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Abstract

The goal of this article is to construct and study connective versions of topologi-
cal modular forms of higher level like tmf1(n). In particular, we use them to realize
Hirzebruch’s level-n genus as a map of ring spectra.
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1 Introduction

The basic tenet of Waldhausen’s philosophy of brave new algebra is to replace known notions
for commutative rings by corresponding notions for E∞-ring spectra. These days replacing
the integers by the sphere spectrum is actually no longer so brave and new, but rather a
well-established principle. In extension, we might want to find and study E∞-analogues
of other prominent rings as well. The aim of the present paper is to do this for rings of
holomorphic modular forms with respect to congruence subgroups of SL2(Z).

Topological analogues of modular forms for SL2(Z) itself were already introduced about
twenty years ago. Indeed, Goerss, Hopkins and Miller introduced three spectra TMF,
Tmf and tmf of topological modular forms. Recall that the rings M∗(SL2(Z);Z) and

M̃∗(SL2(Z);Z) of holomorphic and meromorphic integral modular forms can be defined as
the global sections H0(Mell;ω

⊗∗) and H0(Mell;ω
⊗∗) of powers of a certain line bundle ω
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on the uncompactified and compactified moduli stack of elliptic curves, respectively.1 In
analogy, TMF is defined as the global sections of a sheaf Otop of E∞-ring spectra onMell

with π2kO
top ∼= ω⊗k and Tmf as the global sections of an analogous sheaf on Mell. The

edge maps of the resulting descent spectral sequence take the form of homomorphisms

π2∗ TMF→ M̃∗(SL2(Z);Z) and

π2∗ Tmf →M∗(SL2(Z);Z).

The former morphism is an isomorphism after base change to Z[16 ] (while taking higher
cohomology of ω⊗∗ into account at the primes 2 and 3) and thus TMF can be really seen

as the rightful analogue of M̃(SL2(Z);Z). In contrast, π∗Tmf has torsionfree summands
in negative degree, whereas M∗(SL2(Z),Z) is concentrated in non-negative degrees. The
solution is to define tmf simply as the connective cover τ≥0Tmf and one can show that
indeed π2∗ tmf[16 ] is isomorphic to M∗(SL2(Z),Z[

1
6 ]). We mention that one of the motiva-

tions for the constructing tmf was lifting the Witten genus to a map of E∞-ring spectra
MString → tmf as achieved in [AHR10]. For applications to the stable homotopy groups
of spheres and exotic spheres see e.g. [HM98], [BHHM17], [WX17] and [IWX20].

In number theory, it is very common not only to consider modular forms with respect
to SL2(Z), but also to congruence subgroups of these; the most important being Γ = Γ0(n),
Γ1(n) or Γ(n). Algebro-geometrically, such modular forms can be defined as sections of
the pullback of ω⊗∗ to compactifications M(Γ) of stacks classifying generalized elliptic
curves with certain level structures (see e.g. [DR73], [DI95], [Con07], [Mei17]); for example,
M(Γ1(n)) classifies generalized elliptic curves with a chosen point of order n such that
its multiples touch every irreducible component of every geometric fiber. Hill and Lawson
[HL15] defined sheaves of E∞-ring spectra on these stacks and obtained spectra Tmf(Γ)
as their global sections and moreover TMF(Γ) by restriction to the loci of smooth elliptic

curves. The latter are good topological analogues of the rings M̃(Γ;Z[ 1n ]) of meromorphic
modular forms in the sense that π∗TMF(Γ) is isomorphic to this ring if Γ is Γ1(n) or Γ(n)
(with n ≥ 2) or if we invert 6 also in the case Γ = Γ0(n).

In contrast, neither Tmf(Γ) nor its connective cover τ≥0Tmf(Γ) are in general good
analogues of the ring of holomorphic modular forms M(Γ;Z[ 1n ]), even in the nice case of
Γ = Γ1(n) and n ≥ 2. Writing Tmf1(n) for Tmf(Γ1(n)), the reason is thatH1(M(Γ1(n));ω)
and thus π1Tmf1(n)) is non-trivial in general (with n = 23 being the first example), while
this contribution does not occur in M(Γ;Z[ 1n ]). Following an idea of Lawson, we define
a connective version tmf1(n) by “artificially” removing π1, while still retaining the E∞-
structure on tmf1(n).

Theorem 1.1. There is an essentially unique connective E∞-ring spectrum tmf1(n) with
an E∞-ring map tmf1(n)→ Tmf1(n) that identifies the homotopy groups of the source with
M(Γ1(n);Z[

1
n ]).

Moreover, the involution ofM(Γ1(n)) sending a point of order n to its negative defines
on tmf1(n) the structure of a genuine C2-spectrum. It slices in the sense of [HHR16] are
trivial in odd degrees and can be explicitly identified in even degrees.

1The terms meromorphic and holomorphic come from the corresponding analytic definitions, where one
demands that the given function on the upper half plane can be continued meromorphically and holomor-
phically, respectively, to the cusp(s). The former kind of modular forms is also sometimes called weakly

holomorphic.



3

The analogous theorem also works to define tmf(n), but tmf0(n) we define only in
certain cases since in the general case it is not yet clear what the “correct” definition
is. The spectrum tmf(n) has been further investigated in [HR21, Theorem 3.14], where a
criterion for the non-vanishing of its Tate spectrum is proven.

One of the principal motivations for the consideration of tmf1(n) is its connection to
the Hirzebruch level-n genera MU∗ → M(Γ1(n);Z[

1
n ]). They specialize for n = 2 to the

classic Ochanine elliptic genus and have similar rigidity properties in general [HBJ92].

Theorem 1.2. For every n ≥ 2, there is a ring map MU → tmf1(n) realizing on homotopy
groups the Hirzebruch level-n-genus. Moreover, this map refines to a map MUR → tmf1(n)
of C2-spectra.

We have two further classes of results on the spectra tmf1(n) and their cousins. The
first is the following compactness result (in the cases that tmf0(n) is defined).

Theorem 1.3. The tmf[ 1n ]-modules tmf0(n), tmf1(n) and tmf(n) are perfect, i.e. they are
compact objects in the module category. In particular, their Fp-cohomologies are finitely
presented over the Steenrod algebra and thus their p-completions are fp-spectra in the sense
of [MR99].

By a result of Kuhn [Kuh18, Theorem 1.7] this implies for example that the Hurewicz im-
age of π∗ tmf(Γ) ∼= π∗Ω

∞ tmf(Γ) in H∗(Ω
∞ tmf(Γ);Fp) is finite dimensional, where tmf(Γ)

denotes either tmf0(n), tmf1(n) or tmf(n). We also note that in contrast to the theo-
rem, tmf1(n) will not be a perfect tmf0(n)-module in general. We also show that tmf0(n),
tmf1(n) and tmf(n) are faithful as tmf[ 1n ]-modules, answering a question of Höning and
Richter [HR21, p.21].

The second result is a variant of the decomposition results of [Mei18], which we state
in this introduction only at the prime 2 and for tmf1(n).

Theorem 1.4. Let n > 1 be odd. If one can lift every weight 1-modular form for Γ1(n)
over F2 to a form of the same weight and level over Z(2), we have a C2-equivariant splitting

tmf1(n)(2) ≃
⊕

i

Σniρ tmf1(3)(2),

where ρ denotes the real regular representation of C2. Such a splitting exists in particular
for all odd n < 65.
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and remarks on a preliminary version.

Finally, I want to thank the Hausdorff Institute for hospitality in 2015 when part of this
work was undertaken. Apologies for the subsequent delay in publication.



4

Conventions and notation

All notions are to be understood suitably derived or ∞-categorical. This means that
pushout means either a pushout in the respective ∞-category or a homotopy pushout
in the underlying model category. We will use ⊗ for the (derived) smash product. Note
that this coincides with the coproduct in the ∞-category CAlg of E∞-ring spectra.

