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Abstract

We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes
into account higher semiadditive structure, as enjoyed for example by the K(n)- and T(n)-local
categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if R is a
ring spectrum of height ≤ n, then its semiadditive K-theory is of height ≤ n+1. Under further
hypothesis on R, which are satisfied for example by the Lubin–Tate spectrum En, we show that
its semiadditive algebraic K-theory is of height exactly n+1. Finally, we connect semiadditive
K-theory to T(n + 1)-localized K-theory, showing that they coincide for any p-invertible ring

spectrum and for the completed Johnson–Wilson spectrum Ê(n).

Composition with Red, Blue and Yellow by Piet Mondrian.
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1 Introduction

1.1 Overview

1.1.1 Descent and Redshift

Algebraic K-theory K: Catst → Sp is a rich invariant of stable ∞-categories and thus of rings
and ring spectra. Ausoni–Rognes [AR02, AR08] suggested a fascinating program concerning the
interaction between algebraic K-theory and the chromatic filtration on spectra, now known as
the redshift philosophy. Namely, that algebraic K-theory increases the chromatic height of ring
spectra by 1. They demonstrated this phenomenon at height 1, and conjectured that it persists to
arbitrary heights. Another interesting aspect of algebraic K-theory is its descent properties. For
example, it is known by [TT90] that it satisfies Nisnevich descent for ordinary rings, while it fails
to satisfy étale descent due to its failure to satisfy Galois descent. The recent breakthroughs of
[CMNN20, LMMT20] have shown that chromatically localized K-theory does satisfy Galois descent
under certain hypotheses, which was used to prove the following part of the redshift conjecture.

Theorem 1.1 ([CMNN20, Theorem A]). Let R ∈ CAlg(Sp) and n ≥ 0. If LT(n)R = 0 then
LT(n+1)K(R) = 0.

In addition, Hahn–Wilson [HW22] and Yuan [Yua21] give the first examples of non-vanishing
of T(n + 1)-localized K-theory for ring spectra of chromatic height n, at arbitrary heights n ≥ 0.
Building on this, Burklund–S.–Yuan [BSY22] have recently proved the non-vanishing of T(n+ 1)-
localized K-theory for all commutative ring spectra of chromatic height n.

1.1.2 Higher Semiadditivity

Hopkins–Lurie [HL13, Theorem 5.2.1] and Carmeli–S.–Yanovski [CSY22, Theorem A] proved that
the chromatically localized ∞-categories SpK(n) and SpT(n) (respectively) are ∞-semiadditive.
Namely, that there is a canonical natural equivalence between limits and colimits indexed by π-finite
spaces (i.e. spaces with finitely many connected components and finitely many non-zero homotopy
groups all of which are finite). In this paper we will only make use of p-typical higher semiadditivity,
that is, relaxing the condition to π-finite p-spaces (i.e. π-finite spaces whose homotopy groups are
all p-groups), which we thus simply call higher semiadditivity.

Harpaz [Har20] studied the connection between ∞-semiadditivity and ∞-commutative monoids.
Recall that a (0-)commutative monoid is, roughly speaking, the structure of summation of finite
families of elements (in a coherently associative and commutative way). Similarly, a (p-typical)
∞-commutative monoid is, roughly speaking, the structure of “integration” of families of elements
indexed by a π-finite p-space (in a coherently associative and commutative way). More precisely,
given an ∞-category C, the ∞-category of (p-typical) ∞-commutative monoids in C is defined to be

CMon(p)∞ (C) = Funseg(Span(S
(p)
π-fin)

op,C), the full subcategory of those functors from spans of π-finite
p-spaces that satisfy the ∞-Segal condition. In [Har20, Corollary 5.19] and [CSY21a, Proposition
5.3.1] it is shown that the property of being a (p-typically) ∞-semiadditive presentable ∞-category

is classified by the mode CMon(p)∞ (S) of ∞-commutative monoids in spaces.1 That is, a presentable
∞-category C is ∞-semiadditive if and only if it admits a (necessarily unique) module structure

1The cited papers work in the non p-typical case, but the same proofs work for the p-typical case.
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over CMon(p)∞ (S) in PrL. Furthermore, any object X ∈ C in an ∞-semiadditive presentable ∞-
category C is canonically endowed with the structure of an ∞-commutative monoid, that is, there
is an equivalence C ∼−→ CMon(p)∞ (C).

Using this ∞-commutative monoid structure, [CSY21a, Definition 3.1.6] introduces the semi-
additive height of an object X ∈ C, denoted by ht(X). The notion of semiadditive height, which is
defined in arbitrary ∞-semiadditive ∞-categories, is related to the chromatic height. For example,
all objects of SpK(n) and SpT(n) are of semiadditive height n by [CSY21a, Theorem 4.4.5].

A particularly interesting example of an ∞-semiadditive presentable ∞-category, which is stud-
ied in [CSY21a], is the mode classifying the property of being a p-local stable ∞-semiadditive

presentable ∞-category, צ = CMon(p)∞ (Sp(p)), consisting of (p-typical) ∞-commutative monoids
in p-local spectra (see Definition 4.11). By construction, there is a canonical map of modes

(−)gpc : CMon(p)∞ (S) → ,צ which we call the group-completion. Additionally, there is a canonical
map of modes Lצ

T(n) : צ → SpT(n), which by [CSY21a, Corollary 5.5.14] is a smashing localization,
and in particular has a fully faithful right adjoint.

Another important example of an ∞-semiadditive presentable ∞-category is Catπ-fin, consist-
ing of ∞-categories admitting colimits over all π-finite p-spaces (see [Har20, Theorem 5.23] and
[CSY21a, Proposition 2.2.7]). As an ∞-semiadditive ∞-category, its objects, which are themselves
∞-categories, can have a semiadditive height. Additionally, there is an interplay between the semi-
additive height of objects in an ∞-semiadditive ∞-category and the semiadditive height of the
∞-category itself as an object of Catπ-fin, which we view as the crucial step at which redshift
happens.

Theorem 1.2 (Semiadditive Redshift [CSY21a, Theorem B]). Let C be an ∞-semiadditive ∞-
category, then ht(X) ≤ n for all X ∈ C if and only if ht(C) ≤ n+ 1 as an object of Catπ-fin.

1.1.3 Higher Semiadditive Algebraic K-Theory of Categories

In this paper we study the confluence of the above ideas. As Catπ-fin is itself∞-semiadditive, the∞-
categories therein admit a canonical structure of ∞-commutative monoids, called the ∞-cocartesian

structure, via the equivalence Catstπ-fin
(−)⊔−−−→ CMon(p)∞ (Catstπ-fin), where the integration of a family

of objects is given by their colimit. We observe that the S•-construction preserves limits, thus
it preserves ∞-commutative monoid structure. This observation along with the group-completion
functor described above lead us to the main definition of the present paper. By analogy with
the definition of ordinary algebraic K-theory, in Definition 6.5 we define ∞-semiadditive algebraic
K-theory K[∞] : Catstπ-fin → צ as the composition

Catstπ-fin
(−)⊔−−−→ CMon(p)∞ (Catstπ-fin)

S•−→ CMon(p)∞ (S)∆
op (−)gpc

−−−−→ op∆צ |−|−−→ צ Ω−→ .צ

It is immediate from this definition that K[∞] is ∞-semiadditive, i.e. preserves (co)limits indexed
by π-finite p-spaces.

We give a second construction of K[∞] which connects it to ordinary algebraic K-theory. We show
that K[∞](C) is obtained by taking the ∞-cocartesian structure on C, applying ordinary algebraic
K-theory level-wise, and forcing the result to satisfy the ∞-Segal condition. More precisely, we

define the functor K[∞] : Cat
st
π-fin → Fun(Span(S

(p)
π-fin)

op,Sp(p)) by the composition

Catstπ-fin
(−)⊔−−−→ CMon(p)∞ (Catstπ-fin) ⊂ Fun(Span(S

(p)
π-fin)

op,Catstπ-fin)
K◦−−−−→ Fun(Span(S

(p)
π-fin)

op,Sp(p)),
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and construct a natural transformation K[∞] ⇒ K[∞]. Then, in Corollary 6.10 we show that after

reflecting to the subcategory צ ⊂ Fun(Span(S
(p)
π-fin)

op,Sp(p)) of functors satisfying the ∞-Segal

condition, the map becomes an equivalence LsegK[∞](C)
∼−→ K[∞](C) ∈ .צ Note that evaluation of

the original map at ∗ ∈ S
(p)
π-fin gives a comparison map K(C) → K[∞](C) ∈ Sp(p).

Using the second construction of K[∞] and the lax symmetric monoidal structure on ordinary
algebraic K-theory, in Theorem 6.18 we endow K[∞] with a lax symmetric monoidal structure. To
that end, we prove certain results about Day convolution and its connection to the mode symmetric
monoidal structure on CMon(p)∞ (S) (see Theorem 4.26).

Similar constructions can be carried in the (p-typically) m-semiadditive context, for any 0 ≤
m ≤ ∞. We define an m-semiadditive version of algebraic K-theory K[m] : Catstm-fin → [m]צ from
the ∞-category of stable ∞-categories admitting colimits indexed by m-finite p-spaces to the uni-
versal p-local stable (p-typically) m-semiadditive presentable ∞-category. The case m = ∞ is
K[∞] : Catstπ-fin → צ mentioned above. The case m = 0 reproduces the p-localization of ordinary
algebraic K-theory by Example 6.6. The case m = 1 is closely related to equivariant algebraic
K-theory. In equivariant algebraic K-theory, given finite groups H < G, there is a corresponding
transfer map. Assuming H and G are p-groups, BH → BG is a map of 1-finite p-spaces, which
gives an integration operation on K[1](C) for C ∈ Catst1-fin, arising from the left Kan extension

CBH → CBG, which reproduces the transfer map on equivariant algebraic K-theory. Thus K[1] is
essentially obtained from equivariant algebraic K-theory by forcing the 1-Segal condition.

1.1.4 Higher Semiadditive Algebraic K-Theory of Algebras

The above discussion gives the definition of the ∞-semiadditive algebraic K-theory of ∞-categories
in Catstπ-fin. One rich source of such ∞-categories is the ∞-category LModR for an algebra R ∈
Alg(צ). However, even though this ∞-category is stable and has all colimits indexed by π-finite
p-spaces, it is too large. In order to avoid the Eilenberg swindle, one has to pass to a smaller ∞-
category, which still enjoys these properties. We show that passing to the left dualizable modules
gives LModldblR ∈ Catstπ-fin, leading us to define

K[∞](R) = K[∞](LModldblR ).

Recall that Lצ
T(n) : צ → SpT(n) is a smashing localization, so that if R ∈ SpT(n), then the ∞-

categories of modules in צ and in SpT(n) coincide. We generalize the passage from all modules to
the left dualizable modules, and make it into a lax symmetric monoidal functor, via the theory of
atomic objects, as explained later in the introduction. This allows us to endow K[∞] : Alg(צ) → צ
with a lax symmetric monoidal structure.

1.1.5 Redshift

Recall that K[∞] is an ∞-semiadditive functor. As ∞-semiadditive functors can only decrease
semiadditive height, we immediately get that if C ∈ Catstπ-fin has ht(C) ≤ n as an object of Catstπ-fin,
then ht(K[∞](C)) ≤ n (see Proposition 7.7). Evidently, this does not exhibit the increase in height
postulated by the redshift philosophy. Instead, the increase in height happens at the stage of
categorification, turning from considering the height of objects to the height of their ∞-category,
as in Theorem 1.2. Using Theorem 1.2 and Proposition 7.7 we deduce our first main result.
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Theorem A (Theorem 7.12). Let R ∈ Alg(צ) have ht(R) ≤ n and let m > n, then

ht(K[m](R)) ≤ n+ 1.

To give a lower bound on the height, we make use of the higher height analogues of cyclotomic
extensions defined in [CSY21b, Definition 4.7]. Recall that for R ∈ Alg(צ) of ht(R) = n, there

is a ((Z/p)×-equivariant) splitting of algebras R[BnCp] ∼= R × R[ω
(n)
p ], where R[ω

(n)
p ] is called the

(height n) p-cyclotomic extension of R, which generalizes ordinary cyclotomic extensions at height
0 (i.e. for algebras over the rationals). We say that R has (height n) p-th roots of unity if the

cyclotomic extension splits as a product R[ω
(n)
p ] ∼=

∏
(Z/p)× R (see Definition 7.17). For example,

by [CSY21b, Proposition 5.1], the Lubin–Tate spectrum En has (height n) p-th roots of unity. For
such R, we get an equivalence of R-modules R[BnCp] ∼= Rp, from which we immediately deduce
the following strengthening of Theorem A.

Theorem B (Theorem 7.25). Let R ∈ Alg(צ) of ht(R) = n have (height n) p-th roots of unity and
let m > n, then

ht(K[m](R)) = n+ 1.

In particular, ht(K[m](En)) = n+ 1.

A natural question left open is the following:

Question 1.3. Can the assumption of having (height n) p-th roots of unity be dropped? Namely,
is it true that if R ∈ Alg(צ) is of height n, then K[m](R) is of height exactly n+ 1?

1.1.6 Relationship to Chromatically Localized K-Theory

As we have seen in Theorem A and Theorem B, K[m] satisfies a form of the redshift conjecture with
respect to semiadditive height. A natural next direction is connecting these results to ordinary alge-
braic K-theory and the chromatic height. Let R ∈ Alg(SpT(n)). The inclusion SpT(n+1) ⊂ Sp admits
a left adjoint LT(n+1) : Sp → SpT(n+1). Since K(R) ∈ Sp, we can consider LT(n+1)K(R) ∈ SpT(n+1).

Similarly, there is an inclusion SpT(n+1) ⊂ ,[m]צ which admits a left adjoint Lצ[m]

T(n+1) : [m]צ →
SpT(n+1). Since K[m](R) ∈ ,[m]צ we can consider Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1). The compari-

son map between ordinary algebraic K-theory and higher semiadditive algebraic K-theory yields a
comparison map2

LT(n+1)K(R) → Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1).

This raises two independent questions:

(1) Does K[m](R) land in SpT(n+1) ⊂ ?[m]צ

(2) Is the comparison map an equivalence?

A positive answer to both questions will imply that K[m](R) ∼= LT(n+1)K(R) (see Conjecture 1.4
below). The first question is closely related to the Quillen–Lichtenbaum conjecture for R, in the
guise of having a non-zero finite spectrum X such that K(R) ⊗ X is bounded above, as we show

2Note that the source of the comparison map is simply Lצ[m0]

T(n+1)
K[m0](R) for m0 = 0. Namely, the comparison

map is the comparison map of two different levels of semiadditivity.
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in Proposition 8.4. The second question is equivalent to LT(n+1)K[m](R) satisfying the m-Segal
condition. More informally, having descent properties for chromatically localized K-theory.

Using the Galois descent results for T(n + 1)-localized K-theory of [CMNN20], this second
question is answered in the affirmative for m = 1 in Proposition 8.6. In work in progress with
Carmeli and Yanovski [BMCSY] we show that the descent result for chromatically localized K-
theory generalizes from finite p-groups to arbitrary π-finite p-spaces. This would give a positive
answer to the second question for every m ≥ 1.

Next, we focus on the case of height 0, answering both question in the affirmative in complete
generality. Using the Quillen–Lichtenbaum property of S[p−1] together with Galois descent we
obtain the following:

Theorem C (Theorem 8.10). Let R ∈ Alg(Sp[p−1]) and let m ≥ 1, then

K[m](R) ∼= LT(1)K(R).

In particular, K[m](Q) ∼= KUp.

Finally, we study the completed Johnson–Wilson spectrum Ê(n) at height n ≥ 1. In [HW22],
Hahn–Wilson produced an E3-algebra structure on BP⟨n⟩, for which they have proven a version of

the Quillen–Lichtenbaum conjecture. This structure also endows Ê(n) with an E3-algebra structure.
Using their Quillen–Lichtenbaum result, along with a comparison of two direct computations of the

higher commutative monoid structure on K[m](Ê(n)), we obtain the following strengthening of

Theorem B for Ê(n)-algebras. We would like to thank the anonymous referee for suggesting crucial
parts of the proof of this result.

Theorem D (Theorem 8.23). Let R ∈ Alg(LMod
Ê(n)

) where Ê(n) is endowed with the Hahn–

Wilson E3-algebra structure, and let m ≥ 1, then

K[m](R) ∈ SpT(n+1).

Using Galois descent for chromatically localized K-theory from [CMNN20] as mentioned above,
we immediately get the following at m = 1:

Theorem E (Corollary 8.24). Let R ∈ Alg(LMod
Ê(n)

) where Ê(n) is endowed with the Hahn–

Wilson E3-algebra structure, then

K[1](R) ∼= LT(n+1)K(R).

In particular, K[1](Ê(n)) ∼= LT(n+1)K(Ê(n)).

As mentioned above, our upcoming work with Carmeli and Yanovski [BMCSY] implies that
Theorem E generalizes to m-semiadditive K-theory for any m ≥ 1. This generalization, along with
Theorem C answering the case of height 0, lead us to conjecture the following:

Conjecture 1.4. For any R ∈ Alg(SpT(n)) and m ≥ 1 we have

K[m](R) ∼= LT(n+1)K(R).
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We would like to highlight two interesting phenomena exemplified by Theorem C and Theorem E.
First, higher semiadditive algebraic K-theory lands in the highest non-zero height predicted by the
redshift conjecture, without forcing it be in a pure height from the outside. Second, algebraic
K-theory can be modified to have a higher commutative monoid structure in two ways – either by
chromatically localizing it from the outside, or by internally remembering the higher commutative
monoid structure on the input ∞-category. These results show that these two a priori distinct
objects coincide, at least in some cases. This identification gives different approaches to study the
higher commutative monoid structure, similarly to the proof of Theorem D itself.

1.1.7 Atomic Objects and a Monoidal Natural Yoneda

Recall that in the construction of the higher semiadditive algebraic K-theory of R ∈ Alg(צ) de-
scribed above, we passed to the left dualizable objects. In order to study the functoriality of this
construction in R, as well as to generalize the construction to stable ∞-semiadditive presentable
∞-categories other than ∞-categories of modules, we define and study M-atomic objects for any
mode M (see Definition 2.3). One of our main results is that M-atomic objects indeed coincide
with left dualizable objects in left modules, i.e. LModatR = LModldblR for any R ∈ Alg(M) (see
Proposition 2.54). Another direction of generalization is the case M = Sp, where Sp-atomic objects
coincide with compact objects. We also show that for any absolute limit of M, the M-atomic objects
are closed under Iop-shaped colimits (see Proposition 2.24). These two results are then applied in
Proposition 4.15 to show that for R ∈ Alg(צ), we have LModldblR ∈ Catstm-fin, so that it can be used
as an input to higher semiadditive algebraic K-theory.

Another key result is the strong connection between the functor PM taking M-valued presheaves
and the functor taking M-atomic objects. Let ModiLM denote the subcategory of PrL consisting of
∞-categories in the mode M and internally left adjoint functors (that is, left adjoint functors whose
right adjoint admits a further right adjoint), which inherits a symmetric monoidal structure from
PrL. We then have the following:

Theorem F (Theorem 2.46). There is a symmetric monoidal adjunction

PM : Cat ⇄ ModiLM : (−)M-at,

i.e. PM is symmetric monoidal with a lax symmetric monoidal right adjoint (−)M-at.

Building on the work of Glasman [Gla16] and Haugseng–Hebestreit–Linskens–Nuiten [HHLN20b,
Theorem 8.1] on the Yoneda embedding, the adjunction is constructed such that the unit is (the

factorization through the M-atomic objects of) the Yoneda map よ
M
: C0 → PM(C0), reproducing

the ordinary Yoneda embedding for M = S. As an immediate consequence, we obtain a monoidal
and natural version of the Yoneda map for any operad O, which may be of independent interest.

Theorem G (Corollary 2.47). The Yoneda map よ
M
: C0 → PM(C0) is O-monoidal and natural in

C0 ∈ AlgO(Cat).

1.2 Organization

In Section 2, we develop the notion of M-atomic objects in a presentable ∞-category in the mode
M. We study the connection between M-atomic objects and M-valued presheaves, and leverage
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this connection to endow the functor taking the M-atomic objects with a lax symmetric monoidal
structure. As a byproduct, we obtain a monoidal natural version of the Yoneda map.

