The Kervaire Invariant
(joint work with Mike Hill and Doug Ravenel)
Theorem (Hill, H., Ravenel)

If M is a smooth, stably framed manifold of Kervaire invariant one, then the dimension of M is one of

$$2, 6, 14, 30, 62, \text{ or } 126$$
Topology before the 1930's

counting the solutions to n equations in n unknowns

R^n (S^n) $y = f(x)$ R^n (S^n)
Definition of the degree of a map

\[f : M \rightarrow S^n \quad (\text{dim } M = n) \]
Toplogy before the 1930’s

(Brouwer, Hopf)

Definition of the degree of a map

\[f : M \rightarrow S^n \quad (\text{dim} \ M = n) \]

Theorem: Two maps of the same degree are homotopic.
Topology before the 1930’s (Brouwer, Hopf)

Definition of the degree of a map

\[f : M \rightarrow S^n \quad (\text{dim } M = n) \]

Theorem: Two maps of the same degree are homotopic.

Key tool: Cohomology \(H^*(M) \).
Pontryagin (1930's)

\[y = f(x) \]

\[\mathbb{R}^n \quad (\mathbb{S}^n) \]

\[\mathbb{R}^{n+k} \quad (\mathbb{S}^{n+k}) \]
Pontryagin (1930's)

Problem: Count the solutions to systems of \(n \) equations in \((n+k) \) unknowns
Problem: Count the solutions to systems of \(n \) equations in \((n+k) \) unknowns.

Pontryagin (1930's)
Problem: Count the solutions to systems of n equations in $(n+k)$ unknowns
Problem: Count the solutions to systems of n equations in $(n+k)$ unknowns
Pontryagin (1930’s)

Problem: Count the solutions to systems of \(n \) equations in \((n+k)\) unknowns

Answer: A stably framed manifold of dimension \(k \).
Answer: A stably framed manifold of dimension k.

y_1, y_2

$M_1 = f^{-1}(y_1)$

$M_2 = f^{-1}(y_2)$
Pontryagin (1930’s)

Framed cobordism
Pontryagin (1930’s)

\[\Omega_k := \{ \text{stably framed } k\text{-manifolds} \}/\text{cobordism} \]

Theorem: The above construction gives a bijection

\[\pi_{n+k}(S^n) \approx \Omega_k \]

where

\[\pi_{n+k}(S^n) := \{ \text{maps } S^{n+k} \rightarrow S^n \}/\text{homotopy} \]
Pontryagin (1930's)

\[k=0 \]
Pontryagin (1930’s)

\[k = 0 \]
Pontryagin (1930’s)

\(k=0 \)
Pontryagin (1930’s)

\[k=0 \]
Pontryagin (1930’s)

\[k=0 \]

\[\pi_n(S^n) = \mathbb{Z} \]
Pontryagin (1930's)

\[\pi_n(S^n) = \mathbb{Z} \]

(the degree)
Pontryagin (1930’s)

\[\pi_n(S^n) = \mathbb{Z} \]

(the degree)
Pontryagin (1930’s)

\[\pi_n(S^n) = \mathbb{Z} \]

(the degree)

\[\pi_{n+1}(S^n) = \mathbb{Z}/2 \]
Pontryagin (1930's)

$k=2$
Pontryagin (1930’s)

\[k=2 \quad \text{genus } M = 0 \quad \Rightarrow \quad M \text{ is a boundary} \]

(since \(S^2 \) bounds a disk and \(\pi_2(\text{GL}_n(\mathbb{R})) = 0 \))
Pontryagin (1930’s)

\[k=2 \quad \text{genus } M = 0 \implies M \text{ is a boundary} \]

(since \(S^2 \) bounds a disk and \(\pi_2(\text{GL}_n(\mathbb{R}))=0 \))

Suppose the genus of \(M \) is greater than 0.
Pontryagin (1930’s)

$k=2$
Pontryagin (1930's)

$k=2$
Pontryagin (1930’s)

\[k = 2 \]
Pontryagin (1930’s)

$k=2$

choose an embedded arc
Pontryagin (1930's)

\[k=2 \]

choose an embedded arc

cut the surface open and glue in disks
Pontryagin (1930’s)

\[k = 2 \]

framed surgery
Pontryagin (1930’s)

Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2 \)
Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2 \)

Argument: Since the dimension of \(H_1(M; \mathbb{Z}/2) \) is even, there is always a non-zero element in the kernel of \(\varphi \), and so surgery can be performed.
Pontryagin (1930’s)

Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2 \)

Argument: Since the dimension of \(H_1(M; \mathbb{Z}/2) \) is even, there is always a non-zero element in the kernel of \(\varphi \), and so surgery can be performed.

