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The A∞A∞A∞-structures and differentials

of the Adams spectral sequence

V. A. Smirnov

Abstract. Using operad methods and functional homology operations, we obtain
inductive formulae for the differentials of the Adams spectral sequence of stable
homotopy groups of spheres.

The Adams spectral sequence was invented by Adams [1] almost fifty years ago
for the calculation of stable homotopy groups of topological spaces (in particu-
lar, those of spheres). The calculation of the differentials of the Adams spectral
sequence of homotopy groups of spheres is one of the most difficult problems of
modern algebraic topology. Here we consider an approach to the solution of this
problem based on the use of the A∞-structures introduced by Stasheff [2], operad
methods [3]–[6], and functional homology operations [7]–[9]. We apply our results
to the Arf invariant problem [10], [11].

§ 1. The Adams and Bousfield–Kan spectral sequences
Let us recall that the E1 term of the Adams spectral sequence of stable homotopy

groups of a topological space Y with coefficients in Z/2 is the complex

F (K, Y∗) : Y∗ → K⊗ Y∗ → · · · → K⊗n ⊗ Y∗ → · · · ,

where Y∗ is the homology of Y and K is the Milnor coalgebra (dual to the Steen-
rod algebra), which is the algebra of polynomials in ξi of dimension 2

i − 1. The
comultiplication

∇ : K → K ⊗K

is defined on the generators ξi by the formula

∇(ξi) =
∑
k

ξ2
k

i−k ⊗ ξk,

and on other elements by the Hopf relations.
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In the case of stable homotopy groups of spheres (that is, Z = S0), the E1 term
of the Adams spectral sequence can be written as

F (K) : Z/2→ K → · · · → K⊗n→ · · · .
Consider the Bousfield–Kan spectral sequence [12], which is the most general

case of a spectral sequence of homotopy groups of topological spaces.
Let R be a field. If Z is a simplicial set, then we denote by RZ the free simplicial

R-module generated by Z. There is a cosimplicial resolution

R∗Z : RZ
δ0,δ1−−−→ R2Z → · · · → RnZ δ0,...,δn−−−−−→ Rn+1Z → · · · ,

which was used by Bousfield and Kan to construct a spectral sequence of homotopy
groups of Z with coefficients in R.
The E1 term of this spectral sequence is the complex

H∗(Z;R)→ H∗(RZ;R)→ · · · → H∗(Rn−1Z;R)→ H∗(RnZ;R)→ · · · .
The higher differentials are the homology operations

dm : H∗(R
n−1Z;R)→ H∗(Rn+m−1Z;R).

In [7], [8] homology operations were defined as partial and multivalued maps. How-
ever, there is a general method that enables us to make them single-valued maps
defined everywhere. The corresponding theory was developed in [9]. Let us recall
the basic definitions.
If X is a chain complex, then we denote its homology by X∗, X∗ = H∗(X).

Let us fix chain maps ξ : X∗ → X, η : X → X∗ and a chain homotopy h : X → X
satisfying the relations

η ◦ ξ = Id, d(h) = ξ ◦ η − Id, h ◦ ξ = 0, η ◦ h = 0, h ◦ h = 0.
For any sequence f1 : X1 → X2, . . . , fn : Xn → Xn+1 of maps of chain com-

plexes we define functional homology operations

H∗(f
n, . . . , f1) : X1∗ → Xn+1∗

by the formula
H∗(f

n, . . . , f1) = η ◦ fn ◦ h ◦ · · · ◦ f1 ◦ ξ.
A direct calculation shows that

n−1∑
i=1

(−1)n−i+1H∗(fn, . . . , f i+1 ◦ f i, . . . , f1)

=
n−1∑
i=1

(−1)n−iH∗(fn, . . . , f i+1) ◦H∗(f i, . . . , f1).

Functional homology operations can be defined not only for the category of chain
complexes but also, for example, for the category of simplicial modules.
The definition of the higher differentials of the Bousfield–Kan spectral sequence

implies that they can be expressed in terms of the functional homology operations

H∗(δ, . . . , δ) : H∗(R
n−1Z;R)→ H∗(Rn+m−1Z;R),

and we have the following theorem.
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Theorem 1. The differentials of the Bousfield–Kan spectral sequence are given by
the functional homology operations

H∗(δ, . . . , δ) : H∗(R
n−1Z,R)→ H∗(Rn+m−1Z,R).

These operations define on the E1 term a new differential that makes E1 into a
complex whose homology is isomorphic to the E∞ term of the sequence.

It was shown in [5] that instead of the Bousfield–Kan cosimplicial resolution one
can consider the cosimplicial object

F ∗(C,RZ) : RZ
δ0,δ1−−−→ CRZ → · · · → Cn−1RZ δ0,...,δn−−−−−→ CnRZ → · · · ,

where CRZ is the free commutative simplicial coalgebra generated by the simplicial
module RZ.
The E1 term of the corresponding spectral sequence is the complex

H∗(Z;R) = π∗(RZ)→ π∗(CRZ)→ · · · → π∗(Cn−1RZ)→ π∗(CnRZ)→ · · · .

The definition of the higher differentials of this sequence implies that they can be
expressed in terms of the functional homology operations

H∗[δ, . . . , δ] : π∗(C
nRZ)→ π∗(Cn+mRZ).

There is a map of cosimplicial objects

RZ −−−−→ R2Z −−−−→ · · · −−−−→ Rn+1Z −−−−→ · · ·

=

� � �
RZ −−−−→ CRZ −−−−→ · · · −−−−→ CnRZ −−−−→ · · ·

that induces an isomorphism of the corresponding spectral sequences, and we have
the following theorem.

Theorem 2. The differentials of the Bousfield–Kan spectral sequence of the cosim-
plicial object

F ∗(C,RZ) : RZ
δ0,δ1−−−→ CRZ → · · · → Cn−1RZ δ0,...,δn−−−−−→ CnRZ → · · ·

are given by the functional homology operations

H∗(δ, . . . , δ) : π∗(C
nRZ)→ π∗(Cn+mRZ).

These operations define on the E1 term a new differential that makes E1 into a
complex whose homology is isomorphic to the E∞ term of the sequence.
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§ 2. E∞E∞E∞-algebras and E∞E∞E∞-coalgebras
Let us recall that an operad in the category of chain complexes is defined to be a

family E = {E(j)}j�1 of chain complexes E(j) on which the symmetric groups Σj
act, and maps

γ : E(k) ⊗E(j1)⊗ · · · ⊗E(jk)→ E(j1 + · · ·+ jk)

are defined in such a way that certain assumptions of associativity and compatibility
with the action of the symmetric groups hold [3], [4].
An operad E = {E(j)} is called an E∞-operad if the complexes E(j) are acyclic

and the symmetric groups act freely on them.
A chain complex X is called an algebra (a coalgebra) over the operad E if there

are maps

µ : E(k) ⊗Σk X⊗k → X (τ : X → HomΣk(E(k);X⊗k))

such that certain associativity relations hold.
Algebras (coalgebras) over anE∞-operad are called E∞-algebras (E∞-coalgebras).
Every operad in the category of chain complexes defines a monad E and a

comonad E by the formulae

E(X) =
∑
j

E(j, X), E(j, X) = E(j) ⊗Σj X⊗j ,

E(X) =
∏
j

E(j, X), E(j, X) = HomΣj(E(j), X
⊗j ).

Any operad structure γ induces transformations

γ : E ◦E → E, γ : E → E ◦E.

Any algebra (coalgebra) structure over an operad E on a complex X induces a
map

µ : E(X)→ X (τ : X → E(X)).

Hence, giving an algebra (coalgebra) structure over an operad E on a chain complex
X is the same as giving an algebra (coalgebra) structure over the monad E (the
comonad E).
The singular cochain complex C∗(Y ;R) of a topological space Y is one of the

main examples of an E∞-algebra.
Dually, the singular chain complex C∗(Y ;R) of a topological space Y and the

chain complex N(RZ) of a simplicial set Z are examples of E∞-coalgebras.
For E∞-coalgebras there is a homotopy theory [5] and homotopy groups are

defined. For the chain complex N(RZ) of a simplicial set Z, these homotopy
groups are isomorphic to the homotopy groups of Z with coefficients in R.
Using the cosimplicial resolution

F ∗(E,E,X) : X
τ−→ E(X)→ · · · → En−1(X) → En(X)→ · · · ,
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one can construct a spectral sequence of homotopy groups of any E-coalgebra X
(see [5]).
Let X∗ be the homology of the complex X and E∗ that of the comonad E. There

is a cosimplicial resolution

F ∗(E∗, E∗, X∗) : E∗(X∗)→ E
2
∗(X∗)→ · · · → E

n

∗ (X∗)→ E
n+1
∗ (X∗)→ · · · .