In Section 3, we recall the universal property of the Day convolution, and study its functoriality
in the source and the target.

In Section 4, we recall some facts about (p-typical) (pre-)m-commutative monoids, and study
their multiplicative structure. We observe that the ∞-category of m-commutative monoids can nat-
urally be endowed with two symmetric monoidal structures, and we show that these two structures
coincide.

In Section 5, we recall the definition of the higher cocartesian structure, and show that it satisfies
certain expected properties. In particular, we show that tensoring a family of objects is indeed given
by their colimit.

In Section 6, we define m-semiadditive algebraic K-theory using the tools developed in the
previous sections, and study its properties. We construct it in two different ways, first using the S•-
construction, and second by exhibiting it as the universal way to make ordinary algebraic K-theory
into an m-semiadditive functor. We leverage the second definition of m-semiadditive algebraic
K-theory to endow it with a lax symmetric monoidal structure.

In Section 7, we study the interplay betweenm-semiadditive algebraic K-theory and semiadditive
height. In particular, we show that it can increase the height of rings at most by one. Furthermore,
we show that if the ring has (height n) p-th roots of unity, then the height of its m-semiadditive
algebraic K-theory is exactly n+ 1.

In Section 8, we study the connection between higher semiadditive algebraic K-theory and
chromatically localized K-theory. We apply the Quillen–Lichtenbaum conjecture and the Galois
descent result for chromatically localized K-theory, to show that the higher semiadditive algebraic
K-theory of p-invertible algebras coincides with their T(1)-localized algebraic K-theory. Finally,
we use the Quillen–Lichtenbaum result for BP⟨n⟩ to show that the higher semiadditive algebraic

K-theory of Ê(n)-algebras lands in T(n+1)-local spectra, and that specifically their 1-semiadditive
algebraic K-theory coincides with their T(1)-localized algebraic K-theory.

1.3 Conventions

Throughout the paper, we work in the framework of ∞-categories, mostly following the notations
of [Lur09, Lur17]. For brevity, we use the word category to mean an ∞-category. We also generally
follow the notation and terminology of [CSY21a] related to higher semiadditivity, but we diverge
by working exclusively in the p-typical case.

(1) We denote the space of morphisms between two objects X,Y ∈ C by homC(X,Y ) and omit
C when it is clear from the context. If C is D-enriched (e.g. in a mode D = M, or closed
symmetric monoidal D = C), we denote by homD

C (X,Y ) the D-object of morphisms and omit
C when it is clear from the context.

(2) We say that a space A ∈ S is

(a) a p-space, if all the homotopy groups of A are p-groups.

(b) m-finite for m ≥ −2, if m = −2 and A is contractible, or m ≥ −1, the set π0A is finite
and all the fibers of the diagonal map ∆: A → A×A are (m− 1)-finite.3

3For m ≥ 0, this is equivalent to A having finitely many components, each of them m-truncated with finite
homotopy groups.
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(c) π-finite or ∞-finite, if it is m-finite for some integer m ≥ −2.

(3) For −2 ≤ m ≤ ∞, we denote by S
(p)
m ⊂ S the full subcategory spanned by all m-finite p-spaces.

(4) We say that a category C is (p-typically) m-semiadditive if all m-finite p-spaces A ∈ S
(p)
m are

C-ambidextrous.

(5) We denote by Catst ⊂ Cat the subcategory spanned by all stable categories and exact functors.

(6) For a collection K of indexing categories, we let CatK ⊂ Cat be the subcategory spanned by
all categories admitting all colimits indexed by I ∈ K and functors preserving them.

(7) For −2 ≤ m ≤ ∞, we define Catm-fin = CatK for K = S
(p)
m , and we let Catstm-fin ⊂ Catm-fin

be the subcategory of those categories which are additionally stable and functors which are
additionally exact.
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2 Atomic Objects

Let M be a mode, that is, an idempotent algebra in PrL (see [CSY21a, Section 5] for generalities
on modes). In this section we study M-atomic objects (see Definition 2.3), a finiteness property
of objects in categories C ∈ ModM in the mode M, which generalizes both compactness (for the
case M = Sp, see Proposition 2.8) and dualizability of modules (for the case C = LModR(M), see
Proposition 2.54). The results of this section are subsequently used in Definition 6.20 to define the
higher semiadditive algebraic K-theory of algebras in [m]צ (see Definition 4.11), and in particular
for algebras in SpT(n), including its lax symmetric monoidal structure.

In Subsection 2.1 we give the definition of atomic objects (see Definition 2.3) and study their
basic properties. We show that taking atomic objects is functorial in internally left adjoint functors
(see Definition 2.12). Analogously to the condition of being compactly generated, we study the
condition of being generated under colimits and the action of M from the M-atomic objects, which
we call being M-molecular (see Definition 2.10), and we explain its relationship to internally left
adjoint functors. Lastly, in Proposition 2.24 we show that for any absolute limit I of M (see
Definition 2.18), the atomic objects are closed under Iop-shaped colimits. This yields a functor
(−)at : ModiLM → CatK where K is any small collection of opposites of absolute limits of M.

In Subsection 2.2 and Subsection 2.3 we study the connection between M-atomic objects and
M-valued presheaves (see Definition 2.27), and the multiplicative structure of both functors. The
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main result of this section is Theorem 2.46, exhibiting a symmetric monoidal adjunction

PM
K : CatK ⇄ ModiLM : (−)at.

Moreover, the unit of this adjunction is the Yoneda map, and as an immediate consequence, Corol-

lary 2.47 shows that よ
M

K : C0 → PM
K (C0) is O-monoidal and natural in C0 ∈ AlgO(CatK), which

may be of independent interest.
Lastly, in Subsection 2.4 we study atomic objects in categories of left modules. In Proposi-

tion 2.54 we show that atomic objects and left dualizable left modules coincide, i.e. LModatR =
LModldblR .

Remark 2.1. Many of the results of this section can be generalized to modules in PrL over any
presentably monoidal category V ∈ Alg(PrL) and V-linear functors. Parts of these generalizations
were carried out by the first author in [BM23], building on the works of [GH15, Hin20, Hin21, Hei23].
The main feature of modes is that being an M-module is a property rather than extra structure,
and that any left adjoint functor is automatically M-linear. As such, working over a mode simplifies
the definitions and proofs, and avoids using enriched category theory. Since this suffices for our
applications in the rest of the paper, we have restricted to this case.

2.1 Atomics and Internally Left Adjoints

Lemma 2.2. Let F : C ⇄ D : G be an adjunction with C,D ∈ ModM. Let X ∈ C and Y ∈ D,
then there is an equivalence homM(FX, Y ) ∼= homM(X,GY ) lifting the equivalence hom(FX, Y ) ∼=
hom(X,GY ).

Proof. We prove this using the Yoneda lemma. Let m ∈ M. Recall that F : C → D is a map in
ModM, so that it commutes with m⊗−, so we conclude that

hom(m, homM(FX, Y )) ∼= hom(m⊗ FX, Y )
∼= hom(F (m⊗X), Y )
∼= hom(m⊗X,GY )

∼= hom(m, homM(X,GY )).

The fact that it is a lift of the S-enriched hom is the case m = 1M.

Definition 2.3. Let C ∈ ModM. An object X ∈ C is called M-atomic, if homM(X,−) : C → M

commutes with colimits. We denote by CM-at ⊆ C the full subcategory of the M-atomic objects.
When the mode is clear from the context, it is dropped from the notation.

Remark 2.4. The definition of atomic objects will be made functorial in Definition 2.17.

Remark 2.5. If X ∈ C is atomic then homM(X,−) is a left adjoint functor, thus a morphism
in ModM, so that it also commutes with the action of M. That is, for any m ∈ M we have
homM(X,−⊗m) ∼= homM(X,−)⊗m.

Example 2.6. The unit 1M ∈ M is atomic because the functor homM(1M,−) : M → M is the
identity functor and in particular commutes with colimits.

Proposition 2.7. The only S-atomic object in S is the point ∗.

11



Proof. Let X ∈ Sat be atomic, then for any Y ∈ S we have

hom(X,Y ) ∼= hom(X, colim
Y

∗) ∼= colim
Y

hom(X, ∗) ∼= colim
Y

∗ ∼= Y.

Thus X corepresents the identity functor id : S → S, namely X = ∗.

Proposition 2.8. Let C ∈ ModSp be a presentable stable category, then the Sp-atomics are the
compact objects, i.e. CSp-at = Cω.

Proof. Let X ∈ C. First assume that X is atomic. Recall that Ω∞ : Sp → S commutes with filtered
colimits, so that hom(X,−) ∼= Ω∞ homSp(X,−) commutes with filtered colimits, i.e. it is compact.

Now assume that X is compact. Recall that for any n ∈ Z, the functor Σn : Sp → Sp com-
mutes with all limits and colimits and in particular with filtered colimits, thus hom(X,Σn−) ∼=
Ω∞Σn homSp(X,−) also commutes with filtered colimits. Additionally, the functors Ω∞Σn : Sp → S

are jointly conservative, implying that homSp(X,−) commutes with filtered colimits. Furthermore,
it commutes with finite limits, thus by stability also with all finite colimits, which together with
filtered colimits generate all colimits.

Proposition 2.9. Let C ∈ ModM, then Cat ∈ Cat is a small category.

Proof. Let κ be a regular cardinal such that the unit 1M ∈ M is κ-compact. We show that Cat ⊆ Cκ,
that is the atomics are κ-compact. Let X ∈ C be an atomic object, so in particular homM(X,−)
commutes with κ-filtered colimits. Since 1M is κ-compact, hom(1M,−) commutes with κ-filtered
colimits, implying that the composition hom(X,−) ∼= hom(1M,homM(X,−)) commutes with κ-
filtered colimits.

Definition 2.10. Let C ∈ ModM. We say that a collection of atomic objects B ⊆ Cat are M-atomic
generators, if C is generated from B under colimits and the action of M.4 If such B exists, we say
that C is M-molecular .5 If the mode is clear from the context, we call C molecular and say that B
are atomic generators.

Example 2.11. Every mode M is itself M-molecular, because the unit 1M is atomic and any object
m can be written as m⊗ 1M.6

Definition 2.12. Let C,D ∈ PrL. We say that a functor F : C → D is internally left adjoint if it
is left adjoint in PrL, namely if it is a left adjoint functor and its right adjoint G : D → C is itself a
left adjoint. We denote by FuniL(C,D) ⊆ FunL(C,D) the full subcategory of internally left adjoint
functors. We let ModiLM be the wide subcategory of ModM with the same objects, and morphisms
the internally left adjoint functors.

Proposition 2.13. Let C,D ∈ ModM, and let F : C → D be an internally left adjoint functor, then
it sends atomic objects to atomic objects.

4In a previous version of this paper, B ⊆ Cat was called a collection of atomic generators if they generate C under
colimits (without the action of M). It was later noticed that our proofs work under the new, weaker, assumption.

5As a result of the weakening of the condition of being atomic generators, the condition of being molecular is
correspondingly weaker.

6In the previous version it was posed as a question whether every mode is molecular. With the new definition of
atomic generators, this always holds. However, the question whether every mode is generated from atomic objects
under colimits (without the action of M) is still open.
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Proof. By assumption the right adjoint G : D → C is itself a left adjoint, thus preserves colimits.
Let X ∈ Cat be an atomic object, then using Lemma 2.2 homM(FX,−) ∼= homM(X,G−), which is
the composition of G and homM(X,−), both of which preserve colimits, so that FX is atomic.

Proposition 2.14. Let C,D ∈ ModM, and let F : C → D be a left adjoint functor. If C is molecular
and F sends a collection of atomic generators B ⊂ C to atomic objects in D, then F is internally
left adjoint.

Proof. We wish to show that G, the right adjoint of F , is itself a left adjoint, namely that it preserves
colimits. Let Yi : I → D be a diagram, and we wish to show that G(colimYi) ∼= colimGYi. By the
Yoneda lemma, this is equivalent to checking that for every X ∈ C we have

hom(X,G(colimYi)) ∼= hom(X, colimGYi).

Since hom(−,−) ∼= hom(1M,homM(−,−)), it suffices to check that for every X ∈ C we have

homM(X,G(colimYi)) ∼= homM(X, colimGYi).

Let A denote the collection of X ∈ C for which this condition holds, and we shall show that A = C.
First, for every X ∈ B, we know that

homM(X,G(colim
I

Yi)) ∼= homM(FX, colim
I

Yi)

∼= colim
I

homM(FX, Yi)

∼= colim
I

homM(X,GYi)

∼= homM(X, colim
I

GYi)

where the first and third steps follow from Lemma 2.2, the second step follows from the assumption
that FX is atomic since X ∈ B and F sends B to atomic objects, and the fourth step follows from
the fact X is atomic. Therefore, B ⊆ A.

Second, for every X ∈ A and m ∈ M, we know that homM(m⊗X,−) ∼= homM(m,homM(X,−))
so that m⊗X ∈ A, i.e. A is closed under the action of M.

Third, for every diagram Xj : J → C landing in A, we know that homM(colimJ Xj ,−) ∼=
limJop homM(Xj ,−) so that colimJ Xj ∈ A, i.e. A is closed under colimits.

We have shown that B ⊆ A and that A is closed under the action of M and colimits, and by
assumption B are atomic generators, thus A = C as needed.

Recall that for C ∈ ModM we have an equivalence FunL(M,C) ∼−→ C given by evaluation at
1M. Its inverse sends X ∈ C to the functor − ⊗ X : M → C (part of the data admitting C as an
M-module). Furthermore, the right adjoint of −⊗X : M → C is homM(X,−) : C → M.

Proposition 2.15. Let C ∈ ModM, then the equivalence FunL(M,C) ∼−→ C restricts to an equiva-
lence FuniL(M,C) ∼−→ Cat. In addition, if X ∈ C and m ∈ M are atomic then so is m⊗X ∈ C.

Proof. First, by Proposition 2.13 and the fact that the 1M is atomic, the functor indeed lands in
the full subcategory Cat. In particular, it is also fully faithful as the restriction of an equivalence
to two full subcategories. We need to show that it is essentially surjective, i.e. that if X ∈ Cat then
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−⊗X : M → C is internally left adjoint. This holds since its right adjoint is homM(X,−) : C → M,
which by assumption preserves colimits.

For the last part, as − ⊗X : M → C is internally left adjoint, Proposition 2.13 implies that it
sends atomic objects to atomic objects.

Remark 2.16. In Corollary 2.48 we extend the last part of the proposition to show that in fact Cat

is a module over Mat.

In light of this proposition, we construct the functor of taking atomics functorially. We also
recall from Proposition 2.9 that Cat is a small category.

Definition 2.17. We define the functor (−)at : ModiLM → Cat by (−)at = FuniL(M,−).

Definition 2.18. Let I be an indexing category. We say that I is an absolute limit of M if for any
C ∈ ModM, I-shaped limits in C commute with colimits.

Remark 2.19. The term absolute limit is usually used in the context of enriched categories, saying
that I is an absolute limit of V ∈ Mon(Cat) if any V-enriched functor commutes with I-shaped
limits. We will not use this condition in this paper, but for the convenience of the reader we remark
on the connection between this condition and the one appearing in Definition 2.18 when V is a
mode.

Assume that I is an absolute limit in the ordinary sense, namely that V-enriched functors
commute with I-shaped limits. Let C ∈ ModV. For any indexing category J consider colimJ : C

J →
C. This functor commutes with colimits, and since V is a mode, it is a morphism in ModV, so,
as referred to in Remark 2.1, it is canonically V-enriched, and therefore commutes with I-shaped
limits. This holds for any J , meaning that I-shaped limits in C commute with colimits, reproducing
Definition 2.18.

The implication in the other direction should follow from a working theory of enriched left Kan
extensions and their compatibility with the enriched Yoneda embedding, which we are unaware of
a reference for.

Lemma 2.20. If I is an absolute limit of M and M → N is map of modes, then I is an absolute
limit of N as well.

Proof. This is immediate from the fact that ModN ⊆ ModM.

Lemma 2.21. Let I be an absolute limit of M, and C ∈ ModM. Then m ⊗ − : C → C commutes
with I-shaped limits, for any m ∈ M.

Proof. By assumption, limI : C
I → C commutes with colimits. Therefore, it is a map in ModM, so

that it also commutes m⊗− : C → C for any m ∈ M.

Proposition 2.22. Let I be an absolute limit of M, then for any C ∈ ModM, the atomics Cat ⊂ C

are closed under Iop-shaped colimits.

Proof. Let Xi : I
op → C be a diagram landing in the atomics. Recall that homM(−,−) : Cop ×C →

M commutes with limits in the first coordinate, thus homM(colimIop Xi,−) is equivalent to

C
∆−→ CIop (homM(Xi,−))I−−−−−−−−−−→ MI limI−−−→ M.
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∆ commutes with colimits since colimits in functor categories are computed level-wise. Since each
Xi is atomic, each homM(Xi,−) commutes with colimits, and as colimits in functor categories are
computed level-wise, we get that (homM(Xi,−))I commutes with colimits. By assumption, I is
an absolute limit of M, thus limI commutes with colimits. This shows that homM(colimIop Xi,−)
commutes with colimits, i.e. that colimIop Xi is indeed atomic.

Remark 2.23. Let F : C → D be an internally left adjoint functor, and let I be an absolute limit of
M. Then F preserves colimits, and the atomics are closed under Iop-shaped colimits, so that the
induced functor between the atomics preserves Iop-shaped colimits.

The following claim immediately follows.

Proposition 2.24. Let K ⊂ {Iop | I absolute limit of M} be a collection of opposites of absolute
limits of M, then the functor of taking atomics (−)at : ModiLM → Cat factors through CatK.

Proposition 2.25. Let M be a stable mode, then all finite categories are absolute limits. Further-
more, for any C ∈ ModM, CM-at is a stable subcategory of C.

Proof. Recall that C itself is stable, so the first part follows from the commutativity of finite
limits and colimits in stable categories. For the second part, first note that the zero object is
obviously atomic. As finite limits are absolute, the atomics are closed under finite colimits, so it
suffices to show that the atomics are also closed under desuspensions. Let X ∈ CM-at, then indeed
homM(Σ−1X,−) ∼= ΣhomM(X,−) is colimit preserving, because X is atomic and Σ: M → M is
colimit preserving.

Proposition 2.26. Let F : M → N be a smashing localization of modes (see [CSY21a, Definition
5.1.2]), and let C ∈ ModN. Then the N-atomics coincide with the M-atomics, that is CN-at = CM-at.

Proof. By [CSY21a, Proposition 5.2.15], the localization is smashing if and only if the right adjoint
of F : M → N is itself a left adjoint (i.e. if F is internally left adjoint). This allows us to treat
N as a full subcategory of M closed under both limits and colimits. Now, [CSY21a, Proposition
5.2.10] shows that N classifies the property of being in the mode M such that all M-enriched
hom’s land in N, i.e. homM(X,−) = homN(X,−), thus by the closure of N ⊆ M under colimits,
homM(X,−) : C → M commutes with colimits if and only if homN(X,−) : C → N does.

2.2 Atomics and Presheaves

Throughout this subsection, let K ⊂ {Iop | I absolute limit of M} be some small collection of
opposites of absolute limits of M (not necessarily all of them, for instance, K is allowed to be
empty). We also let Kop = {I | Iop ∈ K} be the collection of all of the opposite categories.

Definition 2.27. For C0 ∈ Cat, we define the category of M-valued presheaves by PM(C0) =

Fun(Cop
0 ,M). If C0 ∈ CatK, we let PM

K (C0) = FunK
op

(Cop
0 ,M) be the full subcategory of PM(C0)

on those functors that preserve all limits indexed by I ∈ Kop, namely functors F : Cop
0 → M that

send Iop-shaped colimits in C0 to I-shaped limits in M.

Remark 2.28. The definition will be made functorial in Definition 2.34.

For the case M = S, [GHN17, Lemma 10.6] shows that PK(C0) is presentable. From this we
deduce the following:
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Proposition 2.29. There is an equivalence PM
K (C0) ∼= PK(C0) ⊗ M, and in particular it is pre-

sentable and in the mode M.

