
8. Equivariant Homotopy Theory 

8.1. Generalities. 

Let G be a compact Lie group. We consider various categories obtainable 

from G-spaces: 

G-Top : The category of G-spaces and G-maps. 

G-Top ° : The category of G-spaces with base point o (always fixed 

under G) and base-point preserving G-maps. 

G-Top (2): Pairs (X,A) of G-spaces and G-maps of pairs. 

G-Top°(2) : Pairs of pointed G-spaces. 

All these categories have their associated notion of homchDpy. For sets 

of G-homotopy classes we use the following notation (resprectively) : 

Ix, Y]G IX,Y] 0 
' G ' 

]o 
X,A) , (Y,A) G 

Usually we restrict to suitable subcategories, using notation that 

should be self-explanatory, e. g. G-CW for the category of G-CW com- 

plexes (to be defined later), G-CW °, G-CW(2), G-CW°(2). The standard 

construction~of homotopy theory using the unit interval , like suspension, 

mapping cone, path space can be done in G-Top, G-Top °, etc. using 

trivial G-action on I = [0,1] . There are resulting Barrat-Puppe se- 

quences and their Eckmann-Hilton duals for fibrations. A G-cofibration 

i : A }X should have the homotopy extension property in G-Top, a G- 

fibration p : E----} B should have the homotopy lifting in G-Top. Of 

course the problem remains to characterise G-cofibrations etc. in terms 

of other data, e. g. by considering fixed point sets. This is very im- 

portant and we return to such questions from time to time (see e. g. 

the discussion of G-ENR's in I. 5.2). The general theme is to reduce 

equivariant problems to problems in ordinary topology and the general 
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method will be: induction over the orbit types. For a single orbit type 

one often has a problem about ordinary bundles (e. g. existence of 

sections). A basic example of this procedure is the construction and 

classification of G-maps via sections of an auxiliary map. We describe 

this transition. 

Let X and Y be G-spaces. For a G-map f : X---)Y we must have G x< Gfx 

for all x@ X. Therefore we consider the subspace 

(8.1.1) I(X,Y) := { (x,y) I G x ¢ Gy ] C X X Y. 

This is a G-subspace of X x Y with the diagonal action. Let (X;Y) be 

the orbit space. The projection X x Y induces 

(8.1.2) q : (X;Y) 9 X/G. 

The G-map f : X > Y induces X )I(X,Y) : xl ~ (x,fx) and by passing 

to orbit spaces we obtain a section sf : X/G >(X;Y) of q. 

Proposition 8.1.3. The assignment f ~-9 sf induces a bisection between 

the set of G-maps X--->Y and the set of sections of q. Two G-maps 

fl,f2 : X---) Y are G-homotopic if and only if the corresponding sections 

are homotopic. 

Proof. We claim that 

(8.1.4) 

I (X,Y) ~ X 

i 
(X;Y) 9 X/G 
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is a pull-back diagram. Let z 9 (X;Y) be the pull-back of p along q. 

Since I(X,Y) ) X is isovariant we obtain from the commutative diagram 

8.1.4 a G-map I(X,Y) ) Z over (X;Y) which is bijective. In any pull- 

back diagram 

z 9x 

' L p 

, 

B ~ X/G 

the map q is canonically homeomorphic to the orbit map Z w-) Z/G. Since 

X and Y are assumed to be Hausdorff spaces the spaces I(X,Y),Z and their 

orbit spaces are Hausdorff and the orbit maps are proper (Bourbaki [3~, 

III§ 4.1. Prop. 2). By Bourbaki [5~ , I § 10.1. Prop. 5 the map 

I(X,Y) } Z is proper and therefore, being bijective, a homeomorphism. 

Now given a section s : X/G ---9 (X;Y) we have in the pull-back 8.1.4 

the induced section t : X--) I(X,Y) which composed with the projection 

I(X,Y)-----> Y yields a G-map fs : X -->Y. (Verify that t is a G-map.) 

The correspondences s ~--~ fs' f ~--) sf are seen to be mutually inverse. 

A G-homotopy X x I---) Y induces a section (XxI)/G } (XxI;Y) which, via 

canonical homeomorphisms (XxI)/G ~ X/G x I and (XxI;Y) ~ (X;Y) x I 

corresponds to a homotopy of sections (and vice versa). 

We now explain the principle of constructing G-maps via induction 

over orbit-types. Suppose that Or is a finite set of conjugacy classes 

of subgroups of G. We can choose an admissible indexing 

Or = { (HI), (H 2) ..... (H k) } , this meaning that (Hj) < (H i ) implies 

i ~ j. If the G-space X has finite orbit type we always choose an ad- 

missible indexing of ~s set of orbit types Or(X). Let f : X---)Y be a 

G-map between spaces of finite orbit-type. Let 
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Or(X) v Or(Y) = {(H I) ..... (H k) 

be an admissible ordering. Define a filtration of X by closed G-sub- 

spaces 

X I c X 2 c ... C X k = x 

x i = {x~ X I for some j .< i (G x) = (Hj) } 

Then Xik Xi_ I is the orbit bundle X(H ) , H = H i . The G-map f induces 

G-maps fi : Xi ) Yi" If a G-map k : Xi_ I ) Yi-1 is given we are 

interested in its extensions K : X. ) Y. • 
1 i 

Proposition 8.1.5. The extensions K of k are in bi~ective correspondence 

with the NH/H-extensions e : X H-) yH of k H X H yH : ----} (H = H ) 
l i -- i-I i-I i " 

Proof. Given K we have e = K H and since GX H = Xi~ Xi_ I the G-map K is 

uniquely determined by K H. Now suppose we are given an NH/H-map 

e : xH ---} YH extending k H. We define a map 
1 1 

E : X. ---9 Y. by 
1 1 

E(x) = K(x) if x ~ Xi_ I 

= = X H E(x) g e (y) if x gY, Y E i " 

We have to show that E is well-defined and continuous. If x = glY1=g2Y2 

and Yl ~ xH H i-I then Y2 &Xi-1 and gle(Yl ) = giK(Yl ) = K(glY I) = K(x) 

= g2e(Y2 ) because K is a G-map. If x = glYl = g2y 2 and yl,y 2 e X Hi ~ xHi-1 

then gl = g2 n with n ENH and therefore 

gle(Yl ) = g2ne(Yl ) = g2e(nYl ) = g2e(Y2 ) 

because e is an NH-map. Hence E is well-defined. E is continuous on the 
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closed subsets Xi_ I and GX~, hence continuous. 