When we use G-spectra, we will always mean genuine G-spectra. The notations τ≤k

and τ≥k denote the k-(co)connective cover of a spectrum and we use the same notation for
the slice-(co)connective covers of a G-spectrum. Furthermore, we denote by S the sphere
(G-)spectrum. In some parts of this article, we have the opportunity to use RO(C2)-graded
homotopy groups of C2-spectra. We will use the notation σ for the sign representation and
ρ or C for the regular representation of C2.

We will use the notations TMF1(n) and TMF(Γ1(n)) interchangeably and similarly in
related contexts.

2 The construction of connective topological modular forms

The aim of this section is to construct connective spectra tmf(Γ) of topological modular
forms and thereby prove Theorem 1.1. Here Γ denotes a congruence subgroup Γ in the
following sense, which is a bit more restrictive than the standard definition.

Definition 2.1. We call Γ ⊂ SL2(Z) a congruence subgroup of level n if Γ = Γ(n) or
Γ1(n) ⊂ Γ ⊂ Γ0(n).

2

As explained in [HL15] and [Mei18, Section 2.1], we can associate with every such Γ a
(non-connective and non-periodic) E∞-ring spectrum Tmf(Γ). (See also [Sto12, Theorem
5.2] for the case of Γ(n).) These arise as global sections of sheaves of E∞-ring spectra
Otop on stacks M(Γ) classifying generalized elliptic curves with certain level structures;
the details will not be important for the purposes of this article, but see see e.g. [DR73],
[Con07], [Čes17], [Mei17]. Our goal in this section is to construct a nice connective version
tmf(Γ) for Tmf(Γ). For this, we will fix a localization ZS of the integers and restrict mostly
to tame congruence subgroups.

Definition 2.2. We say that a congruence subgroup Γ of level n is tame with respect to ZS

if n ≥ 2 and n is invertible in ZS; in the case Γ0(n) ⊂ Γ ⊂ Γ1(n) we demand additionally
that gcd(6, [Γ : Γ1(n)]) is invertible in ZS.

3

The definition ensures that the order of every automorphism of a point in M(Γ) is
invertible and thus the stack is of cohomological dimension 1. As explained in [Mei18,
Section 2.1], in this case π∗τ≥0Tmf(Γ) is concentrated in even degrees except for π1Tmf(Γ),
which might be nonzero. (The smallest n for which this happens is 23.) Moreover, the even

2We refer to [DS05] for background on the congruence subgroups Γ1(n), Γ(n) and Γ0(n) and their
relationship to moduli of elliptic curves. This material is though barely necessary for the present paper as
we use the congruence subgroups primarily as notation.

3As the quotient Γ0(n)/Γ1(n) is (Z/n)×, the latter condition reduces to gcd(6, ϕ(n)) being invertible in
the case Γ = Γ0(n). Thus we require that 2 is invertible and also 3 if n is divisible by a prime of the form
3k + 1 or by 9.
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homotopy groups of Tmf(Γ) are precisely isomorphic to the ring of holomorphic modular
forms M(Γ;Z[ 1n ]).

Following the lead of [Law15, Proposition 11.1] (and additional explanations by its
author), we will first describe a general procedure to kill π1 for E∞-rings that applies to
τ≥0Tmf(Γ) for Γ tame. We will then present a C2-equivariant refinement that helps to
define a nice version of tmf(Γ) also in some non-tame case. We note that our techniques
are only necessary if π1 Tmf(Γ) is non-trivial as else the usual connective cover defines a
perfectly good version of tmf(Γ).

2.1 The non-equivariant argument

Let R be a connective E∞-ring spectrum with π0R an étale extension of ZS , a localization
of Z, and η · 1 = 0. (The relevant example for us is R = τ≥0Tmf(Γ)S with π0R = ZS if
Γ1(n) ⊂ Γ ⊂ Γ0(n) and π0R = ZS [ζn] if Γ = Γ(n).) We want to construct a map R′ → R
of E∞-ring spectra, which is injective on π∗ and with cokernel π1R. In the following, we
localize everything implicitly at the set S.

Let A first be a general E∞-ring spectrum. For an A-module M , we denote by

PA(M) ≃ A⊕M ⊕ (M⊗A2)hΣ2
⊕ · · ·

the free unital E∞-A-algebra on M (cf. [Lur12, 3.1.3.14]).

Definition 2.3. Let x : ΣkA → A be an A-linear map. We define its E∞-cone CA(x) as
the pushout A ⊗PA(ΣkA) A of E∞-ring spectra. Here, the first map PA(Σ

kA) → A is the

free E∞-map on x, while the second arises from applying PA to the unique map ΣkA→ 0.

Note that if B is an E∞-A-algebra, we have CA(x) ⊗A B ≃ CB(x). Writing the usual
cone C(x) as the pushout A ⊔ΣkA⊕A A in A-modules produces a map C(x) → CA(x) via
the inclusion A⊕ ΣkA→ PA(ΣkA) of the first two summands and the identity idA.

Lemma 2.4. If x = 0, the canonical map C(x)→ CA(x) is split as a map of A-modules.

Proof. The pushout square

A⊕ΣkA //

��

A

��

A // C(0) ≃ A⊕ Σk+1A

(2.5)

arises from the pushout square

ΣkA //

��

0

��

0 // Σk+1A

(2.6)

via the functor ModA → CAlgA of square-zero extension. In particular, it is a diagram of
E∞-A-algebras. As the E∞-pushout square defining CA(0) arises from (2.6) as well, but
via PA, we see that the square (2.5) receives a map from this diagram. That this defines
a splitting of C(0) → CA(0) follows from the universal property of the pushout square
(2.5).
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We will apply our general consideration to the connective E∞-ring spectrum R we have
fixed. As η is zero in π∗R, we obtain an E∞-map CS(η) → R. This induces an E∞-map
τ≤1C

S(η)→ τ≤1R (see [HHR16, Proposition 4.35]).

Lemma 2.7. The 1-coconnective cover τ≤1C
S(η) is equivalent to HZ.

Proof. We claim that the canonical map C(η) → CS(η) is 2-connected. By the Hurewicz
theorem, we can test this after tensoring with HZ and thus it suffices to show that the
resulting map C(η ⊗ HZ) → CHZ(η ⊗ HZ) is 3-connected. But η ⊗ HZ agrees with the
0-map ΣHZ→ HZ. Thus, we have to show that

HZ⊕Σ2HZ→ CHZ(ΣHZ) ≃ PHZΣ2HZ ≃ HZ⊕ Σ2HZ⊕ (Σ4HZ)hC2
⊕ · · ·

is 3-connected. As noted above, the map is split injective and thus must be indeed an
isomorphism on πi for i ≤ 3.

By [Lur12, Theorem 7.5.0.6], we can extend the map HZ = τ≤1C
S(η) → τ≤1R to a

map Hπ0R → τ≤1R as the map Z = ZS → π0R is étale. Define now R′ via the homotopy
pullback square

R′ //

��

Hπ0R

��

R // τ≤1R

(2.8)

This construction provides the existence part of the following proposition.

Proposition 2.9. Let R be a connective E∞-ring spectrum such that π0R is an étale
extension of a localization ZS of the integers and η · 1 = 0 in π1R. Then there exists
a morphism R′ → R of E∞-ring spectra inducing an isomorphism on πi for i 6= 1 and
satisfying π1R

′ = 0. Moreover, for every other R′′ → R with these properties, there is an
equivalence R′′ → R′ of E∞-ring spectra over R.