Proof. Indeed, we have an equivalence

PK(C0)⊗M ∼= FunR(PK(C0)
op,M)

∼= FunL(PK(C0),M
op)op

∼= FunK(C0,M
op)op

∼= FunK
op

(Cop
0 ,M)

= PM
K (C0),

where the first equality is [Lur17, Proposition 4.8.1.17], the second is passing to the opposite, the
third is the universal property of PK given in [Lur09, Corollary 5.3.6.10], the fourth is by passing
to the opposite, and the last is by definition.

Lemma 2.30. Let C0 ∈ CatK, then PM
K (C0) ⊆ PM(C0) is closed under limits and colimits, thus

the inclusion has both adjoints.

Proof. Let Fj : J → PM(C0) be a diagram landing in PM
K (C0). We need to show that colimJ Fj

and limJ Fj are again in PM
K (C0), i.e. that they commute with all limits indexed by I ∈ Kop. Let

Xi : I
op → C0 be a diagram. Using the fact that colimits and limits in functor categories are

computed level-wise, and that I is an absolute limit, we get:

colim
J

Fj(colim
Iop

Xi) ∼= colim
J

lim
I

Fj(Xi) ∼= lim
I

colim
J

Fj(Xi).

Similarly limJ Fj ∈ PM
K (C0), since limits commute with limits.

Definition 2.31. Let C0 ∈ CatK. We denote by LK : PM(C0) → PM
K (C0) the (internally) left

adjoint of the inclusion PM
K (C0) ⊆ PM(C0).

Lemma 2.32. For f : C0 → D0, a morphism in CatK, the restriction of f∗ : PM(D0) → PM(C0)
to PM

K (D0) lands in PM
K (C0).

Proof. f∗ is given by pre-composition with fop : Cop
0 → D

op
0 , which preserves limits indexed by

I ∈ Kop, as the opposite of a morphism in CatK.

Lemma 2.33. For f : C0 → D0 a morphism in CatK, the functor f∗ : PM
K (D0) → PM

K (C0) preserves
all limits and colimits and thus has a right adjoint f∗ and a left adjoint f!.

Proof. By Lemma 2.30, PM
K (C0) is closed under limits and colimits in PM(C0), which are thus

computed level-wise, and similarly for D0. Therefore, we get

f∗(colim
I

Fi)(c) = (colim
I

Fi)(fc) ∼= colim
I

Fi(fc) = colim
I

f∗Fi(c) ∼= (colim
I

f∗Fi)(c),

showing that f∗ commutes with colimits, and similarly for limits.

Lemma 2.32 shows that the functor Fun((−)op,M) : CatopK → Ĉat, sending C0 to PM(C0) and f

to f∗, has a subfunctor FunK
op

((−)op,M) : CatopK → Ĉat sending C0 to PM
K (C0) and f to f∗. By

Proposition 2.29, the categories PM
K (C0) are in the mode M, and by Lemma 2.33, the morphism f∗

is a right adjoint, so that the functor factors as FunK
op

((−)op,M) : CatopK → PrR.
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Definition 2.34. We define the functor PM
K : CatK → ModM by passing to the left adjoints in

FunK
op

((−)op,M) : CatopK → PrR, that is the functor sending C0 to PM
K (C0) and f : C0 → D0 to

f! : PM
K (C0) → PM

K (D0).

Proposition 2.35. The functor PM
K : CatK → ModM lands in ModiLM.

Proof. Lemma 2.33 shows that f! : PM
K (C0) → PM

K (D0) is internally left adjoint.

Proposition 2.36. There is a natural transformation LK : PM ⇒ PM
K of functors CatK → ModM,

making the construction of Definition 2.31 natural.

Proof. Since FunK
op

((−)op,M) : CatopK → PrR is a subfunctor of Fun((−)op,M) : CatopK → PrR,
there is a natural transformation from the former to the latter given by the inclusion. Applying
[Lur17, Corollary 4.7.4.18 (3)] for S = CatopK (and considering our functors as landing in Ĉat) shows
that by passing to the left adjoints in the target and in the natural transformation, we obtain a
natural transformation LK : PM ⇒ PM

K . Indeed, LK was defined in Definition 2.31 as the left
adjoint of the inclusion.

Definition 2.37. We define the Yoneda map よ
M

K : C0 → PM
K (C0) as the composition

C0
よ−→ P(C0) → P(C0)⊗M ∼= PM(C0)

LK−−→ PM
K (C0),

where よ is the ordinary Yoneda embedding, and the second map is given by tensoring with the
unit map S → M.

Remark 2.38. Generally, the Yoneda map よ
M

K : C0 → PM
K (C0) is not fully faithful. For example,

in the case where K = ∅ and C0 = ∗, the map is よ
M

K : ∗ → M, which induces hom(∗, ∗) →
hom(1M,1M) that is usually not an equivalence.

Proposition 2.39. The Yoneda map can be upgraded to a natural transformation よ
M

K : ιK ⇒ PM
K

from the inclusion ιK : CatK → Cat → Ĉat to CatK
PM

K−−→ PrL → Ĉat.

Proof. The natural transformation is obtained by the following diagram:

CatK Cat PrL PrL ĈatP

PM
K

−⊗MLK

よ

ι

u

Hereよ : ι ⇒ P is the ordinary Yoneda natural transformation constructed in [HHLN20b, Theo-
rem 8.1], the natural transformation u : id ⇒ −⊗M is the unit map of the free-forgetful adjunction
− ⊗ M : PrL ⇄ ModM : (−) given by tensoring with S → M, and LK : PM ⇒ PM

K is the natural
transformation of Proposition 2.36.

Proposition 2.40. For X ∈ C0 and F ∈ PM
K (C0) we have homM(よ

M

K (X), F ) ∼= F (X).
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Proof. We first reduce to the case where K = ∅. Since LK : PM(C0) → PM
K (C0) is the left adjoint

of the inclusion, using Lemma 2.2 we get

homM(よ
M

K (X), F ) ∼= homM(LKよ
M
(X), F ) ∼= homM(よ

M
(X), F ).

We finish the proof by showing that the latter is equivalent to F (X), using the Yoneda lemma in
the category M. Indeed, let m ∈ M be any object, then

hom(m,homM(よ
M
(X), F )) ∼= hom(m⊗よM

(X), F )

∼= hom(よ
M
(X),homM(m,F ))

∼= hom(よ(X),hom(m,F ))
∼= hom(m,F )(X)
∼= hom(m,F (X)),

where the first and second step use the exponential adjunction, the third uses the free-forgetful
adjunction C → C ⊗M, the fourth uses the ordinary Yoneda lemma for C0 and the last step uses
that the action of M is level-wise.

Corollary 2.41. The Yoneda map よ
M

K : C0 → PM
K (C0) lands in the atomics.

Proof. By Lemma 2.30, PM
K (C0) is closed under colimits and limits in PM(C0), which are therefore

computed level-wise, so that homM(よ
M

K (X), F ) ∼= F (X) commutes with all colimits in the F -
coordinate.

We use the same notation よ
M

K : C0 → PM
K (C0)

at to denote the factorization. Recall from

Proposition 2.39 that the Yoneda map gives a natural transformation よ
M

K : ιK ⇒ PM
K of func-

tors CatK → Ĉat. Since taking the atomics lands in CatK by Proposition 2.24, together with

Corollary 2.41, we obtain a natural transformation よ
M

K : id ⇒ PM(−)at of functors CatK → CatK.

Proposition 2.42. For any C0 ∈ CatK the category PM
K (C0) is molecular, with atomic generators

よ
M

K (X) for X ∈ C0.

Proof. We first show the result for PM(C0), i.e. for the case K = ∅. Recall that PM(C0) ∼= P(C0)⊗M

is generated under colimits from the image of P(C0)×M, i.e. from objects of the form F⊗m. Second,
P(C0) is generated under colimits from objects of the form よ(X) for X ∈ C. Therefore, PM(C0) is

generated under colimits and the action of M from objects of the form よ
M
(X) for X ∈ C, which

are indeed atomic by Corollary 2.41.
For the general case, recall that LK : PM(C0) → PM

K (C0) is an internally left adjoint functor

so it sends atomic objects to atomic objects by Proposition 2.13, thus よ
M

K (X) is atomic for any

X ∈ C. Since it preserves colimits and the action of M, and よ
M
(X) generate PM(C0) under

these operations, their images よ
M

K (X) generate the essential image of LK under these operations.

In addition, LK is essentially surjective, so that よ
M

K (X) are atomic generators of PM
K (C0) as

needed.

Proposition 2.43. There is an adjunction

PM
K : CatK ⇄ ModiLM : (−)at
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with unit よ
M

K : id ⇒ PM
K (−)at.

Proof. To check that the data in the theorem supports an adjunction, it suffices to check that for
any C0 ∈ CatK and D ∈ ModiLM, the canonical map

FuniL(PM
K (C0),D) → FunK(PM

K (C0)
at,Dat)

−◦よM
K−−−−→ FunK(C0,D

at) (1)

is an equivalence (in fact, it suffices to show this for the hom spaces, rather then the functor
categories, but we show that the stronger statement holds). Note that

FunL(PM
K (C0),D) ∼= FunL(PK(C0),D) ∼= FunK(C0,D). (2)

Furthermore, both the first and last categories in Eq. (1) are full subcategories of the first and last
categories in Eq. (2), showing that the composition in Eq. (1) is also fully faithful.

To finish the argument, we need to show that Eq. (1) is essentially surjective. To that end, let
F : C0 → Dat be a functor preserving Iop-shaped colimits for Iop ∈ K. We can post-compose it
with the inclusion Dat → D, and using Eq. (2) we get a left adjoint functor F̃ : PM

K (C0) → D, and
we need to show that it is in fact internally left adjoint. By construction, for any X ∈ C0 we have

that F̃ (よ
M

K (X)) ∼= F (X) ∈ Dat is atomic. Proposition 2.42 shows that these are atomic generators
for PM

K (C0), so Proposition 2.14 shows that F̃ is indeed internally left adjoint.

2.3 Tensor Product of Atomics

Proposition 2.44. The symmetric monoidal structure on ModM restricts to a symmetric monoidal
structure on the subcategory ModiLM.

Proof. Since ModiLM is a wide subcategory of ModM, all we need to show is that if Li : Ci → Di, i =
1, 2 are in ModiLM, then so is L1⊗L2 : C1⊗C2 → D1⊗D2. Let Ri be the right adjoints of Li, which
by assumption are themselves left adjoints. Because they are left adjoints, we can tensor them to
obtain another left adjoint functor R1⊗R2 : D1⊗D2 → C1⊗C2. It is then straightforward to check
that tensoring the unit and counit of Li ⊣ Ri exhibit an adjunction L1 ⊗ L2 ⊣ R1 ⊗ R2, showing
that L1 ⊗ L2 is an internally left adjoint functor.

We recall that the category CatK has a symmetric monoidal structure, developed in [Lur17,
§4.8.1].

Corollary 2.45. The functor PM
K : CatK → ModiLM of Proposition 2.35 is symmetric monoidal.

Proof. Since the symmetric monoidal structure on ModiLM is inherited from ModM, it suffices to
show that PM

K : CatK → ModM is symmetric monoidal. Indeed, [Lur17, Remark 4.8.1.8] shows that
PK : CatK → PrL is symmetric monoidal, − ⊗ M : PrL → ModM is symmetric monoidal, and by
Proposition 2.29, PK ⊗M ∼= PM

K .

Applying [Lur17, Corollary 7.3.2.7], we immediately get:

Theorem 2.46. The adjunction PM
K : CatK ⇄ ModiLM : (−)at of Proposition 2.43 is symmetric

monoidal, i.e. PM
K is symmetric monoidal with a lax symmetric monoidal right adjoint (−)at.
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Note that for any operad O we get an induced adjunction

PM
K : AlgO(CatK) ⇄ AlgO(ModiLM) : (−)at

whose unit is an enhancement of the Yoneda map (landing in the atomics) to O-algebras. Fur-
thermore, for any C ∈ AlgO(ModiLM) we see that Cat ⊂ C is in fact an O-monoidal subcategory.
We therefore get the following corollary, which generalizes [Gla16, Section 3] and [Lur17, Corollary
4.8.1.12] from the case of M = S,K = ∅ and O = E∞ and makes them natural.

Corollary 2.47. The Yoneda natural transformation lifts to a natural transformation よ
M

K : ιK ⇒
PM
K (−) of functors AlgO(CatK) → AlgO(Ĉat). That is, the Yoneda map よ

M

K : C0 → PM
K (C0) is

O-monoidal and natural in C0 ∈ AlgO(CatK), and factors through the atomics PM
K (C0)

at.

Recall that in Proposition 2.15 we showed that if X ∈ Cat and m ∈ Mat then m⊗X ∈ Cat. Using
Theorem 2.46, we strengthen this into a module structure, using the fact that any lax symmetric
monoidal functor lands in modules over the image of the unit.

Corollary 2.48. The functor of atomic objects factors as a lax symmetric monoidal functor
(−)at : ModiLM → ModMat(CatK).

We also mention the following easy corollary of Proposition 2.44.

Lemma 2.49. Let L : M1 → M2 be a smashing localization of modes and let N be another mode
Then, L⊗ idN : M1 ⊗N → M2 ⊗N is also a smashing localization of modes.

Proof. First, by [CSY21a, Lemma 5.2.1], the functor L⊗ idN is a localization as well. By [CSY21a,
Proposition 5.2.15], a localization of modes is smashing if and only if it is an internally left adjoint
functor in PrL. Thus, L is internally left adjoint, and by Proposition 2.44 we conclude that L⊗ idN
is also internally left adjoint, so that it is also a smashing localization.

2.4 Atomic Modules

In the remainder of the section we show that the atomic objects in LModR for R ∈ Alg(M)
are the left dualizable left modules (in the sense of [Lur17, Definition 4.6.2.3]), summarized in
Corollary 2.56. We begin by collecting certain basic facts about the category of left modules from
[Lur17, §4.8.5].

Theorem 2.50. There is a symmetric monoidal functor LMod(−) : Alg(M) → ModiLM, sending R
to LModR and f : R → S to f! : LModR → LModS.

Proof. Let K denote the collection of all (small) categories, then by [Lur17, Remark 4.8.5.17] there

is a symmetric monoidal functor LMod(−) : Alg(M) → ModM(ĈatK). As in [Lur17, Notation
4.8.5.10], LModR is presentable and f! is left adjoint to f∗. Furthermore, [Lur17, Corollary 4.2.3.7
(2)] shows that the right adjoint f∗ of f! is itself a left adjoint, so that the functor lands in ModiLM.

As the symmetric monoidal structure on ModiLM is restricted from ModM(ĈatK), the factorization
LMod(−) : Alg(M) → ModiLM is indeed symmetric monoidal.

We now recall the following result about left dualizability and adjunctions.
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Proposition 2.51. Let X ∈ LModR, Y ∈ RModR. Then Y is left dual to X if and only if there is
an adjunction

X ⊗1M
− : M ⇄ LModR : Y ⊗R −.

Proof. We explain how this follows from [Lur17, Proposition 4.6.2.18], with C = M, A = Rrev and
the roles of X and Y reversed (see also [Lur17, Remark 4.6.3.16]).

For the first direction, assume that there is an adjunction and let η : idM ⇒ Y ⊗R X ⊗1M
− be

the unit. By the adjunction, we know that for each P ∈ M and Q ∈ LModR the composition

hom(X ⊗1M
P,Q) → hom(Y ⊗R X ⊗1M

P, Y ⊗R Q)
−◦ηP−−−→ hom(P, Y ⊗R Q)

is an equivalence. Since both functors in the adjunction preserve colimits, and the categories are in
the mode M, the adjunction is M-linear. Therefore the two maps

ηP : P → Y ⊗R X ⊗1M
P, η1M

⊗1M
idP : P → Y ⊗R X ⊗1M

P

coincide. This shows that c = η1M
satisfies condition (∗) of the cited proposition.

Similarly, for the other direction, if Y is left dual to X then the coevaluation map c : 1M →
Y ⊗R X gives an (M-linear) natural transformation c ⊗1M

− : idM ⇒ Y ⊗R X ⊗1M
−, which is a

unit of an adjunction by condition (∗) of the cited proposition.

Lemma 2.52. Let R ∈ Alg(M), then R ∈ LModR is atomic. R ⊗ m is also atomic for any
m ∈ Mat.

Proof. Consider [Lur17, Corollary 4.2.3.7 (2)] where both C and M in the reference’s notation are
our M, A = 1C and B = R. Then, the functor LModB → LModA is homM(R,−) : LModR → M,
which therefore commutes with all colimits, showing that R is atomic. The second part follows
from Proposition 2.15.

Proposition 2.53. Let R ∈ Alg(M). Then LModR is molecular with R as an atomic generator.

Proof. The previous lemma shows that R is indeed atomic, and we need to show that it generates
LModR under colimits and the action of M. Specifically, we will show that LModR is generated
under colimits from R ⊗ m for m ∈ M. By [Yan22, Corollary 2.5], this is equivalent to showing
that hom(R ⊗ m,−) : LModR → S are jointly conservative. Note that R ⊗ − : M → LModR is
the left adjoint of (−) : LModR → M, so that hom(R ⊗m,−) ∼= hom(m, (−)). These functors are
indeed jointly conservative since (−) : LModR → M is conservative, and hom(m,−) : M → S over
all m ∈ M are jointly conservative.

Let X ∈ LModR, and consider the functor homM(X,−) : LModR → M. Note that homM(X,R)
is equipped with a canonical right R-module structure which we denote by X∨ ∈ RModR. In
addition, there is a canonical map X∨ ⊗R − → homM(X,−).

Proposition 2.54. LModldblR = LModatR , that is the left dualizable objects are atomic.

Proof. Recall that for X ∈ LModR, the functor X ⊗1M
− : M → LModR is left adjoint to

homM(X,−).
If X is left dualizable, then X ⊗1M

− is left adjoint to Y ⊗R − for some Y ∈ RModR by

Proposition 2.51. By the uniqueness of adjoints we get that homM(X,−) ∼= Y ⊗R−. Since Y ⊗R−
commutes with colimits, we get that X is atomic.
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Now assume that X is atomic. The two functors homM(X,−) and X∨ ⊗R − are colimit pre-
serving, i.e. morphisms in ModM, thus also commute with tensor from M. Proposition 2.53 shows
that LModR is generated from R by these operations, and by the construction of X∨, they agree
on R, so the canonical map between the two is an equivalence. This shows that X ⊗1M

− is left

adjoint to homM(X,−) ∼= X∨ ⊗R −, concluding by Proposition 2.51.

Remark 2.55. If R ∈ CAlg(M), then left and right R-modules coincide, and the category of modules
ModR is equipped with a symmetric monoidal structure for which dualizable modules coincide with
left dualizable modules, thus also with atomic objects, that is ModdblR = ModatR .

Combining Theorem 2.46, Theorem 2.50 and Proposition 2.54 we get the following main result.

Corollary 2.56. There is a lax symmetric monoidal functor LModat(−) : Alg(M) → CatK, and

LModatR = LModldblR .

As a by product, we also obtain the following result.

Lemma 2.57. Let F : M → N be a map of modes, then it sends M-atomic objects to N-atomic
objects.

Proof. By Proposition 2.54, the M-atomic objects in M are the dualizable objects. Since F is
symmetric monoidal it sends dualizable objects to dualizable objects. Thus the M-atomic objects
are sent to dualizable objects in N. Again by Proposition 2.54, the dualizable objects in N are
N-atomic.

3 Day Convolution

The Day Convolution on functor categories was developed in [Gla16, Lur17]. In this section we
prove results about the Day convolution, specifically its functoriality in the source and target.
The results of this section are used in Theorem 4.26 to show that the mode symmetric monoidal
structure on higher commutative monoids coincides with the localization of the Day convolution.
This is subsequently used in Theorem 6.18 to endow higher semiadditive algebraic K-theory with
a lax symmetric monoidal structure.

We begin by recalling the universal property of the Day convolution:

Theorem 3.1 ([Lur17, Remark 2.2.6.8]). Let I,C be symmetric monoidal categories, and assume
that C has all colimits and that its tensor product preserves colimits in each coordinate separately.
Then, there is a symmetric monoidal structure on Fun(I,C), called the Day convolution denoted by
⊛, satisfying the following universal property: There is an equivalence of functors CMon(Cat) →
Cat

Funlax(−× I,C) ∼−→ Funlax(−,Fun(I,C)),

which lifts the equivalence of functors Cat → Cat

Fun(−× I,C) ∼−→ Fun(−,Fun(I,C)).

