1. Introduction

Consider a commutative ring R, with sum and product operations. The category of representations of R inherits a commutative rig structure, given by direct sum and tensor product. In other words, the category $\text{Mod}(R)$ of R-modules inherits a bipermutative structure. Continuing, one can consider the categorical representations of $\text{Mod}(R)$, and these in turn form a 2-category $\text{Mod}(\text{Mod}(R))$, with a ring-like structure. Iterating, one can consider an n-category of higher representations, for each $n \geq 1$.

All of these constructions can take place within the limiting context of structured ring spectra, or commutative S-algebras. From the category of (finite cell) modules over a commutative S-algebra B we can distill a new commutative S-algebra, the algebraic K-theory spectrum $K(B)$. Continuing, one can form $K(K(B))$, etc. When $B = HR$ is the Eilenberg–Mac Lane spectrum of an ordinary ring, the n-fold algebraic K-theory $K^{(n)}(B)$ is extracted from the n-category of higher representations, as above. In this sense, n-fold iterated algebraic K-theory has something to do with n-categories.

From this point of view it is surprising that n-fold iterated algebraic K-theory also has something to do with formal group laws of height n, i.e., one-dimensional commutative formal group laws F in characteristic p where the series expansion $[p]_F(x)$ for the multiplication-by-p map starts with a unit times x^{p^n}. This is essentially a statement about the formal coproduct on $K^{(n)}(B)^+ (\mathbb{C}P^\infty)$ that comes from the product on $\mathbb{C}P^\infty$. Hesselholt–Madsen asked about the chromatic filtration of iterated topological cyclic homology in [HM97, p. 61], but could almost as well have asked about the chromatic filtration of iterated algebraic K-theory.

In a strong form, this connection implies that the algebraic K-theory of a structured ring spectrum related to formal group laws of height n will be related to formal group laws of height $n + 1$. In terms of the periodic families of stable homotopy theory, if the homotopy of B is v_n-periodic but not v_{n+1}-periodic, then frequently $K(B)$ is v_{n+1}-periodic but not v_{n+2}-periodic.

Since the (fundamental) period $|v_{n+1}| = 2p^{n+1} - 2$ of v_{n+1}-periodicity is longer than the period $|v_n| = 2p^n - 2$ of v_n-periodicity, we think of this phenomenon as an increase, or lengthening, of wavelengths. This is what we informally call a “redshift”. In a related fashion, the v_{n+1}-periodic phenomena are usually hidden or nested behind the v_n-periodic ones, hence more subtle and difficult to detect. Again this corresponds informally to less energetic light, propagating at lower frequencies.

Date: January 28th 2014.
The height filtration is also related to the sequence of Hopf subalgebras
\[0 \subset \cdots \subset \mathcal{E}(n) = E(Q_0, \ldots, Q_n) \subset \cdots \]
of the Steenrod algebra \(\mathcal{A} \), and their annihilating subalgebras
\[\mathcal{A}_* \supset \cdots \supset (\mathcal{A} / \mathcal{E}(n))^* = P(\xi_k | k \geq 1) \oplus E(\eta_k | k \geq n + 1) \supset \cdots . \]
The latter nested sequence of \(\mathcal{A}_* \)-comodule subalgebras are invariant under the Dyer–Lashof operations that arise from thinking of the dual Steenrod algebra \(\mathcal{A}_* \) as \(H_*(H) \), where \(H = HF_p \) is a commutative structured ring spectrum.

2. Redshift in the \(K \)-theory of rings

We start with examples of chromatic redshift in the algebraic \(K \)-theory of discrete rings.

Let \(k \) be a finite field of characteristic \(p \), with algebraic closure \(\bar{k} \). Quillen proved [Qui72 §11] that \(H_i(BGL(k); \mathbb{F}_p) = 0 \) for \(i > 0 \), so that \(K(\bar{k})_p \simeq H\mathbb{Z}_p \). Furthermore, he deduced that \(\pi_*, K(\bar{k})_p \cong \pi_* K(\bar{k})^{hG_k} \) for \(* \geq 0 \), where the absolute Galois group \(G_k \) acts continuously on \(K(\bar{k}) \), so \(K(\bar{k})_p \simeq H\mathbb{Z}_p \). Multiplication by \(p \) acts injectively on \(\pi_*, K(\bar{k})_p \), hence also on \(\pi_* K(\bar{k})_p \). Think of \(p \) as a lift of \(p = v_0 \in \pi_* BP \), where \(BP \) is the Brown–Peterson ring spectrum with \(\pi_* BP = \mathbb{Z}[v_1 | v_1 \geq 1] \).

