ON THE C_{p}-EQUIVARIANT DUAL STEENROD ALGEBRA

KRISHANU SANKAR AND DYLAN WILSON
(Communicated by Julie Bergner)

Abstract

We compute the C_{p}-equivariant dual Steenrod algebras associated to the constant Mackey functors \mathbb{F}_{p} and $\underline{\mathbb{Z}}_{(p)}$, as $\mathrm{H} \underline{\mathbb{Z}}_{(p)}$-modules. The $C_{p^{-}}$ spectrum $\mathrm{H} \underline{\mathbb{F}}_{p} \wedge \mathrm{H} \underline{\mathbb{F}}_{p}$ is not a direct sum of $R O\left(C_{p}\right)$-graded suspensions of $\mathrm{H} \underline{\mathbb{F}}_{p}$ when p is odd, in contrast with the classical and C_{2}-equivariant dual Steenrod algebras.

Contents

1. Outline of the proof 3638
2. Homology of $\mathrm{B}_{C_{p}} S^{1}$ 3639
3. Suspending classes 3640
4. Two relations in homology 3641
5. Digression: Detecting equivalences nonequivariantly 3642
6. Proof of the main theorem 3644

Introduction

For over a decade, since the Hill-Hopkins-Ravenel solution of the Kervaire invariant one problem [HHR16], there has been great success in using exotic homotopy theories, like $C_{2^{n}}$-equivariant homotopy theory and motivic homotopy theory, to study classical homotopy theory at the prime 2. A key foundational input to many of these applications is the computation of the appropriate version of the dual Steenrod algebra, $\mathrm{HF}_{2} \wedge \mathrm{HE}_{2}$, which was carried out by Hu-Kriz [HK01] in C_{2}-equivariant homotopy theory and by Voevodsky Voe03 in motivic homotopy theory. One of the major obstacles to carrying out a similar program at odd primes is that we do not understand the structure of the dual Steenrod algebra in C_{p}-equivariant homotopy theory. The purpose of this paper is to make some progress towards this goal.

To motivate the statement of our main result, recall that we have the following description of the classical, p-local dual Steenrod algebra as a $\mathbb{Z}_{(p)}$-algebra ${ }^{1}$

[^0]$$
\mathrm{H} \mathbb{Z}_{(p)} \wedge \mathrm{HZ}_{(p)} \simeq \mathrm{H} \mathbb{Z}_{(p)} \wedge \bigwedge_{i} \operatorname{cofib}\left(\Sigma^{\left|t_{i}\right|} S^{0}\left[t_{i}\right] \xrightarrow{\cdot p t_{i}} S^{0}\left[t_{i}\right]\right)
$$

Here the tensor product is taken over the sphere spectrum, $S^{0}[x]$ denotes the free $\mathbb{E}_{1^{-}}$ algebra on a class x, and the classes t_{i} live in degree $2 p^{i}-2$. Modding out by p causes each of the above cofibers to split into two classes related by a Bockstein; modding out by p once more introduces the class τ_{0} and recovers Milnor's computation of $\mathcal{A}_{*}=\pi_{*}\left(\mathrm{HF}_{p} \wedge \mathrm{HF} \mathbb{F}_{p}\right)$, as an \mathbb{F}_{p}-algebra.

In the C_{p}-equivariant case our description involves a similar decomposition but is more complicated in two ways:

- Rather than extending the class t_{i} to a map from $S^{0}\left[t_{i}\right]$ using the multiplication on $\mathrm{HZ} \wedge \mathrm{HZ}$, we will want to choose as generators a mixture of ordinary powers of t_{i} and of norms, $N\left(t_{i}\right)$, of t_{i}.
- Rather than modding out by the relation ' $p t_{i}=0$ ' we will need to enforce the relation that ' $\theta t_{i}=0$ ', where θ is an equivariant lift of p to an element in nontrivial $R O\left(C_{p}\right)$-degree. We will then also need to enforce the relation $p N\left(t_{i}\right)=0$.
To make this precise, we will assume that the reader is comfortable with equivariant stable homotopy theory as used, for example, in HHR16, and introduce the following conventions, in force throughout the paper:
- We will use ϱ to denote the real regular representation of C_{p}.
- We will use λ^{k} to denote the representation of C_{p} on $\mathbb{R}^{2}=\mathbb{C}$ where the generator acts by $e^{2 \pi i k / p}$. When $k=1$ we abbreviate $\lambda^{1}=\lambda$.
- We denote by $\theta: S^{\lambda-2} \rightarrow S^{0}$ the map of C_{p}-spectra arising from the degree p map $S^{\lambda} \rightarrow S^{2}$. We'll denote the cofiber of θ by $C \theta$. Note that the underlying nonequivariant spectrum of $C \theta$ is the Moore space $M(p)$.
- If X is a spectrum, we will denote by $N(X)$ the C_{p}-equivariant Hill-Hopkins-Ravenel norm of X, which is a C_{p}-equivariant refinement of the ordinary spectrum $X^{\wedge p}$.
- We denote by $\mathrm{H} \underline{\mathbb{Z}}$ and $\mathrm{H} \underline{\mathbb{F}}_{p}$ the C_{p}-equivariant Eilenberg-MacLane spectra associated to the constant Mackey functors at \mathbb{Z} and \mathbb{F}_{p}, respectively.
- We use $\pi_{\star} X$ to denote the $R O\left(C_{p}\right)$-graded homotopy groups of a C_{p} spectrum, so that, when $\star=V-W$ is a virtual representation, $\pi_{V-W} X=$ $\pi_{0} \operatorname{Map}_{\mathrm{Sp}^{C_{p}}}\left(S^{V-W}, X\right)$.
- The degree k map

$$
u_{\lambda-\lambda^{k}}: S^{\lambda} \rightarrow S^{\lambda^{k}}
$$

is a p-local equivalence when $(k, p)=1$. When working with any p-local $C_{p^{-}}$ spectrum, we will use these equivalences to redefine π_{\star} to indicate grading over $R O\left(C_{p}\right) /\left(\lambda-\lambda^{k}:(k, p)=1\right)$. We will also write expressions such as

$$
S_{(p)}^{\varrho}=S_{(p)}^{1+\frac{p-1}{2} \lambda}
$$

where equality is meant to indicate 'equivalent via the aforementioned identification'.

Now we can give a somewhat ad-hoc description of the equivariant refinements of the building blocks in $\mathrm{HZ} \wedge \mathrm{HZ}$.

Construction. Let x be a formal variable in an $R O\left(C_{p}\right)$-grading $|x|$. Define a C_{p}-spectrum as follows:

$$
T_{\theta}(x):=\Sigma^{|x|} C \theta \oplus \Sigma^{2|x|} C \theta \oplus \cdots \oplus \Sigma^{(p-1)|x|} C \theta \oplus \Sigma^{|x| \varrho} M(p),
$$

where $M(p)$ is the $\bmod p$ Moore spectrum. Denote by $N(x): S^{|x| \varrho} \rightarrow T_{\theta}(x)$ the inclusion of the bottom cell of $\Sigma^{|x| \varrho} M(p)$.