We combine 8.1.3 and 8.7.5 in the following manner: The action of 

NH/H on X H H i ~xi-1 is free. Hence we are in the following situation: Let 

(X,A) and (Y,B) be pairs of G-spaces (A and B closed subspaces). The 

action of G on X~ A and Y ~ B shall be free. We want to extend G-maps 

f : A --gB to G-maps F : X ----~Y. By 8.1.3 we have to extend a partial 

section of (X;Y) ----) X/G given over A/G (a closed subspace of X/G) to a 

section. But over (X~ A)/G we have an ordinary fibre bundle with fibre 

Y (locally trivial by the slice theorem). (See Bredon [~], II. 2 for 

the special case of free actions.) So one usually encounters a sequence 

of fibre bundle problems and moreover one has to deal with the singular 

behaviour of (X;Y) > X/G over A and near A. 

8.2. Homotopy equivalences. 

We show that under suitable hypotheses a G-map f : X--> Y is a G-homo- 

topy equivalence if and only if the fixed point mappings fH are ordinary 

homotopy equivalences. This holds in particular if X and Y are G-ENR's. 

An assertion as above should be true if X and Y are free G-spaces. 

This is a fibre bundle problem. A free G-space X is called numerable 

if X--3 X/G is a numerable principal G-bundle in the sense of Dold 

[7~] , i. e. locally trivially over an open cover which has a subordi- 

nate locally finite partition of unity. 

Proposition 8.2.1. Let f : X---~ Y be a G-map from a G-space to a 

numerable free G-space Y. Then f is a G-homotopy equivalence if and 

only if f is an ordinary homotopy equivalence. 

Proof. Certainly X must be a free G-space. Since X maps into a locally 



208 

trivial space if is itself locally trivial (Bredon [3~] , II. 3.2). 

Moreover x --->X/G is numerable, by pulling back a numeration of 

Y--gY/G. Let EG --~BG be the universal principal G-bundle (this is 

numerable, Dold [~ , 8). Consider the following diagram of G-maps 

EG x X ~ EG x Y 
i id x f 

pr pr 

I I 
x > Y 

We show that pr and id x f are G-homotopy equivalences. The map 

idxf)/G 

(EG x X)/G ) (EG x Y)/G 

\ ,  / 
\ ,  / 

BG 

is a fibre-wise map over BG between fibrations. The induced map on each 

fibre is an ordinary homotopy equivalence because f is. By Dold [~I] , 

6.3. and 8. (id x f)/G is a fibre homotopy equivalence and by the 

covering homotopy theorem for bundle maps Dold [~I] , 7.8, the map 

id x f is a bundle equivalence hence a G-homotopy equivalence. A simi- 

lar argument applies to pr: The map (EG x X)/G ---+X/G is a fibration 

with contractible fibre EG hence a homotopy equivalence (actually 

shrinkable, Dold [71] , 3.2). Now apply the covering homotopy theorem 

for bundle maps again. 

Proposition 8.2.2. Given a diagram o_~f G-spaces and G-maps 
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Y > z 

fAl P ~ h 
! 

A C X 

and a G-homotopy H A : hlA ~ PfA" Assume that Ac X is a G-cofibration. 

Then there exists a G-map f : X--~ Y extendin~ fA and a G-homotopy 

H : h ~ pf extendin@ H A provided 

(a) p is an equivariant homotopy equivalence 

or (b) p is an ordinary homotopy equivalence and X~ A is a 

numerable free G-space. 

Proof. Replace p by the equivariantly homotopy equivalent G-fibration 

q : E ~--~-) Z, where E is the path-space 

E = {(w,y) & ZIx Y lw(1) = p(y)] , q(w,y) = w(o). 

The G-action on E is given by g(w,y) = (g-w,gy), where (g-w) (t) = gw(t). 

Let r : F .--~ X be the G-fibration over X induced by, i. e. 

F = " i(x,w,y)E X x ZIx Y l w(o) = h(x), w(1) = p(y)] ~ 

r(x,w,y) = x. 

Define k : A ----->F by k(a) = (a,Wa,fA(o)) with 

w (t) = a 

i h(a) o -~ t -~ I/2 

I $ t .<I HA(a,2t-1 ) 

Then k is an equivariant section of r over A. From the description of F 
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above we see that the theorem is proved if we can extend k to an equi- 

variant section of r over X. 

Since AC X is a G-cofibration, there is an equivariant map u : X---)I 

-I 
and a G-homotopy K : X x I > X such that A=u (o), K(x,o) = x, 

-I 
K(a,t) = a for all a &A and t e I, and K(x,1) ~ A for x E u [ 0,1 [ (this 

is the equivariant analogue of StrUm; see also tom Dieck-Kamps-Puppe 

[~0] , § 3). Put U = u -I [O,1 [ . Extend k to an equivariant section r 

over U by k(x) = (X,Wx,fAK(X,1)) with 

i hK(x,2t) o .< t .~ I/2 

Wx(t ) = x ~ U 

1 
HA(K(x,I),2t-I) ~ .( t .< I 

-I 
The restriction r x~ A : FX wA = r (X ~A) > X wA is G-shrinkable: 

Since p is a homotopy equivalence and a G-fibration it is shrinkable 

(Dold [71], 6.2), hence the induced r is shrinkable (Dold [71] , 3.1). 