The E1 term of the spectral sequence obtained from this resolution by choosing
primitive elements is a complex

F (E∗, X∗) : X∗ → E∗(X∗)→ · · · → E
n

∗ (X∗)→ E
n+1

∗ (X∗)→ · · · .

The functional homology operations

H∗(δ, . . . , δ) : E
n

∗ (X∗)→ E
n+m
∗ (X∗)

define the higher differentials of this sequence. We denote the corresponding com-

plexes by F̃ (E∗, E∗, X∗) and F̃ (E∗, X∗), and we have the following theorem.

Theorem 3. The differentials of the spectral sequence of homotopy groups of the
E-coalgebra X are defined by the functional homology operations

H∗(δ, . . . , δ) : E
n

∗ (X∗)→ E
n+m

∗ (X∗).

The homology of the corresponding complex F̃ (E∗, X∗) is isomorphic to the E
∞

term of the sequence.

IfX is the normalized chain complex of the simplicial set Z, that is, X = N(RZ),
then there is a map of cosimplicial objects

N(RZ) −−−−→ N(CRZ) −−−−→ · · · −−−−→ N(CnRZ) −−−−→ · · ·

=

� � �
X −−−−→ E(X) −−−−→ · · · −−−−→ E

n
(X) −−−−→ · · ·

that induces an isomorphism of the corresponding spectral sequences, and we have
the following theorem.

Theorem 4. The differentials of the Bousfield–Kan spectral sequence of homotopy
groups of the simplicial set Z are defined by the functional homology operations

H∗(δ, . . . , δ) : E
n

∗ (Z∗)→ E
n+m

∗ (Z∗).

The homology of the corresponding complex F̃ (E∗, Z∗) is isomorphic to the E
∞

term of the sequence.

Let us note that the suspension SX over the E-coalgebra X is an SE-coalgebra
and we have the following commutative diagrams.

E
γ−−−−→ E ◦E� �

SE
Sγ−−−−→ SE ◦ SE

SX
τ−−−−→ SE(SX)

=
� �
SX

Sτ−−−−→ S(E(X))
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Moreover, the expression for the homology E∗ of the comonad E implies that the
maps ξ : E∗ → E, η : E → E∗ and h : E → E can be chosen in such a way that
they commute with the suspension homomorphism SE → E. Then the resulting
functional homology operations commute with the suspension homomorphism.
Stabilizing the Bousfield–Kan spectral sequence, we obtain the Adams spectral

sequence of stable homotopy groups of a topological space, and we have the following
theorem.

Theorem 5. The functional homology operations defining the higher differentials
of the Bousfield–Kan spectral sequence commute with the suspension homomorphism
and induce the differentials of the Adams sequence.

§ 3. A∞A∞A∞-cosimplicial objects
Let us describe the higher differentials of the Bousfield–Kan spectral sequence

using the definition of A∞-cosimplicial objects.
A family of objects X∗ = {Xn}n�0 of a category will be called a precosimplicial

object if coface and codegeneracy operators

δi : Xn → Xn+1, 1 � i � n+ 1,
σi : Xn → Xn−1, 0 � i � n− 1,

are given satisfying the relations

δjδi = δiδj−1, i < j,

σjσi = σiσj+1, i � j,

σjδi =



δiσj−1, i < j,

Id, i = j, i = j + 1,

δi−1σj , i > j + 1.

Hence, precosimplicial objects differ from cosimplicial objects only in the coface
operator δ0: cosimplicial objects have such operators, whereas precosimplicial
objects do not.
A map f∗ : X → Y of precosimplicial objects is a family f∗ = {fn}n�0 of maps

fn : Xn → Y n commuting with the coface and codegeneracy operators:

δifn = f
n+1δi, σifn = fn−1σ

i.

We shall define A∞-cosimplicial objects (or A∞-cosimplicial spaces) in the cat-
egory of topological spaces.
Let In be the unit cube, In = {(t1, . . . , tn) | 0 � ti � 1}. We denote by

uεi : I
n → In+1, ε = 0, 1, 1 � i � n+ 1,

vi : I
n → In−1, 0 � i � n,
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the maps defined by the formulae

uεi (t1, . . . , tn) = (t1, . . . ti−1, ε, ti, . . . , tn),

vi(t1, . . . , tn) =



(t2, . . . , tn), i = 0,

(t1, . . . , ti ∗ ti+1, . . . , tn), 1 � i � n− 1,
(t1, . . . , tn−1), i = n,

where ti ∗ ti+1 = ti + ti+1 − ti · ti+1.
A precosimplicial object X∗ = {Xn} in the category of topological spaces will be

called an A∞-cosimplicial object (or an A∞-cosimplicial space) if coface operators

δ0m : X
n × Im → Xn+m+1

are given satisfying the relations

σ0δ00 = Id,

δ0m(1× u0i ) = δiδ0m−1, 1 � i �m,
δ0m(1× u1i ) = δ0i−1(δ0m−1 × 1), 1 � i �m,
δ0m−1(1× vi) = σiδ0m, 0 � i �m, m � 1,
δ0m(δ

i × 1) = δi+m+1δ0m, i � 1,
δ0m(σ

i × 1) = σi+m+1δ0m, i � 0.

It is clear that any cosimplicial object X∗ = {Xn} in the category of topological
spaces can be regarded as an A∞-cosimplicial object with the trivial operators
δ0m : X

n × Im → Xn+m+1 for m � 1.
Let us note that the family I∗ = {In} can be regarded as an A∞-cosimplicial

object in the category of topological spaces for which

δi = u0i : I
n → In+1, 1 � i � n+ 1,

δ0m = u
1
n+1 : I

n × Im = In+m → In+m+1,
σi = vi : I

n → In−1, 0 � i � n.

The A∞-cosimplicial objects form a category whose morphisms are the maps
f∗ : X∗ → Y ∗ preserving the A∞-structure.
We can also define A∞-maps. Let X

∗ = {Xn} be an A∞-cosimplicial space and
Y ∗ = {Y n} a cosimplicial space. An A∞-map from X∗ to Y ∗ is a map f∗ = {fn},
fn : Xn → Y n, of precosimplicial objects together with a family of maps

fnm : X
n × Im → Y n+m, 0 � m � n,
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such that

fn0 = f
n,

fnm(1× u0i ) = δi−1fnm−1, 1 � i � m,
fnm(1× u1i ) = fn+m−i−1i (δ0m−i × 1), 1 � i � m,
fmn−1(di × 1) = di−mfmn , i > m,

fnm−1(1× vi) = σifnm, 0 � i < m,
fnm(δ

i × 1) = δi+mfn−1m , i � 1,
fnm−1(σ

i × 1) = σi+mfmn , i � 0.

An A∞-map will be called an A∞-homotopy equivalence if the corresponding
maps fn are homotopy equivalences.
Of course, A∞-cosimplicial objects can be defined not only for the category of

topological spaces but also for the category of simplicial sets, the category of chain
complexes, and so on. To make the corresponding definitions, one uses analogues
of the n-dimensional cube In in these categories.
Let us consider A∞-cosimplicial objects in the category of chain complexes in

more detail using normalized chain complexes of n-dimensional cubes.
A∞-cosimplicial objects and A∞-maps can be defined as follows. A precosim-

plicial object X∗ = {Xn} in the category of chain complexes is an A∞-cosimplicial
object if there are maps

δ0m : X
n → Xn+m+1

that increase the dimension by m satisfy the relations

d(δ0m) =
n∑
i=1

(−1)i−1(δiδ0m−1 − δ0i−1δ0m−i),

δ0mδ
i =δi+m+1δ0m, i � 1,

σiδ0m =



0, 0 � i �m, m � 1,
Id, i = m = 0,

δ0mσi−m−1, i > m.