Example 3.2. Let I be a symmetric monoidal category. Then Iop is also endowed with a symmetric
monoidal structure, and S can be endowed with the cartesian structure, yielding the Day convolution
on P(I) = Fun(Iop, S). By [Lur17, Remark 4.8.1.13], this agrees with the symmetric monoidal
structure on P(I) of [Lur17, Remark 4.8.1.8] used in the proof of Corollary 2.45.
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Proposition 3.3. Let I,C and D be symmetric monoidal categories, and assume that C and D

have all colimits and that their tensor product preserve colimits in each coordinate. Let F : C → D

be a functor and let F̃ : Fun(I,C) → Fun(I,D) be the functor induced by post-composition. If F is
lax symmetric monoidal, then so is F̃ . If F is colimit preserving, then so is F̃ . If F is both colimit
preserving and symmetric monoidal, then so is F̃ .

Proof. We begin with the first part. The identity functor of Fun(I,C) is (lax) symmetric monoidal,
therefore by the universal property of the Day convolution, the corresponding functor Fun(I,C)×
I → C is also lax symmetric monoidal. Post-composition of this functor with the lax symmetric
monoidal functor F gives a lax symmetric monoidal functor Fun(I,C)×I → D. Using the universal
property again, we get that F̃ : Fun(I,C) → Fun(I,D) is also lax symmetric monoidal.

For the second part, if F is colimit preserving, then since colimits in functor categories are
computed level-wise, F̃ is colimit preserving.

Lastly, we assume that F is both colimit preserving and symmetric monoidal. We already
know from the second part that F̃ is colimit preserving. We show that the lax symmetric monoidal
structure from the first part is in fact symmetric monoidal. Recall that by [Lur17, Example 2.2.6.17],
the Day convolution of X,Y ∈ Fun(I,C) is given on objects by

(X ⊛ Y )(i) ∼= colim
i1⊗i2→i

X(i1)⊗ Y (i2).

The lax symmetric monoidal structure of F̃ is then given by the canonical map:

(F̃X ⊛ F̃ Y )(i) ∼= colim
i1⊗i2→i

FX(i1)⊗ FY (i2)

(1)−−→ colim
i1⊗i2→i

F (X(i1)⊗ Y (i2))

(2)−−→ F ( colim
i1⊗i2→i

X(i1)⊗ Y (i2))

∼= (F̃ (X ⊛ Y ))(i)

where map (1) uses the fact F is lax symmetric monoidal, and (2) is the assembly map. Since F is
symmetric monoidal (1) is an equivalence, and since F is colimit preserving (2) is an equivalence,
showing that F̃ is in fact symmetric monoidal.

Our next goal is to study the behavior of the Day convolution under the change of the source
I, namely given a symmetric monoidal functor p : I → J , what can we say about p! : Fun(I,C) →
Fun(J,C) and p∗ : Fun(J,C) → Fun(I,C).

We wish to thank Lior Yanovski for suggesting the following argument to prove Proposition 3.6.

Lemma 3.4. Let C = S equipped with the carestian structure, then p! : Fun(I, S) → Fun(J, S) is
symmetric monoidal.

Proof. This is [Lur17, Remark 4.8.1.8] applied to pop : Iop → Jop.

Lemma 3.5. Let K be a symmetric monoidal category, and let C = Fun(K, S) equipped with the
Day convolution, then p! : Fun(I,C) → Fun(J,C) is symmetric monoidal.
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Proof. By applying the universal property of the Day convolution twice, we know that there is an
equivalence of functors:

Funlax(−× I ×K, S) ∼−→ Funlax(−× I,Fun(K, S)) ∼−→ Funlax(−,Fun(I,Fun(K, S)))

Using the same reasoning with the roles of I and K reversed, and the equivalence I×K ∼= K×I, the
universal property of the Day convolution implies that there is a symmetric monoidal equivalence:

Fun(K,Fun(I, S)) ∼−→ Fun(I,Fun(K, S))

Similarly, we have an equivalence with J in place of I.
Lemma 3.4 constructs a symmetric monoidal functor p! : Fun(I, S) → Fun(J, S). Since this

functor is also colimit preserving, by Proposition 3.3, post-composition with it gives a symmetric
monoidal functor

Fun(K,Fun(I, S)) → Fun(K,Fun(J, S)),

which under the equivalences above gives the desired map p! : Fun(I,C) → Fun(J,C).

Proposition 3.6. Let C ∈ CAlg(PrL), then p! : Fun(I,C) → Fun(J,C) is symmetric monoidal.

Proof. [NS17, Proposition 2.2] shows that there is a symmetric monoidal reflective localization
C̃ → C, for some C̃ = Fun(K, S). Then Fun(I, C̃) → Fun(I,C) given by post-composition is also a
reflective localization, and by Proposition 3.3 it is also symmetric monoidal, and the same holds
with J in place of I.

By Lemma 3.5, we have a symmetric monoidal functor p! : Fun(I, C̃) → Fun(J, C̃). Composing
this with the symmetric monoidal localization Fun(J, C̃) → Fun(J,C), we get a symmetric monoidal
functor Fun(I, C̃) → Fun(J,C). This functor factors through the symmetric monoidal localization
Fun(I, C̃) → Fun(I,C), yielding the symmetric monoidal structure on p! : Fun(I,C) → Fun(J,C).

Applying this to the special case where p is the unit map ∗ → I we get

Corollary 3.7. There is a map F : C → Fun(I,C) in CAlg(PrL).

Furthermore, applying [Lur17, Corollary 7.3.2.7] to the adjunction p∗ ⊣ p! we get

Corollary 3.8. Let C ∈ CAlg(PrL), then p∗ : Fun(J,C) → Fun(I,C) is lax symmetric monoidal.

Remark 3.9. One can directly use the universal property of the Day convolution to show that p∗ is
lax symmetric monoidal, even only assuming that p is lax symmetric monoidal. In fact, one can use
the main result of [HHLN20a] to construct an oplax symmetric monoidal structure on p! in this way
while only assuming that p is lax symmetric monoidal, and prove that it is symmetric monoidal in
case p is. However, we have not shown that the lax symmetric monoidal structure on p∗ obtained
in the above corollary coincides with the one obtained directly from the universal property of the
Day convolution.

Proposition 3.10. Let I ∈ CAlg(Cat) ∼= CMon(Cat) and C ∈ CAlg(PrL). Then the equivalence
Fun(I, S)⊗ C ∼−→ Fun(I,C) is symmetric monoidal.

Proof. Since the tensor product is the coproduct in CAlg(PrL), to upgrade the equivalence into a
symmetric monoidal functor, it suffices to upgrade the functors Fun(I, S) → Fun(I,C) and C →
Fun(I,C) to symmetric monoidal functors. Indeed, by Proposition 3.3 post-composition with the
unit map S → C yields a symmetric monoidal functor Fun(I, S) → Fun(I,C), and Corollary 3.7
shows that C → Fun(I,C) is symmetric monoidal.

24



4 Higher Commutative Monoids

In this section we recall the notion of (p-typical) m-commutative monoids as developed in [Har20]
and [CSY21a] (see Definition 4.2), and their relationship to higher semiadditivity (see Theorem 4.9),
which feature prominently in the definition of higher semiadditive algebraic K-theory in Defini-
tion 6.5. A key result of this section is Theorem 4.26, which shows that for C ∈ CAlg(PrL), the

symmetric monoidal structures on CMon(p)m (C) coming from the mode structure on CMon(p)m (S)
and from the Day convolution coincide. This result is used in Theorem 6.18 to endow higher
semiadditive algebraic K-theory with a lax symmetric monoidal structure.

4.1 Definition and Properties

Definition 4.1. Let C ∈ PrL be a presentable category. We define the category of (p-typical) pre-

m-commutative monoids in C by PCMon(p)m (C) = Fun(Span(S
(p)
m )op,C). We define the underlying

object functor (−) : PCMon(p)m (C) → C by pre-composition with ∗ → Span(S
(p)
m )op, i.e. X = X(∗).

Definition 4.2. We say that a pre-m-commutative monoid X ∈ PCMon(p)m (C) is a (p-typical) m-
commutative monoid if it satisfies the m-Segal condition, i.e. the assembly map X(A) → limA X

is an equivalence for any m-finite p-space A. Their category is the full subcategory CMon(p)m (C) =

Funseg(Span(S
(p)
m )op,C) ⊆ PCMon(p)m (C).

Remark 4.3. The m-Segal condition for X is equivalent to X preserving limits indexed by A ∈ S
(p)
m .

Proposition 4.4. The restriction of the underlying functor (−) : CMon(p)m (C) → C is conservative.

Proof. Follows immediately from the m-Segal condition.

Lemma 4.5. Let C ∈ PrL be a κ-presentable category. Then, µ-filtered colimits commute with
µ-small limits in C, for any µ ≥ κ.

Proof. First, the case C = S is [Lur09, Proposition 5.3.3.3]. Second, the case C = P(C0) follows from
the previous case, since limits and colimits are computed level-wise in functor categories. Lastly, for
the general case we have that C ∼= Indκ(C

κ). By [Lur09, Proposition 5.3.5.3], C ⊆ P(Cκ) is closed
under κ-filtered colimits. Additionally, [Lur09, Corollary 5.3.5.4 (3)] shows that it is also closed
under limits, since limits commute with limits. To conclude, C is closed under µ-filtered colimits
and µ-small limits in P(Cκ) for any µ ≥ κ, and by the second case the result holds for P(Cκ) for
any µ.

Proposition 4.6. The inclusion CMon(p)m (C) ⊆ PCMon(p)m (C) preserves all limits and CMon(p)m (C)
is presentable.

Proof. We essentially repeat the proof in [Har20, Lemma 5.17]. Recall that CMon(p)m (C) is the full

subcategory of PCMon(p)m (C) on those functors that preserve limits index by A ∈ S
(p)
m . As limits

commute with limits, and limits are computed level-wise in PCMon(p)m (C), we get that CMon(p)m (C) is

closed under limits. Let κ be any cardinal such that C is κ-presentable and all A ∈ S
(p)
m are κ-small,

then by Lemma 4.5, limits indexed by A ∈ S
(p)
m commute with κ-filtered colimits in C. Again,

as colimits are computed level-wise in PCMon(p)m (C), we get that CMon(p)m (C) is closed under κ-

filtered colimits. It follows that CMon(p)m (C) is presentable by the reflection principle of [RS21].
Alternatively, the presentability follows from [CH21, Lemma 2.11 (iv)].
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Definition 4.7. Let C ∈ PrL. We denote by Lseg : PCMon(p)m (C) → CMon(p)m (C) the left adjoint of

the inclusion CMon(p)m (C) ⊆ PCMon(p)m (C).

Given a functor F : C → D we get an induced functor F : PCMon(p)m (C) → PCMon(p)m (D) by
post-composing level-wise with F .

Proposition 4.8. If F : C → D commutes with limits indexed by any m-finite p-space A, then the
restriction of F : PCMon(p)m (C) → PCMon(p)m (D) to CMon(p)m (C) lands in CMon(p)m (D), yielding a

functor F : CMon(p)m (C) → CMon(p)m (D).

Proof. Follows immediately from the characterization given in Remark 4.3 and the fact that F
commutes with these limits.

4.2 Higher Commutative Monoids and Semiadditivity

The underlying object functor (−) : CMon(p)m (S) → S has a left adjoint F seg : S → CMon(p)m (S). The

fact that this endows CMon(p)m (S) with the structure of a mode was first proved in [Har20, Corollary
5.19] (for m < ∞), and subsequently developed in [CSY21a, Proposition 5.3.1].

Theorem 4.9 ([CSY21a, Proposition 5.3.1]). CMon(p)m (S) is a mode, that is, it is an idempotent
presentable symmetric monoidal category. As such, it classifies the property of being (p-typically) m-

semiadditive. Furthermore, for any C ∈ PrL there is an equivalence CMon(p)m (C) ∼= CMon(p)m (S) ⊗
C, and tensoring the unit map S → CMon(p)m (S) with C yields a left adjoint functor F seg : C →
CMon(p)m (C).

Remark 4.10. The cited papers prove the result in the non p-typical case, i.e. for all m-finite spaces,
but the same proofs work for the p-typical case.

Following [CSY21a, Definition 5.3.3], we make the following definition.

Definition 4.11. We define [m]צ = CMon(p)m (Sp(p))
∼= CMon(p)m (S)⊗Sp(p). This is the mode which

classifies the property of being a p-local stable and (p-typically) m-semiadditive presentable category.

There is a canonical map of modes, which we call the group-completion (−)gpc : CMon(p)m (S) → .[m]צ

Example 4.12. The case m = 0 reproduces [0]צ ∼= Sp(p) and the group-completion is the map

(−)gpc : CMon(S) → CMongl(S) ∼= Sp≥0 ↪→ Sp(p).

We recall the following:

Proposition 4.13. The inclusions Catm-fin → Cat, Catst → Cat and Catstm-fin → Catm-fin create
all limits.

Proof. The first part is [Lur09, Corollary 5.3.6.10] for K = ∅ and K′ = S
(p)
m . The second part is

[Lur17, Theorem 1.1.4.4]. The third part follows from the combination of the first two.

Combining Proposition 4.8 and Proposition 4.13, we get:

Corollary 4.14. The inclusions Catstm-fin → Catm-fin and Catm-fin → Cat induce inclusions

CMon(p)m (Catstm-fin) → CMon(p)m (Catm-fin) and CMon(p)m (Catm-fin) → CMon(p)m (Cat).
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Proposition 4.15. Let M = CMon(p)m (Sp), then for any C ∈ ModM, the category Cat is stable
and m-semiadditive. Furthermore, the functor taking the atomics gives a lax symmetric monoidal
functor (−)at : ModiLM → Catstm-fin. The same holds for the mode [m]צ ∼= M ⊗ Sp(p), and the

corresponding functor (−)at : ModiLצ[m] → Catstm-fin is the restriction of the previous functor.

Proof. We first show that for any C ∈ ModM, Cat is stable and m-semiadditive. Recall from [HL13,

Proposition 4.3.9] that for any C in the mode CMon(p)m (S) and m-finite p-space A, A-shaped limits in

C commute with all colimits, showing that all m-finite p-space A are absolute limits in CMon(p)m (S),
and by Lemma 2.20 also in M. Since Cat is a full subcategory of the m-semiadditive category C,
and is closed under all colimits indexed by any m-finite p-space A, it is in fact m-semiadditive by
[CSY21a, Proposition 2.1.4 (4)]. The stability statement follows from Proposition 2.25.

In particular, this shows that K, the collection of all finite categories and m-finite p-spaces, is a
collection of absolute limits of M. Theorem 2.46 then shows that there is a lax symmetric monoidal
functor (−)at : ModiLM → CatK. Recall that there is a fully faithful functor (−)⊗ : CMon(Cat)lax →
Op from the category of symmetric monoidal categories and lax symmetric monoidal functors to
operads. Note that Catstm-fin ⊂ CatK is the full subcategory on those categories which are in
addition stable, but it is not a sub-symmetric monoidal category, since the unit of CatK is not
stable. However, it is true that the tensor product of a family of categories in either category is the
same, in particular Catst,⊗m-fin is a sub-operad of Cat⊗K. Therefore, we get that the map of operads

(−)at : ModiL,⊗M → Cat⊗K factors through the operad Catst,⊗m-fin, which corresponds to the desired lax

symmetric monoidal functor (−)at : ModiLM → Catstm-fin.
Note that [m]צ ∼= M ⊗ Sp(p) is a smashing localization of M. The argument above works

for [m]צ in place of M. Furthermore, by Proposition 2.26, the atomic objects with respect to
either one are the same, showing that that (−)at : ModiLצ[m] → Catstm-fin is indeed the restriction of

(−)at : ModiLM → Catstm-fin. We also note that the lax symmetric monoidal structure on the latter
restricts to the lax symmetric monoidal structure on the former. To see that, observe that the

symmetric monoidal left adjoint of the latter PK
[m]צ

: Catstm-fin → ModiLצ[m] factors as the composition

of the symmetric monoidal functors Catstm-fin

PM
K−−→ ModiLM

[m]צ⊗−

−−−−−→ ModiLצ[m] , so the lax symmetric
monoidal right adjoint factors accordingly.

4.3 Tensor Product of Higher Commutative Monoids

Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. In this subsection, we endow

CMon(p)m (C) with two symmetric monoidal structures, and show that they coincide. The first,
which we call the mode symmetric monoidal structure (see Definition 4.16), comes from the fact that

CMon(p)m (S) is a mode. The second, which we call the localized Day convolution (see Definition 4.25),

is obtained by localizing the Day convolution on PCMon(p)m (C). Finally, in Theorem 4.26 we show
that the two structures coincide.

Recall that by Theorem 4.9, CMon(p)m (S) is a mode, and in particular it is equipped with a
symmetric monoidal structure.

Definition 4.16. Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. The equiv-

alence CMon(p)m (C) ∼= CMon(p)m (S) ⊗ C of Theorem 4.9 endows CMon(p)m (C) with a presentably
symmetric monoidal structure which we call the mode symmetric monoidal structure and denote by
⊗. Furthermore, by construction, F seg : C → CMon(p)m (C) is endowed with a symmetric monoidal
structure.
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In a different direction, consider the category Span(S
(p)
m ). Since S

(p)
m is closed under products,

it has a cartesian monoidal structure. By [Hau17, Theorem 1.2 (iv)], its span category Span(S
(p)
m )

is endowed with a symmetric monoidal structure given on objects by their cartesian product in

S
(p)
m . Therefore, the opposite category Span(S

(p)
m )op is also endowed with a symmetric monoidal

structure.

Remark 4.17. The symmetric monoidal structure on Span(S
(p)
m ) that we use is not the cartesian

or cocartesian structure. In fact, the cartesian and cocartesian structures coincide (since products

and coproducts coincide in Span(S
(p)
m ), being a semiadditive category), and are given on objects by

the disjoint union of spaces, whereas the symmetric monoidal structure we use is given on objects
by the product of spaces.

Definition 4.18. Let C ∈ CAlg(PrL) be a presentably symmetric monoidal category. We endow

PCMon(p)m (C) = Fun(Span(S
(p)
m )op,C) with the Day convolution of Theorem 3.1, which we denote

by ⊛. By Corollary 3.7, we have a symmetric monoidal functor F : C → PCMon(p)m (C).

Our next goal, achieved in Proposition 4.24, is to show that the Day convolution is compatible
with the reflective localization Lseg : PCMon(p)m (C) → CMon(p)m (C), endowing it with a localized
symmetric monoidal structure. Recall from [Lur17, Example 2.2.1.7] that for a symmetric monoidal
category D, we say that a reflective localization L : D → D0 is compatible with the symmetric
monoidal structure, if and only if for any L-equivalence X → Y ∈ D and Z ∈ D, the morphism
X ⊗ Z → Y ⊗ Z ∈ D is an L-equivalence.

Remark 4.19. By the Yoneda lemma, a map X → Y is an L-equivalence if and only if for any
T ∈ D0 the induced map hom(Y, T ) → hom(X,T ) is an equivalence.

Lemma 4.20. Let D and L be as above, and assume further that the symmetric monoidal structure
on D is closed. Then, the reflective localization is compatible with the symmetric monoidal structure
if and only if for any L-equivalence X → Y ∈ D and T ∈ D0 the induced map on internal homs
homD(Y, T ) → homD(X,T ) is an equivalence.

Proof. Fix a map X → Y ∈ D. By the Yoneda lemma, homD(Y, T ) → homD(X,T ) is an equiv-
alence for any T ∈ D0, if and only if the map hom(Z,homD(Y, T )) → hom(Z,homD(X,T )) is an
equivalence for any Z ∈ D, T ∈ D0. By adjunction, the latter holds if and only if hom(Y ⊗Z, T ) →
hom(X ⊗ Z, T ) is an equivalence for any Z ∈ D, T ∈ D0. By the Yoneda lemma, this holds if and
only if X ⊗ Z → Y ⊗ Z is an L-equivalence for any Z ∈ D.

