Topological Hochschild homology

David Mehrle

24 April 2018

1 Hochschild homology

Good references for Hochschild homology are [Lod13, Chapter 1] and [Wei94, Chapter 9]. Let k be a commutative ring, A a k-algebra, and M an (A, A)-bimodule.

Definition 1.1. The **cyclic bar construction** of A with coefficients in M is the simplicial k-module $B^{cyc}(A;M)$ with n-simplicies $M \otimes_k A^{\otimes_k n}$ and face maps and degeneracies given by the following formulae:

$$d_{i}(m \otimes a_{1} \otimes \cdots \otimes a_{n}) = \begin{cases} ma_{1} \otimes a_{2} \otimes \cdots \otimes a_{n} & i = 0, \\ m \otimes a_{1} \otimes \cdots \otimes a_{i}a_{i+1} \otimes \cdots \otimes a_{n} & 0 < i < n, \\ a_{n}m \otimes a_{1} \otimes \cdots \otimes a_{n-1} & i = n, \end{cases}$$

 $s_i(\mathfrak{m}\otimes\mathfrak{a}_1\otimes\cdots\otimes\mathfrak{a}_n)=\mathfrak{m}\otimes\mathfrak{a}_1\otimes\cdots\otimes\mathfrak{a}_i\otimes 1\otimes\mathfrak{a}_{i+1}\otimes\cdots\otimes\mathfrak{a}_n$

Definition 1.2. The **Hochschild homology** of A with coefficients in M are the homotopy groups of the geometric realization of the cyclic bar construction:

$$HH_{n}^{k}(A;M) := \pi_{n}|B^{cyc}(A;M)|$$

These are also the homology groups of the associated (via the Dold-Kan correspondence) **Hochschild chain complex** $C_{\bullet}(A; M)$.

$$0 \longleftarrow M \xleftarrow{b} M \otimes_k A \xleftarrow{b} M \otimes_k A \otimes_k A \xleftarrow{b} \cdots$$

where $b = \sum_{i=0}^{n} (-1)^{i} d_{i}$.

Example 1.3. When M = A = k, the Hochschild complex is

$$k \xleftarrow[]{0} k \xleftarrow[]{1} k \xleftarrow[]{0} k \xleftarrow[]{1} k \cdots$$

and therefore

$$HH_{n}(k) = \begin{cases} k & (n = 0), \\ 0 & (n > 0). \end{cases}$$

Example 1.4 ([Lod13, 1.1.6]). The zeroth Hochschild homology of A with coefficients in M is the **module of coinvariants of** M:

$$\mathrm{HH}_{0}(A; \mathrm{M}) = \mathrm{M}_{A} := \frac{\mathrm{M}}{\mathrm{am} - \mathrm{am} \mid \mathrm{m} \in \mathrm{M}, \mathrm{a} \in \mathrm{A}}$$

When M = A, $HH_0(A) = A/[A, A]$, the quotient of A by its commutator submodule. If A is abelian, the commutator submodule is zero so $HH_0(A) = A$.

Example 1.5 ([Wei94, 9.1.2]). Let G be a group and let A = k[G] be the group algebra of G with coefficients in k. Let M be a right G-module, considered as an (A, A)-bimodule with trivial left action. Then the Hochschild homology of A with coefficients in M is the group homology of G with coefficients in M: HH_{*}(A; M) = H_{*}(G; M).

Example 1.6 ([Wei94, 9.1.4]). Let n be a positive integer and assume that k is a field of characteristic coprime to n. Let $A = k[x]/\langle x^{n+1} \rangle$. Then $HH_i(A) = A/x^n A$ for all $i \ge 1$.

2 Topological Hochschild homology

The original references for topological Hochschild homology are [B85b, B85c, B85a], although they are hard to find (email me if you'd like a copy). The section on the Loday construction follows [AR05, Section 3].

Fix a symmetric monoidal category of spectra (**Sp**, \land , **S**). Denote the monoidal category of commutative ring spectra in **Sp** by (**CommRingSp**, \land , **S**), and the monoidal category of R-algebra spectra for a ring spectrum R by (**AlgSp**_R, \land _R, **S**).

2.1 The Loday Construction

The **Loday construction** gives a concise description for topological Hochschild homology via

$$THH(R) = R \otimes S^1.$$

where S¹ is a simplicial model of the circle with n-many n-simplicies. A good description of this construction of the spectrum THH(R) can be found in [AR05, Section 3], and we follow it here.