An A∞-map from an A∞-cosimplicial object X
∗ to a cosimplicial object Y ∗ in

the category of chain complexes is a map of precosimplicial objects f∗ = {fn},
fn : Xn → Y n, together with a family of maps fnm : Xn → Y n+m that increase the
dimension by m and satisfy the relations

fn0 =f
n,

d(fnm) =
n∑
i=1

(−1)i−1(δi−1fnm−1 − fn+m−i−1i δ0m−i),

fn+1m δi =δi+mfnm, i � 1,

σifnm =

{
0, i < m,

fn+1m σi−m, i � m.
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It is clear that any cosimplicial object X∗ = {Xn} in the category of chain
complexes can be regarded as an A∞-cosimplicial object with the trivial operators
δ0m : X

n ⊗ Im → Xn+m+1 for m � 1.
As well as for the category of topological spaces, the family of chain complexes

I∗ = {In} can be regarded as an A∞-cosimplicial object in the category of chain
complexes.
IfX′∗ andX′′∗ are A∞-cosimplicial objects, then their tensor product X

′∗⊗X′′∗
is an A∞-cosimplicial object X

∗ such that

Xn = X′
n ⊗X′′n,

δi = δ′
i ⊗ δ′′i, i � 1,

σi = σ′
i ⊗ σ′′i, i � 0,

and the operations δ0m : X
n → Xn+m+1 are the composites

X′
n ⊗X′′n ⊗ Im 1⊗1⊗∇−−−−−→ X′n ⊗X′′n ⊗ Im ⊗ Im T−→

T−→ X′n ⊗ Im ⊗X′′n ⊗ Im δ′0m⊗δ
′′0
m−−−−−−→ X′n+m+1 ⊗X′′n+m+1,

where ∇ : Im → Im ⊗ Im is the comultiplication in the coalgebra Im.
If X∗ is an A∞-cosimplicial object in the category of chain complexes, then we

define its realization |X∗| by the formula

|X∗| = Hom(I∗;X∗),

where Hom is taken in the category of A∞-cosimplicial objects.
For A∞-cosimplicial objects X

′∗ and X′′
∗
there is a chain equivalence

|X′∗ ⊗X′′∗| � |X′∗| ⊗ |X′′∗|.

Let us transfer the perturbation theory of chain complexes [13] toA∞-cosimplicial

objects. We shall say that a chain complex X̃ is a deformation retract of the chain

complex X if there are chain maps ξ : X̃ → X, η : X → X̃ and a chain homotopy
h : X → X such that

η ◦ ξ = Id, d(h) = Id−ξ ◦ η.

It turns out [13] that in this case we can assume that h ◦ ξ = 0, η ◦ h = 0 and
h ◦ h = 0.
A precosimplicial object X̃∗ in the category of chain complexes will be called a

deformation retract of the precosimplicial object X∗ if for every n the chain complex

X̃n is a deformation retract of the chain complex Xn and the corresponding chain
maps and chain homotopies commute with the precosimplicial structure.
The following theorem is a cosimplicial analogue of the main lemma in the per-

turbation theory of chain complexes [13].
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Theorem 6. Let X∗ = {Xn} be a cosimplicial object in the category of chain
complexes, and assume that the precosimplicial object X̃∗ = {X̃n} is a deformation
retract of X∗. Then X̃∗ has the structure of an A∞-cosimplicial object and there
is an A∞-cosimplicial homotopy equivalence between X

∗ and X̃∗.

Proof. Let ξ∗ : X̃∗ → X∗, η∗ : X∗ → X̃∗ and h∗ : X∗ → X∗ be the corresponding
maps. We define operators δ0m : X̃

n → X̃n+m+1 by the formula

δ0m = ηδ
0hn+m . . . δ0hn+1δ0ξ.

A direct calculation shows that the desired relations hold.

We also define maps ξnm : X̃
n → Xn+m by the formula

ξnm = h
n+mδ0 . . . hn+1δ0ξ.

They give an A∞-cosimplicial homotopy equivalence between X̃
∗ and X∗.

Theorem 7. Let f∗ : X∗ → Y ∗ be a map of cosimplicial objects in the category of
chain complexes, and let precosimplicial objects X̃∗ and Ỹ ∗ be deformation retracts
of X∗ and Y ∗. Then for the above-defined structures of A∞-cosimplicial objects on

X̃∗ and Ỹ ∗ there is an A∞-map f̃
∗ : X̃∗ → Ỹ ∗ such that the following diagram is

homotopy commutative.

X∗
f∗−−−−→ Y ∗

ξ∗
� �ξ∗
X̃∗

f̃∗−−−−→ Ỹ ∗

The proof is similar to that of the preceding theorem.
Since the E1 term of the Bousfield–Kan spectral sequence, regarded as a pre-

cosimplicial object, is a deformation retract of the original cosimplicial object, The-
orem 6 implies the following result.

Theorem 8. The functional homology operations defining the higher differentials
of the Bousfield–Kan spectral sequence of the space Y can be chosen in such a
way that they form the structure of an A∞-cosimplicial object on the complex
F ∗(E∗, Y∗).

Passing to the stable case, we obtain the following theorem.

Theorem 9. The functional homology operations defining the higher differentials
of the Adams spectral sequence of stable homotopy groups of a topological space Y
can be chosen in such a way that they form the structure of an A∞-cosimplicial
object.

§ 4. An E∞E∞E∞-structure on the Bousfield–Kan spectral sequence
Ourpurpose is to define anE∞-structure on the Bousfield–Kan spectral sequence.

To do this, we consider the following additional property of the E∞-operad E.
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Theorem 10. For the E∞-operad E there is a permutation map

T : E ◦E → E ◦E

such that the following diagrams are commutative.

E2 ◦E TE◦ET−−−−−→ E ◦E2

γE

� �Eγ
E ◦E T−−−−→ E ◦E

E ◦E T−−−−→ E ◦E

Eγ

� �γE
E ◦E2 ET◦TE−−−−−→ E

2 ◦E

Proof. Since the E∞-operad E is acyclic and free, we can construct a map ∇ : E →
E ⊗ E of operads that is a family of maps ∇(j) : E(j) → E(j) ⊗ E(j) defining a
Hopf operad structure on E. We denote by

∇(j, i) : E(j)→ E(j)⊗i

the iterates of these maps, ∇(j, 2) = ∇(j). They are Σj-maps, that is, ∇(j)(xσ) =
∇(j)(x)σ⊗j , σ ∈ Σj, but they do not commute with permutations of the factors
in E(j)⊗i. However, since E is acyclic and Σ-free, they can be extended to maps

∇(j, i) : E(i) ⊗ E(j)→ E(j)⊗i

that are compatible with the action of the symmetric groups Σi and Σj . We write
these maps as

∇(j, i) : E(j)→ E(i) ⊗E(j)⊗i.

If the operad E is free, then we can assume that these maps are compatible with
the operad structure.
Passing to dual maps, we obtain maps

∇(j, i) : E(i) ⊗E(j)⊗i → E(j).

Now we define

T (j, i) : E(j) ⊗ E(i)⊗j → E(i) ⊗ E(j)⊗i

to be the composites

E(j) ⊗ E(i)⊗j ∇(j)⊗1
⊗j

−−−−−−→ E(j) ⊗E(j) ⊗ E(i)⊗j → E(j) ⊗ E(i)⊗j ⊗ E(j)
∇(j,i)⊗1−−−−−→ E(i) ⊗ E(j) 1⊗∇(j,i)−−−−−→ E(i) ⊗ E(i) ⊗E(j)⊗i

∇(i)⊗1⊗i−−−−−−→ E(i)⊗ E(j)⊗i.

This family of maps T (j, i) defines the desired permutation map T : E ◦ E →
E ◦E.
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A chain complex X is called an E∞-Hopf algebra if an E∞-algebra structure
µ : E(X) → X and an E∞-coalgebra structure τ : X → E(X) are given on it and
these structures are compatible, that is, the following diagram is commutative.

E(X)
µ−−−−→ X

τ−−−−→ E(X)

E(τ)

� �=
EE(X)

T−−−−→ EE(X)
E(µ)−−−−→ E(X)

In the case when the topological space Y is an E∞-space, its singular chain com-
plex C∗(Y ;R) is an E∞-Hopf algebra. For example, the singular chain complexes
of iterated loop spaces are E∞-Hopf algebras.
If X is an E∞-Hopf algebra, then there is a map of augmented cosimplicial

objects

E(X) −−−−→ EE(X) −−−−→ · · · −−−−→ EE
n
(X) −−−−→ · · ·� � �

X −−−−→ E(X) −−−−→ · · · −−−−→ E
n
(X) −−−−→ · · · ,

that is, F ∗(E,E,X) is a cosimplicial object in the category of E∞-algebras. There-
fore, its realization F (E,E,X) is an E∞-algebra. Passing to homology, we obtain
the following theorem.

Theorem 11. If X is an E∞-Hopf algebra, then there is an E∞-algebra structure

on the complex F̃ (E∗, E∗, X∗).

We shall use this structure to calculate the higher differentials of the Adams
spectral sequence.
Let us note that there is no natural E∞-algebra structure on the complex

F̃ (E∗, X∗).

§ 5. The homology of the E∞E∞E∞-operad and the Milnor coalgebra
It is well known (see, for example, [6]) that for an E∞-operad E and a graded

module M (over the field Z/2) the homology E∗(M) of the complex E(M) is the
algebra of polynomials in the generators of the form ei1 . . . eikxm, 1 � i1 � · · · � ik,
xm ∈M , of dimension i1 + 2i2 + · · ·+ 2k−1ik + 2km.
The elements ei1 . . . eikxm of E∗(M) can be written as

Qj1 . . .Qjk ⊗ xm, j1 � 2j2, . . . , jk−1 � 2jk, m � jk,

where

jk = ik +m,

jk−1 = ik−1 + ik + 2m,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j1 = i1 + i2 + 2i3 + · · ·+ 2k−2ik + 2k−1m.