Proof. It remains to show uniqueness. We localize again everything implicitly at S. We
first note that the map HZ → τ≤1R constructed above is actually the unique E∞-map
with this source and target. Indeed: For connectivity reasons, we have an equivalence of
mapping spaces MapCAlg(HZ, τ≤1R) ≃ MapCAlg(C

S(η), τ≤1R). The latter is equivalent to
the space of nullhomotopies of η in τ≤1R, i.e. MapSp(Σ

2S, τ≤1R) ≃ ∗. Using that thus τ≤1R
has an essentially unique structure of an HZ-E∞-algebra, we deduce again from [Lur12,
Theorem 7.5.0.6] that the space of E∞-maps from Hπ0R to τ≤1R is equivalent to the set
of ring homomorphisms π0R→ π0R.

Given now R′′ → R as in the proposition, we obtain a map R′′ → τ≤1R
′′ ≃ Hπ0R →

τ≤1R. We see that R′′ arises as a pullback of a diagram of the same shape as (2.8),
but possibly with a map Hπ0R → τ≤1R inducing a different isomorphism f on π0 than
the identity. The paragraph above implies that using the map f on Hπ0R we obtain an
equivalence between the cospans constructing R′ and R′′ and thus between R′ and R′′ over
R.

To apply this to topological modular forms, we need the following two lemmas.
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Lemma 2.10. Let Γ be a tame congruence subgroup with respect to a localization ZS. Then
η is zero in π1Tmf(Γ)S .

Proof. According to [Mei18, Proposition 2.5], the descent spectral sequence for Tmf(Γ)S is
concentrated in lines 0 and 1. Thus it suffices to show that the image of η in H1(M(Γ)S ;ω)
is trivial. This is the content of [Mei17, Proposition 2.16] unless Γ1(n) ( Γ ( Γ0(n). But
using [Mei18, Lemma A.2] we can argue as in [Mei17, Proposition 2.4(4)] to see that we
can identify H1(M(Γ)S ;ω) with the fixed points of H1(M(Γ1(n);ω) under the action of
Γ/Γ1(n). In particular, the map

H1(M(Γ)S ;ω)→ H1(M(Γ1(n))S ;ω)

is injective and the result follows from [Mei17, Proposition 2.16] also in the general case.

Lemma 2.11. Let Γ be a tame congruence subgroup with respect to a localization ZS. Then
π0Tmf(Γ) ∼= ZS if Γ1(n) ⊂ Γ ⊂ Γ0(n) and π0Tmf(Γ) ∼= ZS [ζn] if Γ = Γ(n).

Proof. As recalled above, we have π0 Tmf(Γ) ∼= H0(M(Γ);OM(Γ)). In the cases that

Γ = Γ0(n),Γ1(n) or Γ(n) the computation of this group is classical and can be found
e.g. in [Mei17, Proposition 2.13]. The case of Γ1(n) ( Γ ( Γ0(n) follows by identifying
H0(M(Γ);OM(Γ)) with H0(M(Γ);OM(Γ))

Γ/Γ1(n) using [Mei18, Lemma A.2] again.

This allows us to use the construction above to define tmf(Γ)S in the tame case by
killing π1 from τ≥0Tmf(Γ)S . Summarizing we obtain:

Theorem 2.12. For every set of primes S and every congruence subgroup Γ that is tame
with respect to ZS, there is up to equivalence a unique connective E∞-ring spectrum tmf(Γ)S
with an E∞-ring map tmf(Γ)S → Tmf(Γ)S that identifies the homotopy groups of the source
with the ring of holomorphic modular forms M(Γ;ZS).

Formally, we could also apply this procedure in some non-tame cases (e.g. if we localize
away from 2), but the author knows of no reason to regard these constructions in these
cases as “correct”.

Notation 2.13. We will use the abbreviations

tmf1(n) = tmf(Γ1(n))

tmf0(n) = tmf(Γ0(n))

tmf(n) = tmf(Γ(n))

when these make sense.

Remark 2.14. For every ring spectrum R, we can consider the stack XR associated to the
graded Hopf algebroid (MU2∗(R), (MU ⊗ MU)2∗(R)). If R is complex orientable, this
coincides with the stack quotient [Specπ2∗R/Gm]. In [MO20, Definition 5.5] we introduced
cubical versions M1(n)cub and M0(n)cub of the moduli stacks M(Γ1(n)) and M(Γ0(n))
and showed in [MO20, Theorem 5.19] that M1(n)cub ≃ [M(Γ1(n);Z[

1
n ])/Gm] for n ≥ 2.

In combination, we see that Xtmf1(n) ≃ M1(n)cub for n ≥ 2. In the case n = 1, the
corresponding equivalence Xtmf ≃ Mcub has a quite different character and was shown in
[Mat16]. Whether there are equivalences Xtmf0(n) ≃ M0(n)cub for a suitable definition of
tmf0(n) remains open to the knowledge of the author, even for n = 3.
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2.2 The C2-equivariant argument

All the stacksM(Γ) come with an involution induced from postcomposing the level struc-
ture with the [−1]-automorphism of the elliptic curve. (Note that this can be trivial, e.g.
forM(Γ(2)) orM(Γ0(n)).) We obtain an induced C2-action on Tmf(Γ). Our goal in this
subsection is to define suitable C2-spectra tmf(Γ) in the tame case.

In the following we will use standard notation from equivariant homotopy theory. In
particular, we denote for an inner product space V with G-action by S(V ) the unit sphere
and by SV the 1-point compactification as G-spaces. We denote by a = aσ : S

0 → Sσ the
inclusion for σ the real sign representaion of C2.

The Hopf map defines a C2-map η : S(C2) → SC, where C2 acts on C via complex
conjugation. This stabilizes to an element in πC2

σ S, which restricts to η ∈ πe
1S. The following

is presumably well-known to the experts, but we provide a proof for the convenience of the
reader.

Lemma 2.15. The homotopy group πC2

σ (S0) is infinite cyclic and generated by η.

Proof. The cofiber sequence

(C2)+ → S0 a
−→ Sσ → (C2)+ ⊗ S1

induces an exact sequence
πC2

σ S
a
−→ πC2

0 S
res
−−→ πe

0S

This is split exact as inflation provides a splitting of res. We know that π0S
0 is isomorphic to

the Burnside Mackey functor A and thus the kernel of the restriction map can be identified
with Z (with generator S = 2[C2/C2] − [C2]). We claim that the image of η generates
this kernel. Indeed, aη : S1+2σ → S1+2σ is degree 0 on underlying spheres and degree 2
on fixed points. Likewise the underlying set of S has 0 elements, while its fixed points
have 2 elements. By [tD87, Section II.2] we conclude that S corresponds to aη under the
isomorphism A(C2) ∼= πC2

0 (S). Thus, πC2

σ S0 = Zη.

Similarly, one can show that πC2

−σS
0 is infinite cyclic as well and generated by the Euler

class a.
In the following, we denote by τ≤i the slice coconnective cover, by τ≥i the slice connective

cover and by τi = τ≥iτ≤i the i-th slice for C2-spectra. We refer to [HHR16] for background
about the slice filtration.

Lemma 2.16. We have an equivalence τ≤1Cη ≃ HZ.

Proof. It suffices to show that the first slice of Cη is null and the zeroth slice is HZ. As
shown in [HHR16] and summarized in [HM17, Section 2.4], this is implied by the calculations
π0Cη ∼= Z and πσCη = 0. These follows easily by the long exact sequence arising from the
cofiber sequence

Sσ η
−→ S0 → Cη

and the computations of πC2

−σS, π
C2

0 S and πC2

σ (S) above, using also that πC2

−1S
σ = 0.

The following is a Hurewicz type statement.
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Lemma 2.17. A connective C2-spectrum X is k-slice connected (i.e. τ≤kX = 0) iff (HZ)C2

V X =
0 for all C2-representations V of the form iρ or iρ− 1 with |V | ≤ k.

