
AN HKR THEOREM FOR FACTORIZATION HOMOLOGY

HARI RAU-MURTHY

Abstract. We prove a Hochschild-Kostant-Rosenberg theorem (“the HKR

theorem”) which computes the factorization homology of certain smooth com-

mutative ring spectra. In doing so, we fix and generalize a THH computation
which was first conceived as the brainchild of McCarthy-Minasian. A direct

application of our revised HKR theorem is the higher THH of rational KU .

1. Introduction

This paper concerns the following classical theorem due to Hochschild, Kostant
and Rosenberg (HKR) [HKR62]. When R → A is a smooth map of commutative
rings, we have an isomorphism

(1.1) HH∗(A/R) → Ω∗(A/R)

from the Hochschild homology relative to R, to the Kähler differential forms of A
relative to R.

The idea for generalizing (1.1) to commutative ring spectra is due to McCarthy-
Minasian in their main theorem of [MM03]. In particular, they develop certain
generalizations of a smooth map of classical rings to commutative rings. They
state that

(1.2) THH(A/R) ≃ PA(ΣTAQ(A/R))

is an equivalence for suitable A. Here, PA(−) is notation for the free commutative
A-algebra on the A-module and TAQ(A/R) denotes the unaugmented Topological
Andre Quillen homology of A relative to R, developed by [Bas99], and discussed in
Section 2.3.

We give assumptions under which (1.2) is true. While the precise assumptions
on R and A, including the smoothness assumption, and the proof of (1.2) have
flaws in [MM03], McCarthy-Minasian provides the foundations we build on in this
present paper.

The equivalence (1.2) is analogous to the classical HKR theorem (1.1): infor-
mally, the left hand side of (1.2) is Hochschild homology and the right hand side
is the graded commutative algebra over Kähler 1-forms concentrated in degree 1,
which is the Kähler differential forms.

Remark 1.1. We remark that the equivalence (1.2) only implies the classical HKR
theorem (1.1) for Q algebras. A free commutative algebra in the classical setting
is only rationally a free commutative algebra in spectra, owing to the homology
of the symmetric group. Additionally, the topological Andre Quillen homology,
TAQ, only agrees rationally with algebraic Andre Quillen homology. This problem
is ubiquitous when switching from the setting of spectral algebraic geometry and
derived/simplicial algebraic geometry as developed by [Lur18, Chapter 25].
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Among the errors in [MM03], the first two of which having been noted by
Antieau, Toen and Vesozzi in [AV20][TV08], are the following:

(1) MccCarthy-Minasian argue that (1.2) is true etale locally and hence it is
true globally. They fail, however, to produce a global map which induces
the etale local equivalences.

(2) [MM03] MccCarthy-Minasian assert that Theorem 1.2 implies the classical
HKR theorem in all characteristics.

(3) [MM03] MccCarthy-Minasian assume that two notions of the completion of
a module with respect to an ideal, with one involving smash products over
A⊗R S1, and the other involving smash products over A, are the same.

Actually, the correct hypotheses of the main theorem of [MM03] were stated
in McCarthy-Minasian’s subsequent paper [MM04]. Although [MM04] refers to
the flawed [MM03] for details of a proof, the statements in [MM04] are correct;
moreover [MM04] gives valuable insight, which we use, on how to correct the first
error mentioned above of [MM03].

1.1. Results. We aim to fix and generalize (1.2). The smoothness hypothesis we
will need is as follows. Classically a smooth map of rings is one which is locally
etale over an affine space. One of the many ways etale is interpreted in the context
of commutative ring spectra is as follows. For a map A → B of commutative rings,
TAQ(B/A) is Topological Andre Quillen homology - a derived version of differential
1-forms. We say that A → B is formally TAQ-etale when TAQ(B/A) ≃ 0. The
corresponding notion of smoothness is formal TAQ smoothness. For details, see
Section 5.

Theorem 1.2. Let R → A be a formally TAQ-smooth map in the category of
connective commutative rings and let M be the realization of a pointed, connected
simplicial set.

Then the factorization homology is given by

(1.3)

∫
M

(A/R) := A⊗R M ≃ PA(M ∧ TAQ(A/R)).

We will call this theorem ‘the generalized HKR theorem.’ Here − ⊗R M is the
Loday functor of [MSV97] discussed in Section 2.1. In the case M = S1 we recover
Theorem 1.2.

The Loday functor, − ⊗R Sn, gives a different notion of smoothness which we
call Sn-THH smooth (see Section 5).

In this setting, we also prove the following:

Theorem 1.3. Let R → A be a formally Sn-THH-smooth map, and let M be
n-connected. Then the conclusion 1.3 of the generalized HKR theorem is satisfied.

Theorem 1.3 depends on a certain etale descent lemma (Theorem 3.7) which was
independently proven in [LR22, Proposition 2.11] and proven in a special case in
[RSV22, Theorem 7.5].

Theorem 1.2 also includes as special cases M = Tn, known as iterated THH (see
[CDD11][Sto20][BHL+19][HKL+22]) and which accesses iterated K-theory impor-
tant for the redshift conjecture as noted in [HKL+22][CDD11]. Also included is
the case M = Sn which is a topological version of higher Hochschild homology (see
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[Pir00][BHL+19]). These special cases were what initially motivated us to prove
Theorem 1.2.

In [Sto20] and [RSV22], Stonek et al. prove that Theorem 1.2 is true for R = S,
A = KU , and any connected M by direct computation. Since [MM03] was released,
several authors have proven etale descent results for THH [Mat17][CM21][Rog08]
and have proven etale descent results for higher THH [Sto20][BHL+19][RSV22].