Hence r x~ A is a homotopy equivalence and by 8.2.1 (in case (b)) G- 

homotopy equivalence, and, being a G-fibration, r X. A is shrinkable. 

(In case (a) rx~ A is induced from the G-shrinkable q). G-Shrinkable 

means: There exists an equivariant section t of r x w A and a G-homotopy 

over X~ A L from the identity to tr x• A" The required equivariant section 

s of r over X is now given by 

s(x) = 
i t(x) 

L(k(x) ,max [2u(x)-1,0] 

k(x) 

x~X~U 

x~U-A 

x~A 

Proposition 8.2.3. Let p : (X,A) } (Y,B) be a G-map such that 

PA = PlA : A --+ B is a G-homotopy equivalence and p is an ordinar~ 

homotopy equivalence. Suppose that X~A and Y ~ B are numerable free 
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G-spaces and A cX, BcY are G-cofibrations. Then any G-homotopy inverse 

qB o f  PA can  be  e x t e n d e d  t o  a G-homotopy  i n v e r s e  q o_~f p and any G- 

homotopy H B : id B PA qB to a G-homotopy H : idy ~ pq. 

Proof. We apply 8.2.2 (b) to the diagram 

qB 

X ~ Y 

id 

B C Y 

i 

and obtain a G-extension q : Y--~X of qB and H : Y x I ---) Y of iH B such 

that H : idy ~ pq. Hence (p,pA) (q,qB) ~ id as maps between G-pairs. 

Since p was an ordinary homotopy equivalence q must be an ordinary 

homotopy equivalence. Hence we can apply 8.2.2 (b) once more to find 

an extension p : X--9 Y of PA such that (q,qB) (p,pA) ~ id as maps of 

G-pairs. Hence (q,qB) is a G-homotopy equivalence of G-pairs with G- 

homotopy inverse (p,pA) . 

Proposition 8.2.4. Let f : X---~ Y be a G-map such that for all H < G 

the map fH is an ordinary homotopy equivalence. Suppose that for all 

H < G XH,Y H are numerable free NH/H-spaces and G(X H~ X H) c GX H, 

G(yH~ YH ) ~ GY H are G-cofibrations. Su__~ose moreover that X and Y have 

finite orbit-type. Then f is a G-homotopy e~uivalence. 

Proof. Choose an admissible indexing of Or(X) v Or(Y) as explained in 

8.1. We have the associated filtration (X n) and (Yn) of X and Y and we 

: X ~ Y is a G-homotopy equivalence. show by induction over n that fn n n 

The induction starts, using 8.2.1. Suppose fn-1 is a G-homotopy equi- 

valence with inverse hn_ 1 . Using 8 2.3 we see that h H " n-1 can be extended 
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to an NH/H-homotopy inverse of fH if X ~ X 
n n n-1 

the required of f • 
n 

= X(H ) . By 8.1.5 we find 

Remark 8.2.5. The hypotheses of 8.2.4 are satisfied if X and Y are 

G-ENR's. This follows from the theorem of Jaworowski 5.2.6 and the 

fact that an inclusion of G-ENR's is a G-cofibration. 

We also mention a theorem of Segal-James ~09], Theorem 1.1, giving 

another variant of 8.2.4. 

Proposition 8.2.6. Let X and Y b__ee G-ANR's. Then a G-map f : X ) Y i__ss 

G-homotopy equivalence if the map fH X H : ) yHis a homotopy equi- 

valence for all closed subgroups H of G. 

8.3. Obstruction theory. 

According to 8.1.5 the basic extension problem in equivariant homotopy 

theory may be formulated as follows: 

Extension problem: Given G-spaces A ¢ X, A closed in X, and Y and a G- 

map f : A ) Y. Suppose G acts freely on X ~ A. Can f be extended to a 

G-map F : X ----~Y? If F exists, how can one classify G-homotopy classes 

of such extensions~ 

We want to reduce these problems to problems in classical obstruction 

theory, as presented in the books by Steenrod [45~] or Baues ~] 

By 8.1.3 we have to consider q : (X;Y)-----~ X/G with given partial 

section s : A/G ----9 (X Y) corresponding to f and we have to extend 

this section over X/G. This looks like a problem in obstruction theory, 

but the additional technical problem that arises comes from the fact 

that q is not, in general, a fibration. Over (X\ A)/G, q is the fibre 

bundle ((x \ A) x Y)/G ) (X ~ A)/G with fibre Y, but when we approach 
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A/G the fibre change (the fibration has "singularities"). One possibili- 

ty to circumvent this problem is to assume that the section s has an 

extension to a neighbourhood, i. e. the G-map f may be extended to a 

neighbourhood. This is the case when A c X is a G-retract of a neigh- 

bourhood an in particular when A c X is a G-cofibration, or when Y is a 

G-ANR and X is normal. (This extension property is the definition of a 

G ANR in Palais [~Z~] , 1.6. In particular a G-ENR is a G-ANR.) 

Proposition 8.3.1. Let (X~A) be a relative G-CW-eomplex of dimension 

n with free G-action on X~ A. Let Y be a G-space which is n-connected 

and n-simple (n ~ i). Then any G-map f : A ---~Y has an extension F:X---}Y. 

The G-homotopz classes tel. A of such extensions correspond bijectively 

t__oo elements o__~f Hn(X/G, A/G; ~ Y) (where singular cohomology with 
n 

suitable local coefficients is used). 