For a separably closed field \(\bar{F} \) of characteristic \(\neq p \) (including 0), Lichtenbaum conjectured that \(\pi_* K(\bar{F})_p \) is \(\mathbb{Z}_p \) for \(t \geq 0 \) even and 0 for \(t \) odd. This was proved by Suslin [Sus84 Cor. 3.13], and implies that \(K(\bar{F})_p \simeq ku_p \) and \(L_1 K(\bar{F}) \simeq KU_p \). Here \(ku \) is the connective cover of the complex topological \(K \)-theory ring spectrum \(KU \), and \(L_n = L_{K(n)} \) denotes Bousfield localization [Bou79] with respect to the Morava \(K \)-theory ring spectrum \(K(n) \). Multiplication by the Bott element \(u \in \pi_2 ku_p \) acts bijectively on \(\pi_* K(\bar{F})_p \), for \(* \geq 0 \).

Let \(F \) be a number field, with a ring of \(S \)-integers \(A \).

\[
\begin{array}{c}
A \longrightarrow F \\
\downarrow \quad \downarrow \\
\mathbb{Z} \longrightarrow \mathbb{Z}[1/p] \longrightarrow \mathbb{Q}
\end{array}
\]

Quillen conjectured [Qui75 §9] that there is a spectral sequence
\[E^2_{s,t} = H^s_{et}(Spec A; \mathbb{Z}_p(t/2)) \implies \pi_{s+t} K(A)_p \]
converging in total degrees \(\geq 1 \). Here \(H^s_{et}(-) \) denotes étale cohomology, which is only well-behaved if \(1/p \in A \), and \(\mathbb{Z}_p(t/2) \cong \pi_t K(\bar{F})_p \). For \(A = F \) this means that \(\pi_*, K(F)_p \cong \pi_* K(\bar{F})^{hG_F} \) for \(* \geq 1 \), where \(G_F \) is the absolute Galois group. The general case requires the more elaborate framework of étale homotopy types. Passing to mod \(p \) homotopy, a lift \(\beta \in \pi_{2p-2}(S/p) \) of \(u^{p-1} \in \pi_{2p-2}(ku; \mathbb{Z}/p) \) would act bijectively on \(\pi_* (K(A); \mathbb{Z}/p) \), for \(* \geq 1 \). Think of \(\beta = v_1 \) as a lift of \(v_1 \in \pi_*(BP; \mathbb{Z}/p) \).

Thomason [Tho85 Thm. 4.1] proved Quillen’s conjecture, up to the localization given by inverting \(\beta \). In particular, \(\pi_*(K(F); \mathbb{Z}/p)[1/\beta] \cong \pi_*(K(\bar{F})^{hG_F}; \mathbb{Z}/p) \) for \(* \geq 2 \). It remained to show that \(\pi_*(K(A); \mathbb{Z}/p) \to \pi_*(K(A); \mathbb{Z}/p)[1/\beta] \) is an isomorphism for \(* \geq 2 \). Waldhausen [Wald84 p. 193] noted that this amounts to asking that \(K(A) \to L_1 K(A) \) is a \(p \)-adic equivalence, in sufficiently high degrees. Here
Let \(L_n = L_{E(n)} \) denotes Bousfield localization with respect to the Johnson–Wilson ring spectrum \(E(n) \), or equivalently with respect to \(BP[1/v_n] \).

Using topological cyclic homology, Hesselholt–Madsen \([HM03\) Thm. A] confirmed Quillen’s conjecture for valuation rings in local number fields, after special cases were treated by Bökstedt–Madsen \([BM94\), [BM95\] and Rognes \([Rog99\), [Rog99b\].

Finally, Voevodsky’s proof \([Voe03\), [Voe11\] of the Milnor and Bloch–Kato conjectures confirmed Quillen’s conjecture for rings of integers in global number fields.

3. Redshift in the \(K \)-theory of ring spectra

We continue with examples of chromatic redshift in the context of algebraic \(K \)-theory of structured ring spectra.