Now suppose that R is a C_{p}-ring spectrum equipped with a norm $N(R) \rightarrow R$. If we have a class $x \in \pi_{\star} R$ such that $\theta x=0$, it follows that $p \cdot N(x)=0$ (see the proof of Lemma 4.4), so we may produce a map

$$
S^{0} \oplus\left(S^{0}[N x] \wedge T_{\theta}(x)\right) \rightarrow R
$$

which only depends on the choice of the nullhomotopy witnessing $\theta x=0$.
We can now state our main theorem.
Theorem A. There are equivariant refinements

$$
t_{G, i}: S^{2 p^{i-1} \varrho-\lambda} \rightarrow \mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \mathrm{H} \underline{\mathbb{Z}}_{(p)}
$$

of the nonequivariant classes $t_{i} \in \pi_{*}\left(\mathrm{H}_{(p)} \wedge \mathrm{HZ}_{(p)}\right)$ which satisfy the relation $\theta t_{G, i}=0$. For any choice of witness for these relations, the resulting map

$$
\mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \bigwedge_{i \geq 1}\left(S^{0} \oplus\left(S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right)\right)\right) \longrightarrow \mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \mathrm{H} \underline{\mathbb{Z}}_{(p)}
$$

is an equivalence.
As an immediate corollary we have:
Corollary. With notation as above, we have

$$
\underline{\mathbb{F}}_{p} \wedge \mathbb{F}_{p} \simeq \Lambda\left(\tau_{0}\right) \wedge_{\mathbb{E}_{p}} \mathrm{H} \underline{\mathbb{F}}_{p} \wedge \bigwedge_{i \geq 1}\left(S^{0} \oplus\left(S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right)\right)\right)
$$

where τ_{0} is dual to the Bockstein, in degree 1 and $\Lambda\left(\tau_{0}\right)=\mathrm{H} \underline{\mathbb{F}}_{p} \oplus \Sigma \mathrm{H} \underline{\mathbb{F}}_{p}$. In particular, since $\mathrm{H} \underline{\mathbb{F}}_{p} \wedge C \theta$ is indecomposable at odd primes, the spectrum $\mathrm{H} \mathbb{F}_{p} \wedge \mathrm{H} \underline{\mathbb{F}}_{p}$ is not a direct sum of $R O\left(C_{p}\right)$-graded suspensions of $\mathrm{H} \underline{\mathrm{F}}_{p}$ at odd primes.

Remark. When $p=2$ we have an accidental splitting $\mathrm{H} \underline{F}_{2} \wedge C \theta \simeq \Sigma^{\sigma-1} \mathrm{H}_{2} \oplus \Sigma^{\sigma} \mathrm{H} \underline{\mathbb{F}}_{2}$, where σ is the sign representation.
Remark. One can show that $\mathrm{H} \underline{\mathbb{F}}_{p} \wedge C \theta \wedge C \theta$ splits as $\left(\mathrm{H} \underline{\mathbb{F}}_{p} \wedge C \theta\right) \oplus\left(\mathrm{H} \underline{\mathbb{F}}_{p} \wedge \Sigma^{\lambda-1} C \theta\right)$. It follows that $\mathrm{H} \underline{\underline{F}}_{p} \wedge \mathrm{H} \underline{\mathbb{F}}_{p}$ splits as a direct sum of cell complexes with at most 2 cells.

Our result raises a few natural questions which would be interesting to investigate.

Question 1. When specialized to $p=2$, how does our basis compare to the HuKriz basis?

Question 2. Is it possible to profitably study the HE_{p}-based Adams spectral sequence using this decomposition? Since $\mathrm{H} \underline{\mathbb{F}}_{p} \wedge \mathrm{H} \underline{\mathbb{F}}_{p}$ is not flat over $\mathrm{H} \underline{\mathbb{F}}_{p}$, one would be forced to start with the E_{1}-term. But this is not an unprecedented situation (e.g. Mahowald had great success with the ko-based Adams spectral sequence).

Question 3. Can one describe the multiplication on $\pi_{\star} H \mathbb{F}_{p} \wedge H \mathbb{F}_{p}$ in terms of our decomposition?

Relation to other work. As we mentioned before, we were very much motivated by the description of the C_{2}-equivariant dual Steenrod algebra given by Hu-Kriz HK01. That said, our generators are slightly different than the Hu-Kriz generators when we specialize to $p=2$. For example, the generator t_{1} lives in degree $2 \rho_{C_{2}}-\lambda=$ 2, whereas the Hu-Kriz generator ξ_{1} lives in degree $\rho=1+\sigma^{2}$ Hill and Hopkins have also obtained a presentation of the $C_{2^{n}}$-dual Steenrod algebra, using quotients of BPR and its norms, which is similar in style to the one obtained here.

At odd primes, Caruso Car99 studied the C_{p}-equivariant Steenrod algebra, $\pi_{\star} \operatorname{map}\left(\mathrm{H} \underline{\underline{F}}_{p}, \mathrm{H} \underline{F}_{p}\right)$, essentially by comparing with the Borel equivariant Steenrod algebra and the geometric fixed point Steenrod algebra, and was able to compute the ranks of the integer-graded stems. There is also work of Oruç Oru89 computing the dual Steenrod algebra for the Eilenberg-MacLane spectra associated to Mackey fields (which does not include \mathbb{F}_{p}).

In the Borel equivariant setting, the dual Steenrod algebra is given by the action Hopf algebroid for the coaction of the classical dual Steenrod algebra on $H^{*}\left(\mathrm{~B} C_{p}\right)$ (see Gre88).

There is also related work from the first and second authors. The first author produced a splitting of $\mathrm{H} \underline{\mathbb{F}}_{p} \wedge \mathrm{H} \underline{\mathbb{F}}_{p}$ in San19] using the symmetric power filtration. The summands in that splitting were roughly given by the homology of classifying spaces, and were much larger than the summands produced here. The second author and Jeremy Hahn showed HW20 that $\mathrm{HE} \underline{\underline{F}}_{p}$ can be obtained as a Thom spectrum on $\Omega^{\lambda} S^{\lambda+1}$. The Thom isomorphism then reduces the study of the dual Steenrod algebra to the computation of the homology of $\Omega^{\lambda} S^{\lambda+1}$. Understanding the relationship between this picture and the one in this article is work in progress.

1. Outline of the proof

To motivate our method of proof, let's first revisit the classical story. We are interested in where the classes $t_{i} \in \pi_{*}(\mathrm{HZ} \wedge \mathrm{HZ})$ come from, and why they are annihilated by p.