Remarks. The assumption about (X,A) means that X is obtained from A by 

D i attaching cells G x for i ~ n. Then (X/G,A/G) is an ordinary relative 

CW-complex of dimension $ n. The inclusion Ac X is a G-cofihration, in 

fact a strong neighbourhood deformation retract (in G-Top): There 

exists a G-neighbourhood U of A in X such that Ac U is a G-homotopy 

equivalence rel. A. Over Xw A we have the local coefficient system 

((X~ A) x ~ Y)/G > (X ~ A)/G where the G-action on Y induces an 
n 

action on ~ Y. By excision 
n 

Hn(X/G, A/G; ~n Y) ~ H n(X w A/G, U -A/G; ~n Y) and in the latter group 

we use the local coefficient system just defined. 

Proof. Using 8.1 the problem is translated into a section extension 

problem and then classical obstruction theory is applied. 

One of the immediate applications of obstruction theory is a proof 

of H. Hopf's theorem which determines the homotopy classes of maps 
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from an n-manifold into an n-sphere. We generalize this to the equi- 

variant situation in the next section. 

8.4.The equivariant Hopf theorem. 

A classical theorem of H. Hopf asserts that the homotopy classes of a 

closed connected orientable n-manifold M into the n-sphere are charac- 

terized by their degree and every integer occurs as degree of a suitable 

map. If M and S n carry free actions of a finite group G then the equi- 

variant homotopy classes are still determined by their degree, but no 

longer does every integer occur as a degree (e. g. if G : Z/pZ and 

M = S n as G-spaces then the degree must be congruent one modulo p). We 

shall describe in this section the straighforward generalization to 

transformation groups, using the obstruction theory of 8.3. 

We give the data needed to state the results. Let X be a G-CW-complex 

of finite orbit type. Then X H is a WH-complex (WH :: NH/H). We assume 

that all X H are finite-dimensional. If H is an isotropy group of X we 

let n(H)be the dimension of X H For simplicity we assume that n(H) ~ ] . ° 

If H ~ K then we should have n(H) ) n(K), for H,K E Iso(X) of course. 

We assume that H n(H) (xH:z) ~ Z. The action of WH on X H then induces a 

homomorphism ell, X : WH > Z ~ = {~ I~ : Aut Z which is called the 

orientation behaviour of X at H. We put ~H : UX K, K ~ H; this is a WH- 

subspace of X H. The map eH, X defines a WH-module ZH, X which we use for 

local coefficients in order to define the group Hn(H) (xH/wH,~H/wH;ZH,x) . 

We assume that this cohomology group is isomorphic to Z if WH is finite. 

But be have the 

Lemma 8.4.]. If under the assumption above n(H) ~ n(K)+2 for all 

K > H, K # H, K ~Iso(X) then Hn(H) (xH/wH, ~H/wH;ZH, X) ~ Z. 

Proof. Usina the exact cohomology sequence of the pair we see that it 
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suffices to show that Hn(H) (xH/wH:ZH,x) ~ Z. We look at cellular co- 

chains HOmwH(C n(H) (XH) ' ZH,X ) " If n(H) ~ n(K) + 1 for K ~ H, K # H, 

K EIso(X) then Cn(H) (X H) is a free WH-module (for WH finite) hence the 

trace map which makes cochains WH-equivariant is surjective, hence the 

transfer Hn(H) (xH;z) ) Hn(H) (xH/wH;ZH X ) is surjective. The compo- 

sition of this map with the map in the other direction induced by 

X H ~ xH/wH is multiplication by ~WH~ . So we only show that the group 

in question is torsion free. But one shows easily, using the trace 

operator that 

HOmw(ZH,Z H) ( HOmw(Cn,Z H) ( HOmw(Cn_I,ZH ) 

is exact. 

We now continue to describe data. Let Y be another G-space. We assume 

yH ~ Z for H G Iso(X) Then that yH is n (H) -connected and ~rn(H) 

H n(H) (YH;z) ~ Z and we obtain the orientation behaviour eH,y:WH---~ Z ~ 

of Y at H. We assume that eH, X = eH, Y for all H G Iso(X). We orient X 

be choosing a generator of H n(H) (xH;z) for every H and similarly for Y. 

we assume that X and Y have been oriented. Then given a G-map f: X---)Y 

the fixed point mapping fH : X H ~ yH has a well-defined degree 

d(f H) E Z. 

Theorem 8.4.1. Under the assumption above the equivariant homotnpy ~e9 

[X,Y] G i__ss not empty Elements [f] E IX,Y] G are d~e~rmin~d by the 

set of degrees d(fH), H E Iso X, WH finite. The deqree d(f H) is modulo 

[WH~ determined by the d(fK), K > H, K 9 H an___dd fixinq these d(f K) th___~e 

possible d(f H) fill the whole residue class mod ~WH~. 

Proof. We order the isotropy types (H I ) ..... (H r) of X such that 

(Hi) < (Hj) implies i > j. Let (H) : (H i) and suppose that we already 
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H . 

have a G-map f : ~J GX 3 =: Xi_l > Y. We want to extend this G- 
j,i 

map to X i. As we have explained in 8.1 the homotopy classes rel Xi_ 1 

of such extension correspond to WH-extensions of fI~ H to X H. The 

obstructions to such extensions lie in Hi(xH/wH,~H/wH; ~i_I(YH)) and 

these groups are all zero by our assumptions. Hence there exists at 

least one extension. 