Let \(L = E(1) \) be the Adams summand of \(KU(p) \), and \(\ell = BP(1) \) its connective cover. Using topological cyclic homology, Ausoni–Rognes \([AR02\) Thm. 0.4] computed \(V(1)_* K(\ell_p) \), and Ausoni \([Aus10\) Thm. 1.1] computed \(V(1)_* K(ku_p) \), where \(p \geq 5 \) and \(V(1) = S/(p, v_1) \) is the Smith-Toda spectrum of chromatic type 2. Using a localization sequence of Blumberg–Mandell \([BM08\) p. 157], this also calculates \(V(1)_* K(L_p) \) and \(V(1)_* K(KU_p) \). In each case, a lift \(v_2 \in \pi_{2p-2} V(1) \) of \(v_2 \in V(1)_* BP \) acts bijectively on the answer \(V(1)_* K(B) \), for \(* \geq 2p - 2 \).

The results are compatible with the existence of a spectral sequence

\[
E^2_{s,t} = H_{mot}^{-s}(\text{Spec } B; \mathbb{F}_p^2(t/2)) \Rightarrow V(1)_{s+t} K(B)
\]

for suitable “\(\ell \)-algebras of \(S \)-integers” \(B \), converging in sufficiently high total degrees. Here \(H_{mot}^{-s}(_\) refers to a hypothetical form of motivic cohomology for commutative structured ring spectra, and \(\mathbb{F}_p^2(t/2) \cong V(1)_t E_2 \) where \(E_2 \) is the \(K(2) \)-local Lubin–Tate ring spectrum with \(\pi_* E_2 = WF_p^{[[u]]}[[u]] \).

The appearance of the field \(\mathbb{F}_p^2 \) is needed to account for the sign in Ausoni’s relation \(b^p - 1 = -v_2 \) in \(V(1)_* K(ku_p) \), since if \(b \) is represented by \(\alpha u^{p+1} \) and \(v_2 \) by \(u^{p-1} \) then \(\alpha^{p-1} = -1 \), which cannot be satisfied for \(\alpha \in \mathbb{F}_p \).

4. An analogue of the Lichtenbaum–Quillen conjectures

Consider a Galois extension \(L_p[1/p] \to M \), like in \([Rog08\) §4]. By an \(\ell \)-algebra of integers in \(M \) we mean a connected (only trivial idempotents) commutative \(\ell \)-algebra \(B \), with a structure map to \(M \), such that \(B \) is semi-finite (retract of a finite cell module), or perhaps dualizable, as an \(\ell \)-module:

\[
\begin{array}{ccc}
\Omega_1 & \rightarrow & M \\
\downarrow & & \downarrow G \\
B & \rightarrow & M \\
\downarrow & & \downarrow \ell_p \\
\ell_p & \rightarrow & L_p & \rightarrow & L_p[1/p] \\
\downarrow & & \downarrow \ell_p & & \downarrow \ell_p \\
& & J_p & &
\end{array}
\]
For S-integers we may allow localizations that invert p or v_1. Let Ω_1 be the p-completed homotopy colimit of all such B, i.e., the ℓ_p-algebraic integers.

By analogy with Quillen's conjecture/Voevodsky's theorem we predict that v_2 acts bijectively on $V(1)_*K(B)$, for $* \gg 0$. By analogy with Lichtenbaum's conjecture/Suslin's theorem, we predict that $V(1)_*K(\Omega_1) \cong V(1)_*E_2$, in all sufficiently high degrees, and that $\hat{L}_2K(\Omega_1) \cong E_2$.

In the case when $B \to \Omega_1$ is an unramified G-Galois extension, the hypothetical motivic cohomology would reduce to group cohomology, and $V(1)_*K(B) \cong V(1)_*K(\Omega_1)^{hG}$ for $* \gg 0$. The general case would require a more elaborate construction than the familiar homotopy fixed points. Even establishing the existence of a ring spectrum map $K(ku) \to E_2$ seems to be an open problem.

Similarly, for $n \geq 1$ let E_n be the $K(n)$-local Lubin–Tate ring spectrum, and let e_n be its connective cover, so that $E_n = e_n[1/u]$. Consider Galois extensions $E_n[1/p] \to M$ and connected commutative e_n-algebras B, with a structure map to M, such that B is semi-finite as an e_n-module:

$$
\begin{array}{cccc}
\Omega_n & \longrightarrow & M \\
B & \longrightarrow & E_n & \longrightarrow & E_n[1/p] \\
\downarrow e_n & & \downarrow & & \\
\hat{L}_nS & & & &
\end{array}
$$

Let Ω_n be the p-completed homotopy colimit of all such B, i.e., the e_n-algebraic integers.