Recall that the homology of $\mathbb{C} P^{\infty}$ is a divided power algebra

$$
H_{*}\left(\mathbb{C} P^{\infty}\right)=\Gamma_{\mathbb{Z}}\left\{\beta_{1}\right\},
$$

where β_{1} is dual to the first Chern class c_{1}. Write $\beta_{(i)}:=\gamma_{p^{i}}\left(\beta_{1}\right)$. Since $\mathbb{C} P^{\infty}=$ $K(\mathbb{Z}, 2)$, we have a map of spectra

$$
\mathbb{C} P_{+}^{\infty} \rightarrow \Sigma^{2} \mathbb{Z}
$$

and hence a homology suspension map

$$
\sigma: H_{*}\left(\mathbb{C} P^{\infty}\right) \rightarrow \pi_{*-2}(\mathrm{HZ} \wedge \mathrm{HZ})
$$

which annihilates elements decomposable with respect to the product structure on $H_{*}\left(\mathbb{C} P^{\infty}\right)$. We can takd ${ }^{3} t_{i}:=\sigma\left(\beta_{(i)}\right)$. The relation $p t_{i}=0$ follows from the fact that $p \beta_{(i)}$ is, up to a p-local unit, decomposable as $\beta_{(i-1)}^{p}$ in $H_{*}\left(\mathbb{C} P^{\infty}\right)$.

In the equivariant case, we will proceed similarly.
Step 1. Compute the homology of $K(\underline{\mathbb{Z}}, \lambda)$ and use the homology suspension to define classes in $\pi_{\star}(\mathrm{H} \underline{\mathbb{Z}} \wedge \mathrm{H} \underline{\mathbb{Z}})$.

[^1]Step 2. Use information about the product structure on the homologies of $K(\underline{\mathbb{Z}}, \lambda)$ and $K(\underline{Z}, 2)$ to deduce relations for these classes, and hence produce the map described in Theorem A.
Step 3. Verify that the map in Theorem A is an equivalence by proving that it is an underlying equivalence and an equivalence on geometric fixed points.
The first step is carried out in $\$ 2$ and $\$ 3$ by identifying $K(\underline{Z}, \lambda)$ with an equivariant version of $\mathbb{C} P^{\infty}$ and then specializing a computation due to Lewis Lew88, which we review in our context. The second step is carried out in $\$ 4$. The third and final step is carried out in $\$ 6$ using a lemma proven in 95 that allows us to check that the map on geometric fixed points is an equivalence by just verifying that the source and target have the same dimensions in each degree.

2. Homology of $\mathrm{B}_{C_{p}} S^{1}$

Recall that we have the C_{p}-space $\mathrm{B}_{C_{p}} S^{1}$ classifying equivariant principal S^{1} bundles. The following lemmas give two useful ways of thinking about this space.
Lemma 2.1. The complex projective space $\mathbb{P}(\mathbb{C}[z])$ is a model for $\mathrm{B}_{C_{p}} S^{1}$, where the generator of C_{p} acts on $\mathbb{C}[z]$ through ring maps by $z \mapsto e^{2 \pi i / p} z$. Here $\mathbb{C}[z]$ is the ordinary polynomial ring over \mathbb{C}, and the projective space $\mathbb{P}(\mathbb{C}[z])=(\mathbb{C}[z]$ $\{0\}) /\left(\mathbb{C}^{\times}\right)$inherits an action in the evident way.
Lemma 2.2. The space $\mathrm{B}_{C_{p}} S^{1}$ is a model for $K(\underline{\mathbb{Z}}, \lambda)$.
Proof. The map

$$
\mathbb{P}(\mathbb{C}[z]) \rightarrow \mathrm{SP}^{\infty}\left(S^{\lambda}\right)
$$

to the infinite symmetric product, which sends a polynomial $f(z)$ to its set of roots (with multiplicity), is an equivariant homeomorphism. The group-completion of the latter is a model for $K(\underline{\mathbb{Z}}, \lambda)$ by the equivariant Dold-Thom theorem [LF97. But $\mathrm{SP}^{\infty}\left(S^{\lambda}\right)$ is already group-complete: the monoid of connected components of the fixed points is $\mathbb{N} / p=\mathbb{Z} / p$.

Remark 2.3. The reader may object that the definition of $\mathrm{B}_{C_{p}} S^{1}$ makes no reference to λ, so how does $\mathrm{B}_{C_{p}} S^{1}$ know about this representation rather than λ^{k} for some k coprime to p ? The answer is that, in fact, each of the Eilenberg-MacLane spaces $K\left(\underline{\mathbb{Z}}, \lambda^{k}\right)$ coincide for such k : we have an equivalence of $\mathrm{H} \underline{\mathbb{Z}}$-modules

$$
\Sigma^{\lambda} \mathrm{H} \underline{\mathbb{Z}} \simeq \Sigma^{\lambda^{k}} \mathrm{H} \underline{\mathbb{Z}}
$$

whenever $(k, p)=1$. This follows from the computations in FL04, Proposition 9.2], for example.

The filtration of $\mathbb{C}[z]$ by the subspaces $\mathbb{C}[z]_{\leq n}$ of polynomials of degree at most n gives a filtration of $\mathrm{B}_{C_{p}} S^{1}$.
Lemma 2.4. There is a canonical equivalence

$$
\operatorname{gr}_{k} \mathrm{~B}_{C_{p}} S^{1} \cong S^{V_{k}}
$$

where $V_{k}=\bigoplus_{0 \leq i \leq k-1} \lambda^{i-k}$.
Proof. This follows from a more general observation. If L is a one-dimensional complex representation, and V is an arbitrary complex representation, then the function assigning to a linear map its graph,

$$
\operatorname{Hom}_{\mathbb{C}}(L, V) \longrightarrow \mathbb{P}(V \oplus L)-\mathbb{P}(V)
$$

is an equivariant homeomorphism. So it induces an equivalence on one-point compactifications

$$
S^{L^{\vee} \otimes V} \cong \mathbb{P}(V \oplus L) / \mathbb{P}(V)
$$

Proposition [2.5 now follows from Lew88, Proposition 3.1].
Proposition 2.5 (Lewis). The above filtration on $\mathrm{B}_{C_{p}} S^{1}$ splits after tensoring with $\mathrm{H} \underline{\mathbb{Z}}$, giving an equivalence

$$
\mathrm{H} \underline{\mathbb{Z}} \wedge \mathrm{~B}_{C_{p}} S_{+}^{1} \simeq \mathrm{H} \underline{\mathbb{Z}}\left\{e_{0}, e_{1}, \ldots\right\}
$$

where

$$
\left|e_{k}\right|=\bigoplus_{0 \leq i \leq k-1} \lambda^{i-k}
$$

In particular, for $i \geq 1$ we have $\left|e_{p^{i}}\right|=2 p^{i-1} \varrho$.
We will also need some information about the multiplicative structure on homology.