1.2. Organization of the paper. We begin with a background section where we
review the definition ofA⊗RM (Section 2.1) and facts about nonunital commutative
algebras (Section 2.7). In Section 2.4, we define TAQ, the corresponding notion of
etale, its generalization M -THH-etale, and other notions of etale. In Section 3, we
state and prove the etale descent lemmas which we need to prove our generalized
HKR theorems. In Section 4, we show that the generalized HKR theorem is satisfied
for free commutative algebras. In Section 5 we develop a generalized notion of etale
covering for commutative ring spectra. In Section 6, we use this generalized notion
of a covering to prove the generalized HKR Theorems 1.2 and 1.3.

1.3. Acknowledgements. We gratefully acknowledge helpful conversations with
Mark Behrens, Inbar Klang, Nikolai Konovolov, Andrew Blumberg, Ayelet Linden-
strauss, Connor Malin, Lorenzo Riva, Sihao Ma, Claudiu Raicu, John Rognes, and
Nat Stapleton. We acknowledge support from the eCHT graduate research fellow-
ship (NSF Grant DMS-1547292) for the academic year of 2022-2023 and support
from the NSF Grant DMS-1547292 during the academic year of 2021-2022.

2. Background

2.1. The Loday construction. Let A be a commutative R-algebra, and let M
be the realization of a pointed simplicial set M•. We will define the commuta-
tive R-algebra A ⊗R M , known as the Loday construction. The foundations for
this construction were first established in [MSV97] and the terminology is due to
[HHL+18]. This construction is also quite standard and general and it can be found
in any discussion on homotopy colimits.

A ⊗R M is formally defined as the R-algebra colimMA where M is viewed as
an ∞-category and A is taken to be the constant functor in R-algebras; we have
not (yet) used the basepoint of M . By the definition of A ⊗R M as a colimit in
an ∞−category, we have that up to equivalence, it only depends on the homotopy
type of M , and that A ⊗R − commutes with colimits of spaces. This will be
used throughout the paper, and also gives us an explicit model for the Loday
construction.

Explicitly, as shown below, A⊗RM is the simplicial set which has a smash copy
of A for each simplex of M•. The justification is as follows: we have that

A⊗R M ≃ A⊗ |M•|
≃ A⊗R colim•∈∆M• ≃ colim•∈∆A⊗R M•

≃ |A∧RM• |.

The explicit simplicial set structure on A∧RM• comes from the observation that
A⊗R (pt⊔ pt → pt) is identified with the fold or multiplication map A∧R A → A;
A ⊗R (∅ → pt) is identified with the map from the initial object of R − Alg to A,
or the unit map.
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This classical Loday construction is a special case of a more general Loday con-
struction c ⊗ v where C is an ∞-category enriched in a monoidal ∞-category V ,
and c and v are objects of C and V respectively. We are interested only in the cases
where C = R − Alg, V = Top, and C = R −Mod, V = Top. The construction is
as follows - consider the (∞-)functor

[c,−] : Cun → V

from the underlying ∞-category of C to V . When the unique left adjoint exists,
it is denoted by c ⊗ −; we will occasionally write c ⊗V

C v when it is necessary to
emphasize C and V , or c⊗C v in the special case where V = Top. When C is itself a
presentable (unenriched) ∞-category and V = Top, the left adjoint exists because
it is given by v 7→ colimMc; this expression exists because C is cococomplete. In
particular, when C = R − Alg, V = Top, c⊗ v is the classical Loday construction
above, and using our above notation for rings and spaces, we have the following
useful universal property:

(2.1) [A⊗R M,B]R−Alg ≃ [M, [A,B]R−Alg]Top.

This abstract framework gives rise to the following concrete application which we

will need. When C = R −Mod and V = Top, c⊗Top
C v is given by c ∧ (v+). This,

for example, may be seen as a consequence of the fact that for w ∈ ob(Top+) we

have that c⊗Top+

C w ≃ c∧w and we also have the existence of the free functor from
spaces to pointed spaces. Regarding the free functor PR : R−Mod → R−Alg, we
also have by the universal property of the general Loday constructions that

(2.2) PR(X ⊗Top
R−Mod M) ≃ PR(X)⊗Top

R M

for any R-module X.
Lastly, the Loday construction is important to us as we have the equivalence A⊗R

S1 ≃ THH(A/R) where the right hand side is defined via a cyclic bar construction
[MSV97]. This follows from the explicit model for A ⊗R − and the equivalence
S1
• ≃ Z/(•+ 1). The n-fold iterated THH is consequently

(A⊗R S1)⊗R S1 · · · ≃ A⊗R (S1 × · · · )

where the last equality follows from (A∧Rn)∧Rm ≃ A∧Rnm.
We have that THH(A/R) is an A-algebra via the map A → A⊗S1 induced from

0 → S1. More generally, we would like to understand the A-algebra structure on

A⊗M for pointed M (and the tensor product −⊗Top
R−Alg −)), and we will need the

following general fact about morphisms in under categories.

Lemma 2.1 ([Lur09, Lemma 5.5.5.12]). Let C be an ∞ category, c ∈ ob(C), and

c\C the undercategory for c. Let d
∼
: c → d and e

∼
: c → e be objects in c\C. We

then have a pullback square

[d
∼
, e
∼
]
c\C

//

��

[d, e]C

��

pt
e
∼

// [c, e]C

.
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An immediate application of Lemma 2.1 and the universal property of the Loday
construction (2.1) is the following change of base ring formula:

Proposition 2.2. Let R → A → B comprise of algebra maps. Then we have the
equivalence

(B ⊗R M) ∧A⊗RM A ≃ B ⊗A M

Proof. For any A-algebra C, we have the following equivalences:

[(B ⊗R M) ∧A⊗RM A,C]A−Alg ≃ [B ⊗R M,C]A⊗RM−Alg

≃ fib([B ⊗R M,C]R−Alg → [A⊗R M,C]R−Alg)

≃ fib([M, [B,C]R−Alg]Top
→ [M, [A,C]R−Alg])

≃ [M, fib([B,C]R−Alg → [A,C]R−Alg)]Top)

≃ [M, [B,C]A−Alg]Top ≃ [B ⊗A M,C]A−Alg

By the Yoneda lemma we are done □

where the A⊗R M module structure on A is induced from the map M → pt.
The dual statement to Lemma 2.1 is following lemma.