Let F be a finite p-local spectrum admitting a v_{n+1} self map $v : \Sigma^dF \to F$, cf. Hopkins–Smith [HS98, Def. 8]. The finite localization functor L_{n+1}^f, which annihilates all finite $E(n+1)$-acyclic spectra [Mil92, Thm. 4], is a smashing localization such that $F_*L_{n+1}^fX \cong F_*X[1/v]$ for all spectra X.

I stated something like the following at Schloß Ringberg in January 1999 and in Oberwolfach in September 2000:

Conjecture 4.1. Let $B \to \Omega_n$ and (F,v) be as above.

(a) Multiplication by v acts bijectively on $F_*K(B)$ for $* \gg 0$, and $K(B) \to L_{n+1}^fK(B)$ is a p-adic equivalence in sufficiently high degrees.

(b) There are isomorphisms $F_*K(\Omega_n) \cong F_*E_{n+1}$ for $* \gg 0$, and $\hat{L}_{n+1}K(\Omega_n) \cong E_{n+1}$.

The cases $n = -1$ and $n = 0$ correspond to Quillen’s results and the proven Lichtenbaum–Quillen conjectures, respectively.

5. The cyclotomic trace map

We can detect chromatic redshift in algebraic K-theory using the cyclotomic trace map to topological cyclic homology, or one of its variants.
The topological Hochschild homology THH(B) of a commutative S-algebra B is an S^1-equivariant spectrum whose underlying spectrum with S^1-action can be constructed as $B \otimes S^1$, where \otimes refers to the tensored structure of commutative S-algebras over spaces. Let

$$\text{THH}(B)^hS^1 = F(ES^1_+, \text{THH}(B))^{S^1}$$

be the S^1-homotopy fixed points of THH(B), and let

$$\text{THH}(B)^tS^1 = [ES^1 \wedge F(ES^1_+, \text{THH}(B))]^{S^1}$$

be its S^1-Tate construction, also denoted $t_{S^1} \text{THH}(B)^{S^1}$ or $\hat{\text{THH}}(S^1, \text{THH}(B))$. Here ES^1 is a free contractible S^1-space, and \tilde{ES}^1 is the mapping cone of the collapse map $ES^1_+ \to S^0$. Homotopy fixed point spectra model group cohomology, and the Tate construction models Tate cohomology.

Think of B as a ring spectrum of functions on a brave new scheme X. Then $B \wedge \cdots \wedge B$ is the ring of functions on $X \times \cdots \times X$, so THH(B) plays the role of the ring of functions on the free loop space $\text{Map}(S^1, X) = \Lambda X$, and THH(B)$^{hS^1}$ is like the ring of functions on the Borel construction $ES^1_+ \wedge S^1 \Lambda X$. The Tate construction is a periodicized version of the Borel construction.

There is a natural trace map

$$K(B) \to \text{THH}(B)$$

that factors through the fixed point spectra $\text{THH}(B)^{C_r}$ for all finite subgroups $C_r \subset S^1$. In particular, there is a limiting map

$$K(B) \to TF(B; p) = \text{holim}_n \text{THH}(B)^{C_{p^n}}.$$

Continuing with the canonical map from fixed points to homotopy fixed points, the target of

$$\text{holim}_n \text{THH}(B)^{C_{p^n}} \to \text{holim}_n \text{THH}(B)^{hC_{p^n}}$$

is p-adically equivalent to THH(B)$^{hS^1}$. The cyclotomic structure of THH(B) gives a similar map

$$\text{holim}_n \text{THH}(B)^{C_{p^n}} \to \text{holim}_n \text{THH}(B)^{tC_{p^{n+1}}},$$

whose target is p-adically equivalent to THH(B)$^{tS^1}$.

The topological Hochschild construction itself does not introduce a redshift, since THH(B) is a commutative B-algebra. However, in all the computations made so far, any v_{n+1}-periodicity that is seen in the algebraic K-theory $K(B)$ has already been visible in the S^1-Tate construction THH(B)$^{tS^1}$.

Furthermore, it is possible to see in homological terms where the redshift arises, in terms of these S^1-equivariant constructions.