Conclusion: \(\Omega_2 = \pi_{n+2}(S^n) = 0 \).
Pontryagin (1930’s)

Error: The function φ is not linear:

$$\varphi(x+y) - \varphi(x) - \varphi(y) = \int_M x \, y$$
Pontryagin (1930's)

Error: The function φ is not linear:

$$\varphi(x+y) - \varphi(x) - \varphi(y) = \int_M x y$$

The Arf invariant of φ gives an isomorphism

$$\Omega_2 = \pi_{n+2}(S^n) = \mathbb{Z}/2$$
Pontryagin (1930’s)
Pontryagin (1930’s)

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions would Pontryagin’s construction have worked?
1956: Milnor gave an example of a manifold of dimension 7, homeomorphic but not diffeomorphic to the 7-sphere.

1961: Milnor introduced a generalization of Pontryagin’s “surgery” maneuver, and initiated a scheme for studying differentiable structures on manifolds in other dimensions.
Topology circa 1960: Kervaire's example
Topology circa 1960: Kervaire's example
Topology circa 1960: Kervaire's example

\[\partial N \equiv S^9 \]
Topology circa 1960: Kervaire's example

\[X = N/\partial N \]

(a triangulable manifold)
Topology circa 1960: Kervaire’s example

1960: Kervaire defined for certain manifolds M of dimension $(4k+2)$

$$\varphi : H^{2k+1}(M) \to \mathbb{Z}/2$$

satisfying

$$\varphi(x+y) - \varphi(x) - \varphi(y) = \int_M x \cdot y$$
Topology circa 1960: Kervaire’s example

1960: Kervaire defined for certain manifolds M of dimension $(4k+2)$

$$\varphi : H^{2k+1}(M) \rightarrow \mathbb{Z}/2$$

satisfying

$$\varphi(x+y) - \varphi(x) - \varphi(y) = \int_M x \cdot y$$

He set

$$\Phi(M) = \text{Arf}(\varphi)$$
Topology circa 1960: Kervaire's example

Theorem (Kervaire): If M is a smooth, stably framed manifold of dimensions 10 or 18, then

$$\Phi(M) = 0.$$
Topology circa 1960: Kervaire's example

Theorem (Kervaire): If M is a smooth, stably framed manifold of dimensions 10 or 18, then

$$\Phi(M) = 0.$$

Theorem (Kervaire): If X can be smoothed then

$$\Phi(X) = 1.$$
Topology circa 1960: Kervaire’s example

Theorem (Kervaire): If M is a smooth, stably framed manifold of dimensions 10 or 18, then

$$\Phi(M) = 0.$$

Theorem (Kervaire): If X can be smoothed then

$$\Phi(X) = 1.$$

Corollary (Kervaire): The triangulable manifold X has no smooth structure.
The number $\Phi(M)$ is called the Kervaire invariant of M.
The number $\Phi(M)$ is called the Kervaire invariant of M.

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?
The number $\Phi(M)$ is called the Kervaire invariant of M.

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?

The Kervaire invariant problem
Topology circa 1960: Kervaire's example

\[X^{4k+2} = N/\partial N \]

\[\partial N \equiv S^{4k+1} \]

\[S^{2k+1} \]

\[TS^{2k+1} \]

\[N^{4k+2} \]

\[S^{2k+1} \]
Question: In which dimensions can X^{4k+2} be given a smooth structure? In which dimensions is ∂N^{4k+1} diffeomorphic to the sphere S^{4k+1}?
Question: In which dimensions can X^{4k+2} be given a smooth structure? In which dimensions is ∂N^{4k+1} diffeomorphic to the sphere S^{4k+1}?

Remark: If X^{4k+2} can be given a smooth structure, it then becomes a stably framed manifold which is not cobordant to a homotopy sphere.
Kervaire and Milnor (1958, 1963)

Exotic spheres
Kervaire and Milnor (1958, 1963)

Exotic spheres

Definition: The group Θ_n is the group of homotopy n-spheres, up to h-cobordism.
Exotic spheres

Definition: The group Θ_n is the group of homotopy n-spheres, up to h-cobordism.