Lemma 2.3. Let C be an ∞ category, c ∈ ob(C), and C/c the overcategory for c.

Let d̃ : d → c and ẽ : e → c be objects in C/c. We then have a pullback square

[d̃, ẽ]C/c
//

��

[d, e]C

��

pt
∼
d // [d, c]C

.

Lemma 2.4. There is a canonical equivalence

[c⊗C M, d
∼
]
c\C ≃ [M, [c, d]C ]Top+

.

Here, we view c⊗C M as an object of c\C via the map c⊗C pt → c⊗C M .

Proof. By Lemma 2.1 and by (2.1), we have the following equivalences.

[c⊗C M, d
∼
]
c\C ≃ fib([M, [c, d]C ]Top → [pt, [c, d]C ]Top)

≃ [M, [c, d]C ]Top+
.

□

Lemma 2.5. Dually, we have the canonical equivalence

c̃⊗C/c
M ≃ c⊗C M.

Here, the right hand side is interpreted as an object of C/c via the map M → pt,

and c̃ is notation for the object in C/c given by c
Id−→ c.
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Proof. By Lemma 2.3 and by (2.1), we have the following equivalences.

[c⊗C M, d̃]C/c
≃ fib([M, [c, d]C ]Top → [M, [c, c]C ]Top)

≃ [M, [c̃, d̃]C/c
]Top ≃ [c⊗C/c

M, d̃]Top.

□

As an immediate corollary of Lemma 2.4, we obtain a description for the A-
algebra structure on A⊗R M .

Proposition 2.6. The A-algebra structure on A⊗R M may be understood via the
following adjunction

[A⊗R M,B]A−Alg ≃ [M, [A,B]R−Alg]Top+

where [A,B]R−Alg has the base point given by the unique A-algebra map to B.

Lastly, for an n manifold M , we have an equivalence

(2.3)

∫
M

A → A⊗S M

from the En factorization homology to the Loday construction relative to the sphere
spectrum [AF15, Proposition 5.1].

The proof is simple: since A ⊗S − commutes with colimits of spaces, it is an
excisive functor. En factorization homology is excisive for embedded framed n-
disks by definition. Constructing the map (2.3) is the same as constructing the
map for M = Rn via ∫

Rn

A ≃ A ≃ A⊗S pt ≃ A⊗S Rn.

Since the above map is an equivalence, (2.3) is an equivalence.
In particular we have an equivalence∫

Sn

A
≃−→ A⊗S S

n

from En factorization homology over Sn to n-higher THH.

2.2. Nonunital Commutative Algebras. We give the basic properties of the ∞-
category of nonunital commutative algebras, after [Lur17, Chapter 3] and [Bas99,
Section 1]. This will be used in the next section to define topological Andre Quillen
homology, and to define the completions used throughout this paper.

Let A be a commutative ring.

Definition 2.7. The category A-NUCA of A-nonunital commutative algebras is
defined as the ∞-category of symmetric monoidal functors of ∞-categories

(Finsurj,⊔) → Spectra

from finite sets with surjections to spectra.

To illuminate this definition, we compare to the definition of a commutative
algebra. The unit map of a commutative algebra is induced from [0] = ∅ → [1] ∈
Fin; this is exactly the structure we remove to obtain a nonunital commutative
algebra as in Definition 2.7.

A related construction is the category of augmented A algebras, defined by the
slice category A − Alg/A. Explicitly, an object of this category is an A algebra



AN HKR THEOREM FOR FACTORIZATION HOMOLOGY 7

U with a module equivalence U ≃ A ∨ I for some A module I. The commutative
algebra structure on A gives rise to an A − NUCA structure on I. The functor
which assigns to A ∨ I, the A − NUCA I is referred to as the augmentation ideal.
This functor gives rise to the following equivalence [Lur17, Proposition 5.4.4.10] of
∞-categories

(2.4) A−NUCA
A∨−

33
A−Alg/A

aug. idealss

.

Thus both adjoints are simultaneously left and right adjoints.
An important augmented A-algebra is A⊗R M , with the augmentation induced

from the map M → pt. Denote the augmentation ideal by IAM . For instance,
IAS0 = fib(A∧R A → A) is the fiber of the multiplication map. We remark that this
notation does not make explicit the base ring R; throughout this paper, the base
ring will change and be understood from the context.

The augmented algebra structure on A⊗RM is best understood via the following
proposition.

Proposition 2.8. For any augmented A-algebra U , we have the following equiva-
lence

[A⊗R M,U ]A−Alg/A ≃ [M, [A,U ]R−Alg/A]Top+
.

Proof. By applying Lemma 2.5 and then Lemma 2.5, we obtain

[A⊗R M,U ]A−Alg/A ≃ [A⊗R−alg/A M,U ]
A\R−Alg/A

≃ [M, [A,U ]R−Alg/A
]Top+

□

Definition 2.9. Let N be an A-module, and let I be a A-NUCA, with an associa-
tive map I ∧A N → N . Define N/In via the cofiber sequence:

I∧An ∧A N → N → N/In

Examples of definition 2.9 are following:

Example 2.10. (1) the A-module

A⊗R M/(IAM )n

where N = A⊗R M , I = IAM
(2) the A-module

IAM/(IAM )n

where N = IAM , I = IAM
(3)

(IAM )n/(IAM )n+1

where N = (IAM )∧An is given an A-module structure via any of the factors,
and I = IAM . It is also true that we have the equivalence

(IAM )n/(IAM )n+1 ≃ fib(IAM/(IAM )n+1 → IAM/(IAM )n).