6. **Circle-equivariant redshift**

The algebra $H_*(e_n)$ appears to be unwieldy for $n \geq 2$, but there is a map $BP(n) \to e_n$ of (not necessarily commutative) S-algebras, covering the usual map $E(n) \to E_n$, and the augmentation $BP(n) \to H$ induces an identification

$$H_*(BP(n)) \cong P(\xi_k \mid k \geq 1) \otimes E(\bar{\tau}_k \mid k \geq n + 1)$$

of subalgebras of the dual Steenrod algebra

$$A_\ast = P(\xi_k \mid k \geq 1) \otimes E(\bar{\tau}_k \mid k \geq 0).$$
Forgetting some structure, we can therefore think of the homology $H_*(B)$ of a commutative e_n-algebra B as a commutative $H_*(BP(n))$-algebra. This makes the Adams spectral sequence

$$E_2^{s,t}(B) = \text{Ext}_{S^1_*(B)}(\mathbb{F}_p, H_*(B)) \Longrightarrow \pi_{t-s}(B_p^\wedge)$$

an algebra over the Adams spectral sequence

$$E_2^{s,t} = \text{Ext}_{S_*(B)}(\mathbb{F}_p, H_*(BP(n))) \Longrightarrow \pi_{t-s}(BP(n)_p^\wedge)$$

which collapses at the E_2-term

$$E_2^{r,s} = P(v_0, \ldots, v_n)$$

and converges to the homotopy

$$\pi_* BP(n)_p^\wedge \cong \mathbb{Z}_p[v_1, \ldots, v_n].$$

The Bökstedt spectral sequence

$$E_2^{s,t}(B) = HH_*(H_*(B))_t \Longrightarrow H_{s+t}(\text{THH}(B))$$

is then an algebra spectral sequence over

$$E_2^{r,s} = HH_*(H_*(BP(n))) \cong HH_*(BP(n)) \otimes E(\sigma \xi_k \mid k \geq 1) \otimes \Gamma(\sigma \check{\tau}_k \mid k \geq n + 1)$$

collapsing to $H_*(\text{THH}(BP(n)))$. Here σ denotes the suspension operator, coming from the S^1-action on THH, and $\Gamma(x) = \mathbb{F}_p(\gamma_j x \mid j \geq 0)$ denotes the divided power algebra on x.

The Dyer–Lashof operations $Q^{p,k}(\check{\tau}_k) = \check{\tau}_{k+1}$ in \mathcal{A}_* (coming from the commutative S-algebra structure on H), imply multiplicative extensions $(\sigma \check{\tau}_k)^p = \sigma \check{\tau}_{k+1}$, for $k \geq n + 1$, which in turn imply that the Bockstein images $\beta(\sigma \check{\tau}_{k+1}) = \sigma \xi_{k+1}$ vanish in the abutment. This argument, see Ausoni [Aus05, Lem. 5.3], implies differentials

$$d^{p-1}(\gamma_j \sigma \check{\tau}_k) \cong \sigma \check{\xi}_{k+1} \cdot \gamma_{j-p} \sigma \check{\tau}_k$$

for all $j \geq p$, which leave

$$E_2^{r,s} = E_\infty^{r,s} \cong H_*(BP(n)) \otimes E(\sigma \check{\xi}_1, \ldots, \sigma \check{\xi}_{n+1}) \otimes P(\sigma \check{\tau}_k \mid k \geq n + 1)$$

converging to

$$H_*(\text{THH}(BP(n))) \cong H_*(BP(n)) \otimes E(\sigma \check{\xi}_1, \ldots, \sigma \check{\xi}_{n+1}) \otimes P(\sigma \check{\tau}_{n+1}).$$

This will still have trivial v_{n+1}-periodic homotopy, but note how building in a circle action gives rise to the class $\sigma \check{\tau}_{n+1}$.