The group structure is connected sum.
Kervaire and Milnor (1958, 1963)

\[\text{dim} > 4 \implies \]

\[h\text{-cobordism} = \text{diffeomorphism} \ (\text{Smale}) \]

and (Smale, Stallings, Zeeman)

\[\text{homotopy sphere} \iff \text{topological sphere} \]
Kervaire and Milnor (1958, 1963)

\[\text{dim} > 4 \Rightarrow \]

\[h\text{-cobordism} = \text{diffeomorphism} \ (\text{Smale}) \]

and (Smale, Stallings, Zeeman)

\[\text{homotopy sphere} \Leftrightarrow \text{topological sphere}. \]

\[\mathcal{H}_n = \text{the group of diffeomorphism classes of smooth structures on the } n\text{-sphere}. \]
Kervaire and Milnor (1958, 1963)

Theorem: The order of Θ_{4m-1} is given by

$$|\Theta_{4m-1}| = a_m |\pi_{4m-1+n} S^n| \ 2^{2m-4} \ (2^{2m-1}-1) \ B_m/m$$

with

- $B_m = m^{th}$ Bernoulli number
- $a_m = 1$ if m is even, 2 if m is odd
Kervaire and Milnor (1958, 1963)

Theorem: The order of Θ_{4m-1} is given by

$$|\Theta_{4m-1}| = a_m |\pi_{4m-1+n} S^n| 2^{2m-4} (2^{2m-1}-1) B_m/m$$

with

$$B_m = m^{th} \text{ Bernoulli number}$$

$$a_m = 1 \text{ if } m \text{ is even, } 2 \text{ if } m \text{ is odd}$$

They were unable to settle a factor of 2 in the order of Θ_{4m+1} and Θ_{4m+2} (Kervaire's ∂N and X).
Kervaire and Milnor (1958, 1963)

Question: What are the orders of the groups \(\Theta_{4m+1} \) and \(\Theta_{4m+2} \)?
Methods of homotopy theory

1966: The state of the art
Methods of homotopy theory

1966: The state of the art

Theorem (Kervaire ’60): If the dimension of M is 10 or 18 then $\Theta(M) = 0$
1966: The state of the art

Theorem (Kervaire ‘60): If the dimension of M is 10 or 18 then $\Theta(M) = 0$

$\Theta(M)$ can be 1 for $M = S^1 \times S^1, S^3 \times S^3, S^7 \times S^7$ (dimensions 2, 6, 14).
1966: The state of the art

Theorem (Kervaire ‘60): If the dimension of M is 10 or 18 then $\Theta(M) = 0$

$\Theta(M)$ can be 1 for $M = S^1 \times S^1$, $S^3 \times S^3$, $S^7 \times S^7$ (dimensions 2, 6, 14).

Kervaire and Milnor speculated that $\Theta(M)$ can be non-zero only in these three dimensions.
Methods of homotopy theory

Theorem (Brown–Peterson ‘65, ’66): If M is a stably framed manifold of dimension $(8k+2)$ then the Kervaire invariant of M is zero.
Methods of homotopy theory

Theorem (Brown-Peterson '65, '66): If M is a stably framed manifold of dimension $(8k+2)$ then the Kervaire invariant of M is zero.

(This extends Kervaire's sequence of 10 and 18.)
Methods of homotopy theory

Theorem (Browder ’69): If $\Phi(M)$ is non-zero then the dimension of M is of the form $2^{j+1} - 2$.
Theorem (Browder ’69): If $\Phi(M)$ is non-zero then the dimension of M is of the form $(2^{j+1} - 2)$.

In this dimension a manifold M with Kervaire invariant 1 exists if and only if there is an element ϑ_j in $\pi_{2j+1-2} S^0$ represented at the E_2-term of the classical Adams spectral sequence by h_j^2.

Methods of homotopy theory

Theorem (Barratt, Mahowald, Tangora, Jones ’70–’84):

The elements ϑ_j exist for $j \leq 5$.
The elements ϑ_j exist for $j \leq 5$.

(the overwhelming belief was that all ϑ_j exist)
Four Questions
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?

Question: What are $|\Theta_{4m+1}|$ and $|\Theta_{4m+2}|$?
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?

Question: What are $|\Theta_{4m+1}|$ and $|\Theta_{4m+2}|$?

Question: For which j does ϑ_j exist?
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?
Four Questions

Question: In which dimensions every stably framed manifold cobordant to a (homotopy) sphere?

Question: In which dimensions can there exist a (stably framed) manifold of Kervaire invariant one?