Definition 2.9 also tells us how to make sense of completions:

Definition 2.11. In the setting of Definition 2.9, let

N∧
I := limnN/In.
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Proposition 2.12. If A is connective, M is connected, and N is bounded below,
we then have the equivalence

N
≃−→ N∧

IA
M
.

Proof. The map A ⊗R M → A is an equivalence on π0, since M can be taken to
be a simplicial set with a unique zero simplex. Hence IAM is connected, since A,
A⊗R M are connective. Whence we obtain that (IAM )∧An is n-connected.

Thus the map

N → N∧
IA
M

is n-connected for all n since N is bounded below, and is therefore a weak equiva-
lence. □

2.3. Topological Andre Quillen homology. We define Topological Andre Quillen
homology and discuss its basic properties. This will be used to define brave new
generalizations of the etale condition. For a good complementary exposition, see
Richter’s survey paper [Ric22] and for comparisons of different approaches, see
[RS20].

The topological Andre Quillen homology of B relative to A for a map A → B of
commutative ring spectra, denoted TAQ(B/A), is designed to be a derived version
of the classical Kahler 1-forms Ω1(B/A) where A → B is a map of classical rings.
In the classical setting, Ω1(B/A) ≃ I/I2 where I is the augmentation ideal of
the multipilcation map B ⊗A B → B. This leads us the following definition for
commutative ring spectra:

Definition 2.13.

TAQ(B/A) := IBS0/(IBS0)2.

Regarding the motivation of Definition 2.13, we recall from the previous section
that IBS0 is the augmentation ideal of the map B ∧A B → B.

Another important property of TAQ(B/A) we will need is that it represents
derivations:

Proposition 2.14. For any V ∈ B −Mod, we have the equivalence

(2.5) [TAQ(B/A), V ]B−Mod ≃ [B,B ∨ V ]A−Alg/B .

The right hand side of (2.5) may be interpreted as derivations of B over A with
values in V .

Proof. We have the following diagram of adjunctions

B −Alg
forget

33
A−Alg

−⊗ABss

B −Mod
triv

44
B −NUCA

I/I2
ss

B∨−
33
B −Alg/B

OO

aug. idealss

forget
33
A−Alg/B

OO

−⊗ABss

Here the middle adjunction is (2.4) and as noted there, both arrows are simul-
taneously left and right adjoints. Observe that TAQ(B/A) is the composite of the
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arrows from A − Alg/B → B − Mod applied to the A-algebra B. We can then
unravel the adjunctions to obtain that

[TAQ(B/A), V ]B−Mod ≃ [(I/I2) ◦ (aug. ideal) ◦ (−⊗A B)(B), V ]B−Mod

≃ [B, forget ◦ (B ∨ −) ◦ triv(V )]A−Alg/B ≃ [B,B ∨ V ].

□

2.4. Notions of etale: In what follows, we define several brave new versions of
etale. We will show that these fit in the following dependency diagram:

(2.6)

classically etale

(1)

��
Lurie-etale

(2)
+3 THH-etale descent

(3)
+3 THH-etale

(4)
+3 TAQ-etale

(5)

nv

Here, the implications (1),(2),(3),(4) always hold, and (5) holds under a connectivity
hypothesis. A classically etale map of classical rings is etale in every other sense by
(2.6), justifying the terminology. A good summary of all of these notions of etale
are given in Richter [Ric22, Sections 8.2,8.3].

Definition 2.15. A ring map A → B is formally TAQ-etale iff TAQ(B/A) ≃ 0.
For brevity we will simply say TAQ-etale.

When we have a ring map R → A, the condition TAQ(B/A) ≃ 0 implies the
equivalence

(2.7) TAQ(A/R) ∧A B ∼= TAQ(B/R);

this is true by the exact sequence/cofibration sequence of relative differential forms
TAQ(A/R) ∧A B → TAQ(B/R) → TAQ(B/A), discussed in [Bas99, Proposition
4.2].

We remark that when the simplicial cotangent complex vanishes for a map of
classical rings a → b, the map is typically called formally etale.

Definition 2.16. A → B is formally S1-THH-etale if B ≃ B⊗A pt → B⊗A S1 :=
THH(B/A) is an equivalence. For brevity, we will say THH-etale.

Definition 2.17. Given a pointed space M , we will say A → B is M -THH-etale if

(2.8) B ≃ B ⊗A pt → B ⊗A M ≃ B

is an equivalence.

We remark that Bobkova et al in [BHL+19] call this notion M -etale.

Remark 2.18. It is equivalent to ask that B⊗A M → B⊗A pt is an equivalence, as
done in [MM03]. Thus definition 2.17 does not depend on the basepoint of M .

Proof of Remark 2.18. Consider the following diagram:

B ≃ B ⊗A pt

(3)

++

(1)
// B ⊗A M

(2)
// B ⊗A pt
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The arrow (3) is always the identity map. Thus by the two out of three property
of equivalences, either of the other requirements implies the other. □

Lemma 2.19. For any n, Sn-THH-etale implies formally TAQ-etale.

Proof. By hypothesis, we have that the augmentation ideal is zero: IBSn ≃ 0. Thus
0 ≃ IBSn/(IBSn)2 ≃ Sn ∧ TAQ(B/A) ; here the second equality is true by Lemma
3.11, proven in Section 3.