The homological Tate spectral sequence

$$E_2^{s,t}(B) = \check{H}^{-s}(S^1; H_*(\text{THH}(B))) \Longrightarrow H^s_{s+t}(\text{THH}(B)^{S^1})$$

converges to a limit that we call the continuous homology of $\text{THH}(B)^{S^1}$. It is an algebra spectral sequence over

$$E_2^{r,s} = \check{H}^{-s}(S^1; H_*(\text{THH}(BP(n)))) \cong P(t^{\pm 1}) \otimes H_*(\text{THH}(BP(n)))$$

converging to $H^c_*(\text{THH}(BP(n))^{S^1})$. Here

$$d^2(t^x) = t^{x+1} \cdot \sigma x$$

for all x, which leaves

$$E_3^{r,s} = P(t^{\pm 1}) \otimes P(\xi_1^{p-1}, \ldots, \xi_{n+1}^{p-1}, \xi_k \mid k \geq n + 2)$$

$$\otimes E(\gamma_k \mid k \geq n + 2) \otimes E(\xi_1^{p-1} \sigma \check{\xi}_1, \ldots, \xi_{n+1}^{p-1} \sigma \check{\xi}_{n+1})$$
where \(\tau'_k = \tilde{\tau}_k - \tilde{\tau}_{k-1}(\sigma \tilde{\tau}_{k-1})^p - 1 \) for each \(k \geq n + 2 \). Note that \(\tilde{\tau}_{n+1} \) supports a nontrivial \(d^2 \)-differential to \(t \cdot \sigma \tilde{\tau}_{n+1} \), and does not survive to the \(E^\infty \)-term, while the \(\tau'_k \) for \(k \geq n + 2 \) are \(d^2 \)-cycles, due to the known multiplicative extension.

This spectral sequence often collapses at this stage \cite{BR05}, Prop. 6.1, and there can be \(\mathcal{A}_* \)-comodule extensions that combine \(p^{n+1} \) shifted copies of

\[
P(\tilde{\xi}_k, \ldots, \tilde{\xi}_{n+1}, \xi_k \mid k \geq n + 2) \otimes E(\tau'_k \mid k \geq n + 2)
\]
to a copy of \(P(\xi_k \mid k \geq 1) \otimes E(\tau'_k \mid k \geq n + 2) \cong H_*(BP(n+1)) \). The PhD theses of Sverre Lunøe-Nielsen \cite{LNR12, LNR11} and Knut Berg (to appear) address these questions. Note the transition from \(H_*(BP\langle n \rangle) \) to \(H_*(BP\langle n+1 \rangle) \), with non-trivial \(v_{n+1} \)-periodic homotopy groups. The typical result is that \(H_*^c(THH(B)t^{S^1}) \) is an algebra over \(H_*^c(THH(B)p^{S^1}) \), which has an associated graded of the form

\[
P(t^{\pm p^{n+1}}) \otimes H_*(BP(n+1)) \otimes E(\nu_1, \ldots, \nu_{n+1})
\]
where \(\nu_k \) is a \(t \)-power multiple of \(\tilde{\xi}_k^{p-1} \sigma \tilde{\xi}_k \), but that there is room for further \(\mathcal{A}_* \)-comodule extensions.

This implies that the inverse limit Adams spectral sequence

\[
E_2^{s,t}(B) = \text{Ext}_{\mathcal{A}_*}^s(F_p, H_*^c(THH(B)t^{S^1})) \Rightarrow \pi_{t-s} \text{THH}(B)p^{S^1}_t
\]
is an algebra over the Adams spectral sequence

\[
E_2^{s,t} = \text{Ext}_{\mathcal{A}_*}^{s,t}(F_p, H_*^c(THH(B)p^{S^1})) \Rightarrow \pi_{t-s} \text{THH}(B)p^{S^1}_t
\]
which contains factors like

\[
\text{Ext}_{\mathcal{A}_*}^{s,t}(F_p, H_*(BP\langle n+1 \rangle)) \cong P(v_0, \ldots, v_n, v_{n+1}).
\]
Due to the exterior factors \(E(\nu_1, \ldots, \nu_{n+1}) \) there is room for differentials that might truncate the periodic \(v_{n+1} \)-action visible above, but empirically this does not happen. A theory that explains the general picture is, however, currently lacking.

7. Beyond elliptic cohomology

Do \(K(tm\phi) \) and \(\text{THH}(tm\phi)t^{S^1} \) detect \(v_3 \)-periodic families? Work in progress for \(p = 2 \) with Bruner (2008).