Answer: In all dimensions except possibly

2, 6, 14, 30, 62, and 126.
Four Questions

Question: What are $|\Theta_{4m+1}|$ and $|\Theta_{4m+2}|$?
Question: What are $|\Theta_{4m+1}|$ and $|\Theta_{4m+2}|$?

Answer: Unless $(4m+2)$ is of the form $2, 6, 14, 30, 62, \text{ or } 126,$ the group Θ_{4m+1} is twice as large as it might have been, while Θ_{4m+2} is half as large as it might have been.
Four Questions

Question: What are $|\Theta_{4m+1}|$ and $|\Theta_{4m+2}|$?

Answer: Unless $(4m+2)$ is of the form $2, 6, 14, 30, 62, \text{ or } 126,$

the group Θ_{4m+1} is twice as large as it might have been, while Θ_{4m+2} is half as large as it might have been.

Kervaire's X^{4k+2} has no smooth structure, and ∂N^{4k+2} is an exotic sphere.
Four Questions

Question: For which j does θ_j exist?
Four Questions

Question: For which j does θ_j exist?

Answer: For $j = 1, 2, 3, 4, 5$ and possibly 6.
A finite set of things
A finite set of things

The universe was created in 6 days.

Day 1: ϑ_1 Day 2: ϑ_2 Day 3: ϑ_3
Day 4: ϑ_4 Day 5: ϑ_5 Day 6: ϑ_6
A finite set of things

The universe was created in 6 days.

Day 1: ϑ_1 Day 2: ϑ_2 Day 3: ϑ_3

Day 4: ϑ_4 Day 5: ϑ_5 Day 6: ϑ_6

Birthdays. Hill: almost 30 Ravenel: 62

Hopkins+Browder: 126
A finite set of things

Possible connections (Bökstedt and others)

\[E_6 \leftrightarrow \vartheta_4 \]
\[E_7 \leftrightarrow \vartheta_5 \]
\[E_8 \leftrightarrow \vartheta_6 \]
Outline of the proof

Cohomology theory: Ω

(like in the study of the degree)
Outline of the proof

Cohomology theory: Ω

(like in the study of the degree)

General properties:

contravariant functor $\mathcal{X} \mapsto \Omega^\ast(\mathcal{X})$

suspension isomorphism $\Omega^\ast + n(\Sigma^n \mathcal{X}) \cong \Omega^\ast(\mathcal{X})$
Outline of the proof

The Ω degree:

$$\Omega^n(S^{n+2^{j+1}-2}) \xrightarrow{\theta_j} \Omega^n(S^n)$$

$$\Omega^{2-2^{j+1}}(pt) \xleftarrow{} \Omega^0(pt)$$
Outline of the proof

The \(\Omega \) degree:

\[
\Omega^n(S^{n+2^j+1-2}) \xrightarrow{\vartheta_j} \Omega^n(S^n) \xleftarrow{\vartheta_j} \Omega^0(pt) \ni 1
\]
Outline of the proof

Detection Theorem: If ϑ_j exists then $\Omega^*(\vartheta_j)$ is a non-zero element of $\Omega^{2^{-2^{j+1}}}(pt)$.
Outline of the proof

Detection Theorem: If ϑ_j exists then $\Omega^*(\vartheta_j)$ is a non-zero element of $\Omega^{2-2^{j+1}}(pt)$.

Periodicity Theorem: The cohomology theory Ω is periodic: for any X

$$\Omega^{*+256}(X) \approx \Omega^*(X).$$
Outline of the proof

Detection Theorem: If \emptyset_j exists then $\Omega^*(\emptyset_j)$ is a non-zero element of $\Omega^{2-2^{j+1}}(pt)$.

Periodicity Theorem: The cohomology theory Ω is periodic: for any X

$$\Omega^{*+256}(X) \approx \Omega^*(X).$$

Gap Theorem: The groups $\Omega^*(pt)$ are zero for

$$0 < * < 4$$
Outline of the proof

Detection Theorem: Inventory a table of long-known computations.
Outline of the proof

Detection Theorem: Inventory a table of long-known computations.

Periodicity and Gap Theorems: The slice tower -- new variation on the Postnikov tower in equivariant homotopy theory.
Outline of the proof

Detection Theorem: Inventory a table of long-known computations.

Periodicity and Gap Theorems: The slice tower -- new variation on the Postnikov tower in equivariant homotopy theory.

A large class of naturally constructed cohomology theories satisfy **periodicity and gap** theorems (the gap is always the same, the period varies). We choose Ω to be one with the smallest period but large enough to satisfy the Detection Theorem.
If you’re reading this, you clicked one too many times