Let R be a commutative ring spectrum and let U be a finite set. Define

$$\mathbf{R}\otimes\mathbf{U}:=\bigwedge_{\mathbf{u}\in\mathbf{U}}\mathbf{R};$$

this is the smash product of one copy of R for each element of U. This is again a commutative ring spectrum. It is often convenient to specify the copy of R in

the smash product corresponding to $u \in U$ by $\{u\} \otimes R$, so we will write

$$R\otimes U=\bigwedge_{u\in U}R\otimes \{u\}.$$

If $f: U \to V$ is a function of finite sets, define $f \otimes R: U \otimes R \to V \otimes R$ as follows. For each $v \in V$, define a map

$$\bigwedge_{u\in f^{-1}(\nu)} R \xrightarrow{f_{\nu}} R \otimes \{\nu\}$$

by iterated multiplication; since R is a commutative ring spectrum, there is no ambiguity in the order of multiplication. If $f^{-1}(v)$ is empty, this is the unit map $S \to R \otimes \{v\}$. The function $R \otimes f \colon R \otimes U \to R \otimes V$ is the smash product over all $v \in V$ of the maps f_v .

It follows that the construction $U \otimes R$ is functorial in U. We extend it degree wise to simplicial finite sets K to define a simplicial spectrum

$$\mathbf{R} \otimes \mathbf{K} \colon [\mathbf{q}] \mapsto \mathbf{R} \otimes \mathbf{K}_{\mathbf{q}}$$

with face and degeneracy maps $R \otimes d_i$ and $R \otimes s_j$.

Definition 2.1. The **Loday construction** $\mathcal{L}_{K}(R)$ of a commutative ring spectrum R with respect to a simplicial finite set K is the geometric realization of $R \otimes K$.

$$\mathcal{L}_{\mathsf{K}}(\mathsf{R}) := |\mathsf{R} \otimes \mathsf{K}|$$

Remark 2.2.

- (a) The choice of name Loday Construction comes from [HHL⁺18].
- (b) The definition of the Loday construction K ⊗ R depends only on the geometric realization of the simplicial set K, up to weak equivalence. See for example [AR05, Lemma 3.8].
- (c) For any simplicial spectrum X_•, its geometric realization is given by the coend

$$|X_{\bullet}| := \int^{\lfloor n \rfloor \in \Delta} (X_n) \wedge |\Delta^n|_+.$$

This is in analogy to the geometric realization of a simplicial set K_{\bullet} , which is given by the coend

$$|\mathsf{K}_{\bullet}| := \int^{[n] \in \Delta} \mathsf{K}_{n} \times \Delta^{n}.$$

The construction and its properties are detailed in [EKMM07, Chapter X].

(d) The Loday construction describes how the category of ring spectra with the smash product is tensored over simplicial finite sets.

Definition 2.3. The **topological Hochschild homology** of a commutative ring spectrum R is the spectrum

$$THH(R) = |\mathcal{L}_{S^1}(R)| = |R \otimes S^1|.$$

If we restrict to the category of R-algebra spectra and use instead the smash product over R, then we obtain a relative Loday construction, which we denote $\mathcal{L}_{K}(R;A)$. In this manner, the category of R-algebra spectra is tensored over simplicial finite sets. To distinguish this from the tensor over simplicial finite sets as a commutative ring specturm, we write this as $A \otimes_{R} S^{1}$.

Definition 2.4. The **topological Hochschild homology** of an R-algebra spectrum X is the spectrum

$$THH^{R}(A) = |\mathcal{L}_{S^{1}}(A; R)| = |A \otimes_{R} S^{1}|.$$

In this notation, $\text{THH}^{S}(A)$ is the topological Hochschild homology of A as an S-algebra, i.e. a ring spectrum. We will sometimes drop the superscript if the base ring spectrum is understood.

Remark 2.5. It is also possible to define the topological Hochschild homology $THH^{R}(A; M)$ of an R-algebra A with coefficients in an A-module M, but this is not necessary for our purposes. See [EKMM07, IX.1.1].