Given two WH-maps f,g : X H > yH with fix H = gI~ H' the obstructions 

against a bomotopy between them lie in the groups 

Hi(xH/wH, ~H/wH; ~ (yH)) and these groups are all zero except for 
1 

n(H) = i and WH finite where ~n(H) (Y H) = ZH, Y : ZH, X and the group 

is Z by assumption. Hence we get a single integer d(f,g) as an obstruc- 

tion. We claim that d(f,g) is divisible by ~WH~ and moreover 

d(f,g) = d(f) - d(g). We look at the natural map 

Hn(H) p : (xH/wH, ~H/wH; ZH, X) H n ( H )  (X H , . ~ H  Z) . 

By naturality of the obstruction class d(f,g) is mapped onto the 

obstruction against a non-equivariant homotopy between f and g and 

this is by the classical Hopf theorem just the difference of the degrees. 

We have already seen above that image pM ~ IWH~ Z. Together with 8.3.1~ 

applied to this induction step;this finishes the proof of 8.4.1. 

8.5. Geometric modules over the Burnside ring. 

We shall prove in this section that the Burnside ring A(G) is iso- 

morphic to stable cohomotopy of spheres in dimension zero via the 

Lefschetz-Dold index, see 7.6.7. The proof will be computational but 

gives at the same time information about certain other modules over 

A(G). We recall 
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Theorem 8.5.1. If we assiqn to a compact G-ENR X the Lefschetz-Dold in- 

o This map is dex I(X) we obtain a well-defined map I G : A(G) >~G" -- 

a__nn isomorDhism o_~f rings. 

Proof. If H is a closed subgroup of G we define a ring hemomorphism 

o o represented by f : V c V c, dH : ~G }Z by assigning to x E ~ G' 

the degree of the H-fixed point map fH. Recall that we introduced in 

section 5 a homomorphism ~H : A(G) } Z : IX] ! > ~(xH), where 

denotes the Euler characteristic. 

We show: Let X be a compact G-ENR. Then dHI(X) : ~ (xH). By 7.6.8 

we have dHI(X) = I(X H) 6 ~ o [I]= Z. The fixed point index I(X H) of 

id(X H) is the Euler characteristic of X H (compare Dold [75] , XII 6.6 

and [~6] ). This proves dHI(X) = ~ (xH). By 8.4.1 the elements of 

o 
G are detected by the maps d H. From the definition of the Burnside 

ring we now obtain that I G is a well-defined injective ring homomorphisms. 

That this map is also surjective will follow if we show that the dH(x) 

satisfy congruences analogous to 5.8.5. (See 8.5.9) We shall prove 

this in a moment for a slightly more general situation. 

Remark 8.5.2. If f : X > X is an endomorphism of the compact G-ENR X 

then the Lefschetz-Dold index of (X,f) is an element of 
o 

: A (G) . 
G 

By 5.5.1 this index element is a linear combination of homogeneous 

spaces. It is a non-trivial exercise for the reader to figure out which 

linear combination this is. 

The isomorphism of Theorem 8.5.1 is natural, i. e. commutes with the 

various restriction and induction processes. If f : G ) K is a 

continuous homomorphism then we obtain by pull-back along f homomor- 

phisms f~ : ~K° ) ~ G° and f~ : A(K) -----}A(G) and we have 
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I G f : f I K • 

[ ] o ~ IX,Y] o for a pointed H-space X and a The adjointness G+A H X,Y G : H 

pointed G-space Y together with the G-homeomorphism 

G + AH X ) G/H+^ X : (g,x) | )(g,gx) 

for a G-space X induces an isomorphism 

• G o .. o 
IH : (~H = ~ G (G/H) 

If we compose this with the transfer induced by G/H 

the induction 

Point we get 

ind~ o o 
: ~ H ) ~ G" 

Note that we also have a map 

I [G/HI : A [G/H] > ~°(G/H)G 

which assigns to a submersion f : M ) G/H the Lefschetz-Dold index 

If. In 5.12 we constructed an isomorphism i X : A(H) ) A [G/HI . 

G G 
Proposition 8.5.3. I [G/HI IH : IH IH 

in 4 = ind  

Proof. This follows from properties 7.6.8 of the transfer. 

Finally we mention that the maps I H are compatible with the multi- 

plicative induction. If H has finite index in G we showed in 5.12 
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that the multiplicative induction Xl )HomH(G,X) induced a map 

A(H) ----9 A(G). This map is transformed under the isomorphisms IH,I G 

o which has the following description on re- into a map W~ ) WG 

presentatives: Note that HomH(G,X) as a space is just ~(gH XHX), the 

product taken over the cosets G/H: but this formulation also indicates 

the G-action. If now X is a pointed H-space then we can similarly form 

the smashed product A (gH XHX) with G-action defined similarly. This 

gives a functor from pointed H-spaces to pointed G-spaces which maps 

H-homotopies to G-homotopies. If V is an H-module then A (gH xHVC) is 

the one-point-compactification of the induced representation HOmH(G,V). 

o ----~[~ (gH xHVC) The map in question is now induced by [vC,v c] H 

o More generally, (gH XH Vc) ] G° > ~HOmH(G,v))C (HOmH(G,v))c]G 

o (X) ) o (Hom H (G, X) ) The multiplicative induction is a map ~H ~G " 

reader may check that multiplicative induction is compatible with the 

Lefschetz index. 

Suppose now that we given complex representations V and W such that 

(8.5.4) dim V H = dim W H for all H ~ G. 

o ~ = ~G(vC,w c) the ~G-mOdule for ~ = V-W. For each H~ G We call 
o 

we have a degree map 

(8.5.5) d ~ ,H : ~ > Z : If] I ) degree fH. 

The degree is computed with respect to the canonical orientations of 

(VH) c, (wH) c which are induced by the complex structure. By 8.4.1 the 

maps d ~ ,H detect the elements of ~ . So we ask: What are the 

relations between the possible degrees d ~ ,H(X)? The assignment 

(H) I ) d ~,H(X) is a continuous function. Therefore we obtain an in- 

jective map 
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(8.5.6) d : ~ ) C(~,Z) . 