□

In particular, we have implication (4) from our dependency diagram (2.6).
The S0-THH-etale condition is very strong. It is not satisfied for Galois exten-

sions of (classical) fields. It is satisfied for the localization of a commutative (or
even an E2) ring at a homotopy group.

Proposition 2.20. Let A be a commutative ring and let x ∈ πkA. Let A[x−1] :=

colimA
x−→ Σ−kA

x−→ ... where the arrows are given by left multiplication by x. Then
the map A → A[x−1] is S0 − THH-etale.

Proof. Note that A[x−1] has an action of A on the right. Using the commutative
structure, we see that it also has an action on the left, through the right action.

Hence we can write A[x−1] ∧A A[x−1] = (colim A
x−→ Σ−kA

x−→ ...) ∧ A[x−1] ≃
colim A[x−1]

x−→ Σ−kA[x−1]
x−→ ... ≃ A[x−1].

□

The last version of etale we consider is that of Lurie [Lur17, Chapter 7, Section
5].

Definition 2.21. We will say that a map of commutative rings A → B is Lurie-
etale if

(1) The map on π0 is etale.
(2) The map

π∗(A)⊗π0(A) π0(B)
≃−→ π∗(B)

is an isomorphism.

We note by definition that a classically etale map of rings a → b is Lurie-etale,
giving us implication (1) in our dependency diagram 2.6.

As we will see, M -THH-etale is a particular case of etale descent; thus to further
study the basic properties of the higher Sn-THH-etale, M -THH-etale, Lurie-etale
conditions and the implications (1),(2),(3),(5) in our dependency diagram, it is
most expedient to study etale descent and its properties.

3. Etale descent

To prove Theorem 1.2 we will discuss a computation establishing it for the case
A = PRX, with X an R-module. We will then extend to the general case by
proving that THH and its analogues satisfy etale descent. As in the last section,
R → A → B will be maps of commutative rings and M will be a pointed space.

Definition 3.1. We say that ⊗RM satisfies etale descent along A → B whenever
the map

(3.1) (A⊗R M) ∧A B
≃−→ B ⊗R M.

is an equivalence.
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To see that we need an etale-type hypothesis, we observe the dependence of etale
descent on the base ring R.

Lemma 3.2. Let R → S → A → B be maps of commutative rings, giving A and B
the simultaneous structure of R-algebras and S-algebras. Then if (3.1) holds when
the base ring is R, it holds when the base ring is S.

Proof. By Proposition 2.2, we have lo

(A⊗R M) ∧S⊗RM S ≃ A⊗S M.

Applying ∧S⊗RMS to both sides of (3.1), and using Proposition 2.2, we obtain that

(A⊗S M) ∧A B → B ⊗S M

is an equivalence. □

Corollary 3.3. If −⊗RM satisfies etale descent along A → B (3.1), then A → B
is M -THH etale

Proof. By Lemma 3.2, we may let the base ring R = A to deduce that

(A⊗A M) ∧A B → B ⊗A M

is an equivalence. We have that A⊗A M ≃ A since A∧An ≃ A. Thus

B → B ⊗A M

is an equivalence. □

This proves implication (3) of our dependency diagram (2.6). Taken together
with implication (4) proven in Lemma 2.19, we have the following implication which
explains the namesake of the term etale descent: when etale descent holds along
A → B for M = Sn, we obtain that TAQ(B/A) ≃ 0.

Next, we study the effect of the space M in (3.1).

Lemma 3.4. Suppose (3.1) holds for spaces X,Y, and Z. Then (3.1) is satisfied
for M ≃ X ∪Y Z.

Proof. We have the following equivalence:

B ∧A (A⊗R (X ∪Y Z)) ≃ B ∧A (A⊗R X ∧A⊗RY A⊗R Z)

≃ B ∧A (A⊗R X) ∧B∧A(A⊗Y ) B ∧A (A⊗R Z) ≃ B ⊗R X ∧B⊗RY B ⊗ Z

≃ B ⊗R (X ∪Y Z)

□

Proposition 3.5. Suppose (3.1) is true for M = Sn, n ≥ 0. Then etale descent
(3.1) holds for any (n-1)-connected M .

Proof. This proof is via Lemma 3.4 and induction on cellular dimension. Etale de-
scent always holds for M ≃ pt. Etale descent holds for cell complexes concentrated
in degree k, since ∨αS

k is built using X ≃ Z ≃ Sk, Y ≃ pt. Any (k− 1)-connected
(n+ 1)-skeletal space can be built as X ∪Y Z where X ≃ pt and Y, Z are (k − 1)-
connected n skeletal spaces. Assuming Proposition 3.5 is true for n-skeletal spaces
which are (k−1)-connected, we obtain that its true for (n+1)-skeletal spaces which
are (k − 1)-connected. By induction, etale descent holds for all (k − 1)-connected
spaces. □
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Remark 3.6. Proposition 3.5 in particular shows that M−THH-etale descent holds
for connected M whenever etale descent holds for THH.

We now prove the etale descent lemma needed for Theorem 1.3. The following
theorem was proven independently for n = 0 in [RSV22, Theorem 7.5] and for
arbitrary n in [LR22, Proposition 2.11].

Theorem 3.7. Let A → B be Sn-THH-etale. Then etale descent (3.1) holds for
M = Sn+1, and hence whenever M is n-connected by Proposition 3.5.

Proof.

B ∧A (A⊗R Sn+1) ≃ B ∧A A ∧A⊗RSn A

≃ B ∧A⊗RSn A ≃ B ∧B⊗RSn B ⊗R Sn ∧A⊗RSn A

≃ B ∧B⊗RSn B ⊗A Sn ≃ B ∧B⊗RSn B

≃ B ⊗R Sn+1

□

In particular if A → B is S0-THH-etale, then THH-etale descent holds along
A → B. This implication was used in [RSV22]. In their paper, S0-THH-etale
extensions are called ‘solid’.