Lemma 4.21. Let D,D0,E ∈ CAlg(PrL) and let L : D → D0 be a reflective localization which is
compatible with symmetric monoidal structure. Then L ⊗ id : D ⊗ E → D0 ⊗ E is also a reflective
localization compatible with the symmetric monoidal structure on D⊗ E.

Proof. We let L′ = L⊗ id. First note that L′ is indeed a reflective localization by [CSY21a, Lemma
5.2.1]. Using [Lur17, Proposition 2.2.1.9] we endow D0 with the localized symmetric monoidal
structure, making L into a symmetric monoidal functor. Since ⊗ is the coproduct of CAlg(PrL), this
makes the categories and the map L′ : D⊗E → D0⊗E symmetric monoidal. Now letX → Y ∈ D⊗E

be an L′-equivalence. For any Z ∈ D⊗ E, we have

L′(X ⊗ Z → Y ⊗ Z) ∼= (L′X ∼−→ L′Y )⊗ (L′Z
id−→ L′Z)

which is an equivalence.
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Note that by the Yoneda lemma, for any A ∈ S
(p)
m , the objectよ(A) ∈ PCMon(p)m (S) corepresents

the evaluation at A functor PCMon(p)m (S) → S given byX 7→ X(A). We also note that these functors

over all A ∈ S
(p)
m are jointly conservative.

Lemma 4.22. Let X ∈ PCMon(p)m (S), and A ∈ S
(p)
m , then

homPCMon(p)
m (S)(よ(A), X) ∼= X(A×−).

In particular, if X ∈ CMon(S), then so is homPCMon(p)
m (S)(よ(A), X).

Proof. By [Lur17, Corollary 4.8.1.12], the Yoneda embedding よ : Span(S
(p)
m ) → PCMon(p)m (S) is

symmetric monoidal, so that よ(A)⊗よ(−) ∼=よ(A×−). Therefore, we get

homPCMon(p)
m (S)(よ(A), X)(−) ∼= hom(よ(−),homPCMon(p)

m (S)(よ(A), X))

∼= hom(よ(A)⊗よ(−), X)

∼= hom(よ(A×−), X)
∼= X(A×−).

For the second part, note that X(A×−) is the pre-composition of X with A×− : Span(S
(p)
m )op →

Span(S
(p)
m )op which preserves limits indexed by B ∈ S

(p)
m . By Remark 4.3, the m-Segal condition is

equivalent to preservation of limits indexed by B ∈ S
(p)
m , so the result follows.

Lemma 4.23. The reflective localization Lseg : PCMon(p)m (S) → CMon(p)m (S) is compatible with the
Day convolution.

Proof. By Lemma 4.20, it suffices to show that for any CMon(p)m (S)-equivalence X → Y and

T ∈ CMon(p)m (S) the induced map homPCMon(p)
m (S)(Y, T ) → homPCMon(p)

m (S)(X,T ) is an equiva-

lence. Since the evaluations at A ∈ S
(p)
m are jointly conservative, it suffices to show that for any

A ∈ S
(p)
m the map hom(よ(A),homPCMon(p)

m (S)(Y, T )) → hom(よ(A),homPCMon(p)
m (S)(X,T )) is an

equivalence. By adjunction, this is equivalent to showing that hom(Y,homPCMon(p)
m (S)(よ(A), T )) →

hom(X,homPCMon(p)
m (S)(よ(A), T )) is an equivalence. By assumption X → Y is an CMon(p)m (S)-

equivalence and T ∈ CMon(p)m (S), so the result follow from the second part of Lemma 4.22.

Proposition 4.24. The reflective localization Lseg : PCMon(p)m (C) → CMon(p)m (C) is compatible
with the Day convolution.

Proof. Consider the following commutative diagram in PrL:

PCMon(p)m (S)⊗ C PCMon(p)m (C)

CMon(p)m (S)⊗ C CMon(p)m (C)

∼

∼

The bottom map is an equivalence by Theorem 4.9. The top map is a symmetric monoidal equiv-
alence by Proposition 3.10. By Lemma 4.23, Lseg : PCMon(p)m (S) → CMon(p)m (S) is compatible with
the Day convolution, so by Lemma 4.21 the left map is also compatible with the symmetric monoidal
structure. Therefore, the right map is also compatible with the Day convolution.
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Definition 4.25. Using [Lur17, Proposition 2.2.1.9], we endow CMon(p)m (C) ⊆ PCMon(p)m (C) with
the induced symmetric monoidal structure, which we call the localized Day convolution and denote
by ⊛̂. This makes the functor Lseg : PCMon(p)m (C) → CMon(p)m (C) symmetric monoidal (with respect

to the localized Day convolution), thus by [Lur17, Corollary 7.3.2.7] the right adjoint CMon(p)m (C) ⊆
PCMon(p)m (C) is lax symmetric monoidal.

The main result of this subsection is the following:

Theorem 4.26. Let C ∈ CAlg(PrL), then the mode symmetric monoidal structure and the localized

Day convolution on CMon(p)m (C) coincide, making the following diagram in CAlg(PrL) commute:

PCMon(p)m (C)

C CMon(p)m (C)

Lseg

F seg

F

We begin by proving the result for C = S.

Lemma 4.27. The localized Day convolution and the mode symmetric monoidal structure on
CMon(p)m (S) coincide, and LsegF ∼= F seg.

Proof. The right adjoint of F seg is the underlying object functor (−) : CMon(p)m (S) → S, which by

adjunction is represented by F seg(∗) ∼= 1⊗. By [Lur17, Corollary 4.8.1.12], the Yoneda embedding

よ : Span(S
(p)
m ) → PCMon(p)m (S) is symmetric monoidal, and in particular the unit of PCMon(p)m (S)

is 1⊛ ∼=よ(∗). Using the Yoneda lemma we get

hom
CMon

(p)
m (S)

(1⊛̂, X) ∼= hom
CMon

(p)
m (S)

(Lseg1⊛, X)

∼= hom
PCMon

(p)
m (S)

(1⊛, X)

∼= hom
PCMon

(p)
m (S)

(よ(∗), X)

∼= X.

Therefore, 1⊛̂ also represents (−), so that 1⊛̂ ∼= 1⊗. Since CMon(p)m (S) is a mode, it has a unique
presentably symmetric monoidal structure with the given unit as in [CSY21a, Proposition 5.1.6], so

that localized Day convolution and the mode symmetric monoidal structure on CMon(p)m (S) coincide.

Since there is a unique map of modes S → CMon(p)m (S), the functors LsegF and F seg coincide.

Proof of Theorem 4.26. Consider the following diagram in CAlg(PrL) where we endow CMon(p)m (C)
with the localized Day convolution structure (and the rest of the categories are endowed with a

single symmetric monoidal structure, as we have shown that the two structures on CMon(p)m (S)
coincide.)

PCMon(p)m (S)⊗ C PCMon(p)m (C)

CMon(p)m (S)⊗ C CMon(p)m (C)

∼

∼
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The bottom map is an equivalence by Theorem 4.9, and we wish to upgrade it to a symmetric
monoidal equivalence.

The top map is a symmetric monoidal equivalence by Proposition 3.10. As in the proof of
Proposition 4.24, both the left and the right maps are symmetric monoidal. This shows that the
bottom map is the localization of the top map, and thus inherits the structure of a symmetric
monoidal equivalence.

5 Higher Cocartesian Structure

Endowing a category C ∈ Cat with a symmetric monoidal structure is the same as providing a
lift C⊗ ∈ CMon(Cat). If C has finite coproducts, it has a cocartesian structure C⊔ given by the
coproduct. An Eckmann–Hilton style argument characterizes it as the unique symmetric monoidal
structure that commutes with coproducts (in all coordinates together), namely satisfying

(X ⊗ Y ) ⊔ (Z ⊗W ) ∼= (X ⊔ Z)⊗ (Y ⊔W ).

Building on [Har20, Theorem 5.23], in this section we define the (p-typical) m-cocartesian structure
as an m-commutative monoid structure, and in Theorem 5.3 we show that it enjoys the expected
properties, which in particular gives a construction of the ordinary cocartesian structure. The results
of this section feature in the definition of higher semiadditive algebraic K-theory in Definition 6.5,
by preserving the m-commutative monoid structure afforded by the m-cocartesian structure.

Definition 5.1. The category of categories with a (p-typical) m-symmetric monoidal structure is

CMon(p)m (Cat). That is, anm-symmetric monoidal structure on C ∈ Cat is a lift C⊗ ∈ CMon(p)m (Cat).

In [Har20, Theorem 5.23] and [CSY21a, Proposition 2.2.7] it is shown that the category Catm-fin

of categories admitting colimits indexed bym-finite p-spaces is itself an (p-typically)m-semiadditive
category for any −2 ≤ m ≤ ∞ (the proofs in the cited papers are not in the p-typical case, but the
same proofs work in the p-typical case). In other words, the underlying functor

(−) : CMon(p)m (Catm-fin) → Catm-fin

is an equivalence. We denote its inverse by (−)⊔m : Catm-fin
∼−→ CMon(p)m (Catm-fin). We recall from

Corollary 4.14 that there is an inclusion CMon(p)m (Catm-fin) → CMon(p)m (Cat).

Definition 5.2. For every C ∈ Catm-fin, we call C⊔m ∈ CMon(p)m (Cat) the m-cocartesian structure
on C. When m is clear from the context, we shall write C⊔ for C⊔m .

Our next goal is to justify this name. In particular, we will show that for every m-finite p-space
A, the map CA → C induced by evaluating C⊔ at A → ∗ is given by taking the colimit over A. More

precisely, for any C ∈ Cat, let C∗ ∈ Fun((S
(p)
m )op,Cat) be the functor Fun(−,C), given by sending

m-finite p-space A to CA and q : A → B to q∗ : CB → CA. If we assume that C ∈ Catm-fin, then
q∗ : CB → CA has a left adjoint q! : C

A → CB . By passing to the left adjoints, we obtain a functor

C! ∈ Fun(S
(p)
m ,Cat). The main result of this section is then:

Theorem 5.3. The restriction of C⊔ ∈ CMon(p)m (Cat) along the right-way maps S
(p)
m → Span(S

(p)
m )

is C∗, and similarly along the wrong-way maps (S
(p)
m )op → Span(S

(p)
m ) is C!.
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To prove this, we first note that not only each q∗ has a left adjoint q!, but they also satisfy the

Beck–Chevalley condition. This means that C∗ is in fact in FunBC((S
(p)
m )op,Cat) (where FunBC are

functors such that each morphism is mapped to a right adjoint, such that the Beck–Chevalley con-
dition is satisfied). We will use Barwick’s unfurling construction [Bar17, Definition 11.3]. Barwick
works in a more general context, allowing to prescribe only certain right- and wrong-way morphisms,

but we shall not use this generality. After straightening, the unfurling construction for (S
(p)
m )op takes

a functor F ∈ FunBC((S
(p)
m )op,Cat), and produces a new functor Υ(F ) ∈ Fun(Span(S

(p)
m )op,Cat),

and enjoys the following properties:

Theorem 5.4 ([Bar17, Proposition 11.6 and Theorem 12.2]). For any F ∈ FunBC((S
(p)
m )op,Cat),

the restriction of Υ(F ) along the right-way maps S
(p)
m → Span(S

(p)
m ) is F , and similarly along the

wrong-way (S
(p)
m )op → Span(S

(p)
m ) is the functor sending the morphisms to the left adjoints.

Using this result, we our now in position to prove Theorem 5.3.

Proof of Theorem 5.3. By Barwick’s theorem, Υ(C∗) has the properties we ought to prove for C⊔,
so it suffices to show that C⊔ ∼= Υ(C∗). Furthermore, recall that that the underlying functor

(−) : CMon(p)m (Catm-fin) → Catm-fin is an equivalence, so each C ∈ Catm-fin has a unique lift

to CMon(p)m (Catm-fin). Therefore, it suffices to show that Υ(C∗) ∈ Fun(Span(S
(p)
m )op,Cat) is in

CMon(p)m (Catm-fin), i.e. that it satisfies the m-Segal condition and that it takes values in Catm-fin.
First, by construction, C∗ satisfies the m-Segal condition. Since the restriction of Υ(C∗) along

(S
(p)
m )op → Span(S

(p)
m ) is C∗, it follows that it satisfies the m-Segal condition as well, thus Υ(C∗) ∈

CMon(p)m (Cat).
Second, we need to show that Υ(C∗) lands in Catm-fin. By assumption C ∈ Catm-fin, thus

the same holds for CA for all m-finite p-space A. For morphisms, we need to show they are
sent to functors that commute with colimits indexed by any m-finite p-space A. Any morphism in

Span(S
(p)
m ) is the composition of a right-way and a wrong-way map, so we can check these separately.

So let q : A → B be a morphism of m-finite p-spaces. Since q! is a left adjoint, it commutes with
colimits indexed by any m-finite p-space A, so it is a morphism in Catm-fin. Since colimits in functor
categories are computed level-wise, the functor q∗ commutes with them, so it is also a morphism in
Catm-fin.

Remark 5.5. In light of Barwick’s construction, one could define the m-cocartesian structure
simply by C⊔ = Υ(C∗). The reason why we define it via the equivalence (−)⊔ : Catm-fin

∼−→
CMon(p)m (Catm-fin) is two fold. First, this construction characterizes C⊔ in a universal way. Second,
Barwick’s unfurling construction, although much more general then our definition, is not shown to
be functorial in F , which will be used crucially for C⊔ in our definition of semiadditive algebraic
K-theory.

Theorem 5.6. The restriction of (−)⊔ : Catm-fin
∼−→ CMon(p)m (Catm-fin) to Catstm-fin lands in

CMon(p)m (Catstm-fin), and induces an equivalence (−)⊔ : Catstm-fin
∼−→ CMon(p)m (Catstm-fin).

Proof. Let C ∈ Catstm-fin. We know that C⊔ ∈ CMon(p)m (Catm-fin). By Proposition 4.13, for any m-
finite p-space A, CA is computed the same in Cat, Catm-fin and Catstm-fin, and in particular it is stable.

Furthermore, for any q : A → B, both q! and q∗ are exact. Thus C⊔ ∈ Fun(Span(S
(p)
m )op,Catstm-fin).

Again by Proposition 4.13, it satisfies the m-Segal condition so that C⊔ ∈ CMon(p)m (Catstm-fin).
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For a functor F : C → D in Catstm-fin, we have an induced functor C⊔ → D⊔ in CMon(p)m (Catm-fin).
At every point it is given by F ◦− : CA → DA, which is exact, thus a map in Catstm-fin. This finishes

the first part, showing that (−)⊔ lands in CMon(p)m (Catstm-fin).

By Corollary 4.14, the inclusion Catstm-fin → Catm-fin induces an inclusion CMon(p)m (Catstm-fin) →
CMon(p)m (Catm-fin). The maps (−) : CMon(p)m (Catm-fin) ⇄ Catm-fin : (−)⊔, which are inverses to
each other, restrict to maps between the subcategories, which are therefore inverses to each other
as well.

6 Semiadditive Algebraic K-Theory

In this section we define an m-semiadditive version of algebraic K-theory. We begin by recalling
the construction of ordinary algebraic K-theory, and present it in a way which is amenable to
generalizations. We then generalize the definition to construct m-semiadditive algebraic K-theory
in Definition 6.5, and connect it to ordinary algebraic K-theory in Corollary 6.10. We leverage this
connection in Theorem 6.18 to endow the functor of m-semiadditive algebraic K-theory with a lax
symmetric monoidal structure. This is later used to prove Theorem 8.10 and Theorem 8.23, two of
the main results of this paper.

6.1 Ordinary Algebraic K-Theory

We recall the definition of the S•-construction for stable categories and exact functors. One defines
the functor S• : Cat

st → S∆
op

by letting SnC be the subspace of those functors X : [n][1] → C that
satisfy:

(1) Xii = 0,

(2) For all i ≤ j ≤ k the following is a bicartesian square

Xij Xik

Xjj Xjk

that is, Xij → Xik → Xjk is a (co)fiber sequence.

The algebraic K-theory space functor K: Catst → S is then defined as the composition K(C) =
Ω|S•C|. One then proceeds to lift to (connective) spectra, e.g. by means of iterated S•-construction.
We will give an equivalent construction of the spectrum structure, which will be easier to generalize.
To that end, we show the following:

Lemma 6.1. The functor S• : Cat
st → S∆

op

commutes with limits.

Proof. For each n, the functor Sn : Cat
st → S is equivalent to hom([n − 1],−), and in particular

it commutes with limits. Since limits in the functor category S∆
op

are computed level-wise, this
implies that S• commutes with limits as well.

This together with Proposition 4.8 implies that we get an induced functor S• : CMon(Catst) →
CMon(S)∆

op

. Employing Theorem 5.6, we give the following definition.
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Definition 6.2. We define algebraic K-theory K: Catst → Sp by K(C) = Ω|(S•(C
⊔))gpc|, that is,

as the following composition

Catst
(−)⊔−−−→ CMon(Catst)

S•−→ CMon(S)∆
op (−)gpc

−−−−→ Sp∆
op |−|−−→ Sp

Ω−→ Sp.

Lemma 6.3. The composition of K: Catst → Sp with Ω∞ : Sp → S is K.

Proof. First note that (−)gpc : CMon(S) → Sp is a left adjoint, and therefore commutes with the
colimit | − |, and that Ω((−)gpc) ∼= Ω as functors CMon(S) → Sp. This shows that our definition of
algebraic K-theory is equivalent to the composition

Catst
(−)⊔−−−→ CMon(Catst)

S•−→ CMon(S)∆
op |−|−−→ CMon(S)

Ω−→ Sp.

Consider the following diagram:

Catst CMon(Catst) CMon(S)∆
op

CMon(S) Sp

Catst Catst S∆
op

S S

(−)⊔

(1)

S•

(−) (2)

|−|

(−)
(3)

Ω

(−) (4) (−)

S• |−| Ω

Square (1) commutes because (−)⊔ and (−) are inverses by Theorem 5.6. Square (2) commutes by
the definition of the extension of S• to CMon. Square (3) commutes since the underlying commutes
with geometric realizations. Square (4) commutes because Ω is a limit and the underlying is a right
adjoint functor. Finally, the top-right composition is Ω∞K, whereas the left-bottom composition
is K.

We now claim that the above definition of the spectrum structure coincides with the standard
one. Note that by construction K in fact lands in connective spectra.

Proposition 6.4. There is a unique lift of K: Catst → S to K: Catst → Sp≥0.

Proof. The universal property of commutative monoids given in [Har20, Corollary 5.15] implies
that if D has finite products and C is semiadditive, then Fun×(C,D) ∼= Fun×(C,CMon(D)). Since
CMongl(D) ⊆ CMon(D) is a full subcategory closed under products,

Fun×(C,CMongl(D)) ⊆ Fun×(C,CMon(D))

is a full subcategory. Therefore, the forgetful

Fun×(C,CMongl(D)) → Fun×(C,D)

is fully faithful, meaning that product preserving functors C → D have unique or no lifts to
CMongl(D). In particular, for D = S, using the equivalence CMongl(S) ∼= Sp≥0, we get that
the forgetful

Fun×(C,Sp≥0) → Fun×(C, S)

is fully faithful.
Applying this to the case C = Catst, the result follows since K has a lift, which is therefore

unique.

34



6.2 Definition of Semiadditive Algebraic K-Theory

We restrict the S•-construction to Catstm-fin, and use the same notation i.e. S• : Cat
st
m-fin → S∆

op

.
Proposition 4.13 shows that Catstm-fin → Catst preserve limits, thus by Lemma 6.1, the restriction
S• : Cat

st
m-fin → S∆

op

preserves limits as well, so using Proposition 4.8 again we get an induced

functor S• : CMon(p)m (Catstm-fin) → CMon(p)m (S)∆
op

. Employing Theorem 5.6, we give the following
definition.

Definition 6.5. We define m-semiadditive algebraic K-theory K[m] : Catstm-fin → [m]צ by K[m](C) =
Ω|(S•(C

⊔))gpc|, that is, as the following composition

Catstm-fin

(−)⊔−−−→ CMon(p)m (Catstm-fin)
S•−→ CMon(p)m (S)∆

op (−)gpc

−−−−→ ∆([m]צ)
op |−|−−→ [m]צ Ω−→ .[m]צ

Example 6.6. Proposition 6.4 shows that the case m = 0 recovers the p-localization of the ordinary
K-theory of stable categories.