We want to describe the image by congruence relations. 

Theorem 8.5.7. There exists a collection of inteqers nH,K(~ ), dependinq 

o__nn ~ , (H) ~ ~(G), and (K) with H normal in K and K/H cyclic, such 

that n ~ (H,H) : 1 and such that the fol]owinq holds: x 6 C({,Z) i_ss 

contained in the imaqe o__ff d if and only i_ff: 

Z(K ) nH,K(~) x(K)_= O rood INH/H I 

The sum is taken over the conjuqacy classes (K) such that H is normal 

i__nn K and K/H i__ss cyclic. 

Proof. We first show that any set of congruence relations of the type 

considered in 8.5.7 suffices to the describe the module ~ . Later 

we derive specific congruences as indicated, using K-theory. 

Suppose we are given for each (H) e ~ a map r H : C(~,Z) 

of the form 

> z/l will 

(8 .5 .8)  rH(z) = z(H) + ~ nil, K z(K) mod ~WHI 

where the nH, K are integers and the sum is taken over the conjugacy 

classes (K) such that H is normal in K and K/H is a non-trivial cyclic 

group. Suppose that for ~ = E- F with dim E H = dim F H the image of 

d is contained in 

Co( = {z E C(~,Z) I (H)~ ~ -~ rH(z) = o } 

Then we claim d~ ~ = C 
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Given z ~ C~ . We have to show that for a suitable U there exists a 

map f : S(E ~ U) > S(F ~ U) such that for each (H) ~ @ degree fH = z(H). 

To begin with we choose U large enough so as to satisfy the following 

conditions: 

i) Iso(E G U) : Iso(F G U) 

ii) (I), (G) E Iso(E ~ U) 

iii) (K), (L) E Iso(E ~ U) ~ (Kin L) E Iso(E G U) 

iv) Choose an integer n ~ o such that x = nz is contained in C . 
O 

Then there shall exist a representative S(E O U) ) S(F ~ U) 

for x E ~ • 
O 

Once (iv) is satisfied for U it is also satisfied for any U' containing 

U as a direct summand. Hence by enlarging U we can also satisfy (i) - 

(iii). 

We set X : S(E ~ U) and Y : S(F ~ U). Let Iso(X) : {(H I ) ..... (Hr) ] 

where (H i ) > (Hi) implies i < j. If X i : {x 6 X I (Gx) : (Hi) for some 

: X ) Y such that j • i } we construct inductively G-maps fr r 

v) degree fL = z(L) 
r 

if (L) E ~, (L) % (Hi), iS r 

or if (L) > (Hr+l), (L) E ~. 

Note that X L X L for such L. Put H The G-extensions r : = Hr+l" 

fr+l : Xr+l ) Y of fr correspond via restriction bijectively to the 

WH-extensions h : X H 9 yH of f'r : fr ~XH: XH 9YH where X H = xHn Xr. 

The obstructions to the existence of h lie in H~(xH/HN,XH/NH; ~_I(YH)), 

i as in 8.4. These groups are zero by our assumptions. Let fr+l be a WH- 

, H = f, which exists extension of fr" Let fl : X ) Y be a map with fl r+l 

by the same obstruction argument. Then, if (H) & ~, we have for the 

fixed point degrees 
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d(f I) + Z nil, K d(f I) ---- O pod IWH I . 

By induction d(f ) = z(K) so that in this case d(fr+ l) ---- z(H) pod ~WH[ 

Since WH acts freely on xH\ X H we can alter f'r+l tel X H to an NH-map 

fr+l so that d(fr+ I) = z(H). Let fr+l be the map with fr+ll XH = f'r+l 

if (H) f: ~ and fr+l [ XH = fr+l if (H) ~ ~. Then d(fL+l ) = z(L) when- 

ever (L) ~ (Hi), i ~ r+l. Suppose (L) ~ (Hr+l), (L) E ~. Since 

Iso(X) : Iso(Y) is closed under intersections there exists a unique 

isotropy group (P) : (H s) such that (P) ~ (L) and (P)@ ~, X L : X P, 

yL : yP, degree fL = degree fP r+l r+l : z(P). We have to show z(L) : z(P). 

P L 
But by (iv) above nz is represented by a map g : X )Y hence g = g 

implies nz(L) : nz (P). This finishes the proof of d~ ~ : C~ . 

We now derive specific functions of the type 8.5.8. Let f : E > F 

be a proper G-map between complex G-modules. Let C • G be a topological- 

ly cyclic group with generator h. Put E : E c (~ E c, JE : EC¢ E. We 

apply equivariant K-theory with compact support and obtain for 

~. f~ ~ . f~: Kc(F) > Kc(E) and (fC)~ the equality JE = JF (fC)~ Let 

~%(E) E KG(E) be the Bott class, a free R(O)-generator of Kc(E). Then 

we define a ~ R(G) by f~ ;~(E) = a )k(F) and obtain (a~C) A_I(Ec)= A_I(Fc) 

degree fC. we evaluate characters at h and use ;%-i (Ec)(h) # O. If G 

is finite then Z a(g) -= O pod [G[. If C < G is cyclic and C ~ its 
g~G 

set of generators we put a~(C) : ~ (g) With n(E-F,C) : ~ g ~ C ~a " g ~ C 

~_I(Fc) (g)/A_I(E C) (g) we obtain 

~( a C) = n(E-F,C) degree fC 

a(g) = ~(C) IGI I NCI -I a ~ (C) _---- o pod IGI. 