Proof. If X is k-slice connected, the same is true for HZ⊗X and thus

(HZ)C2

V X = πC2

V HZ⊗X = 0

for all V of the form iρ or iρ− 1 with |V | ≤ k. .
For the converse, assume that (HZ)C2

V X = 0 for all C2-representations V of the form iρ
or iρ− 1 with |V | ≤ k. By induction, we can assume that X is (k − 1)-slice connected and
we need to show that τkX = 0. Let V be k

2ρ if k is even and k+1
2 ρ − 1 if k is odd. Note

that SV is a slice cell of dimension k. As τ≥k+1X ⊗HZ and its suspension are ≥ k + 1 in
the slice filtration,

0 = HV (X;Z)→ HV (τkX;Z)

is an isomorphism. As summarized in [HM17, Section 2.4], the slice τkX is of the form
SV ⊗HM for some Mackey functor M and we deduce that H0(HM ;Z) ∼= HV (τkX;Z) = 0.

We know that τ0S = HZ. As HM is (slice) connective, a similar argument to before
shows that

M ∼= π0(S⊗HM) ∼= π0(HZ⊗HM) = H0(HM ;Z) = 0.

Thus, τkX = 0 as was to be shown.

For an element x ∈ πC2

k S, we can define a (naive) C2-equivariant E∞-cone CS(x) as
in the non-equivariant situation in the preceding subsection. The analogous argument to
Lemma 2.7 together with Lemma 2.17 and πσHZ = 0 implies the following.

Lemma 2.18. The map Cη → CS(η) is slice-2-connected.

Together with Lemma 2.16 this implies that τ≤1C
S(η) ≃ HZ. Analogously to Proposition 2.9

we deduce the following.

Proposition 2.19. Let R be a connective E∞-ring C2-spectrum with πC2

0 = ZS being a
localization of Z and η = 0 ∈ πC2

σ R. Then there is an E∞-ring C2-spectrum R′ with an
E∞-map R′ → R inducing an equivalence on slices in degree 0 and degrees at least 2 and
such that τ1R

′ = 0. Moreover, for every other R′′ → R with these properties, there is an
equivalence R′′ → R′ of E∞-ring C2-spectra over R.

To formulate the consequences for tmf(Γ), we want to recall from [HM17] that a C2-
spectrum E is strongly even if its odd slices vanishes and its even slices are of the form
Skρ ⊗HA or, equivalently, if πkρE is constant and πkρ−1E = 0.

Theorem 2.20. For every set of primes S and every congruence subgroup Γ1(n) ⊂ Γ ⊂
Γ0(n) that is tame with respect to ZS, we can define a strongly even connective E∞-ring
C2-spectrum tmf(Γ)S with an E∞-ring C2-map tmf(Γ)S → Tmf(Γ)S that identifies the
underlying homotopy groups of the source with M(Γ;ZS).

Proof. We want to apply Proposition 2.19. According to [Mei18, Theorem 6.16] the only
odd slice of τ≥0Tmf(Γ) is indeed τ1. The Mackey functor πσ(Tmf(Γ)) = πρ−1(Tmf(Γ))
is constant and thus Lemma 2.10 implies that η is zero. Thus we can indeed apply
Proposition 2.19 and obtain the C2-spectrum tmf(Γ)S . As moreover the even slices of
Tmf(Γ) are of the form Skρ ⊗HA for some constant Mackey functor A, we also get that
tmf(Γ) is strongly even.
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Given Γ′ ⊂ Γ ⊂ Γ0(n) with Γ′ tame with respect to ZS and Γ/Γ′ ∼= C2, we can extend
our previous definition by defining tmf(Γ)S as tmf(Γ′)C2

S (so e.g. tmf0(3) = tmf1(3)
C2 as

in [HM17]). If Γ itself is already tame, then 2 ∈ S. One then easily computes (e.g. with
the slice spectral sequence) that π∗ tmf(Γ′)C2

S
∼= π∗ tmf(Γ)S and one can use the uniqueness

part of Theorem 2.12 to identify our new definition with the old one.

Remark 2.21. Even if Γ is not tame, the map tmf(Γ)→ τ≥0Tmf(Γ) is an isomorphism in π∗
for ∗ ≥ 2. Indeed, the cofiber of tmf(Γ′)→ τ≥0 Tmf(Γ′) is the target’s first slice and thus by
[Mei18, Theorem 6.16] equivalent to ΣσHM for M being the constant Mackey functor on
H1(M(Γ′)S ;ω) ∼= π1Tmf(Γ′). We directly observe that its underlying homotopy vanishes
in degrees at least 2. Moreover the cofiber sequence (C2)+ → S0 → Sσ induces a long exact
sequence

πe
kHM → πC2

k HM → πC2

k−σHM → πe
k−1HM

tr
−→ πC2

k−1HM,

which implies that πC2

k−σHM = 0 for k ≥ 2 and actually also for k = 1 if tr is injective, i.e.
if π1 Tmf(Γ′) has no 2-torsion.

3 Realization of Hirzebruch’s level-n genus

In the previous section we have defined ring spectra tmf1(n) = tmf(Γ1(n)). The spectra
tmf1(n) are even for n ≥ 2 and thus complex orientable. We want to show that there is a
complex orientation for tmf1(n) such that the corresponding map

MU2∗ → tmf1(n)2∗ ∼= M(Γ1(n);Z[
1

n
])

agrees with the level-n genus introduced by Hirzebruch [Hir88] and Witten [Wit88] and
studied e.g. in [Kri90], [Fra92], [Her07] and [WWY20]. We we recall its definition below.
For this purpose it will be convenient to use algebro-geometric language, for which we recall
first the following set of definitions.

Definition 3.1. A formal group over a base scheme S is a Zariski sheaf F : SchopS → Ab
that Zariski locally on an affine open U = SpecR ⊂ S is isomorphic to Spf RJtK. The
R-modules RJtK glue to the structure sheaf OF on S and the R-modules (RJtK/t) · dt glue
to the line bundle ωF/S.

4 An invariant differential of a formal group F is a trivialization
of ωF/S . A coordinate is a section s of OF that is of the form a0t+a1t

2+ · · · with a0 ∈ R×

for every local trivialization F |SpecR ∼= Spf RJxK.

We note that the differential ds of a coordinate s of a formal group F is an invariant
differential of F , sending a0t+ a1t

2 + · · · to a0dt locally. If S = SpecR, a coordinate of F
is equivalent datum to an isomorphism F ∼= Spf RJsK.

Recall that given an arbitrary even ring spectrum E, a complex orientation is an element
in Ẽ2(CP∞) restricting to 1 ∈ Ẽ2(CP1) after a homeomorphism CP1 ∼= S2 is chosen. The
formal spectrum Spf E2∗(CP∞) is a formal group over SpecE2∗(pt) and the line bundle ω
corresponds to Ẽ∗(CP1); it thus comes with a canonical invariant differential coresponding

4If p : C → S is a (generalized) elliptic curve and F is the formal completion of E , this agrees with
ωC/S = p∗Ω

1

C/S.
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to 1 ∈ Ẽ2(CP1). A complex orientation is thus a coordinate of Spf E2∗(CP∞) in degree
∗ = 1 whose differential is the canonical invariant differential.

We want to apply this to E = tmf1(n) for n ≥ 2. Essentially by construction, the maps
π2∗ tmf1(n)→ π2∗Tmf1(n)→ ω⊗∗

C/M1(n)
(M1(n)) are isomorphisms, where C is the universal

generalized elliptic curve overM1(n). For convenience, letM
1
1(n) be the relative spectrum

Spec
M1(n)

⊕
ω⊗∗

C/M1(n)
, which is the total space of the Gm-torsor associated with ωC/M1(n)

,

i.e. classifies generalized elliptic curves with a point of exact order n and an invariant

differential. The resulting morphism M
1
1(n) ⊂ Specπ2∗ tmf1(n) is an open immersion

whose image is covered by the non-vanishing loci of c4 and ∆ [MO20, Proposition 3.5].