The sequences Qj1 . . .Qjk are elements of the Dyer–Lashof algebra R [14], [15].
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If M is a graded module, then we denote by R ×M the factor module of the
tensor product R ⊗M by the submodule generated by the elements of the form
Qj1 . . .Qjk ⊗xm with jk < m. The correspondence M �−→ R×M defines a monad
in the category of graded modules.
A graded module M is called an unstable module over the Dyer–Lashof algebra

if it is an algebra over the corresponding monad.
Dually, the homology E∗(M) of the complex E(M) is the free commutative

coalgebra with the generators

ei1 . . . eikx
m, 1 � i1 � · · · � ik, xm ∈M,

of dimension 2km− (i1 + 2i2 + · · ·+ 2k−1ik).
By regrading elements of E∗(M), we obtain the Milnor coalgebra K. We define

a grading deg(x), x ∈ K, by putting deg(ξi) = 1 and assuming that the degree of
any product is equal to the sum of the degrees of its factors.
If M is a graded module, then we denote by K × M the submodule of the

tensor product K ⊗M generated by the elements x ⊗ y with deg(x) = dim(y).
The correspondence M �−→ K×M defines a comonad K in the category of graded
modules.
A graded module M is called an unstable comodule over the Milnor coalgebra if

it is a coalgebra over the corresponding comonad. If M is an unstable comodule
over the Milnor coalgebra, then there is a cosimplicial resolution

F ∗(K,K,M) :M → K×M → · · · → K×n−1×M → K×n ×M → · · · .

If the space Y is “good” (in the sense of Massey–Peterson), then the Bousfield–Kan
spectral sequence becomes the Massey–Peterson spectral sequence and the E1 term
of this sequence can be written as

F ∗(K, Y∗) : Y∗ → K× Y∗ → · · · → K×n × Y∗ → · · · ,

where Y∗ = H∗(Y ;Z/2). Therefore, the following theorem holds.

Theorem 12. If Y is a good space, then the functional homology operations defin-
ing the higher differentials of the Bousfield–Kan spectral sequence can be chosen
in such a way that they induce the structure of an A∞-cosimplicial object on

F ∗(K,K, Y∗). The homology of the corresponding complex F̃ (K, Y∗) is isomorphic
to the E∞ term of the Massey–Peterson spectral sequence.

Theorem 13. If Y is an E∞-space, then F̃ (K,K, Y∗) is an E∞-algebra.
Let us note that there is no natural E∞-algebra structure on the complex

F̃ (K, Y∗).
Along with the Milnor coalgebra K we shall consider the stable Milnor coalgebra

Ks for which ξ0 = 1.
If M is a comodule over the stable Milnor coalgebra, then there is a cosimplicial

resolution

F ∗(Ks,Ks,M) : Ks ⊗M → K⊗2s ⊗M → · · · → K⊗ns ⊗M → · · · .
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By stabilizing the Bousfield–Kan spectral sequence, we obtain the Adams spec-
tral sequence of stable homotopy groups of a topological space. The E1 term of
this sequence can be written as a cosimplicial object:

F ∗(Ks, Y∗) : Y∗ → K⊗s Y∗ → · · · → K⊗ns ⊗ Y∗ → · · · .

Therefore, the following theorem holds.

Theorem 14. The functional homology operations defining the higher differentials
of the Adams spectral sequence of stable homotopy groups of a topological space Y
can be chosen in such a way that they form the structure of an A∞-cosimplicial

object on F ∗(Ks,Ks, Y∗). The homology of the corresponding complex F̃ (Ks, Y∗) is
isomorphic to the E∞ term of the Adams sequence.

Let us calculate the E∞-algebra structure on the Milnor coalgebra. As mentioned
above, for the E∞-operad E there is a permutation map

T : E ◦E → E ◦E.

It induces a permutation map

T∗ : E∗ ◦E∗ → E∗ ◦E∗
such that the following diagrams are commutative.

E2∗ ◦E∗
T∗E∗◦E∗T∗−−−−−−−→ E∗ ◦E2∗

γ
∗
E∗

� �E∗γ∗
E∗ ◦E∗

T∗−−−−→ E∗ ◦E∗

E∗ ◦E∗
T∗−−−−→ E∗ ◦E∗

E∗γ∗

� �γ∗E∗
E∗ ◦E

2
∗
E∗T∗◦T∗E∗−−−−−−−→ E2∗ ◦E∗

The permutation map T∗ induces an action µ∗ : E∗ ◦E∗ → E∗ and a dual coaction
τ∗ : E∗ → E∗ ◦E∗.
We denote by ei : K → K the operations on the Milnor coalgebra induced by

µ∗ on the ei. The relations for the permutation map T∗ imply that the following
theorem holds.

Theorem 15. The following relations hold for the operations ei : K → K:
(i) e0(x) = x

2,
(ii) ei(xy) =

∑
ek(x)ei−k(y),

(iii) ∇ei(x) =
∑
ξ−k0 ei−k(ξ

k
0x
′) ⊗ ek(x′′), where

∑
x′ ⊗ x′′ = ∇(x).

These relations enable us to calculate the ei, since e1(ξ0) can be calculated
directly: e1(ξ0) = ξ1ξ0. Using relation (iii), we obtain the following theorem.

Theorem 16.

ei(ξk) =




ξm+kξk, i = 2m+k − 2k,
ξm+kξk−1, i = 2

m+k − 2k − 2k−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξm+kξ0, i = 2m+k − 2k − · · · − 1,
0 otherwise.
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Using relation (ii) in Theorem 15, we can obtain formulae for the operations ei
on products of the ξk.
Passing from ei to the elements of the Dyer–Lashof algebra, we obtain that the

action of the latter on the Milnor coalgebra on the ξi is defined by the formula

Qi+2
k−1(ξk) =




ξm+kξk, i = 2m+k − 2k,
ξm+kξk−1, i = 2

m+k − 2k − 2k−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξm+kξ0, i = 2m+k − 2k − · · · − 1,
0 otherwise.

On other elements this action is defined using the Hopf relations

Qi(xy) =
∑
Qk(x)Qi−k(y).

In addition to the action of the Dyer–Lashof algebra, we can define ∪i-products
and an E∞-algebra structure on the Milnor coalgebra K by putting

x ∪i x = ei(x)

for x ∈ K. Let us note that on the stable Milnor coalgebra Ks there is no action of
the Dyer–Lashof algebra and no E∞-algebra structure.

§ 6. Functorial homology operations
Let ∆∗ = {∆n} be a cosimplicial object in the category of chain complexes

consisting of chain complexes of standard n-dimensional simplexes, and let F be a
functor on the category of chain complexes such that there are transformations

∆n ⊗ F (X)→ F (∆n ⊗X)

commuting with the coface and codegeneracy operators. Such a functor F is called
a chain functor.
A transformation α : F ′ → F ′′ of chain functors is defined to be a transformation

of functors such that the following diagram is commutative.

∆n ⊗ F ′(X) −−−−→ F ′(∆n ⊗X)

1⊗α
� �α

∆n ⊗ F ′′(X) −−−−→ F ′′(∆n ⊗X)

If F is a chain functor, then we can consider the maps

F (f) : F (X)→ F (Y )

induced by the chain maps f : X → Y of dimension n (not only zero). This can be
done by representing the map f : X → Y of dimension n as the restriction of the
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chain map f̃ : ∆n ⊗ X → Y to the n-dimensional generator un ∈ ∆n. Then the
desired map

F (f) : F (X)→ F (Y )

of dimension n is the restriction of the composite

∆n ⊗ F (X)→ F (∆n ⊗X) F(f̃)−−−→ F (Y )

to the n-dimensional generator un ∈ ∆n.
If F is a chain functor, then we denote by F∗ the functor assigning to the chain

complex X the graded homology module F∗(X) = H∗(F (X)). The functor F∗ is an
A∞-functor, that is, there are operations assigning to a sequence of maps of chain
complexes f1 : X1 → X2, . . . , fn : Xn → Xn+1 the map

F∗(f
n, . . . , f1) = H∗(F (f

n), . . . , F (f1)) : F∗(X
1)→ F∗(Xn+1)

of dimension n− 1.
Theorem 17. If F is a chain functor and f1 : X1 → X2, . . . , fn : Xn → Xn+1
is a sequences of maps of chain complexes, then

H∗(F (f
n), . . . , F (f1)) =

∑
(−1)εF∗(H∗(fn, . . . , fnm+1), . . . , H∗(fn1 , . . . , f1)),

where the sum is taken over all m and n1, . . . , nm such that 1 � n1 < · · · < nm < n.
Proof. For any chain complex X the map of choice of representatives F∗(X∗) →
F (X) can be given as the composite of the maps

ξ(F ) : F∗(X∗)→ F (X∗), F (ξ) : F (X∗)→ F (X).