A byproduct of this theory on etale descent is nontrivial results for M -THH-
etaleness. In particular we have the following corollary.

Corollary 3.8. (1) If A → B is X,Y , and Z-THH-etale, then A → B is
M -THH-etale where M ≃ X ∪Y Z

(2) If A → B is Sn-THH-etale, then A → B is M -THH-etale whenever M is
(n− 1) connected.

We note that Corollary 3.8 (2) is stronger than Theorem 3.7 in the setting of
M -THH-etale.

Our next focus is on the remaining implications in our dependency diagram (2.6).
If A → B is Lurie-etale, etale descent (3.1) holds along A → B for M = S1 and any
choice of base ring by [Mat17]; from this we obtain implication (2). In addition,
M−THH-etale descent for any connectedM holds along A → B by Proposition 3.5.
The last implication we have not proven yet is implication (5) which is exactly the
content of the next theorem. This etale descent theorem is also the main ingredient
for Theorem 1.2.

Theorem 3.9. Let R → A → B be maps of commutative rings with A,B con-
nective. Suppose further that TAQ(B/A) ≃ 0. Then etale descent (3.1) holds for
THH(−/R) and equivalently for −⊗R M with M connected.

Remark 3.10. The version of Theorem 3.9 proven in the setting of a Lurie-etale
extension in [Mat17] and [CM21] is neither a special case nor a generalization of the
connective, formal TAQ-etale setting here. Our proof follows the ideas of [MM03].

Proof of Theorem 3.9:
We have a filtration on A ⊗R M by the powers of the augmentation ideal IAM

(Section 2.7 for a definition), giving us the following tower:
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...

��

(IAM )2/(IAM )3
� � // A⊗R M/(IAM )3

��

IAM/(IAM )2
� � // A⊗R M/(IAM )2

��

A⊗R M/(IAM )

We now show that the comparison map

(A⊗R M) ∧A B → B ⊗R M

(3.1) induces equivalent ‘associated graded’s’ or more precisely equivalences on the
nth stages of the towers for (A⊗R M) ∧A B and B ⊗R M .

For n = 1, we note the following lemma:

Lemma 3.11.
IAM/(IAM )2 ≃ M ∧ TAQ(A/R).

In other words IAM/(IAM )2 is linear in M .

Proof. We have the equivalences

[IAM/(IAM )2, V ]A−Mod ≃ [IAM , V ]A−NUCA ≃ [A⊗R M,A ∨ V ]A−Alg/A.

By Proposition 2.8, this is equal to [M, [A,A ∨ V ]R−Alg/A]Top+
. On the other

hand, we have the equivalences

[M ∧ TAQ(A/R), V ]A−Mod ≃ [M, [TAQ(A/R), V ]A−Mod]Top+

≃ [M, [A,A ∨ V ]R−Alg/A]Top+
.

For the last equality, see Proposition 2.14. Since this is true for all V , we are
done by Yoneda’s lemma. □

The comparison map (3.1) induces an equivalence on the first stages of our
towers:

IAM/(IAM )2 ∧A B ≃ M ∧ TAQ(A/R) ∧A B

≃ M ∧ TAQ(B/R) ≃ IBM/(IBM )2.

Here we use Lemma 3.11, and that TAQ satisfies etale descent, by (2.7). For
arbitrary n, we need the following lemma.

Lemma 3.12. Let I be an A-NUCA. Then

In/In+1 ≃ (I/I2)∧An
hΣn

Proof. This is the main result of [Min03, Proposition 2.4]. The intuition is that
the left hand side consists of products of n elements which can not be written
as a product of more elements. The right hand side consists of products of n
indecomposables modulo the order in which they are written.

□
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Lemma 3.13. Etale descent holds up to completion; more precisely, we have the
following equivalence

((A⊗R M) ∧A B)
∧
IA
M

≃ (B ⊗R M)∧IB
M
.

Proof. By Lemma 3.12, we have for arbitrary n that

(IAM )n/(IAM )n+1 ∧A B ≃
(
(IAM )/(IAM )2

)∧An

hΣn
∧A B

≃ (M ∧ TAQ(A/R) ∧A B)
∧Bn
hΣn

≃ (M ∧ TAQ(B/R))
∧Bn
hΣn

≃ (IBM )n/(IBM )n+1.

Hence we have proven that the comparison map (3.1) induces an equivalence on
associated graded’s and hence an equivalence on completion.

□

Apply Proposition 2.12 to both sides of Lemma 3.13 to obtain (3.1). This com-
pletes the proof of Theorem 3.9. □

4. Proof of Theorem 0.1 for polynomial algebras

We will prove Theorem 0.1 when A = PRX where X, as before, is an (arbitrary)
R-module, and M is a pointed space.

Lemma 4.1. The functor PR(−) takes the tensor in the category R − Mod with
an unpointed space, to the tensor in the category R−Alg, with the same unpointed
space. That is

PR(X ∧M+) ≃ PR(X)⊗R M.

Proof. This is a direct consequence of (2.2). □

Thus we have that

PR(X)⊗R M ≃ PR(X ∧M+)

≃ PR(X ∧M ∨X) ≃ PR(X) ∧R PR(X ∧M)

≃ PPRX(PRX ∧R X ∧R M).

Next we write down the right hand side using TAQ (see also [BGR08, Proposition
1.6]).

Proposition 4.2. We have the equivalence

TAQ(PR(X)/R) ≃ PR(X) ∧R X.

Intuitively, this is true because the left hand side is reminiscent of differential
forms. On the RHS, PRX reminds us of the coefficients of the differential forms,
and X reminds us of the span of the dx1...dxn.