Proposition 6.7. The functor K[m] : Catstm-fin → [m]צ is an m-semiadditive functor, i.e. commutes
with all limits indexed by an m-finite p-space. In particular, K[m](CA) ∼= K[m](C)A for any m-finite
p-space A.

Proof. The functor K[m] : Catstm-fin → [m]צ is defined as the composition of functors between m-
semiadditive categories ([CSY21a, Proposition 2.1.4 (1) and (2)] imply the m-semiadditivity of

CMon(p)m (S)∆
op

and ∆([m]צ)
op

). All of the functors either preserve all limits (in the case of (−)⊔, S•
and Ω) or preserve all colimits (in the case of (−)gpc and | − |). In particular they are all m-
semiadditive functors, thus the composition is an m-semiadditive functor as well.

6.3 Relationship to Ordinary Algebraic K-Theory

Proposition 6.7 shows that K[m] is an m-semiadditive functor, and in particular satisfies K[m](CA) ∼=
K[m](C)A for any m-finite p-space A. One may wonder if K[m] can be obtained by forcing ordinary
algebraic K-theory to satisfy this condition. In this subsection we show a more general result of

this sort. To be more specific, let m0 ≤ m, then Definition 6.8 introduces a functor K
[m0]
[m] , which

associates to C ∈ Catstm-fin the pre-m-commutative monoid given on objects by A 7→ K[m0](CA).
The main result of this subsection is Theorem 6.9, which shows that forcing the m-Segal condition

on K
[m0]
[m] is indeed K[m]. In particular, the case m0 = 0 yields an alternative definition of m-

semiadditive algebraic K-theory, by forcing A 7→ K(CA) to satisfy the m-Segal condition.

Consider the inclusion i : CMon(p)m (Catstm-fin) ⊆ PCMon(p)m (Catstm-fin) → PCMon(p)m (Catstm0-fin).
Using this we are lead to the main definition.

Definition 6.8. We define the functor K
[m0]
[m] : Catstm-fin → PCMon(p)m ([m0]צ) by the following com-

position:

Catstm-fin

(−)⊔−−−→ CMon(p)m (Catstm-fin)
i−→ PCMon(p)m (Catstm0-fin)

K[m0]◦−−−−−−→ PCMon(p)m ([m0]צ)

We recall that for any D we have an equivalence CMon(p)m (D) ∼= CMon(p)m (CMon(p)m0
(D)) (which

is given by sending X ∈ CMon(p)m (D) to the iterated commutative monoid given on objects by
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A 7→ (B 7→ X(A × B))). In particular, we can consider it as a full subcategory CMon(p)m (D) ⊆
PCMon(p)m (CMon(p)m0

(D)), and this inclusion has a left adjoint Lseg.

Applying the above for D = Sp(p) shows that we have an inclusion of a full subcategory [m]צ ⊆
PCMon(p)m ([m0]צ) with a left adjoint Lseg. This allows us consider K[m] : Catstm-fin → [m]צ as a

functor to PCMon(p)m .([m0]צ)

Theorem 6.9. There is a natural equivalence LsegK
[m0]
[m]

∼−→ K[m] of functors Catstm-fin → .[m]צ

Proof. We show that the square

Catstm-fin PCMon(p)m ([m0]צ)

Catstm-fin [m]צ

K
[m0]

[m]

Lseg

K[m]

commutes by admitting it as a (horizontal) composition of commutative squares, following the
definition of the two functors.

Both functors start with Catstm-fin

(−)⊔−−−→ CMon(p)m (Catstm-fin).
Consider the square below. The lift of S• to (pre-)m-commutative monoids is given by post-

composition. From this description, the upper composition in fact lands in CMon(p)m (CMon(p)m0
(S)∆

op

),
so Lseg acts on the image as the identity, making the square commute.

CMon(p)m (Catstm-fin) PCMon(p)m (Catstm0-fin) PCMon(p)m (CMon(p)m0
(S)∆

op

)

CMon(p)m (Catstm-fin) CMon(p)m (S)∆
op

i S•(−)⊔m0

Lseg

S•

The following square commutes because all maps are left adjoints and the square of right adjoints
commutes because they are all forgetfuls.

PCMon(p)m (CMon(p)m0
(S)∆

op

) PCMon(p)m ∆([m0]צ))
op

)

CMon(p)m (S)∆
op

∆([m]צ)
op

(−)gpc

Lseg Lseg

(−)gpc

The following square commutes because Lseg is a left adjoint, thus commutes with colimits.

PCMon(p)m ∆([m0]צ))
op

) PCMon(p)m ([m0]צ)

∆([m]צ)
op [m]צ

|−|

Lseg Lseg

|−|

Lastly, Lseg is an exact functor between stable categories, thus it commutes with finite limits,
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so the following square commutes.

PCMon(p)m ([m0]צ) PCMon(p)m ([m0]צ)

[m]צ [m]צ

Ω

Lseg Lseg

Ω

In particular, restricting to the case m0 = 0, we get that the functor K[m] given by A 7→ K(CA)
satisfies the following:

Corollary 6.10. There is a natural equivalence LsegK[m]
∼−→ K[m] of functors Catstm-fin → .[m]צ

In particular, if K[m](C) : Span(S
(p)
m )op → Sp(p) satisfies the m-Segal condition, then K[m](C) ∼=

K[m](C).

Corollary 6.11. There is a natural transformation K → K[m] of functors Catstm-fin → Sp(p).

Proof. By adjunction, the equivalence LsegK[m]
∼−→ K[m] of Corollary 6.10 corresponds to a natural

transformation K[m] → K[m] of functors Catstm-fin → PCMon(p)m (Sp(p)), where the target lands in

.[m]צ Evaluating the pre-m-commutative monoids at the point gives the desired natural transfor-
mation.

Recall that SpT(n) is ∞-semiadditive. In particular, SpT(n)
∼= CMon(p)m (SpT(n)). Additionally,

there is a canonical map of modes Lצ[m]

T(n) : [m]צ → SpT(n). Recall from [CSY21a, Corollary 5.5.14]

that Lצ
T(n) : צ → SpT(n) is a smashing localization, here we prove a slight generalization.

Lemma 6.12. For any m ≥ 1 and n ≥ 0, the functor Lצ[m]

T(n) : [m]צ → SpT(n) is a smashing
localization of modes.

Proof. Recall that Lf
n : Sp → Lf

nSp is a smashing localization. Tensoring with the stable mode
,[m]צ by Lemma 2.49 we get that [m]צ → Lf⊗[m]צ

nSp is a smashing localization of modes. Now, by
[CSY21a, Theorem G] we know that [m]צ ⊗ Lf

nSp
∼= SpT(0) × · · · × SpT(n), and the projection to a

factor is a smashing localization of modes as well. Therefore, the composition Lצ[m]

T(n) : [m]צ → SpT(n)

is also smashing localization of modes.

Proposition 6.13. The following square commutes:

PCMon(p)m (Sp(p)) PCMon(p)m (SpT(n))

[m]צ SpT(n)

LT(n)

Lseg
Lseg

Lצ[m]

T(n)

Proof. First recall that by definition [m]צ = CMon(p)m (Sp(p)), and as explained above, SpT(n)
∼=

CMon(p)m (SpT(n)). All of the morphisms in the square in the statement are left adjoints. Using the
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two identifications and passing to the right adjoints we obtain the square:

PCMon(p)m (Sp(p)) PCMon(p)m (SpT(n))

CMon(p)m (Sp(p)) CMon(p)m (SpT(n))

This square commutes as all morphisms are inclusions, thus the original square of left adjoints
commutes as well.

Corollary 6.14. There is an equivalence LsegLT(n)K[m]
∼−→ Lצ[m]

T(n)K
[m]. In particular, if LT(n)K[m](C)

satisfies the m-Segal condition, then LT(n)K(C) ∼= Lצ[m]

T(n)K
[m](C).

Proof. The first part follows immediately from Corollary 6.10 and Proposition 6.13. For the
second part, if LT(n)K[m](C) satisfies the m-Segal condition, then by the first part there is an

equivalence LT(n)K[m](C) ∼= Lצ[m]

T(n)K
[m](C). The equivalence CMon(p)m (SpT(n))

∼= SpT(n), given

by taking the underlying object, identifies LT(n)K[m](C) with LT(n)K(C), showing that indeed

LT(n)K(C) ∼= Lצ[m]

T(n)K
[m](C).

Corollary 6.15. There is a natural transformation LT(n)K → Lצ[m]

T(n)K
[m] of functors Catstm-fin →

SpT(n).

Proof. Similarly to Corollary 6.11, by adjunction, the equivalence LsegLT(n)K[m]
∼−→ Lצ[m]

T(n)K
[m]

of Corollary 6.14 corresponds to a natural transformation LT(n)K[m] → Lצ[m]

T(n)K
[m] of functors

Catstm-fin → PCMon(p)m (SpT(n)), where the target lands in CMon(p)m (SpT(n))
∼= SpT(n). Evaluating

the pre-m-commutative monoids at the point gives the desired natural transformation.

6.4 Multiplicative Structure

Using Corollary 6.10 we leverage the lax symmetric monoidal structure on algebraic K-theory
developed in [BGT14, Corollary 1.6] and [Bar15, Proposition 3.8] to construct a lax symmetric
monoidal structure on m-semiadditive algebraic K-theory.

Recall that for any collection of indexing categoriesK, CatK has a symmetric monoidal structure
constructed in [Lur17, §4.8.1]. If K contains all finite categories, then CatstK is the full subcategory
on those categories that are in addition stable, which is also endowed with a symmetric monoidal
structure (but is not a sub-symmetric monoidal category of CatK, whose unit is not stable).

Lemma 6.16. The inclusion Catstm-fin → Catst is lax symmetric monoidal.

Proof. We argue similarly to the proof of Proposition 4.15. Recall again that there is a fully faithful
functor (−)⊗ : CMon(Cat)lax → Op from the category of symmetric monoidal categories and lax
symmetric monoidal functors to operads. For any collection of indexing categories K the operad
Catst,⊗K is a sub-operad of Cat⊗K.

The category Catstm-fin is the case where K is the collection of all finite categories and m-finite
p-spaces, and Catst is the case where K′ the collection of all finite categories. The same proof
of [Lur17, Corollary 4.8.1.4] shows that the inclusion CatK → CatK′ is lax symmetric monoidal.
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We thus get a map of operads Cat⊗K → Cat⊗K′ . The restriction of this map to Catst,⊗m-fin lands in

Catst,⊗, so we get a map of operads Catst,⊗m-fin → Catst,⊗, that is, a lax symmetric monoidal functor
Catstm-fin → Catst.

Proposition 6.17. The functor K[m] : Cat
st
m-fin → PCMon(p)m (Sp(p)) is lax symmetric monoidal.

Proof. Recall that K[m] is given by the composition:

Catstm-fin

(−)⊔−−−→ CMon(p)m (Catstm-fin)

⊆ PCMon(p)m (Catstm-fin)

→ PCMon(p)m (Catst)

K◦−−−−→ PCMon(p)m (Sp(p)).

The first functor is symmetric monoidal by Theorem 4.26, which also shows that the second map
is lax symmetric monoidal as the right adjoint of the symmetric monoidal functor Lseg. The third
and fourth maps are post-composition with the lax symmetric monoidal functors Catstm-fin → Catst

and K, which are therefore also lax symmetric monoidal by Proposition 3.3.

Theorem 6.18. The functor K[m] : Catstm-fin → [m]צ is lax symmetric monoidal.

Proof. Recall from Corollary 6.10 that K[m] ∼= LsegK[m]. Proposition 6.17 shows that K[m] is lax
symmetric monoidal, and Lseg is symmetric monoidal by Theorem 4.26.

By construction, the lax symmetric monoidal structure on K[m] is compatible with that of K[m],
so we immediately get the following:

Corollary 6.19. The natural transformations K → K[m] and LT(n)K → Lצ[m]

T(n)K
[m] from Corol-

lary 6.11 and Corollary 6.15 (respectively) are symmetric monoidal.

Recall from Theorem 2.50 that there is a lax symmetric monoidal functor LMod(−) : Alg(צ[m]) →
ModiLצ[m] . In addition, Proposition 4.15 gives a lax symmetric monoidal functor (−)at : ModiLצ[m] →
Catstm-fin. Composing all of the above we arrive at the following definition:

Definition 6.20. We define the lax symmetric monoidal functor K[m] : Alg(צ[m]) → [m]צ by
K[m](R) = K[m](LModatR ), i.e. the composition

Alg(צ[m])
LMod(−)−−−−−−→ Modצ[m]

(−)at−−−→ Catstm-fin
K[m]

−−−→ .[m]צ

Remark 6.21. Recall from Proposition 2.54 that the atomics coincide with the left dualizable mod-
ules, therefore K[m](R) = K[m](LModldblR ).

Remark 6.22. Note that if R ∈ Alg(SpT(n)) and m ≥ n, then since SpT(n) is a smashing localization

of [m]צ by Lemma 6.12, we know that LModR(צ[m]) ∼= LModR(SpT(n)), and the atomics are the

left dualizable objects. Therefore we get that K[m](R) ∼= K[m](LModR(SpT(n))
ldbl).

Remark 6.23. As K[m] : Alg(צ[m]) → [m]צ is lax symmetric monoidal, we conclude that it sends
O⊗E1-algebras in [m]צ to O-algebras in [m]צ for any operad O. In particular, for the case O = En,
we get that K[m] sends En+1-algebras to En-algebras, and for O = E∞ we get K[m] : CAlg(צ[m]) →
CAlg(צ[m]). As in Remark 2.55, in this case K[m](R) = K[m](ModdblR ).
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7 Redshift

Recall that the redshift philosophy predicts that algebraic K-theory increases height by 1. In this
section we prove some results concerning the interplay between semiadditive height and higher
semiadditive algebraic K-theory.

An immediate application of the redshift result of [CSY21a, Theorem B], gives an upper bound,
showing that if R ∈ Alg(צ[m]) has semiadditive height ≤ n for some finite n < m, then K[m](R) has
semiadditive height ≤ n+ 1 (see Theorem 7.12). Furthermore, in Theorem 7.25 we show that if R
has semiadditive height exactly n, and has (height n) p-th roots of unity (see Definition 7.17), then
K[m](R) has semiadditive height exactly n + 1, i.e. lands in .n+1צ In particular, the Lubin–Tate
spectrum En has this property, so we conclude that K[m](En) ∈ n+1צ (see Corollary 7.26).

7.1 Semiadditive Height

We begin by recalling the notion of (semiadditive) height from [CSY21a, Definition 3.1.6] and mak-
ing a few observations which will be used to study the interaction between height and semiadditive
algebraic K-theory. We recall from [CSY21a, Definition 3.1.3] that for every m-semiadditive cate-
gory D, and finite n ≤ m, there is a natural transformation of the identity p(n) : idD ⇒ idD, also
denoted by |BnCp|, which is given on an object Y ∈ D by

p(n) : Y
∆−→ Y BnCp

Nm−1

−−−−→ BnCp ⊗ Y
∇−→ Y,

using the fact that the norm map is an equivalence. Alternatively, as D is m-semiadditive, its
objects have a canonical m-commutative monoid structure in D, so that the map is given by q!q

∗

where q : BnCp → ∗ is the unique map.

Definition 7.1 ([CSY21a, Definition 3.1.6]). Let Y ∈ D, then its semiadditive height is defined as
follows:

(1) ht(Y ) ≤ n if p(n) : Y → Y is invertible.

(2) ht(Y ) > n if Y is p(n)-complete (i.e., for every Z ∈ D with p(n) : Z → Z invertible,
hom(Z, Y ) = ∗).

(3) ht(Y ) = n if ht(Y ) ≤ n and ht(Y ) > n− 1.

We denote by D≤n the full subcategory of objects Y ∈ D with ht(Y ) ≤ n, and similarly D>n for
objects of height > n and Dn for object of height exactly n.

Proposition 7.2 ([CSY21a, Theorem A]). Let D be an m-semiadditive category which admits all
limits and colimits indexed by π-finite p-spaces, and let n ≤ m be a finite number, then D≤n is
∞-semiadditive.

Proposition 7.3 ([CSY21a, Proposition 3.1.13]). Let F : D → E be an m-semiadditive functor,
between m-semiadditive categories, and let n ≤ m be a finite number. Then F sends p(n) of D to p(n)
of E. In particular, if ht(Y ) ≤ n, then ht(FY ) ≤ n, that is, it induces a functor F : D≤n → E≤n.

Corollary 7.4. Let D and E be m-semiadditive categories, F : D ⇄ E : G an adjunction, and n ≤ m
a finite number. Then the adjunction restricts to an adjunction F : D≤n ⇄ E≤n : G. Furthermore,
if D and E admit all limits and colimits indexed by π-finite p-spaces, then the restricted functors
are ∞-semiadditive.
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Proof. Since G and F preserves limits and colimits respectively, they are m-semiadditive. By
Proposition 7.3, their restrictions to objects of height ≤ n land in objects of height ≤ n. Since by
Proposition 7.2 D≤n and E≤n are ∞-semiadditive, and the restricted functors preserve limits or
colimits, they are in fact ∞-semiadditive.

Proposition 7.5. Let n ≤ m be a finite number, then the mode [m]צ
≤n

∼= n≥צ is independent of m,
and is the mode classifying the property of being stable p-local ∞-semiadditive and having all objects
of height ≤ n. Furthermore, it decomposes as a product

n≥צ
∼= 0צ × · · · × ,nצ

where kצ is the mode classifying the property of being stable p-local ∞-semiadditive and having all
objects of height exactly n.

Proof. If n < m, then this follows immediately from [CSY21a, Theorem 4.2.7 and Theorem 5.3.6].
If n = m, then the same results show that

[m]צ ∼= 0צ × · · · × n−1צ × [m]צ
>n−1.

By [CSY21a, Proposition 4.2.1], [m]צ
>n−1 is a recollement of nצ and [m]צ

>n , but [m]צ)
>n)≤n = 0, so the

result follows upon taking objects of height ≤ n.

Consider the case D = Catstm-fin. In this case, the objects are themselves categories C ∈ D on
which p(n) acts, and can have heights ht(C) as objects of Catstm-fin.

Proposition 7.6. Let C ∈ Catstm-fin. For any m-finite p-space A, the map |A| : C → C is given by
|A|(X) ∼= colimA X. In particular, p(n)(X) ∼= colimBnCp

X.

Proof. Recall that if we consider the objects of Catstm-fin as equipped with the canonical CMon(p)m

structure, then p(n) ∼= q!q
∗ where q : A → ∗ is the unique map. Theorem 5.3 and Theorem 5.6

then show that q∗ : C → CA is taking the constant diagram and that q! : C
A → C is computing the

colimit.

7.2 Upper Bound

Proposition 7.7. Let C ∈ Catstm-fin and assume that ht(C) ≤ n as an object of Catstm-fin for some
finite n ≤ m, then ht(K[m](C)) ≤ n. That is, K[m] restricts to a functor K[m] : Catstm-fin,≤n → .n≥צ

Proof. K[m] is m-semiadditive by Proposition 6.7, so the result follows from Proposition 7.3.

By Proposition 7.2, Catstm-fin,≤n and n≥צ are ∞-semiadditive.

Proposition 7.8. K[m] : Catstm-fin,≤n → n≥צ is ∞-semiadditive. Furthermore, let n ≤ m0 ≤ m

with n a finite number, then K[m] : Catstm-fin,≤n → n≥צ and the restriction of K[m0] to the (not full)

subcategory Catstm-fin,≤n coincide.

Proof. By construction, K[m] : Catstm-fin → [m]צ is a composition of left and right adjoints between
m-semiadditive categories (as used in the proof of Proposition 6.7), all of which admit all limits
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and colimits (as all categories are presentable). By Corollary 7.4, K[m] : Catstm-fin,≤n → n≥צ is the
composition the adjoints restricted to objects of height ≤ n, which are ∞-semiadditive functors.

For the second part, note that K[m0] : Catstm-fin,≤n → n≥צ is also∞-semiadditive and in particular

m-semiadditive. Recall from Theorem 6.9 that there is an equivalence LsegK
[m0]
[m]

∼−→ K[m], so when

K
[m0]
[m] is restricted to Catstm-fin,≤n it already satisfies the m-Segal condition and is thus equivalent

to K[m].