The projection F (X)→ F∗(X∗) can be put equal to the composite of the maps

F (η) : F (X)→ F (X∗), η(F ) : F (X∗)→ F∗(X∗).

The homotopy H : F (X)→ F (X) can be put equal to the sum

F (ξ) ◦ h(F ) ◦ F (η) + F (h).

Substituting these maps into the formula for the functional homology operations,
we obtain the desired identity.

Any transformation α : F ′ → F ′′ of chain functors induces anA∞-transformation
of the A∞-functor F

′
∗ into an A∞-functor F

′′
∗ , that is, there are operations assigning

to any sequence
f1 : X1 → X2, . . . , fn : Xn → Xn+1

of maps of chain complexes the map

α∗(f
n, . . . , f1) : F ′∗(X

1)→ F ′′∗ (Xn+1)

of dimension n.
The proof of the following theorem is similar to that of Theorem 17.
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Theorem 18. If α : F ′ → F ′′ is a transformation of chain functors and f1 :
X1 → X2, . . . , fn : Xn → Xn+1 is a sequence of maps of chain complexes, then

α∗(f
n, . . . , f1) =

∑
(−1)εα∗

(
H∗(f

n, . . . , fnm+1), . . . , H∗(f
n1 , . . . , f1)

)
,

where the sum is taken over all m and n1, . . . , nm such that 1 � n1 < · · · < nm < n.
A functor F is said to be formal if the homotopy h(F ) can be chosen in such a

way that h′′(F )◦F (f) = F (f)◦h′(F ) for any map f : M ′ →M ′′ of graded modules.
This relation implies, in particular, that

η′′(F ) ◦ F (f) = F∗(f) ◦ η′(F ), F (f) ◦ ξ′(F ) = ξ′′(F ) ◦ F∗(f).
The definition of functorial homology operations implies that for a formal func-

tor F restricted to the category of graded modules the A∞-functor structure on F∗
is degenerate. In this case the following formula holds for the maps f1, . . . , fn of
chain complexes:

F∗(f
n, . . . , f1) = F∗(H∗(f

n, . . . , f1)).

A transformation α : F ′ → F ′′ of chain functors is said to be formal if the
homotopies h(F ′) and h(F ′′) can be chosen in such a way that

h′′(F ) ◦ α = α ◦ h′(F ).
If α : F ′ → F ′′ is a formal transformation, then the structure of the A∞-

transformation from F ′∗ to F
′′
∗ is degenerate. In this case the following formula

holds for the maps f1, . . . , fn of chain complexes:

α∗(f
n, . . . , f1) = α∗(H∗(f

n, . . . , f1)).

§ 7. Homology operations for the E∞E∞E∞-operad
We claim that the functors E and E corresponding to the E∞-operad E are

chain functors. To prove this, we define a family of maps

∆n ⊗E(j, X)→ E(j,∆n ⊗X)
to be the composites

∆n ⊗E(j, X) = ∆n ⊗E(j) ⊗Σj X⊗j
1⊗∇⊗1−−−−−→ ∆n ⊗E(j) ⊗ E(j) ⊗Σj X⊗j

τ⊗1⊗1−−−−→ ∆n⊗j ⊗ E(j) ⊗Σj X⊗j → E(j) ⊗Σj (∆n ⊗X)⊗j = E(j,∆n ⊗X),
where τ : ∆n ⊗ E(j) → ∆n⊗j is the E-coalgebra structure on the complex ∆n. A
direct verification shows that the desired relations hold.
In a similar way, we define the maps

∆n ⊗ E(j, X)→ E(j,∆n ⊗X),
or, which is the same, the maps

E(j) ⊗∆n ⊗ HomΣj (E(j), X⊗j)→ (∆n ⊗X)⊗j

to be the composites

E(j) ⊗∆n ⊗ HomΣj (E(j), X⊗j)
∇⊗1⊗1−−−−−→ E(j) ⊗E(j) ⊗∆n ⊗HomΣj(E(j), X⊗j )

→ E(j) ⊗∆n⊗j ⊗ HomΣj (E(j), X⊗j)→ (∆n ⊗X)⊗j .
A direct verification shows that the desired relations hold, and we have the following
theorem.
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Theorem 19. E∗ and E∗ are A∞-functors.

Our purpose is to calculate the functional homology operations for E∗ and E∗.
This means that for every sequence

f1 : X1 → X2, . . . , fn : Xn → Xn+1

of maps of chain complexes we have to calculate the maps

E∗(f
n, . . . , f1) : E∗(X

1)→ E∗(Xn+1), E∗(f
n, . . . , f1) : E∗(X

1)→ E∗(Xn+1).

We first consider the functor E(2,−) that assigns to any complex X the complex

E(2, X) = E(2)⊗Σ2 X ⊗X,

where E(2) is a Σ2-free and acyclic complex with the generators ei of dimension i
and the differential is defined by the formula

d(ei) = ei−1 + ei−1T, T ∈ Σ2.

The ground ring is the field Z/2.
As mentioned above, the homology E∗(2,−) of this functor is not only a functor

but an A∞-functor, that is, to every sequence

f1 : X1 → X2, . . . , fn : Xn → Xn+1

of maps of chain complexes a map

E∗(2, f
n, . . . , f1) : E∗(2, X

1)→ E∗(2, Xn+1)

is assigned. Let us calculate these functional operations.
Note that for the chain complex X there is an isomorphism

E∗(2, X)
∼= E∗(2, X∗).

If X∗ is a graded module, then E∗(2, X∗) is the direct sum of the factor module
X∗ ·X∗ of the tensor product X∗ ⊗X∗ with respect to permutations of the factors
of elements and the module generated by the elements of the form ei × yn, i�1, of
dimension i+ 2n. We shall denote yn · yn ∈ X∗ ·X∗ by e0 × yn.
Let ξ : X∗ → X, η : X → X∗ and h : X → X be the maps that realize the

chain equivalence between X and X∗. We denote by

E(ξ) : E(2, X∗)→ E(2, X), E(η) : E(2, X)→ E(2, X∗),
E(h) : E(2, X)→ E(2, X)

the maps defined by the formulae

E(ξ)(ei ⊗ y1 ⊗ y2) = ei ⊗ ξ(y1)⊗ ξ(y2),
E(η)(ei ⊗ x1 ⊗ x2) = ei ⊗ η(x1)⊗ η(x2),

E(h)(ei ⊗ x1 ⊗ x2) = ei ⊗ (x1 ⊗ h(x2) + h(x1)⊗ ξη(x2)) + ei−1 ⊗ h(x1)⊗ h(x2).

It is clear that they realize a chain equivalence E(2, X) � E(2, X∗).



The A∞-structures and differentials of the Adams spectral sequence 1075

We shall now define maps

ξ(E) : E∗(2, X∗)→ E(2, X∗), η(E) : E(2, X∗)→ E∗(2, X∗),
h(E) : E(2, X∗)→ E(2, X∗).

For this, we choose an ordered basis {y} of X∗ (that is, for every n we choose a
basis of the module Hn(X)). We define the map ξ(E) by the formula

ξ(E)(ei × y) = ei ⊗ y ⊗ y, ξ(E)(y1 · y2) = e0 ⊗ (y1 ⊗ y2), y1 � y2.

We define the map η(E) by the formula

η(E)(ei ⊗ y1 ⊗ y2) =



ei × y1, y1 = y2,
y1 · y2, y1 < y2, i = 0,

0 otherwise.

We define the map h(E) by the formula

h(E)(ei ⊗ y1 ⊗ y2) =
{
ei+1 ⊗ y2 ⊗ y1, y1 > y2,
0 otherwise.

Direct calculations show that the desired relations hold.
The maps

E(ξ) ◦ ξ(E) : E∗(2, X∗)→ E(2, X), η(E) ◦E(η) : E(2, X)→ E∗(2, X∗),
E(ξ) ◦ h(E) ◦E(η) + E(h) : E(2, X)→ E(2, X)

realize a chain equivalence between E(2, X) and E∗(2, X∗).
The general formula for the functional homology operations for the chain functor

implies that the following formula holds for the functor E(2,−):

E∗(2, f
n, . . . , f1) =

∑
E∗(2, H∗(f

n, . . . , fnm+1), . . . , H∗(f
n1 , . . . , f1)),

where the sum is taken over those m and n1, . . . , nm for which 1 � n1 < · · · <
nm < n.
If X is a graded module with a fixed ordered basis {xi}, then we define maps

p : X ⊗ X → X, q : X → X ⊗ X and r : X ⊗ X → X ⊗ X by the formulae
q(xi) = xi ⊗ xi and

p(xi ⊗ xj) =
{
xi, i = j,

0, i �= j,
r(xi ⊗ xj) =

{
xj ⊗ xi, i > j,
0, i � j.