To prove this proposition, we will need the following lemma.

Lemma 4.3. Let A be an augmented R algebra. We then have an adjunction

R−Alg/A
IR

44
R−NUCA

−∨Ass

.

Here IR is the functor R−Alg/A → R−Alg/R → R−NUCA.
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Proof. Note that we assert IR is left-adjoint to extension by A. First we use the
equivalence of categories

[IR(B), J ]R−NUCA ≃ [B,R ∨ J ]R−Alg/R

from NUCA’s to augmented algebras in 2.4. If we take this together with the
equivalence

[B,R ∨ J ]AlgR/R ≃ [B,A ∨ J ]AlgR/A

we obtain the lemma. □

Proof of Proposition 4.2. We have that TAQ controls square zero extensions, as
witnessed in the following equation

[TAQ(A/R), V ]A−Mod ≃ [A,A ∨ V ]R−Alg/A

and discussed in (2.14). Let A = PRX. The algebra A is an augmented R algebra
and hence by Lemma 4.3 we have the equivalences

[A,A ∨ Z(V )]R−Alg/A ≃ [IR(A), Z(V )]R−NUCA

≃ [IR(A)/IR(A)2, V ]R−Mod.

In our case, this can be related back to A−Mod via the equivalences

≃ [X,V ]R−Mod ≃ [X ∧R PRX,V ]PRX−Mod

and this establishes Proposition 4.2, by Yoneda’s lemma.
□

Thus we have that PPRX(PRX ∧R X ∧M) ≃ PPRX(M ∧TAQ) as desired. This
proves Theorem 1.2 in this special case.

5. Notions of coverings and smoothness

We define the hypotheses used in Theorems 1.2 and 1.3. These involve brave new
notions of smooth; these notion of smoothness will depend on certain generalized
notions of etale coverings that are engineered to rectify the main error of McCarthy
and Minasian’s first paper [MM03] noted in our introduction. As these notions of
coverings may at first feel unnatural, we will also show that under mild hypotheses,
these generalized notions of coverings are all equivalent to the classical notion of
an etale covering, when working in the underived classical setting.

In this section, Y and Z will denote A-modules. As in the rest of the paper,
a will denote a classical ring, and y will denote a classical a-module. Generalized
etale will mean any of the generalized notions of etale from Section 2.4 including
respectively TAQ, THH, M-THH, or Lurie etale. Similarly for generalized etale
cover, and generalized smooth, which will be defined presently.

Definition 5.1. Say that a collection of generalized etale commutative ring maps
{A → Aα}α is a generalized etale global covering if whenever an A module map
splits Aα-locally, there is a splitting globally.

Regarding Definition 5.1, we will use the following standard notation. Given an
A-module Y , we will let Yα denote Y ∧A Aα. Given an A-module map f : Y → Z,
we will let fα denote the induced map fα : Yα → Zα. In this notation, Definition
5.1 can be formulated as follows: a collection of generalized etale maps {A → Aα}α
is a generalized etale global covering if whenever f : Y → Z has sα : Zα → Yα such
that fα ◦ sα ≃ IdZα

, there is a map s : Z → Y such that f ◦ s ≃ IdZ . We note
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that Definition 5.1 is the one given in McCarthy-Minasian’s second paper [MM04,
Definition 6.9].

Definition 5.2. (1) Say that a map R → A is generalized smooth if there is a
generalized etale global covering {Aα}α of A such that for each Aα, there
an R-module X and a factorization

R → PRX
ϕ−→ Aα

with ϕ generalized etale.
In other words A is locally etale over R-affines.

(2) Given such maps, we say that R → A is generalized smooth in the category
of connective commutative rings if R,A,Aα are all connective and for each
Aα, the corresponding PRX is also connective.

In order to compare this notion of a covering with more classical notions of a
covering, we introduce another generalized notion of cover. This is covering used
in McCarthy-Minasian’s first paper [MM03].

Definition 5.3. Say that a collection of generalized etale commutative ring maps
{A → Aα}α is a faithful generalized etale covering if whenever a map Y → Z
induces an equivalence Aα-locally, it is itself an equivalence.

Definitions 5.1, 5.2, 5.3 all have analogues for classical ring maps; we obtain
these analogues by defining ‘etale local’ using underived tensor products. The
maps a → aα will always be required to be classically etale.

Recall that r → a is classically smooth if it satisfies the conditions of Definition
5.2 where in place of a global covering, we use a classical etale covering:

Definition 5.4. A classical etale covering is a collection of etale maps a → aα

inducing a surjection ∪Spec (aα) → Spec a.

Proposition 5.5. In this classical setting the following is true.

(1) A faithful covering is a classical etale covering and vice versa.
(2) A global covering is always a faithful covering.
(3) A faithful covering satisfies the requirements of a global covering when z(of

Definition 5.3) is finitely presented.

We remind the reader that all of the maps {a → aα} are required to be etale in
all the notions of covering in Proposition 5.5. In particular, the map a → Π

α
aα will

be flat.
Proof of Proposition 5.5 (1):

We have that the flat map a → Πaα is faithfully flat iff any map between A-
modules f : y → z is an isomorphism whenever f ⊗a Πaα is an isomorphism.
This happens iff {a → aα} is a faithful covering. We also have that the flat map
a → Πaα is faithfully flat iff the induced map on Spec is surjective. This happens
iff {a → aα} is an etale covering. □
Proof of Proposition 5.5 (2):

Suppose we are given a map f : y → z such that fα is an isomorphism for each α.
From the condition of a global cover, we have that the existence of the fα’s imply
that f is split surjective and split injective, and hence is an isomorphism. □

Remark 5.6. The proof of Proposition 5.5 (2) also implies that global coverings are
faithful coverings in the setting of commutative ring spectra.
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Proof of Proposition 5.5 (3):
We prove the following: Let z be finitely presented. Then any map y → z is

split surjective iff it is locally split surjective.
Suppose f : y → z is locally split surjective. This implies that f is locally sur-

jective, and since surjectivity can be checked on stalks, this implies f is surjective.
Thus, let k fit in the exact sequence

0 → k → y → z → 0.