We recall the following redshift result, which we view as the step along the construction at which
redshift happens.

Theorem 7.9 (Semiadditive Redshift [CSY21a, Theorem B]). Let C ∈ Catm-fin be an m-semiadditive
category and let n < m be a finite number. Then, ht(X) ≤ n for all X ∈ C if and only if ht(C) ≤ n+1
as an object of Catm-fin.

Corollary 7.10. Let C ∈ Modצ≤n
⊂ Modצ[m] for some finite number n < m, then Cat ∈ Catstm-fin

is an m-semiadditive category and has ht(Cat) ≤ n+ 1 as an object of Catstm-fin.

Proof. It is in Catstm-fin and m-semiadditive by Proposition 4.15. By Proposition 7.5, n≥צ classifies
the property of having all objects of height ≤ n, so together with Theorem 7.9, this implies that
ht(Cat) ≤ n+ 1 as an object of Catstm-fin.

Remark 7.11. The mode n≥צ is a smashing localization of [m]צ by [CSY21a, Theorem 4.2.7].
By Proposition 2.26 we get that atomics in C ∈ Modצ≤n

with respect to either mode coincide.
Additionally, for R ∈ Alg(צ≤n) left modules over R in either mode agree.

Theorem 7.12. Let C ∈ Modצ≤n
⊂ Modצ[m] for some finite number n < m, then K[m](Cat) ∈

.n+1≥צ In particular, if R ∈ Alg(צ≤n) then K[m](R) ∈ .n+1≥צ

Proof. Combine Corollary 7.10 and Proposition 7.7.

Proposition 7.7 shows that pn : K
[m](C) → K[m](C) is invertible, but in fact we can prove the

following stronger result if we assume that C is m-semiadditive. Note that as we know now that
K[m](C) ∈ ,n≥צ it is an object of an ∞-semiadditive category, so that p(k) is defined for all k.

Proposition 7.13. Let C ∈ Catstm-fin be an m-semiadditive category with ht(C) ≤ n + 1 as an
object of Catstm-fin for some finite n < m. Then p(k) : K

[m](C) → K[m](C) is the identity for every

k ≥ n+ 1. In particular, for C ∈ Modצ≤n
, the map p(k) : K

[m](Cat) → K[m](Cat) is the identity for
every k ≥ n+ 1.

Proof. Recall from Theorem 7.9 that for every X ∈ C we have ht(X) ≤ n, i.e. |BnCp| : X →
X is invertible. [CSY21a, Proposition 2.4.7 (1)] applied to the case A = Bn+1Cp shows that

colimBn+1Cp
X

∇−→ X is an equivalence. By Proposition 7.6, p(n+1) : C → C is given by p(n+1)(X) ∼=
colimBn+1Cp

X, which by the above is X itself, i.e. p(n+1) is the identity. By [CSY21a, Proposition
2.4.7], if p(k) is invertible then p(k+1) is also invertible and is its inverse, finishing by induction. For
the second part apply Corollary 7.10.
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7.3 Lower Bound

Proposition 7.14. Let C ∈ Catstm-fin be an m-semiadditive category with ht(C) ≤ n+1 as an object
of Catstm-fin for some finite n < m. Then K[m](C) ∈ .n+1≥•≥1צ In particular, for C ∈ Modצ≤n

we

have that K[m](Cat) ∈ .n+1≥•≥1צ

Proof. Recall from Proposition 7.7 that K[m](C) ∈ ,n+1≥צ and that n+1≥צ is ∞-semiadditive. We
thus need to show that L0K

[m](C) = 0 where L0 : n+1≥צ → 0צ is the projection. By Proposition 7.3,
the map L0 preserves p(k), so by Proposition 7.13 we know that p(k) acts as the identity on L0K

[m](C)

for every k ≥ n + 1. Since L0K
[m](C) is of height ≤ 0, it is p(0) = p-invertible, and [CSY21a,

Proposition 2.4.7] then shows inductively that p(2k) ∼= p for any k ≥ 0. Choose some k such that

2k ≥ n + 1, then we get that p ∼= p(2k) ∼= 1, so that p − 1 is the zero morphism on L0K
[m](C).

However, since 0צ is p-local, this morphism is invertible, thus L0K
[m](C) = 0. For the second part

apply Corollary 7.10.

Let 1 be the unit of ,nצ and consider 1[BnCp] = colimBnCp
1 ∈ CAlg(צn) (which carries an

action of (Z/p)× ∼= Aut(Cp)). We then have the following result.

Proposition 7.15. Let C ∈ Modצn , then p(n) : C
at → Cat is given by 1[BnCp]⊗−.

Proof. Recall that the action of nצ on C commutes with colimits. Then, by Proposition 7.6

p(n)(−) ∼= colim
BnCp

(−) ∼= colim
BnCp

(1⊗−) ∼= (colim
BnCp

1)⊗− = 1[BnCp]⊗−.

Motivated by this result, we further study the action of 1[BnCp]. To that end, we recall the
following:

Definition 7.16 ([CSY21b, Proposition 4.5 and Definition 4.7]). The ring 1[BnCp] splits ((Z/p)×-
equivariantly) as a product in CAlg(צn)

1[BnCp] ∼= 1× 1[ω(n)
p ]

where 1[ω
(n)
p ] ∈ CAlg(צn) is called the (height n) p-th cyclotomic extension of 1. For any R ∈

Alg(צn), we define the R-algebra R[ω
(n)
p ] = 1[ω

(n)
p ]⊗R.

Definition 7.17. We say that a category C ∈ Modצn has (height n) p-th roots of unity if 1[ω
(n)
p ]⊗−

is equivalent to
∏

(Z/p)× − as functors C → C. Similarly, we say that R ∈ Alg(צn) has (height n)

p-th roots of unity if R[ω
(n)
p ] is equivalent to

∏
(Z/p)× R as an R-algebra.

Remark 7.18. It makes sense to require the equivalence to be (Z/p)×-equivariant, but we will not
use this assumption.

Remark 7.19. For R ∈ Alg(SpT(n)), it is always true that the (height n) p-th cyclotomic extension

R[ω
(n)
p ] has (height n) p-th roots of unity. Indeed, [CSY21b, Proposition 5.2] shows that R[ω

(n)
p ] is

a Galois extension of R, which immediately implies the condition of having (height n) p-th roots
of unity. However, it is not true in general for R ∈ Alg(צn), by a counterexample constructed by
Allen Yuan.
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Example 7.20 ([CSY21b, Proposition 5.1]). The Lubin–Tate spectrum En ∈ CAlg(SpK(n)) has
(height n) p-th roots of unity.

Example 7.21. At the prime p = 2, any C = LModR for R ∈ SpT(n), and more generally C ∈
ModSpT(n)

, has (height n) p-th roots of unity. This is true because [CSY21b, Proposition 5.2] shows

that ST(n)[ω
(n)
p ] is a (Z/p)×-Galois extension of ST(n). Since p = 2, it is a Galois extension of order

p− 1 = 1, i.e. ST(n)[ω
(n)
p ] ∼= ST(n), so the condition is automatic.

Lemma 7.22. Let C be a monoidal category, R ∈ Alg(C) and n a natural number. Consider Rn

as an algebra under R via the diagonal map ∆: R → Rn. Then the composition of the extension of

scalars and the restriction of scalars LModR
∆!−→ LModRn

∆∗

−−→ LModR is equivalent to the functor
(−)n : LModR → LModR.

Proof. Consider the i-th projection πi : R
n → R. The extension of scalars along it gives a functor

LModRn → LModR. The n functors together give an equivalence LModRn
∼−→ LModnR. Since R

∆−→
Rn πi−→ R is the identity, so are (πi∆)! and (πi∆)∗. Therefore, LModR

∆!−→ LModRn
∼−→ LModnR is

the diagonal, and LModnR
∼−→ LModRn → LModR is the multiplication of modules, so we conclude

that their composition is indeed (−)n : LModR → LModR.

Proposition 7.23. Let R ∈ Alg(צn) have (height n) p-th roots of unity, then LModR ∈ Modצn

has (height n) p-th roots of unity.

Proof. First note that the map 1[ω
(n)
p ] ⊗ − : nצ → nצ is equivalent to the composition of the

extension of scalars and restriction of scalars along 1 → 1[ω
(n)
p ]. Since by definition R[ω

(n)
p ] =

1[ω
(n)
p ]⊗R, we get an R-algebra map R → R[ω

(n)
p ]. Then, the composition of the extension of scalars

and restriction of scalars along this map gives a functor LModR → LModR, which is equivalent

to the action of 1[ω
(n)
p ] on LModR. By assumption, R[ω

(n)
p ] ∼=

∏
(Z/p)× R as an R-algebra, so the

previous lemma implies that 1[ω
(n)
p ]⊗− is equivalent to

∏
(Z/p)× −.

Proposition 7.24. Let C ∈ Modצn
have (height n) p-th roots of unity, then p(n) : C

at → Cat is
equivalent to p : Cat → Cat.

Proof. Recall that the action of nצ on C commutes with colimits, so that 1[BnCp] ⊗ − : C →
C commutes with colimits. Additionally, nצ is semiadditive, so finite products and coproducts
coincide, so that 1[BnCp]⊗− : C → C also commutes with finite products, and the same holds for
the restriction to the atomics 1[BnCp] ⊗ − : Cat → Cat. By Proposition 7.15, p(n) ∼= 1[BnCp] ⊗ −
on Cat. Now, using Definition 7.16 and the assumption that C has p-th roots of unity, we get an
equivalence of functors Cat → Cat

p(n)(−) ∼= 1[BnCp]⊗− ∼= (1× 1[ω(n)
p ])⊗− ∼= (1×

∏
(Z/p)×

1)⊗− ∼=
∏
p

1⊗− ∼=
∏
p

(−).

Theorem 7.25. Let C ∈ Modצn
have (height n) p-th roots, and n < m a finite number, then

K[m](Cat) ∈ .n+1צ In particular, if R ∈ Alg(צn) has (height n) p-th roots of unity, then K[m](R) ∈
.n+1צ
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Proof. Proposition 7.14 shows that K[m](Cat) ∈ .n+1≥•≥1צ In particular, it is of height > 0, i.e.
p(0) = p-complete. By Proposition 7.24, p(n) ∼= p, so that it is also p(n)-complete, that is, of height
> n. The last part follows from Proposition 7.23.

Corollary 7.26. Let n < m be a finite number, then K[m](En) ∈ CAlg(צn+1).

Proof. Follows from Example 7.20 and Theorem 7.25.

8 Relationship to Chromatically Localized K-Theory

In Section 7 we have shown that higher semiadditive algebraic K-theory interacts well with semi-
additive height. For example, ht(K[m](En)) = n + 1 when m > n by Corollary 7.26. Note that
the assumption m > n is necessary to even define semiadditive height n + 1. In this section we
study the connection between higher semiadditive algebraic K-theory and chromatic localizations
of ordinary algebraic K-theory by other means, while also dropping the assumption m > n.

Let R ∈ Alg(SpT(n)). The inclusion SpT(n+1) ⊂ Sp admits a left adjoint LT(n+1) : Sp →
SpT(n+1). Since K(R) ∈ Sp, we can consider LT(n+1)K(R) ∈ SpT(n+1). Similarly, by Lemma 6.12,

there is an inclusion SpT(n+1) ⊂ [m]צ for any m ≥ 1, which admits a left adjoint Lצ[m]

T(n+1) : [m]צ →
SpT(n+1). Note that, in some senses, Lצ[m]

T(n+1) is better behaved than LT(n+1), as it is a smashing

localization. Since K[m](R) ∈ ,[m]צ we can consider Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1). By Corollary 6.15,

there is a natural comparison map

LT(n+1)K(R) → Lצ[m]

T(n+1)K
[m](R) ∈ SpT(n+1).

This raises two independent questions:

(1) Does K[m](R) land in SpT(n+1) ⊂ ?[m]צ

(2) Is the comparison map an equivalence?

A positive answer to both questions will imply that K[m](R) ∼= LT(n+1)K(R), see Conjecture 1.4.
In Proposition 8.4 we show that the first question is closely related to the Quillen–Lichtenbaum
conjecture for R, in the guise of having a non-zero finite spectrum X such that K(R) ⊗ X is
bounded above. By Corollary 6.14, the second question is equivalent to LT(n+1)K[m](R) satisfying
the m-Segal condition. More informally, having descent properties for T(n+1)-localized K-theory.

Using the Galois descent results for T(n + 1)-localized K-theory of [CMNN20], the second
question is answered in the affirmative for m = 1 in Proposition 8.6.

We then study the case where R has height 0. The main result is Theorem 8.10, showing that
for any p-invertible algebra R ∈ Alg(Sp[p−1]) and m ≥ 1, there is an equivalence

K[m](R) ∼= LT(1)K(R) ∈ SpT(1).

This is first proved for R = S[p−1] by employing the Quillen–Lichtenbaum property of S[p−1]
together with Proposition 8.6 mentioned above. The general case then follows via the lax symmetric
monoidal structure on K[m].
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Finally, we study the completed Johnson–Wilson spectrum Ê(n) at height n ≥ 1, endowed
with the Hahn–Wilson [HW22] E3-algebra structure (see Theorem 8.12) and, more generally, any
R ∈ Alg(LMod

Ê(n)
). In Theorem 8.23 we show that

K[m](R) ∈ SpT(n+1)

for any m ≥ 1, strengthening Theorem 7.25 for Ê(n)-algebras. In the case m = 1, Proposition 8.6
implies that

K[1](R) ∼= LT(n+1)K(R) ∈ SpT(n+1).

To prove Theorem 8.23, we first use the Quillen–Lichtenbaum result for BP⟨n⟩ of [HW22] and the

lax symmetric monoidal structure on K[m] to show that K[m](Ê(n)) ∈ SpT(0) × · · · × SpT(n+1). We
would like to thank the anonymous referee for suggesting this argument. Then, we compute the
cardinality of the classifying space of the k-fold wreath product of Cp at each chromatic height in two
different ways. We observe that they are compatible only in chromatic height n+1, concluding that

K[m](Ê(n)) ∈ SpT(n+1). Using the lax symmetric monoidal structure on K[m], this is generalized to

any Ê(n)-algebra.
Throughout this section F (n) denotes a type n finite spectrum (for example, the generalized

Moore spectrum S/(pi0 , vi11 , . . . , v
in−1

n−1 )). Without loss of generality, we may assume that F (n) is an
algebra, i.e. F (n) ∈ Alg(Sp), by replacing it by F (n)⊗DF (n) ∼= End(F (n)).

8.1 General Results

We begin this subsection by recalling and slightly generalizing some results from [CSY22] and
[CSY21a] that will be used in the rest of the section.

Lemma 8.1. Let C be a symmetric monoidal stable p-local 1-semiadditive category, and let R ∈
CAlg(C). If 1 ∈ π0R = homhC(1C, R) is a torsion element, then R = 0.

Proof. This is essentially [CSY22, Corollary 4.3.5], we repeat the argument for the convenience
of the reader. By [CSY22, Theorem 4.3.2], the ring π0R admits an additive p-derivation. By
assumption, π0R is p-local. Since 1 ∈ π0R is torsion, [CSY22, Proposition 4.1.10] shows that it is
also nilpotent, which means that 1 = 0 ∈ π0R. Therefore R = 0.

Fix m ≥ 1. Recall from [CSY21a, Theorem 4.2.7] that [m]צ ∼= 0צ × [m]צ
>0 . Also, by [CSY21a,

Example 5.3.7], 0צ
∼= SpT(0)

∼= SpQ. The collection of objects X ∈ [m]צ
>0 such that X⊗F (n+2) = 0

form a full subcategory, which is equivalent to [m]צ
>0 ⊗Lf

n+1Sp
∼= SpT(1)×· · ·×SpT(n+1) by [CSY21a,

Corollary 5.5.7] and [CSY21a, Theorem G]. We thus have:

Lemma 8.2. Let X ∈ [m]צ
>0 , then X ∈ SpT(1) × · · · × SpT(n+1) if and only if X ⊗ F (n+ 2) = 0.

Recall from [CSY21a, Proposition 5.3.9] that, similarly to the K(n)- and T(n)-localizations, the
map of modes Sp → nצ vanishes on all bounded above spectra when n ≥ 1. Here we prove a slight
generalization of this result.

Lemma 8.3. Let m ≥ 1, then the map of modes G>0 : Sp → [m]צ
>0 vanishes on all bounded above

spectra.
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Proof. We follow closely the argument of [CSY21a, Proposition 5.3.9], diverging only the case of Fp.
The class of spectra on which G>0 vanishes is closed under colimits and desuspensions in Sp. Hence,
by a standard devissage argument, it suffices to show that G>0 vanishes on Q and Fℓ for all primes
ℓ. First, Q and Fℓ for ℓ ̸= p are p-divisible. Since G>0 is 0-semiadditive, G>0(Q) and G>0(Fℓ) are

p-divisible as well, but all objects of [m]צ
>0 are p-complete, and so G>0(Q) = G>0(Fℓ) = 0.

It remains to show that G>0(Fp) = 0. Since Fp ∈ CAlg(Sp) is an E∞-algebra, and G>0 is a

map of modes, G>0(Fp) ∈ CAlg(צ[m]
>0 ) is an E∞-algebra as well. Similarly, since p = 0 in Fp, the

same holds in π0G>0(Fp). Thus, by Lemma 8.1 with C = [m]צ
>0 and R = G>0(Fp), we know that

G>0(Fp) = 0 which concludes the proof.

We now move on to proving the two main results of this subsection.

Proposition 8.4. Let C ∈ Alg(Catstm-fin) be an m-semiadditive category for some m ≥ 1. Assume
that there exists a category C0 ∈ Alg(Catst), a left C0-module structure C ∈ LModC0(Cat

st), and
that K(C0)⊗ F (n+ 2) is bounded above. Then K[m](C) ∈ SpT(0) × SpT(1) × · · · × SpT(n+1).

Remark 8.5. Note that C0 need not be m-semiadditive or even have m-finite colimits. Moreover,
we require no compatibility between the algebra structure on C and its C0-module structure.

Proof. Recall the decomposition [m]צ ∼= SpT(0) × [m]צ
>0 . By Lemma 8.2, it remains to show that the

factor in [m]צ
>0 satisfies K[m](C)>0 ⊗ F (n+ 2) = 0. Let G : Sp → [m]צ denote the map of modes, the

adjoint of the underlying functor (−). We also denote by G>0 : Sp → [m]צ
>0 the composition with

the projection to [m]צ
>0 .

By assumption, K(C0) ⊗ F (n + 2) ∈ Sp is bounded above, so that G>0(K(C0) ⊗ F (n + 2)) =

0 ∈ [m]צ
>0 by Lemma 8.3. The composition G>0(K(−) ⊗ F (n + 2)) is lax monoidal, since K is lax

(symmetric) monoidal by Theorem 6.18, F (n+ 2) ∈ Alg(Sp) is taken to be an algebra, and G>0 is
a map of modes. By assumption C is a left module over C0, thus we get that G>0(K(C)⊗F (n+2))
is a left module over G>0(K(C0)⊗ F (n+ 2)) = 0, and thus G>0(K(C)⊗ F (n+ 2)) = 0 as well.

Recall from Corollary 6.19 that since C is an algebra, we get an algebra map K(C) → K[m](C) ∈
Alg(Sp). By the adjunction G ⊣ (−) and composing with the projection to [m]צ

>0 , we get an algebra

map G>0(K(C)) → K[m](C)>0 ∈ Alg(צ[m]
>0 ). Since the functor G>0 is a functor between stable

modes, it commutes with the action of Sp. Therefore, tensoring the map with the algebra F (n+2)

yields G>0(K(C)⊗F (n+2)) → K[m](C)>0 ⊗F (n+2) ∈ Alg(צ[m]
>0 ). We have shown that the source

is 0, and since this is an algebra map, so is the target, which concludes the proof.