If f1 : X1 → X2, . . . , fn : Xn → Xn+1 is a sequence of maps of graded modules
with fixed ordered bases, then we define a map (fn, . . . , f1) : X1 → Xn+1 by the
formula

(fn, . . . , f1) = p ◦ (fn)⊗2 ◦ r ◦ (fn−1)⊗2 ◦ · · · ◦ r ◦ (f1)⊗2 ◦ q.

The definition of homology operations implies that the following theorem holds.
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Theorem 20. If f1 : X1 → X2, . . . , fn : Xn → Xn+1 is a sequence of maps of
graded modules, then

E∗(2, f
n, . . . , f1)(ei × x) = ei+n−1 × (fn, . . . , f1)(x).

We can calculate the functional homology operations for the whole functor E∗
using the monad structure γ∗ : E∗ ◦E∗ → E∗ and the formula

E∗(f
n, . . . , f1) ◦ γ∗ =

∑
γ∗ ◦E∗(E∗(f

n, . . . , fnm+1), . . . , E∗(f
n1 , . . . , f1)),

where the sum is taken over those m and n1, . . . , nm for which 1 � n1 < · · · <
nm < n.
Passing to the Dyer–Lashof algebra R, we obtain operations

R(fn, . . . , f1) : R×X1 →R×Xn+1,

which can be calculated on the generators Qi by the formulae

R(fn, . . . , f1)(Qi ⊗ x) = Qi+n−1 ⊗ (fn, . . . , f1)(x).

Dually, the following theorem holds for the functor E∗(2,−).
Theorem 21. If f1 : X1 → X2, . . . , fn : Xn → Xn+1 is a sequence of maps of
graded modules, then

E∗(2, f
n, . . . , f1)(ei × x) = ei−n+1 × (fn, . . . , f1)(x).

We can calculate the functional homology operations for the whole functor E∗
using the comonad structure γ∗ : E∗ → E∗ ◦E∗ and the formula

γ∗ ◦E∗(fn, . . . , f1) =
∑
E∗(E∗(f

n, . . . , fnm+1), . . . , E∗(f
n1 , . . . , f1)) ◦ γ∗,

where the sum is taken over those m and n1, . . . , nm for which 1 � n1 < · · · <
nm < n.
Passing to the Milnor coalgebra K, we obtain operations

K(fn, . . . , f1) : K×X1 → K×Xn+1,

which can be calculated by the formulae

K(fn, . . . , f1)(y ⊗ x) = y · ξn−11 ⊗ (fn, . . . , f1)(x).

For the permutation transformation

T (X) : EE(X)→ EE(X)

there are homology operations assigning to every sequence of maps f1 : X1 →
X2, . . . , fn : Xn → Xn+1 of chain complexes the maps

T∗(f
n, . . . , f1) : E∗E∗(X

1
∗ )→ E∗E∗(Xn+1∗ ).



The A∞-structures and differentials of the Adams spectral sequence 1077

Consider, for example, the operations connected with the comultiplication in the
Milnor coalgebra K. We put

∇(n) = ∇⊗ 1⊗ · · · ⊗ 1− · · ·+ (−1)n−11⊗ · · · ⊗ 1⊗∇ : K×n→ K×(n+1).

Direct calculations show that the operations

(∇(n), . . . ,∇) : K → K×(n+1), n � 2,

are trivial on the ξ2
k

i but can be non-trivial on other elements. For example,

(∇(2),∇)(ξiξj) = ξ2
i

j−iξ
2i

0 ⊗ ξiξ2
i

0 ⊗ ξi, i < j.

We denote by ∇̃ the comultiplication in the tensor product K⊗ K,

∇̃ = (1⊗ T ⊗ 1)(∇⊗∇),

and put

∇̃(n) = ∇̃⊗1⊗· · ·⊗1−· · ·+(−1)n−11⊗· · ·⊗1⊗∇̃: (K⊗K)×n→ (K⊗K)×(n+1).

Consider the operation
(
π×(n+1), ∇̃(n), . . . , ∇̃

)
: K⊗2 → K×(n+1). Its restriction to

the x⊗ x ∈ K ⊗K will be denoted by Ψn : K → K×(n+1).
The formula for the comultiplication in the Milnor coalgebra implies that

Ψ1(ξn) =
∑
i<j

ξ2
i

n−iξ
2j

n−j ⊗ ξiξj ,

or, more generally,

Ψ1(ξ2
m

n ) =
∑
i<j

ξ2
i+m

n−i ξ
2j+m

n−j ⊗ ξ2
m

i ξ
2m

j .

In particular, we have the following formula for the primitive elements ξ2
m

1 ∈ K:

Ψ1(ξ2
m

1 ) = ξ
2m

1 ξ
2m

0 ⊗ ξ2
m

1 .

The following formula for the operation Ψ2 can be proved likewise:

Ψ2(ξ2
m

n ) =
∑
i<j
k>l

ξ2
i+m

n−i ξ
2j+m

n−j ⊗ ξ2
k+m

i−k ξ
2l+m

j−l ⊗ ξ2
m

k ξ
2m

l .

In particular, we have the following formula for the primitive elements ξ2
m

1 ∈ K:

Ψ2(ξ2
m

1 ) = 0.
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§ 8. ∪∞∪∞∪∞-A∞A∞A∞-Hopf algebras
To calculate the higher differentials of the Adams spectral sequence we need the

action of the Dyer–Lashof algebra and the E∞-structure. Since the latter is too
large and complicated, we shall use only the part consisting of ∪i-products.
A chain complex A is called a ∪∞-algebra if there are operations ∪i: A⊗A→ A,

i � 0, called ∪i-products, increasing the dimension by i and such that

d(x∪i y) = d(x) ∪i y + x ∪i d(y) + x ∪i−1 y + y ∪i−1 x.

A differential coalgebra K will be called a ∪∞-Hopf algebra if there are ∪i-
products ∪i : K ⊗K → K such that the following distributivity relation holds:

∇(x ∪i y) =
∑
k

(x′ ∪i−k T ky′) ⊗ (x′′ ∪k y′′),

where ∇(x) =
∑
x′⊗x′′, ∇(y) =

∑
y′⊗y′′, T : K⊗K → K⊗K is the permutation

map, and T k is its kth iterate.

Theorem 22. The cobar construction FK over the ∪∞-Hopf algebra K is a ∪∞-
algebra. Moreover, the ∪i-products ∪i : FK⊗FK → FK are defined unambiguously
by the formula

[x] ∪i [y] =
{
[x∪i−1 y], i � 1,
[x, y], i = 0,

and the two relations

(x1x2) ∪i [y] = (x1 ∪i [y])x2 + x1(x2 ∪i [y]),

(x1x2) ∪i (y1y2) =
∑
k

(x1 ∪i−k T ky1)(x2 ∪k y2)

+ (x1 ∪i (y1y2))x2 + x1(x2 ∪i (y1y2))
+ ((x1x2) ∪i y1)y2 + y1((x1x2) ∪i y2)
+ x1(x2 ∪i y1)y2 + y1(x1 ∪i y2)x2,

where x1, x2, y1, y2 ∈ FK, y ∈ K, i � 1.

Proof. The products [x1, . . . , xn] ∪i [y] are defined by the first relation:

[x1, . . . , xn] ∪i [y] =
n∑
k=1

[x1, . . . , xk ∪i y, . . . , xn].

The second relation in the theorem implies that the ∪i-products

[x1, . . . , xn] ∪i [y1, . . . , ym]

are defined in the general case if we know the ∪i-products [x] ∪i [y1, . . . , ym].
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We have

d([y1, . . . , ym] ∪i+1 [x]) =
m∑
k=1

[y1, . . . , d(yk), . . . , ym] ∪i+1 [x]

+
m∑
k=1

[y1, . . . , y
′
k, y

′′
k , . . . , ym] ∪i+1 [x]

+ [y1, . . . , ym] ∪i+1 ([d(x)] + [x′, x′′])
+ [y1, . . . , ym] ∪i [x] + [x] ∪i [y1, . . . , ym].

Hence, the product [x]∪i[y1, . . . , ym] is expressed in terms of the products defined
above and those of elements of smaller dimension. Therefore, the ∪i-products are
defined by induction.