Lemma 2.6. Writing $x \doteq y$ to mean that $x=\alpha y$ for some $\alpha \in \mathbb{Z}_{(p)}^{\times}$, we have

$$
e_{1}^{p} \doteq \theta e_{p}, \quad \text { and } e_{p^{i}}^{p} \doteq p e_{p^{i+1}} \text { for } i \geq 1
$$

Proof. Using the model for $\mathrm{B}_{C_{p}} S^{1}$ given by $\mathbb{P}(\mathbb{C}[z])$, we see that, in fact, $\mathbb{P}(\mathbb{C}[z])$ has the structure of a filtered monoid. It follows that the product in homology respects the filtration by the classes $\left\{e_{i}\right\}$. Thus, for $i \geq 0$, we have

$$
e_{p^{i}}^{p}=\sum_{j \leq p^{i+1}} c_{i, j} e_{j},
$$

where the coefficients lie in $\pi_{\star} \mathrm{H} \underline{\mathbb{Z}}$. When $j<p^{i+1}$ we see that the virtual representations $\left|c_{i, j}\right|$ have positive virtual dimension and their fixed points also have positive virtual dimension. The homotopy of $\mathrm{H} \underline{Z}$ vanishes in these degrees (see, e.g., [FL04, Theorem 8.1(iv)]), so we must have

$$
e_{p^{i}}^{p}=c_{i, p^{i+1}} e_{p^{i+1}}
$$

where $\left|c_{0, p}\right|=\lambda-2$ and $\left|c_{i, p^{i+1}}\right|=0$ when $i \geq 1$. In both cases, the restriction map on $\pi_{\star} \mathrm{H} \underline{\mathbb{Z}}$ is injective in this degree, so the result follows from the nonequivariant calculation.

3. SuSpending classes

We begin with some generalities. If X is any C_{p}-spectrum, we have the counit

$$
\Sigma_{C_{p},+}^{\infty} \Omega_{C_{p}}^{\infty} X \rightarrow X
$$

which induces a map

$$
\sigma: \mathrm{H} \underline{\mathbb{Z}} \wedge \Sigma_{C_{p},+}^{\infty} \Omega_{C_{p}}^{\infty} X \rightarrow \mathrm{H} \underline{\mathbb{Z}} \wedge X
$$

called the homology suspension. Just as in the classical case, it follows from the equivariant Snaith splitting [LMSM86, §VII.5] that σ annihilates decomposable elements in $\pi_{*}\left(\mathrm{H} \underline{\mathbb{Z}} \wedge \Sigma_{C_{p},+}^{\infty} \Omega_{C_{p}}^{\infty} X\right)$.

Construction 3.1. For $i \geq 1$, we define

$$
t_{G, i}: S^{2 p^{i-1}} \varrho-\lambda \rightarrow \mathrm{H} \underline{\mathbb{Z}} \wedge \mathrm{H} \underline{Z}
$$

as the homology suspension of the element $e_{p^{i}} \in \pi_{2 p^{i-1}} \varrho\left(\mathrm{H} \underline{\mathbb{Z}} \wedge \mathrm{B}_{C_{p}} S_{+}^{1}\right)$. Here we use the identification

$$
\mathrm{B}_{C_{p}} S^{1} \simeq K(\underline{\mathbb{Z}}, \lambda)=\Omega^{\infty} \Sigma^{\lambda} \mathrm{H} \underline{\mathbb{Z}} .
$$

4. Two relations in homology

We begin with a brief review of norms, transfers, and restrictions.
Remark 4.1 (Transfer and restriction). Given a nonequivariant equivalence $\left(S^{V}\right)^{e} \cong$ S^{n}, we define

$$
\text { res : } \pi_{V} X \rightarrow \pi_{n} X^{e}, \quad\left(x: S^{V} \rightarrow X\right) \mapsto\left(S^{n} \cong\left(S^{V}\right)^{e} \rightarrow X\right)
$$

and
$\operatorname{tr}_{V}: \pi_{n} X^{e} \rightarrow \pi_{V} X, \quad\left(y: S^{n} \rightarrow X^{e}\right) \mapsto\left(S^{V} \rightarrow C_{p+} \wedge S^{V} \cong C_{p+} \wedge S^{n} \rightarrow C_{p+} \wedge X \rightarrow X\right)$.
For example, when $V=\lambda-2$ and $X=S^{0}$, then $\operatorname{tr}_{\lambda-2}(1)=\theta$.
Changing the equivalence $\left(S^{V}\right)^{e} \cong S^{n}$ has the effect of altering these classes by ± 1; in our case the representations in question have canonical orientations so this will not be a concern. Given a map $X \wedge Y \rightarrow Y$ we have a relation:

$$
\operatorname{tr}(x \otimes \operatorname{res}(y))=\operatorname{tr}(x) \otimes y
$$

Remark 4.2 (Norms). If a C_{p}-spectrum X has a map $N(X) \rightarrow X$, then, given an underlying class $x: S^{n} \rightarrow X^{e}$, we may define a norm by the composite

$$
N x: N\left(S^{n}\right)=S^{n \varrho} \rightarrow N(X) \rightarrow X
$$

The underlying nonequivariant class is given by $\operatorname{res}(N x)=\prod_{g \in C_{p}}(g x) \in \pi_{p n} X^{e}$.
Our goal in this section is to prove the following two lemmas.
Lemma 4.3. The classes $t_{G, i} \in \pi_{2 p^{i-1} \varrho-\lambda}\left(\mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \mathrm{H} \underline{\mathbb{Z}}_{(p)}\right)$ satisfy $\theta t_{G, i}=0$.
Lemma 4.4. The classes $N\left(t_{i}\right) \in \pi_{\left(2 p^{i}-2\right) \varrho}\left(\mathrm{H} \underline{Z}_{(p)} \wedge \mathrm{H}_{(p)}\right)$ satisfy $p N\left(t_{i}\right)=0$.
In fact, the second relation follows from the first.
Proof of Lemma 4.4 assuming Lemma 4.3. Since $p=\operatorname{tr}(1)$, the class $p N\left(t_{i}\right)$ is the transfer of the class res $\left(t_{G, i}\right)^{p}$ into degree $\left(2 p^{i}-2\right) \varrho$. Notice that $\left(2 p^{i}-2\right) \varrho-\left|t_{G, i}^{p}\right|=$ $\lambda-2$ (after identifying the λ^{k} suspensions with λ for $(k, p)=1$), and the transfer of 1 into this degree is θ, so we have

$$
p N\left(t_{i}\right)=\theta t_{G, i}^{p}=0 .
$$

Proof of Lemma 4.3. By Lemma 2.6, we have $e_{1}^{p} \doteq \theta e_{p}$ so that $\theta t_{G, 1}=\sigma\left(\theta e_{p}\right)=0$, since σ annihilates decomposables. For the remaining classes, consider the commutative diagram

where $[\theta]=\Omega^{\infty}(\theta)$. Thus, to show that $\theta t_{G, i}=0$ for $i \geq 2$, it is enough to show that $[\theta]_{*} e_{p^{i}}$ is decomposable in $\pi_{\star}\left(\mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge K(\underline{\mathbb{Z}}, 2)_{+}\right)$for $i \geq 2$.