We will show that the corresponding element ξ ∈ Ext1(z,k) is 0. Since z is finitely
presented, by definition it has a resolution by projectives

p1 → p0 → z

with p1,p0 finitely generated. The map

Hom(pi,k)⊗a aα → Homaα
(pi ⊗a aα,k⊗a aα)

is an isomorphism for i ≃ 0, 1 since the map is an isomorphism when pi is replaced
by a finitely generated free module. After taking cohomology, we deduce that the
map

Ext1(z,k)⊗a aα → Ext1(z⊗a aα,k⊗a aα)

is an injection. By hypothesis, the image of ξ is zero in the right hand side, and
hence in the left hand side. Consider the submodule ⟨ξ⟩ ⊂ Ext1(z,k). We have
that the map ⟨ξ⟩ → 0 is an isomorphism aα-locally. Hence the module ⟨ξ⟩ vanishes.

□

6. Proof of Theorems 1.2 and 1.3

Consider R,A,Aα, PRX as in Definitions 5.1 and 5.2. We will show that if etale
descent (3.1) holds along each A → Aα and PRX → Aα, and that {Aα}α form a
global covering, that equivalence (1.3) holds. The hypotheses for Theorem 1.2 and
Theorem 1.3 guarantee that these conditions hold by Section 3. By Section 4, we
have the equivalence

PRX ⊗R M ≃ PPRX(M ∧ TAQ(PRX/R)).

Since etale descent holds, we have the equivalence

(Aα ∧PRX PRX ⊗R M) ≃ (Aα ⊗R M)

whence we obtain the equivalences

PAα
(M ∧ TAQ(Aα/R)) ≃ Aα ∧PRX PPRX(M ∧ TAQ(PRX/R))

≃ Aα ∧PRX PRX ⊗R M
≃−→ (Aα ⊗R M) .

(6.1)

Hence we obtain a map, denoted by

sα : M ∧ TAQ(Aα/R) → (Aα ⊗R M) .

Lemma 6.1. We have that sα is a splitting of the natural map, denoted by

DAα
: (Aα ⊗R M) → IAα

M →
(
IAα

M /(IAα

M )2
)
≃ M ∧ TAQ(Aα/R).
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Proof. The maps making up DAα
respect the filtration of the towers in Lemma 3.13

since this map is the projection onto the first layer. The map sα also respects the
filtration of the these towers; the equivalences of equation (6.1) were proven using
M − THH-etale descent which was in turn proven by using the filtration given by
this tower. Hence every map that makes up sα and DAα

is an equivalence on the
first layer. THus we have that the map DAα

◦ sα is an equivalence. □

Consider the map

DA : A⊗R M → M ∧ TAQ(A/R).

We have the equivalence DA ∧A Aα ≃ DAα
since again, etale descent respects the

layers of the TAQ-tower functor for the map of R-algebras A → Aα. Thus sα is
a splitting of DA ∧A Aα. Hence, by the definition of a global covering (Definition
5.1), there is a (global) splitting of DA, denoted by

s : M ∧ TAQ(A/R) → A⊗R M.

This A-module map induces the A-algebra map

(6.2) PA(M ∧ TAQ(A/R)) → A⊗R M.

The map (6.2) induces the map

PAα
(M ∧ TAQ(Aα/R)) ≃ Aα ∧A PA(M ∧ TAQ) → Aα ∧A A⊗R M ≃ Aα ⊗R M

which is exactly the equivalence of (6.1). Since global coverings are faithful by Re-
mark 5.6, we have that (6.2) is an equivalence. This finishes the proof of Theorems
1.2 and 1.3. □

Remark 6.2. We named the map DA above as it is the linearization, in the sense
of Goodwillie calculus of the functor − ⊗R M : R − Alg → R − Alg given by
C 7→ C⊗RM at the algebra A. Thus what we showed above, is that the Goodwillie
tower for −⊗R M splits at A, when A/R is formally TAQ-smooth.

Proof. For a proof that the tower above is actually the Goodwillie tower of the
functor −⊗R M , see [Min03, Remark/Claim 2.6]. □

7. Application to rational higher THH

We calculate THH(KUQ/Q) as an application of our HKR theorem, specifically
Theorem 1.3.

Theorem 7.1. We have the following equivalences of KUQ-algebras which are nat-
ural in M :

THH(KUQ/Q) ≃ PKUQΣ
3HQ

KUQ ⊗Q M ≃ PKUQ(M ∧ Σ2HQ).

Proof. Rationally, we have KUQ ≃ Q[β, β−1] |β| = 2, is an Eilenberg Maclane
spectrum. We now show that KUQ is formally S0-THH-smooth over Q:

We have the equivalence Q[β] ≃ PQ(Σ
2HQ). The extension Q[β] → Q[β, β−1] is

S0-THH-etale by 2.20. Since we have only one Aα = A in our example, Q → KUQ
is S0-THH smooth. Hence, we are done by Theorem 1.3.

□
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Corollary 7.2. The rational nth-higher THH and the nth iterated THH of KU is
given by

KUQ ⊗Q Sn ≃ PKUQ(Σ
n+2HQ)

KUQ ⊗Q (S1)n ≃ PKUQ((S
1)n ∧ Σn+2HQ).
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