This theorem provides formulae for the ∪i-products in the cobar constructions.
However, these inductive formulae are not simple even in the case when the higher
∪i-products (i � 1) on K are trivial, that is, in the case when K is a commutative
Hopf algebra.
A ∪∞-Hopf algebra K is said to be commutative if the comultiplication ∇ :

K → K ⊗K is commutative.
Theorem 23. The cobar construction FK over a commutative ∪∞-Hopf algebra
K is a commutative ∪∞-Hopf algebra. Hence, in this case the cobar construction
can be iterated.

Proof. We define a comultiplication ∇ : FK → FK ⊗ FK by the formula

∇[x1, . . . , xn] =
∑
[xi1 , . . . , xip]⊗ [xj1, . . . , xjq ],

where the sum is taken over the (p, q)-shuffles of the set 1, 2, . . . , n. A direct verifi-
cation shows that the desired relations hold.

What structures are there on the homology of the ∪∞-Hopf algebraK? It is clear
that K has a ∪∞-algebra structure consisting of the operations ∪i : K∗⊗K∗ → K∗
and an A∞-coalgebra structure consisting of the operations ∇n : K∗ → K⊗n+2∗ , but
there are other operations of the form

Ψi,n : K∗ ⊗K∗ → K⊗n+2∗ .

To describe these operations, we define the notion of a ∪∞-A∞-Hopf algebra.
AnA∞-coalgebraK will be called a ∪∞-A∞-Hopf algebra if there is a ∪∞-algebra

structure on the cobar construction F̃K such that

(x1x2) ∪i [y] = (x1 ∪i [y])x2 + x1(x2 ∪i [y]),

(x1x2) ∪i (y1y2) =
∑
k

(x1 ∪i−k T ky1)(x2 ∪k y2)

+ (x1 ∪i (y1y2))x2 + x1(x2 ∪i (y1y2))
+ ((x1x2) ∪i y1)y2 + y1((x1x2) ∪i y2)
+ x1(x2 ∪i y1)y2 + y1(x1 ∪i y2)x2,

where x1, x2, y1, y2 ∈ FK, y ∈ K, and i � 1.
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Theorem 24. If K is a ∪∞-Hopf algebra, then on its homology K∗ = H∗(K) there
is a ∪∞-A∞-Hopf algebra structure, and there is a chain equivalence F̃K∗ � FK
of ∪∞-algebras.
Proof. It is well known [16] that the homology K∗ of the differential coalgebra K

is an A∞-coalgebra and there are maps of algebras ξ : F̃K∗ → FK and η : FK →
F̃K∗, and an algebra chain homotopy h : FK → FK such that η ◦ ξ = Id and
d(h) = ξ ◦ η − Id. It remains to define the ∪i-products. We put

[x] ∪i [y] = η(ξ[x] ∪i ξ[y])

on the generators. The ∪i-products are defined on other elements by the above
relations.

Applying this theorem to the unstable Milnor coalgebra, we obtain the following
theorem.

Theorem 25. The Milnor coalgebra K has a ∪∞-A∞-Hopf algebra structure.

§9. The differentials of the Adams sequence
Let us apply the methods developed above to the calculation of the higher

differentials of the Adams spectral sequence of stable homotopy groups of spheres.
To do this, we need to calculate the differential in the complex F̃K.
Since every element ofK can be obtained from ξ0 using ∪i-products, the following

theorem holds.

Theorem 26. The formulae for the ∪i-products in the Milnor coalgebra and the
∪∞-algebra structure in the cobar construction F̃K completely define the differential
in F̃K.
However, these inductive formulae for the differential are very complicated. To

simplify them, we replace the Milnor coalgebra K and the cobar construction F̃K
by certain simpler objects.

Note that F̃K is an unreduced cobar construction. To obtain a reduced cobar
construction whose homology is isomorphic to the E∞ term of the Adams sequence,
we have to factor the Milnor coalgebra K by ξ0.
We define a filtration in F̃K by letting the filter degree of ξi1 . . . ξin ∈ K be equal

to n. Then the first term of the corresponding spectral sequence will be isomor-
phic to the polynomial algebra PS−1X over the desuspension over the module X
generated by the ξ2

n

m . We shall use the same notation for the elements of PS
−1X

and those of the cobar construction: [x1, . . . , xn], xi ∈ X.
There is a map of algebras η : FK → PS−1X given by the formula

η[x] =

{
[ξ2

n

m ], x = ξ
2n

m ,

0 otherwise.

The inverse map ξ : PS−1X → FK can be given by the formula

ξ([x1, . . . , xn]) = [x1, . . . , xn], x1 � · · · � xn.

The next theorem follows from perturbation theory.
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Theorem 27. On the polynomial algebra PS−1X there is a ∪∞-algebra structure
defined on the generators by the formula

[x] ∪i [y] =



0, i � 1, x < y,
[x∪i−1 x], i � 1, x = y,
[x, y], i = 0, x � y,

and such that

(x1x2) ∪i [y] = (x1 ∪i [y])x2 + x1(x2 ∪i [y]),

(x1x2) ∪i (y1y2) =
∑
k

(x1 ∪i−k T ky1)(x2 ∪k y2)

+ (x1 ∪i (y1y2))x2 + x1(x2 ∪i (y1y2))
+ ((x1x2) ∪i y1)y2 + y1((x1x2) ∪i y2)
+ x1(x2 ∪i y1)y2 + y1(x1 ∪i y2)x2,

where x1, x2, y1, y2 ∈ PS−1X, y ∈ X, i � 1.
Since every element of P̃S−1X can be obtained from [ξ0] using ∪i-products, the

following theorem holds.

Theorem 28. The formulae for the ∪i-products in the module X and the relations
for the ∪i-products in P̃ S−1X completely define the differential in P̃S−1X.
As before, these formulae are inductive. Using Adams’ notation, we put hn =

[ξ2
n

1 ]. The formula hn ∪1 hn = hn+1 enables us to prove the following theorem by
induction.

Theorem 29. The differential in P̃S−1X can be expressed by the formula

d(hn) =
n−1∑
i=0

[ξi]h
2i

n−i.

on the hn.

Indeed, it is clear that d(h1) = h−1h1. For h2 we have

d(h2) = d(h1 ∪1 h1) = (h−1h1 ∪1 h1 + h1 ∪1 (h−1h1)
= (h−1h1) ∪2 (h−1h1) = h−1h2 + h0h21.

Assume that this formula holds for n. We claim that it holds for n+ 1. We have

d(hn+1) = d(hn ∪1 hn) = d(hn) ∪1 hn + hn ∪1 d(hn)

=

( n−1∑
i=0

[ξi]h
2i

n−i

)
∪2
( n−1∑
i=0

[ξi]h
2i

n−i

)

=
n∑
i=0

[ξi]h
2i

n+1−i.
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§ 10. The Dyer–Lashof operations and the Arf invariant
Let Y be an E∞-space. Then the Dyer–Lashof algebra R acts on its homology.

This action and the functional homology operations induce on the cobar construc-

tion F̃ (K,K, Y∗) an action of the Dyer–Lashof algebra,

µ : R⊗ F̃ (K,K, Y∗)→ F̃ (K,K, Y∗),

that commutes with the differential. The corresponding action µ : R⊗ F̃ (K, Y∗)→
F̃ (K, Y∗) does not commute with the differential. Hence, there is no natural action

of the Dyer–Lashof algebra on the homology of the complex F̃ (K, Y∗), which is
isomorphic to the E∞ term of the Adams spectral sequence of homotopy groups

of Y . Nevertheless, the action of the Dyer–Lashof algebra on F̃ (K, Y∗) can be
extended to an action

µ : F̃ (K,R)⊗ F̃ (K, Y∗)→ F̃ (K, Y∗)

that commutes with the differential. It therefore induces an action on the homology:

µ∗ : H∗(F̃ (K,R))⊗H∗(F̃ (K, Y∗))→ H∗(F̃ (K, Y∗)).

Hence, the algebra H∗(F̃ (K,R)) acts on the E
∞ term of the Adams spectral

sequence of homotopy groups of the E∞-space Y . This algebra is the E
∞ term

of the Adams spectral sequence of stable homotopy groups of spheres. However,
this algebra is seldom used, since it is very difficult to calculate.

We shall use the action of the Dyer–Lashof algebra on the complex P̃ S−1X,
whose homology is isomorphic to the E∞ term of the Adams spectral sequence.
For brevity we denote the complex P̃S−1X by H and its n-dimensional homology
by Hn.
It is clear that if un is a cycle in H, then e0(un) = un ∪0 un also is a cycle.

Therefore, there is a squaring operation

e0 = Q
n : Hn → H2n.