Write

$$
\mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge K(\underline{\mathbb{Z}}, 2)_{+}=\mathrm{H} \underline{\mathbb{Z}}_{(p)}\left\{\gamma_{i}\left(\beta_{1}\right)\right\}
$$

where the elements $\gamma_{i}\left(\beta_{1}\right)$ are the standard module generators of $H_{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)$, and write $\beta_{(i)}=\gamma_{p^{i}} \beta_{1}$. To show that $[\theta]_{*}\left(e_{p^{i}}\right)$ is decomposable for $i \geq 2$, it is enough to establish the following two claims:
(a) $[\theta]_{*}\left(e_{p^{i}}\right) \doteq \frac{p^{i-1} \theta}{u_{\lambda}^{p-1}(p-1)-1} \beta_{(i)}$, and
(b) $\beta_{(i-1)}^{p} \doteq p \beta_{(i)}$.

Claim (b) is just the classical computation of the product in homology for $H_{*}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right)$. For claim (a), let ι_{λ} denote the fundamental class in cohomology for $K(\underline{\mathbb{Z}}, \lambda)$ and ι_{2} the same for $K(\underline{\mathbb{Z}}, 2)$. Then we have $[\theta]^{*}\left(\iota_{2}\right)=\theta \iota_{\lambda}$ by design, and hence

$$
[\theta]^{*}\left(\iota_{2}^{j}\right)=\theta^{j} \iota_{\lambda}^{j} .
$$

The map on homology is now determined by the relation

$$
\left\langle[\theta]_{*} e_{p^{i}}, l_{2}^{j}\right\rangle=\theta^{j}\left\langle e_{p^{i}}, l_{\lambda}^{j}\right\rangle \in \pi_{\star} \mathrm{H} \underline{\mathbb{Z}}_{(p)} .
$$

Since θ^{j} is a transferred class, the value above is also a transfer, and hence determined by its restriction to an underlying class. But $\operatorname{res}([\theta])=[p]$ and we clearly have $[p]_{*}\left(\operatorname{res}\left(e_{p^{i}}\right)\right)=p^{i} \beta_{(i)}$, which agrees with the restriction of $\frac{p^{i-1} \theta}{u_{\lambda}^{p^{i-1}(p-1)-1}} \beta_{(i)}$. This completes the proof.

5. Digression: Detecting equivalences nonequivariantly

The goal of this section is to establish a criterion for detecting equivalences of $\underline{\mathbb{Z}}$-modules. We recall that

$$
\mathrm{H} \underline{\mathbb{Z}}^{\Phi C_{p}} \simeq \mathrm{HF}_{p}[b],
$$

where the class b in degree 2 arises from taking the geometric fixed points of the Thom class $u_{\lambda}: S^{\lambda} \rightarrow \Sigma^{2} \underline{\mathbb{Z}}$.

Proposition 5.1. Let $f: M \rightarrow N$ be a map of $\mathrm{H} \underline{\mathbb{Z}}$-modules which are bounded below (on underlying and fixed points). Assume the following conditions are satisfied:
(i) f is an underlying equivalence.
(ii) $\pi_{j} M^{\Phi C_{p}}$ and $\pi_{j} N^{\Phi C_{p}}$ are finite dimensional of the same rank, for all j.
(iii) $\pi_{*} M^{\Phi C_{p}}$ and $\pi_{*} N^{\Phi C_{p}}$ are graded-free $\mathbb{F}_{p}[b]$-modules.

Then f is an equivalence.
We will deduce this proposition from the following one, which relates geometric and Tate fixed points.

Proposition 5.2. Let M be an $\mathrm{H} \underline{\mathbb{Z}}$-module which is both bounded above and below (on underlying and fixed point spectra). Then the natural map

$$
M^{\Phi C_{p}}\left[b^{-1}\right] \rightarrow M^{t C_{p}}
$$

is an equivalence.

Proof of Proposition 5.1 assuming Proposition 5.2. By assumption (i), it is enough to check that $f^{\Phi C_{p}}$ is an equivalence; by assumption (ii), it is enough to check that $\pi_{*}\left(f^{\Phi C_{p}}\right)$ is an injection; and by assumption (iii) it is enough to check that $\pi_{*}\left(f^{\Phi C_{p}}\right)\left[b^{-1}\right]$ is an injection.

Again by (i), the map $f^{t C_{p}}$ is an equivalence. So, from the diagram

we see that it is enough to check that the vertical maps are injective on homotopy. More generally, we show that whenever X is a bounded below $\mathrm{H} \underline{\mathbb{Z}}$-module, the map

$$
\pi_{*} X^{\Phi C_{p}}\left[b^{-1}\right] \rightarrow \pi_{*} X^{t C_{p}}
$$

is injective. Indeed, by Proposition 5.2 and the fact that the Tate construction commutes with limits of Postnikov towers (see, e.g., [NS18, I.2.6]), we have

$$
\lim _{n}\left(\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\left[b^{-1}\right]\right) \stackrel{\simeq}{\rightarrow} \lim _{n}\left(\tau_{\leq n} X\right)^{t C_{p}} \simeq X^{t C_{p}} .
$$

Therefore, we need only check that

$$
\pi_{*} X^{\Phi C_{p}}\left[b^{-1}\right] \rightarrow \pi_{*} \lim _{n}\left(\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\left[b^{-1}\right]\right)
$$

is injective. Since the maps $X^{\Phi C_{p}} \rightarrow\left(\tau_{\leq n} X\right)^{\Phi C_{p}}$ have increasingly connective fibers, we can replace the left hand side by $\left(\lim _{n} \pi_{*}\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\right)\left[b^{-1}\right]$ and reduce to showing that

$$
\left(\lim _{n} \pi_{*}\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\right)\left[b^{-1}\right] \rightarrow \lim _{n} \pi_{*}\left(\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\left[b^{-1}\right]\right)
$$

is injective. Finally, this reduces to showing that the kernel of

$$
\lim _{n} \pi_{*}\left(\tau_{\leq n} X\right)^{\Phi C_{p}} \rightarrow \lim _{n} \pi_{*}\left(\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\left[b^{-1}\right]\right)
$$

consists of elements annihilated by a power of b. This is clear because, for each j, the system $\left\{\pi_{j}\left(\tau_{\leq n} X\right)^{\Phi C_{p}}\right\}_{n}$ is eventually constant.