In the next proposition we would like to use [CMNN20, Theorem C], which applies to Lf
nS-

linear stable categories. We recall that an Lf
nS-linear stable category is, by definition, a module

over Perf(Lf
nS) = Moddbl

Lf
nS

in Catst. Note that since Lf
nSp is a smashing localization of Sp we

have that ModLf
nS = Lf

nSp. In particular, for R ∈ Alg(SpT(n)), we have that LModatR is Lf
nS-

linear, since LModR ∈ ModSpT(n)
⊂ ModLf

nSp
and left dualizable modules coincide with atomics by

Proposition 2.54. Thus LModatR is an example for C in the following proposition.

Proposition 8.6. Let C ∈ Catst1-fin be Lf
nS-linear for some n > 0 (i.e., it admits a Perf(Lf

nS)-module
structure in Catst), then

L[1]צ

T(n+1)K
[1](C) ∼= LT(n+1)K(C).
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In particular, if K[1](C) ∈ SpT(n+1) ⊂ ,[1]צ then K[1](C) ∼= LT(n+1)K(C).

Proof. By Corollary 6.14 it suffices to show that LT(n+1)K[1](C) satisfies the 1-Segal condition, that
is, for any 1-finite p-space A, the canonical map

LT(n+1)K(lim
A

C) → lim
A

LT(n+1)K(C)

is an equivalence. As both sides take coproducts in A to direct sums, we may assume that A is
connected, i.e. A = BG for a finite p-group G. This is exactly [CMNN20, Theorem C].

8.2 Height 0

We recall a form of the Quillen–Lichtenbaum conjecture for S[p−1].

Proposition 8.7. F (2)⊗K(S[p−1]) is bounded above.

Proof. By [CM21, Theorem 1.1 and Theorem 1.2],

K(S[p−1]) → Lf
1K(S[p−1])×Lf

1TC(S[p−1]) TC(S[p
−1])

is an isomorphism on high enough p-local homotopy groups. Tensoring with a finite spectrum
preserves the property of a map being an isomorphism on high enough homotopy groups, and p = 0
in F (2), so it suffices to show that the right hand side vanishes after tensoring with F (2). The
tensor product of spectra commutes with finite limits, so it suffices to show that each term on the
right hand side vanishes after tensoring with F (2).

By definition, any Lf
1 -local spectrum vanishes after tensoring with F (2), which shows that both

Lf
1K(S[p−1]) and Lf

1TC(S[p−1]) vanish after tensoring with F (2).
Now, [NS18, Definition II.1.8] exhibits the functor TC: Alg(Sp) → Sp as the composition

Alg(Sp)
THH−−−→ CycSp

TC−−→ Sp.

Since THH(S[p−1]) ∼= S[p−1], and the second functor is exact, we get that TC(S[p−1]) is p-invertible.
Therefore, TC(S[p−1])/p = 0, and in particular it vanishes after tensoring with F (2).

Proposition 8.8. The category ModS[p−1](Sp) ∼= Sp[p−1] is a mode, classifying the property of
being a stable p-invertible presentable category. It is (p-typically) ∞-semiadditive, and a smashing

localization of both Sp and of CMon(p)m (Sp). In addition, for any m ≥ 0, there is a lax symmetric
functor (−)at : ModiLSp[p−1] → Catstm-fin, and Cat = Cω.

Proof. The fact that Sp[p−1] is a mode, classifying the property of being stable p-invertible pre-
sentable category, follows from [CSY21a, Proposition 5.2.17 and Proposition 5.2.10]. The fact that
it is p-typically ∞-semiadditive follows from [CSY21a, Proposition 2.3.4], which is essentially the

same fact that SpQ is ∞-semiadditive. It is a smashing localization of both Sp and of CMon(p)m (Sp)
because it can be obtained from both by inverting p.

The fact that it is a smashing localization together with Proposition 2.26 show that for C ∈
ModSp[p−1] the Sp[p−1]-atomics, the Sp-atomics and the CMon(p)m (Sp)-atomics all coincide. In
addition, Proposition 2.8 shows that Sp-atomics are the same as compact objects. Finally, the
functor (−)at : ModiLSp[p−1] → Catstm-fin is the restriction of (−)at : ModiL

CMon
(p)
m (Sp)

→ Catstm-fin from

Proposition 4.15.
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Corollary 8.9. Let C ∈ ModSp[p−1] and m ≥ 1, then K[m](Cω) ∈ SpT(1).

Proof. First consider the universal case C = Sp[p−1]. Proposition 8.7 shows that K(S[p−1]) is
bounded above after tensoring with F (2), so by Proposition 8.4 K[m](S[p−1]) ∈ SpT(0) × SpT(1).

Similarly to the proof of Corollary 7.10, Sp[p−1]ω is ∞-semiadditive by Proposition 4.15, and all of
its objects have semiadditive height 0, thus by Proposition 7.14 we get that ht(K[m](S[p−1])) > 0,
so that indeed K[m](S[p−1]) ∈ SpT(1).

We now prove the general case. Recall that by Proposition 8.8 and Theorem 6.18 K[m]((−)at) is
a composition of lax symmetric monoidal functors, and by Proposition 8.8, atomic objects coincide
with compact objects. Since every C ∈ ModSp[p−1] is by definition a module over Sp[p−1], we get

that K[m](Cω) is a module over K[m](S[p−1]) in .[m]צ As we have shown that K[m](S[p−1]) ∈ SpT(1),

and SpT(1) is a smashing localization of [m]צ by Lemma 6.12, we conclude that K[m](Cω) ∈ SpT(1)

as well.

Theorem 8.10. Let C ∈ ModSp[p−1] and m ≥ 1, then

K[m](Cω) ∼= LT(1)K(Cω).

In particular, for any R ∈ Alg(Sp[p−1]) we have K[m](R) ∼= LT(1)K(R).

Proof. By Proposition 7.8, K[m](Cω) is independent of m ≥ 1, so we may assume that m = 1.
Therefore, the result follows immediately from the combination of Corollary 8.9 and Proposition 8.6.

Example 8.11. For any 1 ≤ m ≤ ∞, there is an equivalence K[m](Q) ∼= KUp.

Proof. The combination of [Sus84, Corollary 4.7] and [Sus83, Main Theorem] shows that there is
an equivalence K(Q)p ∼= K(C)p ∼= kup. As KUp is T(1)-local, and T(1)-localization is insensitive to
connective covers, LT(1)kup ∼= KUp, which shows that LT(1)K(Q) ∼= KUp, and the result follows by
Theorem 8.10.

8.3 Height n ≥ 1

Fix some finite height 1 ≤ n < ∞. We let Ê(n) ∈ SpT(n) denote the completed Johnson–

Wilson spectrum at height n, namely Ê(n) ∼= LT(n)E(n) ∼= LT(n)BP⟨n⟩ (note that K(n)- and
T(n)-localization coincide for MU-modules by [Hov95, Corollary 1.10]). The main input to this
subsection is the following result:

Theorem 8.12 ([HW22, Corollary of Theorem B]). There exists an E3-BP-algebra structure on
BP⟨n⟩ such that

K(BP⟨n⟩)(p) → Lf
n+1K(BP⟨n⟩)(p)

induces an isomorphism on π∗ for ∗ ≫ 0.

Henceforth, we shall consider BP⟨n⟩ as an E3-algebra with the structure from Theorem 8.12,

which also endows the localization Ê(n) with a compatible E3-algebra structure. An immediate
corollary of this result is the following:
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Corollary 8.13. The spectrum K(BP⟨n⟩) ⊗ F (n + 2) is bounded above, where F (n + 2) is a type
n+ 2 finite spectrum.

Lemma 8.14. Let m ≥ 1, then K[m](Ê(n)) ∈ SpT(0) × · · · SpT(n+1).

Proof. We shall employ Proposition 8.4. Consider the symmetric monoidal functor LT(n) : Sp →
SpT(n). We get an induced E2-monoidal functor on modules

LModBP⟨n⟩(Sp) → LMod
Ê(n)

(SpT(n)),

which in turn induces an E2-monoidal functor on left dualizable objects

LModBP⟨n⟩(Sp)
ldbl → LMod

Ê(n)
(SpT(n))

ldbl.

The latter map exhibits the target as a module over the source. By Corollary 8.13, we know that
K(LModBP⟨n⟩(Sp)

ldbl)⊗ F (n+ 2) = K(BP⟨n⟩)⊗ F (n+ 2) is bounded above. By Proposition 2.54
we know that

K[m](Ê(n)) = K[m](LMod
Ê(n)

(SpT(n))
at) = K[m](LMod

Ê(n)
(SpT(n))

ldbl).

The result now follows immediately from Proposition 8.4.

Our next goal, achieved in Lemma 8.22, is to show that in fact K[m](Ê(n)) ∈ SpT(n+1). For
that, we need to show that each T(k)-local part vanishes for 0 ≤ k ≤ n, and in fact it will suffice
to show this after tensoring with the Lubin–Tate spectrum Ek. To do so, we shall compute the
action of |B(≀kCp)|, where ≀kCp is the k-fold wreath product of Cp with itself, in two different ways.
First, in general in Ek-modules (see Proposition 8.17), and second by studying the dimension of the

Ê(n)-module Ê(n)B(≀kCp) and deducing the result for the higher semiadditive algebraic K-theory
(see Proposition 8.21).

Definition 8.15. Let k ≥ 0. We denote by M̂odEk
= ModEk

(SpK(k)) the category of K(k)-local
Ek-modules.

We recall from [CSY22, Theorem 5.3.1] that M̂odEk
is ∞-semiadditive.

Definition 8.16. For a π-finite space A, we denote

|A|k = |A|
M̂odEk

∈ π0(Ek).

Also note that by [CSY22, Proposition 2.2.6, see also Section 5.4], the cardinality |A|k in fact
lands in Zp ⊆ π0(Ek).

Proposition 8.17. Let k ≥ 1 and let G be a finite group. If vp(|BG|k) > 0, then vp(|BG ≀Cp|k) =
vp(|BG|k)− 1. Moreover, |B(≀kCp)|k is invertible.

Proof. This is similar to the proof of [CSY22, Proposition 4.3.7]. Recall the additive p-derivation
δ : π0(Ek) → π0(Ek) from [CSY22, Definition 4.3.1], which by [CSY22, Theorem 4.2.12] satisfies

δ|BG|k = |BCp|k|BG|k − |BG ≀ Cp|k.
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By [CSY21a, Lemma 5.4.6], for x ∈ Zp ⊂ π0(Ek), if vp(x) > 0 then vp(δ(x)) = vp(x)− 1. Note that
vp(|BCp|k|BG|k) = vp(|BCp|k) + vp(|BG|k) ≥ vp(|BG|k). Combining the two, we get

vp(|BG ≀ Cp|k) = vp(δ|BG|k) = vp(|BG|k)− 1.

For the second part, by [CSY22, Lemma 5.3.3], we have |BCp|k = pk−1. Thus, applying the
first part (k − 1)-times, we get vp(|B(≀kCp)|k) = vp(|BCp|k)− (k − 1) = 0.

For a finite p-group G, we consider hom(Zn
p , G), the set of n-tuples commuting elements in

G. This set is endowed with an action of GLn(Zp) by pre-composition. We shall in particular be
interested in the integer

Ln(G) = |hom(Zn
p , G)/G| =

|hom(Zn+1
p , G)|

|G|
,

where the G-action in the second term is by conjugation point-wise, and the second equality is
Burnside’s lemma ([HKR00, Lemma 4.13]).

Proposition 8.18. Let G be a finite p-group, then

Ln(G ≀ Cp) =
Ln(G)p + (pn+1 − 1)Ln(G)

p
.

Proof. We shall prove

|hom(Zn
p , G ≀ Cp)| = |hom(Zn

p , G)|p + (pn − 1)|G|p−1|hom(Zn
p , G)|.

Since |G ≀ Cp| = p|G|p, the result immediately follows (when changing n to n+ 1).
In this proof, we will write elements of Cp additively, namely, identify it with Z/p. Elements

of G ≀ Cp will be denoted by pairs (a, f) where a ∈ Cp and f : Cp → G. Elements of hom(Zn
p , Cp)

will be denoted by α = (a1, . . . , an). Similarly, elements of hom(Zn
p , G ≀ Cp) will be denoted by

β = ((a1, f1), . . . , (an, fn)).
Consider the projection G ≀Cp → Cp, which by post-composition induces π : hom(Zn

p , G ≀Cp) →
hom(Zn

p , Cp). By construction of the action, π is GLn(Zp)-equivariant. We let homα(Zn
p , G ≀Cp) =

π−1(α) denote the fiber. Observe that the GLn(Zp)-action on hom(Zn
p , Cp) ∼= Cn

p has two orbits
– one which is the singleton α = 0, and the second of size pn − 1 containing all α ̸= 0. We let
α1 = (1, 0, . . . , 0), an element of the second orbit. Since π is equivariant, all of the fibers in the
same orbit have the same size, so that

|hom(Zn
p , G ≀ Cp)| = |hom0(Zn

p , G ≀ Cp)|+ (pn − 1)|homα1(Zn
p , G ≀ Cp)|.

We shall now compute the sizes of the two fibers.
For the first fiber, observe that hom0(Zn

p , G ≀Cp) ⊂ hom(Zn
p , G ≀Cp) is the subset of those tuples

landing in Gp < G ≀ Cp. Therefore,

|hom0(Zn
p , G ≀ Cp)| = |hom(Zn

p , G
p)| = |hom(Zn

p , G)|p.

For the second fiber, we being with the following observations. A pair of elements (0, f), (0, f ′) ∈
G ≀ Cp commute if and only if f, f ′ ∈ Gp commute, i.e. if and only if f(a), f ′(a) ∈ G commute for
all a ∈ Cp. A pair of elements (1, f), (0, f ′) ∈ G ≀ Cp commute if and only if f(a)f ′(1 + a) =
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f ′(a)f(a) for all a ∈ Cp. Applying this inductively, we see that f ′ is uniquely determined by f and
f ′(0) and subject to the condition that f ′(0),

∏
f(a) ∈ G commute. Using these observations, we

can say when an n-tuple of elements in G ≀ Cp, denoted β = ((1, f1), (0, f2), . . . , (0, fn)), pairwise
commute, i.e. β ∈ homα1(Zn

p , G ≀ Cp). The commutativity of (1, f1) and (0, fi) (for i ≥ 2) says
that fi is determined by f1 and fi(0) and forces the condition that fi(0),

∏
f1(a) commute. The

commutativity of (0, fi) and (0, fj) (for i, j ≥ 2) forces the condition that fi(0) and fj(0) commute.
We thus see that β is uniquely specified by f1 and f2(0), . . . , fn(0), subject to the condition that
(
∏

f1(a), f2(0), . . . , fn(0)) pairwise commute. In other words, we have a bijection

homα1(Zn
p , G ≀ Cp)

∼−→ Gp−1 × hom(Zn
p , G),

β 7→ ((f1(0), . . . , f1(p− 2)), (
∏

f1(a), f2(0), . . . , fn(0))).

To conclude, we have shown

|hom(Zn
p , G ≀ Cp)| = |hom0(Zn

p , G ≀ Cp)|+ (pn − 1)|homα1(Zn
p , G ≀ Cp)|

= |hom(Zn
p , G)|p + (pn − 1)|G|p−1|hom(Zn

p , G)|,

as required.

Proposition 8.19. For 1 ≤ k ≤ n we have vp(L
n(≀kCp)) = n−(k−1). In particular Ln(≀kCp) ∈ Zp

is not invertible.

Proof. First, for k = 1 we have

Ln(Cp) =
|hom(Zn+1

p , Cp)|
|Cp|

= pn,

so that vp(L
n(Cp)) = n. Now assume inductively that vp(L

n(≀kCp)) = n− (k − 1). Since

vp(L
n(≀kCp)

p) = pvp(L
n(≀kCp)) > vp(L

n(≀kCp)) = vp((p
n+1 − 1)Ln(≀kCp)),

we get that
vp(L

n(≀kCp)
p + (pn+1 − 1)Ln(≀kCp)) = vp(L

n(≀kCp)).

Thus, by Proposition 8.18, we get the required result

vp(L
n(≀k+1Cp)) = vp(L

n(≀kCp))− 1 = n− ((k + 1)− 1).

We now recall the following result:

Proposition 8.20. Let X be a space with dimFp(K(n)0(X)) = d < ∞ and K(n)1(X) = 0. Then,

Ê(n)[X] ∈ LMod
Ê(n)

is a free Ê(n)-module of dimension d and, in particular, dualizable.

Proof. This is the content of [HS99, Proposition 8.4] (see also [HL13, Proposition 3.4.3] and [CSY22,
Lemma 5.1.7]).

Proposition 8.21. Let 1 ≤ k ≤ n and let m ≥ 1. The action of |B(≀kCp)| on K[m](Ê(n)) ∈ [m]צ is
by multiplication by a non-invertible p-adic number.
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Proof. By [HKR00, Theorem E], the group ≀kCp is good in the sense of [HKR00, Definition 7.1],
and in particular K(n)1(B(≀kCp)) = 0. Thus, by [HKR00, Theorem B and Lemma 4.13], we know

that dimFp
(K(n)0(≀kCp)) = Ln(≀kCp). By Proposition 8.20, we conclude that Ê(n)[B(≀kCp)] is a

free Ê(n)-module of dimension Ln(≀kCp). Recall from Proposition 7.6 that the action of |B(≀kCp)|
on LModat

Ê(n)
as an object of Catstm-fin is by Ê(n)[B(≀kCp)] ⊗ (−), namely by multiplication by

Ln(≀kCp). Since K[m] is a 1-semiadditive functor by Proposition 6.7, the same holds for the action

of |B(≀kCp)| on K[m](Ê(n)) by [CSY22, Corollary 3.2.7]. By Proposition 8.19, this number is indeed
a non-invertible p-adic number.

Lemma 8.22. Let m ≥ 1, then K[m](Ê(n)) ∈ SpT(n+1).

Proof. By Lemma 8.14, we know that K[m](Ê(n)) ∈ SpT(0) × · · ·SpT(n+1). It remains to show that
the T(k)-local part, which for brevity we denote by Ak ∈ SpT(k), vanishes for every 0 ≤ k ≤ n.

We first deal with the case 1 ≤ k ≤ n. Recall from [CSY22, Corollary 5.1.17] that the functor

Ek[−] : SpT(k) → M̂odEk

is nil-conservative in the sense of [CSY22, Definition 4.4], that is, for any A ∈ Alg(SpT(k)), if
Ek[A] = 0 then A = 0. Therefore, it suffices to check that Ek[Ak] = 0. We have shown in

Proposition 8.21 that |B(≀kCp)| acts on K[m](Ê(n)) by multiplication by a non-invertible p-adic
number. Since Ek[(−)k] is a 1-semiadditive functor by Proposition 6.7, the same holds for Ek[Ak]
by [CSY22, Corollary 3.2.7]. We thus have shown that |B(≀kCp)| acts on Ek[Ak] as a p-adic number

of positive valuation. Since by Proposition 8.17 |B(≀kCp)|k is invertible, and M̂odEk
is p-complete,

we conclude that Ek[Ak] = 0.
We now prove the remaining case k = 0. As above, Proposition 8.21 shows that |BCp| acts on

A0 by Ln(Cp) = p. On the other hand, |BCp|0 = p−1 by [CSY22, Lemma 5.3.3]. Namely p = p−1

on the rational spectrum A0, thus A0 = 0.

Theorem 8.23. Let R ∈ Alg(LMod
Ê(n)

) and m ≥ 1, then K[m](R) ∈ SpT(n+1).

Proof. LModR is a right module over LMod
Ê(n)

. Recall from Theorem 2.46 that taking the atomics

is a lax symmetric monoidal functor, and from Theorem 6.18 that K[m] is lax symmetric monoidal.

Thus, we get that K[m](R) is a right module over K[m](Ê(n)). In addition, by Lemma 6.12, [m]צ →
SpT(n+1) is a smashing localization, and since K[m](Ê(n)) lands in the smashing localization by

Lemma 8.22, so does K[m](R).

Corollary 8.24. Let R ∈ Alg(LMod
Ê(n)

), then K[1](R) ∼= LT(n+1)K(R). In particular, K[1](Ê(n)) ∼=

LT(n+1)K(Ê(n)).

Proof. This follows immediately from the combination of Theorem 8.23 and Proposition 8.6.

In work in progress with Carmeli and Yanovski [BMCSY] we show that Corollary 8.24 holds for
m-semiadditive K-theory for any m ≥ 1.
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