Fix an algebraically closed field k. A (one-parameter, commutative) formal group law over k is an element $f = f[[X, Y]]$ such that:

1. $f(X, Y) = f(Y, X) + X + Y +$ higher order terms,
2. $f(f(X, Y), Z) = f(X, f(Y, Z)).$

Let A denote the set of such formal group laws. By a theorem of Landweber, there exists a ring L carrying a universal formal group law, consequently A can be identified with the set of ring homomorphisms $f: L \rightarrow k$. This may be used to enrich the structure of the set A to a Zariski topology, and a sheaf of rings making it into a ringed space; in fact with this data A would be an algebraic space [7] in the sense of Serre, except that it is not noetherian.

Key words and phrases. Landweber-Novikov algebra, Steenrod algebra, formal group, algebraic group.

Now let Γ denote the group of formal power series $f \in k[[T]]$ of the form $f(T) = f(T) +$ higher order terms, $n \neq 0$, the group operation being composition. This is a (nonnoetherian) algebraic group, which acts on A by changing coordinates. If $f \in \Gamma$, $f = A$, then we define $f(X, Y) = f^{-1}(f(X), f(Y))$. It is not hard to see that $(f(T), f^{-1})$ defines a morphism $\Gamma \times A \rightarrow A$ of (pro-)algebraic spaces of Serre. In this note we discuss this group action when the characteristic of k is positive, (a.a. that 0 is not being involved). In a succeeding note we will apply these results to the study of unitary cobordism, via Quillen's theorem, which identifies the ring Λ with the unitary cobordism ring of a point [6]. We remark here that Γ is the algebraic group underlying the Landweber-Novikov algebra of operations for cobordism.

Theorem 1. A is stratified into orbits, $A = \bigcup_{\mu \geq 0} A_{\mu}$, such that:

(a) $A_{\mu} = \bigcup_{\nu \geq 0} A_{\mu \nu}$, A_{μ} is open, and A_{μ} is closed,
(b) A_{μ} is a complete intersection of hyperplanes,
(c) A_{μ} is homogeneous under Γ, for finite μ, there exists a p-adic Λ_{μ} group G_{μ} such that $(\mu, G_{\mu}) \simeq A_{\mu},$
(d) The normal bundle of A_{μ} in A is given by an $(n-1)$-dimensional representation of G_{μ} over k.

Remark. The A_{μ} can be described explicitly in terms of Milnor's generators of the unitary cobordism ring; A_{μ} is the locus where $p = p_{1} = \cdots = p_{\mu} = 0$ and p_{μ} is a Milnor generator of dimension $2^{p^{\mu} - 1}$. A theorem of Landweber [6] is a corollary of the ideals $(p, p_{1}, \ldots, p_{\mu})$ in the unitary cobordism ring are the only prime ideals invariant under the Landweber-Novikov algebra.

To complete the description of the orbit structure we must identify the groups G_{μ} and the representations in (d). For this we recall that central simple division algebras over the p-adic numbers Q_{p} are completely classified by the rank (as Q_{p}-vector spaces) and Brauer invariant, which lies in Q_{Z}.

Let D_{μ} be such a division algebra of rank μ and Brauer invariant 1_{n}.

There is a natural valuation on $D_{\mu} = \mathbb{C}^{n} \rightarrow D_{\mu}$, the former arrow being the norm, and the latter being the valuation. Let $E_{D_{\mu}} = \{x \in D_{\mu} | \nu(x) \geq 0\}$ denote the ring of integers of D_{μ}.

Now consider the twisted polynomial algebra $F_{p} = F_{p} = k$. We abbreviate by \mathcal{A} the quadratic ring module the (two-sided) ideal generated by \mathfrak{a}. It can be shown [1, p. 52] that $F_{p} \otimes_{k} \mathcal{A}$ is isomorphic to F_{p}. (X), where $\nu = p^{-1} \alpha$, is defined like $\nu(k)$. Consequently \mathcal{A} is a right $E_{D_{\mu}}$-module whenever $n \geq m$.
Theorem 2. The stabilizer G_ν is isomorphic to the group of units of E_ν. The representation of (16) has M_{ν} as an underlying k-vector space, with G_ν-action given by

$$g(v) = \gamma \cdot v, \quad v \in M_{\nu}, g \in G_\nu \subset E_\nu.$$

Remarks. G_ν is a pro-p-group over F_p, but it can be given a p-adic analytic structure. As such it is a form, in the sense of Grothendieck, of $Gr(\nu, Z)$.

From the description of the normal bundle of Λ_ν in A_ν just given, it is possible to read on the normal representation of Λ_ν in A_ν, $n \geq m$. It is also possible to identify the stabilizer of the infinite subgroup $\Lambda_\nu \subset G_\nu$, where G_ν is the group of units of $k(\langle G \rangle)$, considered as a profinite group over F_p. This is just the group underlying the reduced Steenrod algebra (at the prime p).

Notes on the proofs. Theorem 1(a) is just a restatement of a theorem of Lazard [4]: two formal group laws over an algebraically closed field are isomorphic iff they are of the same height. Thus Λ_ν is the moduli variety of formal groups of height n, and part (b) is proved by applying Lazard's techniques to the moduli functor of formal groups of height n. Part (d) is trivial.

To prove (c), we use a theorem of Grothendieck [2, 133, 134]. Let G, X be respectively a group scheme and a scheme upon which G acts, both noetherian over k, with X smooth. Then A is a homogeneous space of G if $G(k)$ acts transitively on $X(k)$. (Here $G(k)$ and $X(k)$ are the k-valued points of G, X.)

Now the A_ν are represented by localizations of polynomial rings and are smooth, but neither they nor Γ are noetherian. However, the above result can be extended to some semi-abelian group schemes of a certain kind. Thus we let $A_\nu(\text{deg}(r))$ denote the set of r-tuples of a formal group over A_ν of height n ($\nu = m$). Then $A_\nu = \text{proj lim} A_\nu(\text{deg}(r))$, the maps being surjections for any r; it is not hard to see that $A_\nu(\text{deg}(r))$ is a smooth, noetherian scheme. Similarly, $G(k)$ is the set of invertible series in $A(k)(T^r, m)$, and acts on $A_\nu(\text{deg}(r))$, compatibly with truncations. Using these approximations systematically we prove (c).

The identification of G_ν is due to Dieudonné and Lubin; see also [7, Theorem 3, p. 72]. To identify the normal representation, we show by direct computation, following [5], that the tangent space to A at F is the group $Z(F, k)$ of 2-cohomology classes, while the tangent space to A_ν at F_ν is the group $B^2(F, k)$ of 2-cocycles. Thus we identify the normal bundle is given by the 2-coboundary representation $H^2(F, k)$. A basis for this group is approximately known, and one checks directly that the representation is as indicated.

BIBLIOGRAPHY

3. V. S. Giri, Modules and primitive elements in a complex coboundary.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540.