We denote by C the pullback of C to M
1
1(n). Since tmf1(n)[c4]

−1 ≃ Tmf1(n)[c
−1
4 ] and

tmf1(n)[c4]
−1 ≃ Tmf1(n)[∆

−1] are elliptic cohomology theories, their formal groups are
identified with the restrictions of Ĉ to the non-vanishing loci of c4 and ∆, respectively,

and as a result Ĉ becomes identified with the restriction of Spf tmf1(n)
2∗(CP∞) toM

1
1(n).

As M
1
1(n) ⊂ Specπ2∗ tmf1(n) induces an isomorphism on global sections of the structure

sheaf, coordinates on Spf tmf1(n)
2∗(CP∞) are in bijection with those on Ĉ and one checks

that the canonical invariant differential on the former corresponds to the canonical invariant
differential on the latter. Summarizing we obtain:

Lemma 3.2. Complex orientations MU → tmf1(n) are in bijection with coordinates of Ĉ,
which are homogeneous of degree 1 and have the canonical invariant differential as differ-
ential.

The Hirzebruch genus relies on a specific such coordinate, which we will construct
momentarily. Basically we will follow [HBJ92, Chapter 7], but present a more algebro-
geometric approach and give an independent treatment. The key point is the existence of
a certain meromorphic function on a cover of a given generalized elliptic curve. Recall to
the purpose of constructing this function that every section P into the smooth part of a
generalized elliptic curve C → S is an effective Cartier divisor [KM85, Lemma 1.2.2], i.e.
the kernel OC(−(P )) of OC → P∗OS is a line bundle. Given any linear combination of
sections, we denote by OC(nλ(Pλ)) the corresponding tensor product of line bundles.

Lemma 3.3. Let n ≥ 2 and S be a Z[ 1n ]-scheme. Furthermore let C/S be a generalized
elliptic curve with 0-section e : S → C and a chosen point P : S → C of exact order n in
the smooth locus.

(a) The pullback of e∗OC((P )− (e)) to S is canonically isomorphic to ωC/S = e∗Ω1
C/S.

(b) Let λ be an invariant differential on C. Then there exists a unique meromorphic func-
tion h on C with an n-fold zero at e and an n-fold pole at P as only pole whose
restriction along e coincides with λn under the identification of the previous part.

(c) There exists a degree-n étale cover q : C ′ → C by a generalized elliptic curve and a
meromorphic function f on C ′ with fn = q∗h.

Proof. For the proof of (a), note that OC(−(e)) is the ideal sheaf associated to the closed
immersion e and the pullback e∗OC((P )− (e)) coincides with OC(−(e))/OC (−(e))

2 viewed
as an OS-module. E.g. by [Har77, Proposition II.8.12] we obtain a canonical surjective
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map OC(−(e))/OC (−(e))
2 → e∗Ω1

C/S = ωC/S between line bundles, which is hence an
isomorphism.

For part (b), consider the line bundle OC(n(P ) − n(e)). Note that n · P − n · e = e
as points on C. By [KM85, Theorem 2.1.2] in the case that C is an elliptic curve and by
[DR73, Proposition II.2.7] for generalized elliptic curves, we deduce that OC(n(P )− n(e))
is the pullback of a line bundle L on S. By part (a), L = e∗p∗L = ω⊗n

C/S . By [DR73,

Proposition II.1.6], we see that the canonical map

ω⊗n
C/S → p∗p

∗ω⊗n
C/S
∼= p∗OC(n(P )− n(e))

is an isomorphism. Thus

Γ(OC(n(P )− n(e))) ∼= Γ(ω⊗n
C/S),

where the isomorphism can be identified with the pullback along e. Thus, there is a unique
section h of OC(n(P )− n(e)) whose image is λn.

For part (c), consider the µn-torsor q : C
′ → C associated with the problem of extracting

an n-th root out of q∗h as a section of q∗OC((P ) − (e)) (i.e. the µn-torsor associated with
the pair (h, OC((P ) − (e))) in the sense of [Mil80, p. 125]). By construction, the required
root f exists on C ′. By [DR73, Proposition II.1.17], C ′ has the structure of a generalized
elliptic curve provided that we can lift e to C ′ and C ′ → S has geometrically connected
fibers. For the first point, it suffices to provide a section of C ′ ×C S → S, i.e. to provide
an n-th root of e∗h. Under the identification of part (a), this is provided by λ. For the
second point, we assume that S = SpecK with K algebraically closed of characteristic not
dividing n and that C ′ is not connected. The stabilizer of a component C ′

0 must be of the
form µm with m < n and thus C ′ ∼= C ′

0 ×µm µn. The µm-torsor C ′
0 is hence associated

with a pair (g,OC ((P ) − (e))) with gn/m = h. The section g provides a trivialization of
OC(m(P )−m(e)). This implies m ·P = e on C ′ [DR73, Corollaire II.2.4], in contradiction
with P being of exact order n.

Construction 3.4. Let C be the universal generalized elliptic curve with a point of exact order

n over M
1
1(n). It comes by definition with a canonical invariant differential λ. From the

preceding lemma, we obtain an n-fold étale cover q : C′ → C together with a meromorphic
function f on C′ whose pullback along a lift of e agrees with λ. This function f provides a
coordinate for Ĉ′ ∼= Ĉ. Moreover note that f is uniquely determined by the requirements in

the lemma because C′ is irreducible (sinceM
1
1(n) is irreducible and the locus of smoothness

of C′ in it is dense) and thus every other n-th root of h would have to differ by a root of

unity, resulting in a different pullback toM
1
1(n).

Pulling the orientation induced from f back along a map SpecC →M1(n) classifying
(C/Λ, 1

n , dz) results exactly in the coordinate and orientation chosen in [HBJ92].

Theorem 3.5. For every n ≥ 2, there is a unique complex orientation of MU → tmf1(n)
realizing on homotopy groups the Hirzebruch genus. Moreover, this can be uniquely refined
to a morphism MUR → tmf1(n) of C2-ring spectra.

Proof. The first part follows from Lemma 3.2 as the Hirzebruch genus is given by a co-
ordinate on the formal group associated with the universal generalized elliptic curve on
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M
1
1(n). For the second point, we recall from [HK01, Theorem 2.25] that C2-ring mor-

phisms MUR → tmf1(n) are in bijection with Real orientations of tmf1(n), i.e. a lift of a
complex orientation to a class tmf1(n)

ρ
C2
(CP∞). As CP∞ can be built by cells in dimensions

kρ, the strong-evenness of tmf1(n) from Theorem 2.20 implies that the forgetful map

tmf1(n)
ρ
C2
(CP∞)→ tmf1(n)

2(CP∞)

is an isomorphism; thus every complex orientation of tmf1(n) refines to a unique Real
orientation.

Remark 3.6. We remark that in [Fra92], Franke already gave a related but different algebro-
geometric treatment of the Hirzebruch genus.

4 Compactness, formality and faithfulness of tmf(Γ)

Given a congruence subgroup of level n, we will show that tmf(Γ) is a faithful and perfect
tmf[ 1n ]-module. In contrast, for example tmf1(3) will not be a perfect tmf0(3)-module, even
rationally. The latter result relies on tmf0(3)Q being formal (i.e. multiplicatively a graded
Eilenberg–MacLane spectrum), a result we prove in greater generality in a subsection on
its own.