8. Waldhausen’s localization tower

The chromatic localization functors \((L_n \) and \(\hat{L}_n \) and the finite localizations functors \(L^f_n \) fit in a diagram of commutative structured ring spectra

\[
\begin{array}{ccccccc}
E_n & & & & KU_p \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\hat{L}_n S & \rightarrow & L^f_n S & \rightarrow & L^f_{n-1} S & \rightarrow & \cdots \rightarrow L^f_1 S & \rightarrow & L^f_0 S \\
S_{(p)} & \rightarrow & \cdots & \rightarrow & \hat{L}_n S & \rightarrow & L^f_n S & \rightarrow & \cdots \rightarrow L^f_1 S & \rightarrow & L^f_0 S
\end{array}
\]
where \(L^f_n S \to L_n S \) is an equivalence for \(n \leq 1 \), but probably not for \(n \geq 2 \), according to the wisdom concerning Ravenel’s telescope conjecture \[MRS01\]. Applying algebraic \(K \)-theory to the lower row one gets a telescopic localization tower

\[
K(S_{(p)}) \to \ldots \to K(L^f_1 S) \to K(L^f_{n-1} S) \to \ldots \to K(L_1 S) \to K(\mathbb{Q})
\]

similar to that of \[Wal84\, p. 174\], interpolating between the geometrically significant algebraic \(K \)-theory of spaces on the left hand side, and the arithmetically significant algebraic \(K \)-theory of number fields on the right hand side. Waldhausen worked with \(L_n \), and explicitly assumed that it is a finite localization functor, but we can work with \(L^f_n \) instead. This ensures that each finite cell \(L^f_n S \)-module is \(L^f_n \)-equivalent to a finite cell \(S \)-module, as can be proved by induction on the number of \(L^f_n S \)-cells.

Let \(\mathcal{C}_0 \) be the category of finite \(p \)-local spectra, and let \(w_n \mathcal{C}_0 \) be the subcategory of \(E(n)_\ast \)-equivalences, or equivalently of \(L^f_n \)-equivalences, for \(n \geq 0 \). Let \(\mathcal{C}_n = \mathcal{C}_0^{w_n^{-1}} \) denote the full subcategory of \(E(n-1)_\ast \)-acyclic spectra, i.e., the finite spectra of type \(\geq n \), for \(n \geq 1 \). Then \(K(\mathcal{C}_0, w_n) \simeq K(L^f_n S) \), and Waldhausen’s localization theorem \[Wal84\, \S3\] recognizes the homotopy fiber of \(K(L^f_n S) \to K(L^f_{n-1} S) \) as \(K(\mathcal{C}_n, w_n) \), i.e., the algebraic \(K \)-theory of finite spectra of type \(\geq n \), with respect to the \(E(n)_\ast \)-equivalences. We get a homotopy fiber sequence

\[
K(\mathcal{C}_n, w_n) \to K(L^f_n S) \to K(L^f_{n-1} S).\]

Let \(\mathcal{X}^{sm}_n \) be the category of small \(K(n) \)-local spectra, and let \(\mathcal{X}^r_n \) be the full subcategory of \(K(n) \)-localizations of finite spectra of type \(\geq n \). Hovey–Strickland \[HS99\, Thm. 8.5\] show that the inclusion \(\mathcal{X}^r_n \subset \mathcal{X}^{sm}_n \) is an idempotent completion, so the induced map \(K(\mathcal{X}^r_n) \to K(\mathcal{X}^{sm}_n) \) induces an isomorphism on \(\pi_i \) for each \(i \geq 1 \). The localization functors \(L_n \) and \(\hat{L}_n \) agree on \(\mathcal{C}_n \), hence induce an equivalence \(K(\mathcal{C}_n, w_n) \simeq K(\mathcal{X}^r_n) \). Thus we have a map

\[
K(\mathcal{C}_n, w_n) \to K(\mathcal{X}^{sm}_n),
\]

which induces a \(\pi_i \)-isomorphism for each \(i \geq 1 \). We view \(\mathcal{X}^{sm}_n \) as a category of suitably small \(\hat{L}_n S \)-modules.