Proof of Proposition 5.2. Let \mathcal{E} denote the full subcategory of HZ्Z-modules M for which

$$
M^{\Phi C_{p}}\left[b^{-1}\right] \rightarrow M^{t C_{p}}
$$

is an equivalence. Then \mathcal{E} is stable, closed under retracts, and closed under suspending by representation spheres.

The map $M^{\Phi C_{p}}\left[b^{-1}\right] \rightarrow M^{t C_{p}}$ is one of $\mathrm{H} \underline{\mathbb{Z}}^{\Phi C_{p}}=\mathrm{HF}_{p}[b]$-modules, and hence one of HF_{p}-modules, so it must be a retract of

$$
(M / p)^{\Phi C_{p}}\left[b^{-1}\right]=M^{\Phi C_{p}}\left[b^{-1}\right] / p \rightarrow M^{t C_{p}} / p=(M / p)^{t C_{p}} .
$$

Thus $M / p \in \mathcal{E}$ if and only if $M \in \mathcal{E}$. So, by replacing M with M / p and considering the Postnikov tower, we are reduced to proving the proposition in the case where $M \in \operatorname{Mod}_{\mathbb{Z}}^{\mathbb{Z}}$ is a Mackey functor which is a module over \mathbb{F}_{p}.

In particular, M^{e} is an $\mathbb{F}_{p}\left[C_{p}\right]$-module. Let γ denote the generator of C_{p} so that $\mathbb{F}_{p}\left[C_{p}\right]=\mathbb{F}_{p}[\gamma] /(1-\gamma)^{p}$. Let $F_{j} M \subseteq M$ be the sub-Mackey functor generated by $(1-\gamma)^{j} M^{e} \subseteq M^{e}$. This is a finite filtration with associated graded pieces given by Mackey functors with trivial underlying action. So, since \mathcal{E} is a thick subcategory,
we are reduced to the case when M is a discrete HF_{p}-module with trivial underlying action.

For the next reduction we recall some notation. If N is any Mackey functor, denote by $N_{C_{p}}$ the Mackey functor $N \otimes C_{p+}$ and, if A is an abelian group, denote by $\underline{A}_{\text {tr }}$ the Mackey functor whose transfer map is the identity on A and whose restriction map is multiplication by p. We also recall that the transfer extends to a map of Mackey functors tr: $N_{C_{p}} \rightarrow N$.

Now consider the two exact sequences

$$
\begin{gathered}
0 \rightarrow \operatorname{im}(\operatorname{tr}) \rightarrow M \rightarrow M / \operatorname{im}(\operatorname{tr}) \rightarrow 0 \\
0 \rightarrow \operatorname{ker}(\operatorname{tr}) \rightarrow \underline{M}_{\operatorname{tr}}^{e} \rightarrow \operatorname{im}(\operatorname{tr}) \rightarrow 0 .
\end{gathered}
$$

Notice both $M / \operatorname{im}(\operatorname{tr})$ and $\operatorname{ker}(\operatorname{tr})$ vanish on $\{e\}$. If N is any Mackey functor with $N^{e}=0$, then $N \in \mathcal{E}$ since then $N=N^{\Phi C_{p}}$ is bounded above and hence $N^{\Phi C_{p}}\left[b^{-1}\right]=0$. Thus, from the exact sequences above, we are reduced to the case where M is of the form $\underline{V}_{\text {tr }}$ for an \mathbb{F}_{p}-vector space V (with trivial action). Now recall that $\mathrm{H}\left(\underline{\mathbb{F}}_{p}\right)_{\text {tr }}=\Sigma^{2-\lambda} \mathrm{H} \underline{\mathbb{F}}_{p}$ and hence $\mathrm{H} \underline{V}_{\text {tr }}=\Sigma^{2-\lambda} \mathrm{H} \underline{V}$. So we are reduced to showing that $\mathrm{H} \underline{V}$ lies in \mathcal{E}, where V is an \mathbb{F}_{p}-vector space with trivial action. This certainly holds for $V=\mathbb{F}_{p}$, and in general we have

$$
\mathrm{H} \underline{V}^{\Phi C_{p}} \simeq \mathrm{H} \underline{\mathrm{~F}}_{p}^{\Phi C_{p}} \wedge_{\mathrm{HF}}^{p} p(,
$$

since geometric fixed points commutes with colimits, and

$$
\mathrm{H} V^{t C_{p}} \simeq \mathrm{HF}_{p}^{t C_{p}} \wedge_{\mathrm{HF}}^{p} \text { H} V
$$

by direct calculation. (Notice this holds even when V is infinite-dimensional.) This completes the proof.

6. Proof of the main theorem

We are now ready to prove the main theorem. Recall that we have constructed classes

$$
t_{G, i} \in \pi_{2 p^{i-1} \varrho-\lambda}\left(\mathrm{H} \underline{\underline{Z}}_{(p)} \wedge \mathrm{H} \underline{\underline{Z}}_{(p)}\right)
$$

and shown that $\theta t_{G, i}=0$ and $p N\left(t_{i}\right)=0$. With notation as in the introduction, let

$$
X_{i}=\left(S^{0} \oplus\left(S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right)\right)\right)
$$

and

$$
X=\bigwedge_{i \geq 1}\left(S^{0} \oplus\left(S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right)\right)\right)
$$

Then, choosing nullhomotopies which witness $\theta t_{G, i}=0$ (end hence, by restriction, witnesses for $p t_{i}=0$), we get a map:

$$
f: \mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \bigwedge_{i \geq 1}\left(S^{0} \oplus\left(S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right)\right)\right) \longrightarrow \mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge \mathrm{H} \underline{\mathbb{Z}}_{(p)}
$$

The main theorem is then the statement:
Theorem 6.1. The map f is an equivalence.
Proof. Combine Proposition 5.1 with the two lemmas below.
Lemma 6.2. The map f^{e} is an underlying equivalence.