4.1 All tmf(Γ) are perfect

Recall that for an A∞-ring spectrum R, a perfect R-module is a compact object in the
∞-category of left R-modules. Equivalently, the ∞-category of perfect R-modules is the
smallest stable sub-∞-category of all left R-modules that contains R and is closed under
retracts. The goal of this section is to show that the spectra tmf(Γ), in the cases we defined
them, are perfect tmf[ 1n ]-modules. The key technical tool is the following proposition.

Proposition 4.1. Let R be an A∞-ring spectrum such that

1. π0R is regular noetherian,

2. all πnR are finitely generated π0R-modules, and

3. Hπ0R is perfect as a τ≥0R-module.

Let furthermore M be a perfect R-module. Then τ≥kM is a perfect τ≥0R-module for every
k ∈ Z.

Lemma 4.2. With notation as in the statement of the proposition, let X be a τ≥0R-module
with only finitely many non-trivial homotopy groups, all finitely generated over π0R. Then
X is a perfect τ≥0R-module.

Proof. By induction, we can reduce to the case that π∗X is concentrated in a single degree
n. Then X = HπnX acquires the structure of a Hπ0R-module and it is perfect as such
because π0R is regular noetherian and πnX is finitely generated. As Hπ0R is perfect over
τ≥0R, the same is thus true for X.
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Proof of proposition. Let M be a perfect R-module. As the truth of the conclusion of the
proposition is clearly preserved under retracts in M and also clear for M = 0, we can
assume by induction that we have a cofiber sequence

ΣlR→ N →M → Σl+1R

where τ≥kN is a perfect τ≥0R-module for all k ∈ Z. Taking τ≥l on the first two objects
gives a diagram

Σlτ≥0R

��

// τ≥lN

��

// M ′

��

// Σl+1τ≥0R

��

ΣlR // N // M // Σl+1R.

of cofiber sequences. As τ≥lN is a perfect τ≥0R-module, so is M ′. Clearly, τ≥l+1M
′ ≃

τ≥l+1M . As the fiber of τ≥l+1M
′ → M ′ fulfills the conditions of the previous lemma,

τ≥l+1M is perfect as a τ≥0R-module.
For a general k ∈ Z, we make a case distinction: Assume first that k ≥ l+ 1. Then the

fiber of τ≥kM → τ≥l+1M is perfect by the previous lemma, hence τ≥kM is perfect as well.
If k ≤ l + 1, consider the fiber of τ≥l+1M → τ≥kM instead.

To apply Proposition 4.1 to topological modular forms, we need the following lemma.

Lemma 4.3. For every n ≥ 1, the tmf[ 1n ]-module Hπ0 tmf[ 1n ] = HZ[ 1n ] is perfect.

Proof. If 2|n, there is a 3-cell complex X such that tmf[ 1n ]⊗X ≃ tmf1(2)[
1
n ] (see [Mat16,

Theorem 4.13]). We have π∗ tmf1(2)[
1
n ] = Z[ 1n ][b2, b4]. Killing b2 and b4 gives HZ[ 1n ]. Thus,

HZ[ 1n ] is a perfect tmf1(2)[
1
n ]-module and hence also a perfect tmf[ 1n ]-module.

If 3|n, there is an 8-cell complex X such that tmf[ 1n ] ⊗ X ≃ tmf1(3)[
1
n ] (see [Mat16,

Theorem 4.10]). We have π∗ tmf1(3)[
1
n ] = Z[ 1n ][a1, a3]. Killing a1 and a3 gives HZ[ 1n ] and

thus HZ[ 1n ] is also a perfect tmf[ 1n ]-module in this case.
For the general case, let Xi be a collection of tmf[ 1n ]-modules. Consider

Φk :
⊕

i

Homtmf[ 1
n
]

(
HZ[

1

n
],Xi[

1

k
]

)
→ Homtmf[ 1

n
]

(
HZ[

1

n
],
⊕

i

Xi[
1

k
]

)
.

If k = 2, 3 or 6, then Φk is an equivalence by the previous results. As for every spectrum
X, there is a cofiber sequence

Σ−1X[
1

6
]→ X → X[

1

2
]⊕X[

1

3
]→ X[

1

6
]

there is a cofiber sequence of maps between mapping spectra

Σ−1Φ6 → Φ→ Φ2 ⊕Φ3 → Φ6.

It follows that Φ is an equivalence as well and that HZ[ 1n ] is a perfect tmf[ 1n ]-module.

Theorem 4.4. The spectra tmf(Γ) are perfect tmf[ 1n ]-modules for Γ a congruence subgroup
of level n.5

5We have only defined the connective version of tmf(Γ) if Γ is tame or Γ′
⊂ Γ of index 2 with Γ′ tame.

In all other cases, we denote here by tmf(Γ) an arbitrary tmf[ 1
n
]-module mapping to Tmf(Γ) whose fiber

has finitely generated homotopy concentrated in finitely many degrees.
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Proof. According to [Mei18, Proposition 2.12] the Tmf[ 1n ]-module Tmf(Γ) is perfect. All
πk Tmf[ 1n ] are finitely generated Z[ 1n ]-modules. Furthermore, Hπ0 tmf[ 1n ] = HZ[ 1n ] is a
perfect tmf[ 1n ]-module by the previous lemma. This implies that τ≥0Tmf(Γ) is a perfect
tmf[ 1n ]-module by Proposition 4.1.

The fiber of tmf(Γ)→ τ≥0Tmf(Γ) has homotopy groups that are finitely generated Z[ 1n ]-
modules and are concentrated in finitely many degrees. The result follows by Lemma 4.2.

We recall from [MR99] that a connective p-complete spectrumX is called an fp-spectrum
if H∗(X;Fp) is finitely presented as a comodule over the dual Steenrod algebra. They show
in [MR99, Proposition 3.2] that equivalently there is a finite spectrum F with non-trivial
Fp-homology such that the total group π∗X ⊗ F is finite. The following does not claim to
be original and is certainly well-known for p = 2.

Proposition 4.5. The p-completion of tmf is an fp-spectrum for all primes p.

Proof. We implicitly p-localize. For p 6= 3, [Mat16, Theorem 4.10] implies the existence of
a finite spectrum W with non-trivial Fp-homology such that tmf ⊗W ≃ tmf1(3). Choose a

complex V such that BP∗V ∼= BP∗/(p
k0 , vk11 , vk22 ) with k0, k1 and k2 positive integers. As

TMF1(3) is Landweber exact, the sequence p, v1, v2 and hence the sequence pk0 , vk11 , vk22 is
regular on π∗TMF1(3). Since π∗ tmf1(3) = Z(p)[a1, a3] is an integral domain, the sequence
is also regular on π∗ tmf1(3). Thus,

π∗ tmf ⊗W ⊗ V ∼= π∗ tmf1(3)⊗ V ∼= π∗ tmf1(3)/(p
k0 , ak11 , ak23 )

is a finitely generated Z/pk0-algebra and of Krull dimension 0. Hence it is of finite length
as a Z/pk0-module and thus finite.

Essentially the same argument works for p = 3 if we choose instead a complex W ′ with
tmf ⊗W ′ ≃ tmf1(2) as in [Mat16, Theorem 4.13].

Corollary 4.6. The p-completion of tmf(Γ) for a congruence subgroup Γ of level n and p
not dividing n is an fp-spectrum.

For implications involving duality we refer to [MR99] and for an implication for the
Hurewicz image in H∗(Ω

∞ tmf(Γ);Fp) to [Kuh18, Theorem 1.7].

4.2 All tmf(Γ)Q are formal

The goal of this section is to show that the E∞-rings tmf(Γ)Q are formal. While this
statement is interesting in its own right, we also need it for further pursuing compactness
questions in the following subsection. We begin with the following consequence of Goerss–
Hopkins obstruction theory.

