition 8.6.4 the elements n,n2,...,nt—1 are torsion elements.

Choose g € IN such that qn1 = O for 1$1igt-1. Choose p such that g
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divides (?),...,(tﬁl), e. g. p = (t-1)!g. Then we obtain

2= 2P,

(z+n
i. e.
b _ Py _ p
(sul) = s(ul) = s(u2)
. ; _ (P P : o), QU
and we can find y with ty = (ul,uz), so that finally fy = x° . This

proves the induction step.

The final assertion of Theorem 8.6.2 comes from commutative algebra.
We have the following situation: A ——» A/Nil A —> B where f is
the canonical guotient map and g is an injection with nilpotent cokernel.
Then Spec f is a homeomorphism. Since g has nilpotent cokernel it is
easy to see that Spec g is injective. On the other hand g is an integral
extension:; by the going up theorem Spec g is a closed surjective mapping.

Hence also Spec g is a homeomorphism in our case. This finishes the

proof of Theorem 2.

Theorem 8.6.4 is contained in Quillen P127J , Corollary B.7 in the

Appendix B.

We are going to give more explicit statements for some of the results
above. Let xe€ X and let H<GX be a subgroup of the isotropy group at x.

We define a ring homomorphism u)g(x)-———é 7Z as the composition

®x. 1

~

WI(X) —— WH) —— wo({x}) TAH) — Z

o]
G

where the first two maps are restrictions and the last one takes the

degree or Euler charackteristic of the H-fixed point object.

Proposition 8.6.6. Every ring homomorphism ¢ axg(x) ———> Z is of the



226

form ?Xle_cEsuitable xexidH<Gx.w_§ha£ q;le: th’K_i_f_
and only if (H) = (K) and x and y are in the same orbit under WH of the
path-components of X, The prime ideals of a)g(x) have the form

¢ (P, () ez a prime ideal.

Proof. Let g be the kernel of % - This is a prime ideal which by
Theorem 8.6.2 and 8.6.3 is equal to the kernel of some There-

X,H®

fore we must have ¢ = !fx u*

The different homomorphisms ¥ - u)?(x)-—_a 7 correspond bijectively
to the minimal prime ideals of u)g(X) and bijectively to the homomor-
phism cug(x) ® Q — Q of O-algebras. But by the results of section 7

we have a natural ring isomorphism

wg(X) @0z ® w
(H)
where the sum is over the conjugacy classes (H) of subgroups H< G. From
this fact one easily deduces the second statement of the Proposition.

The third one is again a restatement of the Theorems above.

8.7. Comments.

This section is rather rudimentary. We give some references to further
developments. A detaild discussion of the Hopf theorem 8.4.1 for maps
between spheres can be found in Hauschild [33] . A more conceptual
proof of 8.5.1 uses splitting theorem of tom Dieck [63] , Satz 2.
Other splitting theorems may be found in Segal [1#5] , Rubinsztein
[136] ., kosniowski [105] ., Hauschild [%0] , [93]  relevant is
also Wirthmiller [168] and Schultz [138] . 8.5.7 has been generalized
to unstable and real modules by Tornehave [1@0] . 8.2 is based on

Hauschild [34] and Vogt [23] , Appendix. For the use of obstruction
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theory as in 8.3 to equivariant versions of the Blakers-Massey theorem
and the suspension thecrem see Hauschild [32] . 8.6 was presented in
lectures by the author in Newcastle-upon-Tyne, April 1975; also the

double coset formula for the equivariant transfer (see exercises).

8.8. Exercises.

1. Show that the double coset formula of 5.12 holds in equivariant

cohomotopy and hence in any stable equivariant cohomology of homelogy

theory. (This genralizes various results in Feshbach [82] , Brumfiel-
Madsen [43] etc.) More specifically: Let Xy e a)g(M) be the transfer
element corresponding to M —— Point. Let M = Z'n(H) b M(H) b with

n x C(S(H) b/G) be the decomposition ir the Burnside ring as in

G .
(1), b € CJO(M(H),b) be the transfer element corresponding
G G

to Miyy p —> Point. Let i, 4 “)O(M(H),b) —> w (M) be induced by

H),b ~
5.12. Let x

the inclusion. Then show

X = Zn

M (=) ,b Tmy,pF @,

2. Let H«< G and let L be the tangent space of G/NH at 1. Show that there

exists a natural isomorphism

w i A mit A ) —— w @ x, B %),

N

ne€ 2zZ.

3. (tom Dieck [63] ) Show that there exists a natural isomorphism
WH + H G
@(H) w (EWHAX)——>wn(X),

n € 7, G compact Lie group, the sum over conjugacy classes of subgroups.