Consider the ∪1-product e1(un) = un ∪1 un. If un is a cycle, then e1(un),
generally speaking, is not. In fact, the following formula holds for the cycle un:

d(e1(un)) =

(
n

1

)
h0e0(un).

If n is even, that is, n = 2k, then e1(un) is a cycle. Therefore, the correspondence
un �−→ e1(un) defines an operation

e1 = Q
2k+1 : H2k → H4k+1.

If n is odd, that is, n = 2k + 1, then d(e1(un)) = h0e0(un). Assume that e0(un)
is homologous to zero, that is, there is a y2n+1 such that d(y2n+1) = e0(un). Then
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ẽ1(un) = e1(un) + h0y2n+1 is a cycle. Hence, the correspondence un �−→ ẽ1(un)
defines an operation

ẽ1 = Q̃
2k+2 : Ker(e0) ⊂ H2k+1→ H4k+3.

Some values of this operation can lie outside Ker(e0). Therefore, this operation
cannot be iterated in general. Let us determine when the values of the operation ẽ1
belong to Ker(e0).
Consider the element e0(y2n+1). It is a cycle, since d(e0(y2n+1))=e1(e0(un))=0.

Its homology class defines the value of the secondary operation with respect to the

operation e0 on un. We denote this operation by e
(2)
0 : Hn → H4n+2.

For example, let us calculate e
(2)
0 (h

2
1). We have h

4
1 = d(h1[ξ2]

2 + h20[ξ
2
2]). The

homology class of (h1[ξ2]
2 + h20[ξ

2
2])
2 is equal to h1P1(h1), whence

e
(2)
0 (h

2
1) = h1P1(h1) �= 0.

We claim that the operation e
(2)
0 gives obstructions for the existence of the

double composite of the operation ẽ1. Assume that e
(2)
0 (un) = 0. This means

that e0(y2n+1) is homologous to zero, that is, there is a z4n+3 such that d(z4n+3) =
e0(y2n+1). In this case we have

e0(ẽ1(un)) = e0(e1(un) + h0y2n+1) = e2(e0(un)) + h
2
0e0(y2n+1)

= d(e1(y2n+1) + h0z4n+3 + h
2
0z4n+3).

We put ỹ4n+3 = e1(y2n+1) + h0z4n+3 + h
2
0z4n+3. Then the element

ẽ1ẽ1(un) = e1(ẽ1(un)) + h0ỹ4n+3

is a cycle. Hence, the double composite of ẽ1 is well defined. Higher-order obstruc-
tions and composites for the operation ẽ1 can be defined likewise.
Now consider the ∪2-product e2(un) = un ∪2 un. If un is a cycle, then e2(un),

generally speaking, is not. In fact, the following formula holds for the cycle un:

d(e2(un)) =

(
n+ 1

1

)
h0e1(un) +

(
n

2

)
h1e0(un).

If n = 4k+ 1, then e2(un) is a cycle. Therefore, the correspondence un �−→ e2(un)
defines an operation

e2 = Q
4k+3 : H4k+1→ H8k+4.

If n = 4k + 3, then d(e2(un)) = h1e0(un). Assume that e0(un) is homologous
to zero, that is, there is a y2n+1 such that d(y2n+1) = e0(un). Then ẽ2(un) =
e2(un) + h1y2n+1 is a cycle. Therefore, the correspondence un �−→ ẽ2(un) defines
an operation

ẽ2 = Q̃
4k+5 : Ker(e0) ⊂ H4k+3→ H8k+8.

The iteration of this operation and an obstruction for its existence can be defined
as before.
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If n = 4k, then d(e2(un)) = h0e1(un). Assume that e1(un) is homologous
to zero, that is, there is a y2n+2 such that d(y2n+2) = e1(un). Then ẽ2(un) =
e2(un) + h0y2n+2 is a cycle. Therefore, the correspondence un �−→ ẽ2(un) defines
an operation

e2 = Q
4k+2 : Ker(e1) ⊂ H4k → H8k+2.

The iteration of this operation and an obstruction for its existence can be defined
as before.
The case when n = 4k + 2 is the most interesting for us. In this case the

formula d(e2(un)) = h0e1(un)+h1e0(un) holds. Assume that e0(un) and e1(un) are
homologous to zero, that is, there are y2n+1 and y2n+2 such that d(y2n+1) = e0(un)
and d(y2n+2) = e1(un).
Then ẽ2(un) = e2(un) + h0y2n+2 + h1y2n+1 is a cycle. Therefore, the correspon-

dence un �−→ ẽ2(un) defines an operation

ẽ2 = Q̃
4k+4 : Ker(e0) ∩Ker(e1) ⊂ H4k+2→ H8k+6.

Let us apply the formulae obtained above to the calculation of the higher differen-
tials on the h2n.

Theorem 30. The following equalities hold for the differentials di of the Adams
spectral sequence: di(h

2
n) = 0, 1 � i � 6.

Proof. The above implies that the total differential on the h2n is given by the formula

d(h2n) = e1(d(hn)) = e1(h0h
2
n−1 + [ξ2]h

4
n−2 + · · · ) = h1h4n−1 + F 9,

where F 9 denotes elements of filter degree 9. This implies, in particular, that
d2(h

2
n) = 0.

Put xn = h
2
n and yn−1 = e1(hn−2[ξ

2n−2

2 ]) = hn−1[ξ
2n−2

2 ]2 + h2n−2[ξ
2n−1

2 ]. We
have

d(yn−1) = e2(h
2
n−2hn−1 + F

4) = h4n−1 + F
6.

Therefore, d(xn + h1yn−1) ∈ F 7. Hence, the differentials d2, d3 and d4 vanish on
the elements h2n of the Adams spectral sequence.
To calculate the differentials of higher dimensions we consider the elements

x̃n−1 = xn−1 + h1yn−2. We have

e2(xn−1) = h
2
n + h2e1(yn−2) + h

2
1e2(yn−2),

d(e2(x̃n−1)) = e3(d(x̃n−1)) + h0e1(x̃n−1) + h1e0(x̃n−1)

= e3(F
7) + h0(h2e0(yn−2) + h

2
1e1(yn−2)) + h1(h

4
n + h

2
1e0(yn−2)).

We add h1e3(yn−2) and h2e1(yn−2) to e2(x̃n−1) and consider the element

zn = e2(xn−1) + h1e3(yn−2) + h2e1(yn−2).

We have

d(h1e3(yn−2)) = h1h
4
n + h

2
1e1(yn−2) + h1[ξ2]e0(yn−2) + F

9,

d(h2e1(yn−2)) = h2h0e0(yn−2) + h0h
2
1e1(yn−2) + F

11.
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Therefore,
d(zn) = h

2
1e1(yn−2) + h1[ξ2]e0(yn−2) + F

9.

We denote by gn−4 the homology class represented by the cycle

[ξ2
n−3

2 ]4 + hn−3[ξ
2n−4

2 ]2hn + h
2
n−4[ξ

2n−3

2 ]hn + h
3
n−2[ξ

2n

2 ].

Then

e1(yn−2) = hn−1[ξ
2n−3

2 ]4 + h4n−3[ξ
2n−1

2 ] + h3n−2hn−1[ξ
2n−2

2 ] = gn−4hn−1.

It is well known that in the E1 term of the Adams spectral sequence g0h3 ∼ 0,
whence e1(yn−2) = gn−4hn−1 ∼ 0, that is, there are un−1 such that d1(un−1) =
e1(yn−2). The formula for d2 on the [ξ

2n

i ] implies that d2(un−1) can be written as
d2(un−1) = h0vn−1.
Since d(e1(yn−2))=h0e0(yn−2),we have d1(vn−1)=e0(yn−2), whence d(h

2
1un−1+

h1[ξ2]vn−1) = h
2
1e1(yn−2) + h1[ξ2]e0(yn−2) + F

9.
Hence, for tn = zn + h

2
1un−1 + h1[ξ2]vn−1 we have d(tn) ∈ F 9. Therefore,

di(h
2
n) = 0 if 1 � i � 6.
We can deduce from this theorem the result of Mahowald concerning the survival

of h24 and h
2
5 until the E

∞ term of the Adams sequence. Indeed, h43 is homologous
to zero, that is, there is a y such that d(y) = h43. Therefore, h

2
4 + h1y is a cycle.

Hence, h24 survives until the E
∞ term. Repeating the proof of Theorem 30 for

x4 = h
2
4, we obtain that t5 = z5 +h

2
1u4+h1[ξ2]v4 is a cycle. Therefore, h

2
5 survives

until the E∞ term of the Adams sequence.

The author is grateful to Professors M. Mahowald and R. Bruner for their help
in the calculation of the differentials of the Adams sequence.
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