Proof. We denote the inclusion of the summand $\Sigma^{i|x|} C \theta$ by

$$
x^{i-1} \hat{x}: \Sigma^{i|x|} C \theta \rightarrow T_{\theta}(x)
$$

the restriction of \hat{x} to the bottom cell by x, and the inclusion of the final summand by $\widehat{N x}$. We denote by

$$
N x: S^{|x| \varrho} \rightarrow T_{\theta}(x)
$$

the restriction of $\widehat{N x}$ to the bottom cell of the $\bmod p$ Moore spectrum.
First observe that, by our construction in the proof of Lemma 4.4, the map $\widehat{N\left(t_{G, i}\right)}$ restricts to the map $t_{i}^{p-1} \hat{t}_{i}$, since the nullhomotopy witnessing $p N\left(t_{i}\right)=0$ was chosen to restrict to the nullhomotopy chosen for $p t_{i}^{p}$ that came from the already chosen nullhomotopy of $p t_{i}$. The upshot is that the map

$$
S^{0} \oplus S^{0}\left[N t_{G, i}\right] \wedge T_{\theta}\left(t_{G, i}\right) \rightarrow \mathrm{H} \underline{\mathbb{Z}} \wedge \mathrm{H} \underline{\mathbb{Z}}
$$

restricts on underlying spectra to the map

$$
S^{0}\left[t_{i}\right] /\left(p t_{i}\right) \rightarrow \mathrm{HZ} \wedge \mathrm{H} \mathbb{Z}
$$

obtained just from the relation $p t_{i}=0$ and extended via the multiplicative structure.

In particular, on $\bmod p$ homology f^{e} induces a ring map

$$
\mathbb{F}_{p}\left[t_{i}\right] \otimes \Lambda\left(x_{i}\right) \rightarrow \mathbb{F}_{p}\left[\xi_{i}\right] \otimes \Lambda\left(\tau_{i}\right)
$$

We know that t_{i} maps to ξ_{i} and that $\beta x_{i}=t_{i}$, so that $\beta\left(f_{*}^{e}\left(x_{i}\right)\right)=\xi_{i}$. Modulo decomposables, τ_{i} is the only element whose Bockstein is ξ_{i}. So x_{i} must map to τ_{i}, \bmod decomposables. It follows that f^{e} is a mod p equivalence, and hence an equivalence.
Lemma 6.3. $\pi_{*}(\mathrm{H} \underline{\mathbb{Z}} \wedge X)^{\Phi C_{p}}$ and $\pi_{*}(\mathrm{H} \underline{\mathbb{Z}} \wedge \underline{\mathbb{Z}})^{\Phi C_{p}}$ are free $\mathbb{F}_{p}[b]$-modules, finitedimensional in each degree, and isomorphic as graded vector spaces over \mathbb{F}_{p}.
Proof. If Y is any C_{p}-spectrum, then

$$
\left(\mathrm{H} \underline{\mathbb{Z}}_{(p)} \wedge Y\right)^{\Phi C_{p}}=\mathrm{HF}_{p}[b] \wedge Y^{\Phi C_{p}} \simeq \mathrm{HF}_{p}[b] \wedge_{\mathrm{HF}_{p}}\left(\mathrm{HF}_{p} \wedge Y^{\Phi C_{p}}\right)
$$

is a free $\mathrm{HF}_{p}[b]$-module. Applying this in the cases $Y=X$ and $Y=\mathrm{H} \underline{\mathbb{Z}}$, we see that each is a free $\mathrm{HF}_{p}[b]$, evidently finite-dimensional in each degree. So it suffices to prove that

$$
\pi_{*}\left(\mathrm{HF} \mathbb{F}_{p} \wedge X^{\Phi C_{p}}\right) \cong \pi_{*}\left(\mathrm{HF}_{p} \wedge\left(\mathrm{H} \mathbb{F}_{p}[b]\right)\right)
$$

as graded vector spaces. Notice that we can write, as graded vector spaces,

$$
\pi_{*}\left(\mathrm{HF} \mathbb{F}_{p} \wedge X_{i}^{\Phi C_{p}}\right) \cong \mathbb{F}_{p}\left[d_{i-1}, \xi_{i}\right] \otimes_{\mathbb{F}_{p}} \Lambda\left(\sigma_{i-1}, \tau_{i}\right) /\left(d_{i-1}^{p}, d_{i-1} \tau_{i}, d_{i-1}^{p-1} \sigma_{i-1}, \sigma_{i-1} \tau_{i}\right)
$$

where $\left|\sigma_{i-1}\right|=2 p^{i-1}-1$ and $\left|d_{i-1}\right|=2 p^{i-1}$. Indeed, \hat{t}_{i}, on geometric fixed points, gives rise to two classes; one we are calling d_{i-1} and the other we are calling σ_{i-1}. Similarly, $\widehat{N\left(t_{G, i}\right)}$, on geometric fixed points, gives rise to two classes: one we are calling ξ_{i} and the other τ_{i}, in their usual degrees. The relations are the ones needed to ensure that the monomials not arising from geometric fixed points of elements in X_{i} are omitted.

It follows that we have an isomorphism of graded vector spaces

$$
\begin{aligned}
& \pi_{*}\left(\mathrm{H} \mathbb{F}_{p} \wedge X^{\Phi C_{p}}\right) \cong \mathbb{F}_{p}\left[\xi_{n}: n \geq 1\right] \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p}\left[d_{i}: i \geq 0\right] \\
& \otimes_{\mathbb{F}_{p}} \Lambda\left(\sigma_{j}, \tau_{k}: j \geq 0, k \geq 1\right) /\left(d_{i}^{p}, d_{i-1} \tau_{i}, d_{i}^{p-1} \sigma_{i}, \sigma_{i-1} \tau_{i}\right)
\end{aligned}
$$

We are trying to show that this is isomorphic, as a graded vector space to

$$
\pi_{*}\left(\mathrm{HF}_{p} \wedge \mathrm{HF}_{p}[b]\right) \cong \mathbb{F}_{p}\left[\xi_{n}: n \geq 1\right] \otimes_{\mathbb{F}_{p}} \Lambda\left(\tau_{i}: i \geq 0\right) \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p}[b]
$$

We may regard each vector space as a module over $\mathbb{F}_{p}\left[\xi_{n}: n \geq 1\right]$ in the evident way, and hence reduce to showing that the two vector spaces

$$
V=\Lambda\left(\tau_{i}: i \geq 0\right) \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p}[b]
$$

and

$$
W=\mathbb{F}_{p}\left[d_{i}: i \geq 0\right] \otimes_{\mathbb{F}_{p}} \Lambda\left(\sigma_{j}, \tau_{k}: j \geq 0, k \geq 1\right) /\left(d_{i}^{p}, d_{i-1} \tau_{i}, d_{i}^{p-1} \sigma_{i}, \sigma_{i-1} \tau_{i}\right)
$$

are isomorphic. (Here recall that $\left|\sigma_{i}\right|=\left|\tau_{i}\right|=2 p^{i}-1,|b|=2$, and $\left|d_{i}\right|=2 p^{i}$.)
Let I range over sequences $\left(a_{0}, a_{1}, \ldots\right)$ with $0 \leq a_{i} \leq p-2, J$ range over sequences $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots\right)$ with $\varepsilon_{i} \in\{0,1\}, K$ range over sequences $\left(\kappa_{0}, \kappa_{1}, \ldots\right)$ with $\kappa_{i} \in\{0,1\}$, and let K^{\prime} range over sequences $\left(\kappa_{0}^{\prime}, \kappa_{1}^{\prime}, \ldots\right)$ with $\kappa_{i}^{\prime} \in\{0,1\}$. We impose the following requirements on these sequences:

- Each sequence has finite support.
- $\kappa_{i}^{\prime} \leq \kappa_{i}$. (So K^{\prime} is otained from K by changing some subset of 1 s to 0 s).
- $J \cdot K=I \cdot K=(0,0, \ldots)$. That is: I and K have disjoint support and J and K have disjoint support.
Then V has a basis of monomials

$$
M_{I, J, K, K^{\prime}}=\left(\prod_{i \geq 0} b^{a_{i} p^{i}}\right) \tau_{J}\left(\prod_{i \geq 0} b^{\kappa_{i}(p-1) p^{i}}\right) \tau_{K^{\prime}}
$$

and W has a basis of monomials

$$
N_{I, J, K, K^{\prime}}=d_{I} \sigma_{J}\left(\prod_{i \geq 0} d_{i}^{\left(\kappa_{i}-\kappa_{i}^{\prime}\right)(p-1)}\right) \tau_{K^{\prime}[1]}
$$

where $K^{\prime}[1]=\left(0, \kappa_{0}^{\prime}, \kappa_{1}^{\prime}, \ldots\right)$. These have the same number of basis elements in each dimension, so $V \cong W$.

We end with a question, a satisfying answer to which would yield a proof of the main theorem which avoids the use of Proposition 5.1.

Question 4. The geometric fixed points of $\mathrm{H} \underline{Z}_{(p)} \wedge \mathrm{H} \underline{\mathbb{Z}}_{(p)}$ are given by $\left(\mathrm{HF}_{p} \wedge\right.$ $\left.\mathrm{HF}_{p}\right)[b, \bar{b}]$, where \bar{b} is the conjugate of b, a class in degree 2 . It is possible to understand what happens to the generators $t_{G, i}$ and $\widehat{N\left(t_{G, i}\right)}$ upon taking geometric fixed points. One is left with trying to understand the remaining class hit by \hat{t}_{i} on geometric fixed points. We don't know what this should be. One guess that seems consistent with computations is that this class is given, up to conjugating the τ_{i} and modding out by (b), by

$$
\tau_{i-1}+\bar{b}^{p^{i-1}-p^{i-2}} \tau_{i-2}+\cdots+\bar{b}^{p^{i-1}-1} \tau_{0}
$$

It would be useful for computations to sort out what actually occurs.

Acknowledgments

We are grateful to the anonymous referee for their careful reading and helpful comments which have improved the exposition and readability of the paper. We thank Jeremy Hahn and Clover May for excellent discussions over the course of this project. We thank Mike Hill for generously sharing his time and his ideas, especially the idea to use the norm to build some of the generators of the dual Steenrod algebra. We apologize to those awaiting the publication of these results for the long delay.

References

[Car99] Jeffrey L. Caruso, Operations in equivariant Z/p-cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 3, 521-541, DOI 10.1017/S0305004198003375. MR 1684248
[FL04] Kevin K. Ferland and L. Gaunce Lewis Jr., The $R \mathrm{O}(G)$-graded equivariant ordinary homology of G-cell complexes with even-dimensional cells for $G=\mathbb{Z} / p$, Mem. Amer. Math. Soc. 167 (2004), no. 794, viii+129, DOI 10.1090/memo/0794. MR2025457
[Gre88] J. P. C. Greenlees, Stable maps into free G-spaces, Trans. Amer. Math. Soc. 310 (1988), no. 1, 199-215, DOI 10.2307/2001117. MR938918
[HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1-262, DOI 10.4007/annals.2016.184.1.1. MR 3505179
[HK01] Po Hu and Igor Kriz, Real-oriented homotopy theory and an analogue of the AdamsNovikov spectral sequence, Topology 40 (2001), no. 2, 317-399, DOI 10.1016/S0040-9383(99)00065-8. MR1808224
[HW20] Jeremy Hahn and Dylan Wilson, Eilenberg-Mac Lane spectra as equivariant Thom spectra, Geom. Topol. 24 (2020), no. 6, 2709-2748, DOI 10.2140/gt.2020.24.2709. MR4194302
[Lew88] L. Gaunce Lewis Jr., The $R \mathrm{O}(G)$-graded equivariant ordinary cohomology of complex projective spaces with linear \mathbf{Z} / p actions, Algebraic topology and transformation groups (Göttingen, 1987), Lecture Notes in Math., vol. 1361, Springer, Berlin, 1988, pp. 53-122, DOI 10.1007/BFb0083034. MR 979507
[LF97] P. Lima-Filho, On the equivariant homotopy of free abelian groups on G-spaces and G spectra, Math. Z. 224 (1997), no. 4, 567-601, DOI 10.1007/PL00004297. MR1452050
[LMSM86] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure, DOI 10.1007/BFb0075778. MR866482
[NS18] Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203-409, DOI 10.4310/ACTA.2018.v221.n2.a1. MR3904731
[Oru89] Melda Yaman Oruç, The equivariant Steenrod algebra, Topology Appl. 32 (1989), no. 1, 77-108, DOI 10.1016/0166-8641(89)90008-4. MR1003301
[San19] Krishanu Roy Sankar, Steinberg summands in the free \mathbb{F}_{p}-module on the equivariant sphere spectrum, arXiv:1711.05708, 2019.
[Voe03] Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1-57, DOI 10.1007/s10240-003-0009-z. MR 2031198
Email address: sankark1991@gmail.com
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email address: dwilson@math.harvard.edu

[^0]: Received by the editors April 2, 2021, and, in revised form, September 14, 2021, and September 15, 2021.

 2020 Mathematics Subject Classification. Primary 55N91, 55P91, 55S91, 55S10.
 ${ }^{1}$ We learned this fact from John Rognes. One proof is to base change the equivalence $\mathrm{BP} \wedge_{S^{0}\left[v_{1}, \ldots\right]} S^{0} \simeq \mathrm{H} \mathbb{Z}_{(p)}$ to $\mathrm{H} \mathbb{Z}_{(p)}$ and use that the Hurewicz image of the v_{i} 's are $p t_{i}$, \bmod decomposables.

[^1]: ${ }^{2}$ In this low degree, it seems likely that, modulo decomposables, we have $u_{\sigma} \xi_{1}=t_{1}$ and that ξ_{1} is recovered from \hat{t}_{1} by restricting along $\mathrm{HF}_{2} \wedge S^{1+\sigma} \rightarrow \mathrm{HF}_{2} \wedge \Sigma^{2} C \theta$.
 ${ }^{3}$ Depending on ones preferences, this might be the conjugate of the generator you want; but we are only really concerned with these classes modulo decomposables.