Let \(\mathcal{E}^{df}_n \) be the category of \(E_n \)-module spectra that have degreewise finite homotopy groups. Base change along the \(K(n) \)-local pro-\(\mathbb{G}_n \)-Galois extension \(\hat{L}_n S \to E_n \) takes \(\mathcal{X}^{sm}_n \) to \(\mathcal{E}^{df}_n \), and conversely \[HS99\, Cor. 12.16\], so it is plausible that a Galois descent comparison map

\[
K(\mathcal{X}^{sm}_n) \to K(\mathcal{E}^{df}_n)^{h\mathbb{G}_n}
\]

is close to an equivalence. Finally, \(K(\mathcal{E}^{df}_n) \) is related to the algebraic \(K \)-theory of \(E_n \) and its various localizations. For \(n = 1 \) we have \(E_1 = KU_p \), and \(K(\mathcal{E}^{df}_1) \) is the algebraic \(K \)-theory of \(p \)-nilpotent finite cell \(KU_p \)-modules, which sits \[Bar13\, Prop. 11.15\] in a homotopy fiber sequence

\[
K(\mathcal{E}^{df}_1) \to K(KU_p) \to K(KU_{p}[1/p]).
\]

In general, this fiber sequence is replaced by an \(n \)-dimensional cubical diagram. Note that the transfer map \(K(KU/p) \to K(\mathcal{E}^{df}_1) \) associated to \(KU_p \to KU/p \) is far from an equivalence, by the calculations of \[ART12\, Cor. 1.3\], so there does not appear to be any easy way to describe the algebraic \(K \)-theory of degreewise finite \(E_n \)-modules in terms of dévissage, cf. \[Wal84\, p. 188\].
Conjecture [43] about the structure of the algebraic K-theory of E_n (and various localizations) is therefore also a statement about $K(E_{nf})$, and conjecturally about $K(K_{smn})$, which rather precisely measures the difference between $K(L^n_S)$ and $K(L^n_{n-1}S)$.

9. THE SPHERICAL CASE

Calculations of $TC(S;p)$, $K(Z)$ and $TC(Z;p)$ were assembled to a calculation of $K(S)$ at $p = 2$ in [Rog02] and at odd regular primes in [Rog03]. These results describe the cohomology of $K(S)$ as an A-module in all degrees (up to an extension in the odd case), and lead to Adams spectral sequence calculations in a finite range of degrees.

The algebraic K-groups of S are at least as complicated as those of its stable homotopy groups. The complex cobordism spectrum MU has turned out to be a convenient halfway house

$$S \rightarrow MU \rightarrow H$$

between homology and homotopy. The Thom equivalence $MU \wedge MU \simeq MU \wedge BU_+$ makes $S \rightarrow MU$ a Hopf–Galois extension [Rog08 §12], and the cosimplicial Amitsur resolution

$$[q] \mapsto MU \wedge MU^{\wedge q}$$

of S is equivalent to the cobar resolution $[q] \mapsto MU \wedge BU_+^{\wedge q}$ for the $S[BU] = \Sigma^{\infty}(BU_+)$-comodule algebra MU. Applying algebraic K-theory, an analogue of Quillen’s conjecture would predict that $K(S)$ is well approximated by the totalization of the cosimplicial spectrum

$$[q] \mapsto K(MU \wedge MU^{\wedge q})$$

rewriteable as $[q] \mapsto K(MU \wedge BU_+^{\wedge q})$. If, by analogy with the Galois case, there are compatible maps $K(MU \wedge BU_+^{\wedge q}) \rightarrow K(MU) \wedge BU_+^{\wedge q}$, then this might in turn be approximated by the totalization of the cobar resolution $[q] \mapsto K(MU) \wedge BU_+^{\wedge q}$ for an $S[BU]$-comodule algebra structure on $K(MU)$.

Conceivably, this leads to a more conceptual understanding of $\pi_*, K(S)$ in terms of $\pi_* K(MU)$ and Hopf–Galois descent, by analogy with the Adams–Novikov spectral sequence description of $\pi_* S$ in terms of $\pi_* MU$ and its $H_*(BU)$-coaction. This has been a motivating factor for the study of $K(MU)$, advertised in [BR05] and [Rog09], and pursued in [LNR11].
10. Higher redshift

For a Lie group G of rank k, consider $(B \otimes G)^{hG}$ or something like $(B \otimes G)^{tG}$. If B is v_n-periodic but not v_{n+1}-periodic, then apparently $(B \otimes G)^{tG}$ is v_{n+k}-periodic. Tested for $B = H$ and $G = T^k$ for small k, as well as for $G = SO(3)$ and $G = S^3$. Work in progress (Rognes, 2008–2011) and in Torleif Veen’s PhD thesis (2013).

References

Department of Mathematics, University of Oslo, Norway

E-mail address: rognes@math.uio.no

URL: http://folk.uio.no/rognes