By elementary Galois theory n(E-F,C) is an integer. We apply these 

considerations to fH considered as WH-map and obtain 
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~NH/NH,I NK[ n(EH-F H K/H) d(f K) - o mod ~WHJ 

where the sum is taken over the NH-conjugacy classes (K) with H4 K and 

K/H cyclic. This yields the desired functions 8.5.8. 

Remark 8.5.9. Comparing the case E = F of the above congruences with 

5.8.5 we see that the map I G of 8.5.] is surjective. 

8.6. Prime ideals of equivariant cohomotopv rinqs. 

Let X be a compact G-ENR, G finite. We are going to determine the prime 

°(x) ideal spectrum of the ring ~ G " 

The orbit cateqory O(X) of x shall have as objects the G-homotopy 

classes of maps G/H > X and as morphisms from u : G/H ) X to 

v : G/K )X the G-homotopy classes t : G/H ) G/K such that vt : u. 

If u : G/H 

o (x) 
u : OJ G 

morphism 

} X is given we have the induced ring homomorphism 

°(G/H) and the maps u combine to a ring homo- 
> ~ G 

o (G/H) o (X] ) lira ~ G (8.6.1) ~ : Co G 

where the limit (= inverse limit) is taken over the category O(X). Let 

Spec ~ be the induced map of prime ideal spectra. 

°(X) For each Theorem 8.6.2. The kernel of ~ is the nilradical of ~ G " 

x E lim w ~(G/H) there exists an n ~ ~ with x n E image ~ . The map 

induces a h e mor hism Spec ~ o__~f prime ideal spectra. 

Next we show that taking prime ideal spectra commutes with taking 
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° (G/H)-9 ~ ~ (C/H) limits over the category O(X). The canonical maps lim ~ G 

°(G/H) °(G/H) • Spec Jim ~ G " induce a continuous map /~: colim Spec ~ G 

Theorem 8.6.3. The map ~ is a homeomorphism. 

We now enter the proofs of these Theorems. 

Recall that one has Bredon cohomology [3G] H~(X; ~ ) of X with coeffi- 

°(G/H) on objects and induced cient system ~ given by ~ : G/H ) ~ G 

maps (see also Br6cker [38] or Illman for an exposition of 

this cohomology theory). Let 

O(x) > H °(x:~) e : GO G 

be the edge-homomorphism associated to the Atiyah-Hirzebruch spectral 

sequence of ~ ~(-). More directly: H°(X: ~) is canonically isomorphic 

to lim ~ ~(G/H) and under this isomorphism e corresponds to ~ . 

Proposition 8.6.4. (i) The map e ~ Q is an isomorphism. 

(ii) The torsion subgroup of ~ ~(X) as abelian group is equal to the 

nilradical of the ring ~ ~(X) . 

Proof. (i) If e ~ Q is an isomorphism for a space X then also for any 

G-retract of X. Since any G-ENR is a retract of a finite G-CW-complex 

(dominated by a finite G-CW-complex suffices and this is easier to see) 

it is enough to consider finite G-CW-complexes. But e is a natural 

transformation of half-exact homotopy functors, so by a standard compa- 

rison theorem (see e. g. Dold [~I] ) it suffices to show that e ~ Q 

is an isomorphism on cells. This is true for zero-cells by the very 

definition of H°(X; ~ ). If i > o then H°(G/H x (Di,si-]) : ~ ) : O by 

the dimension axiom of this equivariant cohomology theory. O n the other 
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hand 

°(G/H x (Di,si-l)) ~ &0 o(Di,si-l) ~ ~H 
~G H i 

and by the splitting theorem of Segal ~ ]  , (see also tom Dieck 

[~Z] , Satz 2) we have 

H ~ (~ ~ i (BWK+) 
i (~) 

(the product is over conjugacy classes (K) of subgroups of H; WK=NK/K, 

NK normalizer of K in H) . But ~ (BWK +) is for i > o a torsion 
1 

group. 

(ii) The kernel of e is the nilradical of ~ ~(X). The nilradical is 

certainly contained in this kernel because H°(X; ~ ) is contained in 

in product of rings of the type ~ ~(G/H) and these rings have no 

(non-zero) nilpotent elements (being isomorphic to the Burnside ring 

A(H).) On the other hand the kernel consists precisely of elements of 

skeleton filtration one hence consists of nilpotent elements. (See 

Segal ~ ]  for an analogous statement.) Since H°(X; ~) is torsion- 

°(X) c Nil ~ ~(X) Tensoring the exact sequence free we have Torsion ~ G 

°(x) ; H°(X; ~) °(X) > ~G 0 > Nil &O G 

with Q and using (i) we obtain (ii). 

Note that Proposition 8.6.4 proves the first statement of Theorem 

8.6.2. We now come to the second statement. 

Proposition 8.6.5. The map e : ~ ~(X) ~ H°(X: ~) has "nilpotent 

cokernel", i__~. e. a suitable power o__ff ever X element of H°(X; ~) i__{s 

contained in the image o_~f e. 
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Proof. (Compare Quillen ~15] ). If the assertion of the Proposition 

is true for X then also for any G-retract of X. Since X is a compact 

G-ENR it is a retract of a compact differertiable G-manifold with boundary. 

So we need only prove the Proposition for those X which are locally 

contratible (i. e. each orbit of X is a G-deformation retract of a 

neighbourhood) . If X is G-homotopy equivalent to an orbit then the map 

e is an isomorphism. Now assume that X = U] u ... u Un, the U i being 

compact G-ENR's which are G-homotopy equivalent to an orbit. Assume 

that the Proposition is true for X 1 : U lu ... UUn= ~We consider the 

following diagram of Mayer-Vietoris sequences where H°(X) = H°(X; ~) 

and e are instances of the transformation e. 
1 

o 
°(X) > OJ (X I) (9 ~0 (Un) ~ OJG(XI~ Un) ~G 

t s 

e leOe ie 
> H°(×) > H°(X1) I~ H°(Un ) > H°(XI~U n) 

t '  s '  

Given x • H°(X) we put t' (x) : (Xl,X2) . By induction hypothesis there 

exists k such that 

t,xk = (xk,x k) = (elul,e2u 2) 

k 
for suitable u i. By exactness s'x I : s'x 2 hence su 2 = su I + n, where n 

1 
is a suitable nilpotent element by Proposition 8.6.4. Suppose n = O. 