Proposition 4.7. Let A and B be E∞-HQ-algebras such that π∗A is smooth as a Q-algebra.
Then

πiMapCAlg(A,B) ∼=

{
HomgrCRings(π∗A, π∗B) if i = 0

Homπ∗A(Ω
1
π∗A/Q, π∗+iB) if i > 0

,

where for πi with i > 0 a base point is chosen if a map A→ B exists.
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Proof. According to [GH04, Section 4] or [PV19, Section 6] with E = HQ, there is an
obstruction theory for lifting a morphism π∗A → π∗B to a morphism A → B, where the
obstructions lie in Extn+1,n

π∗A
(LE∞

π∗A/Q, π∗B), where LE∞ denotes the E∞-cotangent complex.
As we are working rationally, this coincides with other forms of the cotangent complexes.
In particular, we obtain from the smoothness of π∗A that LE∞

π∗A/Q is isomorphic to Ω1
π∗A/Q

concentrated in degree 0, which again by smoothness is a projective π∗A-module. Thus the
Ext-groups vanish and there is no obstruction to lifting a morphism π∗A→ π∗B to a mor-
phism A→ B. The same sources provide a spectral sequence computing π∗ MapCAlg(A,B),
which collapses by a similar Ext-calculation and gives the result.

Proposition 4.8. Let X be a smooth Deligne–Mumford stacks over Q and O an even-
periodic sheaf of E∞-ring spectra on X such that π0O ∼= OX and the πiOX are quasi-
coherent. Assume further that H i+1(X ;πiO) = 0 for all even i ≥ 1. Then O is formal,
i.e. equivalent to the (sheafification of the pre)sheaf Hπ∗O of graded Eilenberg–MacLane
spectra.

Proof. Note first that (X ,O) actually defines a non-connective spectral Deligne–Mumford
stack and in particular O is hypercomplete (cf. e.g. [Mei18, Lemma B.2]). Set O′ = Hπ∗O.
Choosing an étale hypercover U• → X by affines, we can compute MapCAlgX

(O,O′) as the
totalization of the cosimplicial diagram M• = MapCAlg(O(U•),O

′(U•)). We observe using
Proposition 4.7 that π0π0M

• agrees with the set of ring morphisms π∗O → π∗O
′, in which

we can pick an isomorphism f0. According to [Bou89, Sections 5.2, 2.4], the vanishing of
πi+1πiM

• ∼= H i+1(X , πiO) for i ≥ 1 suffices to lift f0 to a multiplicative map O → O′,
which is automatically an equivalence.

Corollary 4.9. For all M(Γ) the rationalized Goerss–Hopkins–Miller–Hill–Lawson sheaf
Otop is formal.

Proof. We can apply the previous proposition as M(Γ)Q has cohomological dimension 1.
(See e.g. [Mei17, Proposition 2.4(4)].)

Remark 4.10. In the original account of the construction of Otop onMell in [DFHH14], Otop
Q

is actually by construction formal. Our argument shows that this choice was necessary, not
only forMell, but also forM(Γ). (The former was shown in a different manner already in
[HL16, Proposition 4.47].)

Proposition 4.11. Let Γ be a congruence group. Then the E∞-rings tmf(Γ)Q are formal.

Proof. Set R = H(H0(X , π∗O
top
Q )). We want to construct an equivalence between R and

tmf(Γ)Q. By the preceding corollary, we know that Otop
Q onM(Γ) is formal. In particular

this provides us with compatible maps R→ Otop(U)Q for all affines U étale over X . Taking
the homotopy limit, we obtain a map R→ Tmf(Γ)Q. The uniqueness part of Theorem 2.12
identifies R with tmf(Γ)Q.

4.3 Not all tmf(Γ) are perfect

While we have seen above that tmf(Γ) for a congruence group of level n is always perfect
as a tmf[ 1n ]-module, we will see in this subsection that it is not necessarily compact as a
tmf(Γ′)[ 1n ]-module for Γ ⊂ Γ′. The author has learned this argument from Tyler Lawson.
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Lemma 4.12. For R = tmf(Γ)Q, the R-module Hπ0R can only be perfect if π∗R is regular.

Proof. By [Eis95, Cor 19.5, Thm 19.12], π∗R is regular if and only if Torπ∗R
∗ (π0R,π0R) is

concentrated in finitely many dimensions. Because R is formal by Proposition 4.11, this
Tor agrees with π∗Hπ0R⊗R Hπ0R. Clearly, Hπ0R being a perfect R-module would imply
the finite-dimensionality of this quantity.

It is actually very rare that π∗ tmf(Γ)Q ∼= M∗(Γ;Q) is regular. One of the few exceptions
is Γ = Γ1(3), where we obtain the ring Q[a1, a3]. In contrast for Γ = Γ0(3), we obtain its
C2-fixed points, i.e. Q[a21, a

2
3, a1a3]

∼= Q[x, y, z]/xz − y2, which is not regular. Thus, HQ

is a perfect tmf1(3)-module, but is by the previous lemma not a perfect tmf0(3)Q-module.
We obtain:

Proposition 4.13. The tmf0(3)-module tmf1(3) is not perfect, not even rationally.

4.4 All tmf(Γ) are faithful

The goal of this section is to show that if Γ is a congruence subgroup, then tmf(Γ)S is (if
defined) a faithful tmfS-module, i.e. tensoring with it is conservative.

Lemma 4.14. For every congruence subgroup Γ of level n, the Tmf[ 1n ]-module Tmf(Γ) is
faithful.

Proof. By [MM15], the derivd stack (Mell,O
top) is 0-affine, i.e. the global sections functor

Γ: QCoh(Mell,O
top)→ ModTmf

is a symmetric monoidal equivalence and the same is true after inverting n. Thus our claim
becomes equivalent to showing that tensoring with f∗O

top

M(Γ)
for f : M(Γ) → Mell,Z[ 1

n
] is

conservative on QCoh(Mell,O
top). This can be checked étale locally, where f∗O

top

M(Γ)
is free

of positive rank as f is finite and flat (see e.g. [Mei17, Prop 2.4]) of positive rank everywhere
(asMell,Z[ 1

n
] is irreducible andM(Γ) not empty).

In the following we fix a congruence subgroup Γ and a multiplicatively closed subset S
of Z such that tmf(Γ)S is defined (i.e. Γ is tame or of index 2 in a tame Γ).

Proposition 4.15. The tmfS-module tmf(Γ)S is faithful for every congruence subgroup Γ.

Proof. Let M ∈ ModtmfS with M ⊗tmfS tmf(Γ)S = 0. It suffices to show that M(p) = 0
for all p not in S. Consider the case p = 2 and localize everything implicitly at 2. As
tmf1(3) is faithful over tmf (see [Mat16, Theorem 4.10]), it suffices to show that M ′ =
M ⊗tmf tmf1(3) vanishes. Our assumption implies (M ⊗tmf Tmf)⊗Tmf Tmf(Γ) = 0, hence
by the faithfulness of Tmf(Γ) also M ⊗tmf Tmf = 0. Thus, M ′ ⊗tmf1(3) Tmf1(3) = 0.
Moreover, tmf(Γ)⊗tmf HZ is a faithful HZ-module as its π0 is a faithful Z-module. Thus
M ′ ⊗tmf1(3) HZ ≃M ⊗tmf HZ = 0.