Then for p • t, with z = su I, 

(z+n) p = z p +(P)zP-ln + ... +(tPl)zP-t+in t-l. 

2 t-i 
By Proposition 8.6.4 the elements n,n ..... n are torsion elements. 

i 
Choose q ~ IN such that qn : 0 for 1 5 i ,<t-l. Choose p such that q 
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divides (3) ..... (tPl), e. g. p = (t-l) !q. Then we obtain 

i. e. 

(z+n) p = z p , 

(Sul)P : S(U p) : S(U p) 

x pk" and we can find y with ty : (U~,~), SO that finally fy : This 

proves the induction step. 

The final assertion of Theorem 8.6.2 comes from commutative algebra. 

We have the following situation: A ~ A/Nil A ) B where f is 
f g 

the canonical quotient map and g is an injection with nilpotent cokernel. 

Then Spec f is a homeomorphism. Since g has nilpotent cokernel it is 

easy to see that Spec g is injective. On the other hand g is an integral 

extension: by the going up theorem Spec g is a closed surjective mappin~ 

Hence also Spec g is a homeomorphism in our case. This finishes the 

proof of Theorem 2. 

Theorem 8.6.4 is contained in Quillen ~Z~], Corollary B.7 in the 

Appendix B. 

We are going to give more explicit statements for some of the results 

above. Let xE X and let H < G be a subgroup of the isotropy group at x. 
x 

°(X) > Z as the composition We define a ring homomorphism ~x,H : ~G 

°(x) ) ~H(X) ~G 
o (  { x }  ) =" A(H) ) Z ) ¢"H 

where the first two maps are restrictions and the last one takesthe 

degree or Euler characteristic of the H-fixed point object. 

Proposition 8.6.6. Every rinq homomorphism ~ : ~(X) ) Z is of the 
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form ~ x,H for suitable x ~ X and H <G x. We have ~x,H = ~ y,K i_~f 

and only i__[f (H) : (K) and x and y are in the same orbit under WH of the 

°(X) have the form path-components o__ff X H. The prime ideals of ~G 

-I (p) (p) c Z a prime ideal 
~x,H ' -- " 

Proof. Let q be the kernel of ~ . This is a prime ideal which by 

Theorem 8.6.2 and 8.6.3 is equal to the kernel of some ~x,H" There- 

fore we must have ~ : ~x,H" 

°(X) > Z correspond bijectively The different homomorphisms ~ : ~ G 

to the minimal prime ideals of ~(X) and bijectively to the homomor- 

phism ~G °(x) ~ Q ) Q of Q-algebras. But by the results of section 7 

we have a natural ring isomorphism 

~G(X) • Q "-- O ~°(xH)WH(gQ 
(H) 

where the sum is over the conjugacy classes (H) of subgroups H < G. From 

this fact one easily deduces the second statement of the Proposition. 

The third one is again a restatement of the Theorems above. 

8.7. Comments. 

This section is rather rudimentary. We give some references to further 

developments. A detaild discussion of the Hopf theorem 8.4.1 for maps 

between spheres can be found in Hauschild [~] . A more conceptual 

proof of 8.5.1 uses splitting theorem of tom Dieck E63] , Satz 2. 

Other splitting theorems may be found in Segal [1~5] , Rubinsztein 

E15G] , Kosniowski ~0~] , Hauschild [~0] , [~3] ; relevant is 

also Wirthm~ller [168] and Schultz [13~] 8.5.7 has been generalized 

to unstable and real modules by Tornehave [1G0] 8.2 is based on 

Hauschild [~] and Vogt [25] , Appendix. For the use of obstruction 
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theory as in 8.3 to equivariant versions of the Blakers-Massey theorem 

and the suspension theorem see Hauschild [~] 8.6 was presented in 

lectures by the author in Newcastle-upon-Tyne, April 1975; also the 

double coset formula for the equivariant transfer (see exercises). 

8.8. Exercises. 

i. Show that the double coset formula of 5.12 holds in equivariant 

cohomotopy and hence in any stable equivariant cohomology of homology 

theory• (This genralizes various results in Feshbach [~] , Brumfiel- 

Madsen [~3] etc.) More specifically: Let x~ ~ ~ ~(M) be the transfer 

element corresponding to M > Point. Let M = [ n(H), b M(H), b with 

n(H), b : % c(S(H),b/G) be the decomposition in the Burnside ring as in 

5.12 Let X(H), b E ~G • o(M(H),b)., be the transfer element corresponding 

to M(H),b ) Point. Let i(H),b : ~ ~(M(H) ,b ) > ~ ~(M) be induced by 

the inclusion. Then show 

x M = [ n(H) ,b i(H),b(X(H) ,b ) " 

2. Let H • G and let L be the tangent space of G/NH at i. Show that there 

exists a natural isomorphism 

nNH(LC^ EW+6 X) ) °~G((Gn XN EW)+^ X), 

n @ Z. 

3. (tom Dieck [(~Z] ) Show that there exists a natural isomorphism 

0j WH (EWH+^ X H) ) OJnG(X), 
(H) n 

n ~ Z, G compact Lie group, the sum over conjugacy classes of subgroups. 