Recall now that π∗ tmf1(3) ∼= Z[a1, a3]. The map tmf1(3)[a
−1
i ] → Tmf1(3)[a

−1
i ] is an

equivalence for i = 1, 3 since the cofiber of tmf1(3) → Tmf1(3) is coconnective. Thus the
considerations above imply that M ′[a−1

1 ],M ′[a−1
3 ] and M ′/a1, a3 all vanish, which implies

the vanishing of M ′.
The argument for p = 3 is similar with tmf1(2) in place of tmf1(3) and for p > 3 we

can use tmf itself as π∗ tmf[16 ]
∼= Z[16 ][c4, c6] is a polynomial ring.
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5 Splittings

Our goal in this setting is to show that tmf1(n) often splits p-locally into small pieces.
Fixing a natural number n ≥ 2 and a prime p not dividing n, we will work throughout

this section implicitly p-locally. We demand that M(Γ1(n),Z(p))→M(Γ1(n);Fp) is surjec-
tive. In general, this is a subtle condition, but it is for example always fulfilled if n ≤ 28
(see [Mei17, Remark 3.14]). Equivalently, we can ask that H1(M1(n);ω) ∼= π1Tmf1(n)
does not have p-torsion. We note that this leaves plenty of cases where π1 Tmf1(n) 6= 0
and hence tmf1(n) is not the naive connective cover of Tmf1(n), of which the smallest is
n = 23.

By Theorem 1.3 of [Mei18], we have a splitting

Tmf1(n) ≃
⊕

i

Σ2niR (5.1)

of Tmf-modules, where R is Tmf1(3), Tmf1(2) or Tmf, depending on whether the prime p
is 2, 3 or bigger than 3. In this splitting all ni are nonnegative.

Theorem 5.2. Under the conditions as above, we have a splitting

tmf1(n) ≃
⊕

i

Σ2nir,

where r = τ≥0R.

Proof. Consider the composition

f :
⊕

i

Σ2nir →
⊕

i

τ≥0Σ
2niR→ τ≥0Tmf1(n).

Here, the second map is just the connective cover of (5.1) (using that τ≥0 commutes with di-
rect sums) and the first map is the direct sum of the maps Σ2nir ≃ τ≥2niΣ

2niR→ τ≥0Σ
2niR.

Since all negative homotopy of R is in odd degrees, we see that f is an isomorphism on
even homotopy groups. Moreover, the source has only homotopy groups in even degrees.

Recall that we defined tmf1(n) as a pullback

tmf1(n) //

��

HZ

��

τ≥0Tmf1(n) // τ[0,1]Tmf1(n),

where we still localize implicitly everywhere at p. This implies a fiber sequence

tmf1(n)→ τ≥0Tmf1(n)→ ΣHπ1Tmf1(n).

To factor f over tmf1(n), it is enough to show that H1(Σ2nir;A) = 0 with any coeffi-
cients A. This is clear anyhow for ni ≥ 1, so assume ni = 0. We know that τ[0,1]r ≃ HZ

and we have H1(HZ;A) ∼= H1(S;A) = 0 (as the the cofiber of S→ HZ is 1-connected).
Now π∗ tmf1(n) is concentrated in even degrees and tmf1(n)→ τ≥0Tmf1(n) induces a

π∗-isomorphism in even degrees. In total, we see that f induces an isomorphism on π∗.
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We now fix p = 2 and are thus assuming that π1 Tmf1(n) ∼= H1(M1(n);ω) does not
have 2-torsion (this is e.g. true for all odd 2 ≤ n < 65 by [Mei17, Remark 3.14]). In this
setting we also want to prove connective versions of the C2-equivariant refinement

Tmf1(n)(2) ≃C2

⊕

i

Σniρ Tmf1(3)(2) (5.3)

of (5.1) given in [Mei18, Theorem 6.19], where ρ is the regular representation of C2. We
need the following lemma:

Lemma 5.4. For a given abelian group A, denote by HA the genuine C2-spectrum, where
πiHA vanishes for i 6= 0 and is isomorphic to the constant Mackey functor A for i = 0.
Assume that A has not 2-torsion. Then πC2

−σHA ∼= A⊗ Z/2 and the map

[HZ,ΣσHA]C2
π
C2

0−−→ A⊗ Z/2

is an isomorphism.

Proof. We first claim that πC2

−σHA ∼= A ⊗ Z/2. Indeed, smashing the fundamental cofiber
sequence

(C2)+ → S0 → Sσ → Σ(C2)+

with S−σ yields an exact sequence

πe
−1HA← πC2

−σHA← πC2

0 HA← πe
0HA.

The rightmost arrow can be identified with the transfer tr = 2: A → A of the constant
Mackey functor, while πe

−1HA = 0. The claim follows.
To finish the proof, we recall from Section 2.2 that τ≤1Cη ≃ HZ. As ΣσHA is slice

at most 1, this implies that [HZ,ΣσHA]C2 ∼= [Cη,ΣσHA]C2 . This sits in a long exact
sequence

0 = πC2

1 HA→ [Cη,ΣσHA]→ πC2

−σHA→ πC2

0 HA = A.

As A does not have 2-torsion and we have shown above that πC2

−σHA ∼= A⊗Z/2, the result
follows.

Theorem 5.5. Assuming that n ≥ 3 is odd and H1(M1(n);ω) does not have 2-torsion, we
have 2-locally a C2-equivariant splitting

tmf1(n) ≃
⊕

i

Σniρ tmf1(3).

Proof. We localize everwhere implicitly at 2 and consider the map

⊕

i

Σniρ tmf1(3)→
⊕

i

τ≥0Σ
niρ Tmf1(3)

τ≥0Φ
−−−→ τ≥0Tmf1(n),

for a chosen C2-equivalence Φ between
⊕

i Σ
niρ Tmf1(3) and Tmf1(n). We have a fiber

sequence
tmf1(n)→ τ≥0Tmf1(n)→ ΣσHA,
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where A = H1(M1(n);ω) since ΣσHA is the 1-slice of Tmf1(n) by [Mei18, Theorem 6.16].
On πC2

0 this induces (using Lemma 5.4) a short exact sequence

0→ Z→ πC2

0 Tmf1(n)
r
−→ A⊗ Z/2→ 0. (5.6)

The composite
⊕

Σniρ tmf1(3) → ΣσHA factors over the 1-slice coconnective cover of the
source, which agrees with HZ since there is precisely one ni equalling 0 (by considering non-
equivariant homotopy groups). Using Lemma 5.4 again, the resulting map HZ → ΣσHA
is null iff the image r(Φ(1)) of Φ(1) in A⊗ Z/2 is 0.

We want to show that we can change Φ so that this is true. Using Φ, the C2-
spectrum Tmf1(n) gets the structure of a Tmf1(3)-module. Thus, Tmf1(3)-module maps⊕N

i=0Σ
niρ Tmf1(3) → Tmf1(n) correspond to a sequence of classes xi ∈ πC2

niρTmf1(n) by

considering the images of 1 ∈ πC2

niρΣ
niρTmf1(3). Denote the sequence corresponding to Φ

by e0, . . . , eN . By possibly reordering, we can assume n0 = 0. We construct a new map
Φ′ :

⊕N
i=0 Σ

niρTmf1(3) → Tmf1(n) corresponding to x0, x1, . . . , xN with xi = ei for i > 0
and x0 corresponding to the image of u ∈ Z in (5.6), where u maps to resC2

e (e0) along
the isomorphism Z ∼= πe

0 tmf1(n) → πe
0 Tmf1(n). As Φ′ and Φ induce the same map on

underlying homotopy groups, the map Φ′ is an equivalence. By construction, r(x0) = 0.
Thus the map

⊕

i

Σniρ tmf1(3)→
⊕

i

τ≥0Σ
niρ tmf1(3)

τ≥0Φ
′

−−−→ τ≥0 Tmf1(n)

factors indeed over tmf1(n). As before, the map Σniρ tmf1(3) → tmf1(n) induces an iso-
morphism on underlying homotopy groups. Both source and target are strongly even and
thus the map is a C2-equivariant equivalence by [HM17, Lemma 3.4].
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