2.2 Connection to Hochschild homology

Why does this deserve to be called topological Hochschild homology? Let k be a discrete commutative ring and let A be a k-algebra. Assume that A is flat as a k-algebra. Consider

$$THH^{Hk}(HA) = |HA \otimes_{Hk} S^1|.$$

Since S^1 has q-many q-simplicies, the simplicial spectrum $\mathsf{HA} \otimes_{\mathsf{Hk}} S^1$ has q-simplicies:

$$\underbrace{\mathsf{HA}\wedge_{\mathsf{Hk}}\mathsf{HA}\wedge_{\mathsf{Hk}}\cdots\wedge_{\mathsf{Hk}}\mathsf{HA}}_{\mathsf{q}}$$

The homotopy of this spectrum is

$$\underbrace{A \otimes_k A \otimes_k A \otimes_k A \otimes_k \cdots \otimes_k A}_{q}.$$

In fact, the degeneracies and face maps of $HA \otimes_{Hk} S^1$ become the degeneracies and faces of the cyclic bar construction after applying π_* level-wise. In particular,

$$\pi_*(\mathsf{HA} \otimes_{\mathsf{Hk}} \mathsf{S}^1) \cong \mathsf{B}^{\mathsf{cyc}}(\mathsf{A}).$$

Therefore,

$$\pi_* \operatorname{THH}^{\mathsf{Hk}}(\mathsf{HA}) = \pi_* |\mathsf{HA} \otimes_{\mathsf{Hk}} \mathsf{S}^1| \cong \pi_* |\mathsf{B}^{\mathsf{cyc}}(\mathsf{A})| = \mathsf{HH}^{\mathsf{k}}_*(\mathsf{A}).$$

(See also [EKMM07, IX.1.7])

Here is a handy table to clarify the analogy.

unstable	stable
space	spectrum
Z	S
\mathbb{Z} -module (abelian group)	S-module (spectrum)
Z-algebra (ring)	S-algebra (ring spectrum)
k-algebra	R-algebra spectrum
tensor product \otimes_k	smash product \wedge_{R}
cyclic bar construction $B^{cyc}(A)$	Loday construction $R \otimes S^1$
realization of the cyclic bar construction $ B^{cyc}(A) $	topological Hochschild spectrum THH(R)
Hochschild homology $HH_n(A) = \pi_n B^{cyc}(A) $	$\pi_n \operatorname{THH}(R)$

Indeed, computing topological Hochschild homology often comes down to computing Hochschild homology.

Theorem 2.6 ([EKMM07, IX.1.11]). Let E and R be commutative ring spectra, and A a commutative R-algebra. If $E_*(A)$ is flat over $E_*(R)$, then there is a spectral sequence of $E_*(R)$ -modules

$$\mathsf{E}^2_{\mathfrak{i},j} \cong HH^{\mathsf{E}^*(\mathsf{R})}_{\mathfrak{j}}(\mathsf{E}_*(\mathsf{A}))_{\mathfrak{i}} \implies \mathsf{E}_{\mathfrak{i}+\mathfrak{j}}(THH^{\mathsf{R}}(\mathsf{A}))$$

Proof sketch [*MS93, Proposition 3.1*] (*c.f.* [*EKMM07, Theorem X.2.9*]). Given a simplicial spectrum X_{\bullet} , there is a simplicial filtration on $|X_{\bullet}|$ and a spectral sequence (called the **skeleton spectral sequence**)

$$\mathsf{E}^{1}_{\mathfrak{i},\mathfrak{j}} = \mathsf{E}_{\mathfrak{i}}(\mathsf{X}_{\mathfrak{j}}) \implies \mathsf{E}_{\mathfrak{i}+\mathfrak{j}}(|\mathsf{X}_{\bullet}|)$$

When X_{\bullet} is the simplicial spectrum $A \otimes S^1$ whose realization is THH(A), then

$$E_*^1(X_j) = E_*(A^{\wedge_R(j+1)}) \cong (E_*A)^{\otimes_{E_*R}(j+1)},$$

this last isomorphism by the flatness assumption. The homology of this complex computes the ordinary Hochschild homology of E_*A , so we have

$$\mathsf{E}^2_{\mathfrak{i},\mathfrak{j}} = \mathsf{HH}^{\mathsf{E}_*\mathsf{R}}_{\mathfrak{j}}(\mathsf{E}_*\mathsf{A})_{\mathfrak{i}},$$

where j is the homological degree and i is the simplicial degree of the graded E_*R -algebra E_*A .

Bökstedt uses this spectral sequence in [B85c] when R = S, and $E = A = HF_p$ to find the homology of the spectrum $THH(HF_p)$, which is then used to compute the homotopy type of this spectrum. With these choices of R, E and A, we have

$$\mathsf{E}^2_{\mathfrak{i},j}\cong HH^{(\mathsf{H}\mathbb{F}_p)_*S}_{\mathfrak{j}}((\mathsf{H}\mathbb{F}_p)_*(\mathsf{H}\mathbb{F}_p))_{\mathfrak{i}} \implies (\mathsf{H}\mathbb{F}_p)_{\mathfrak{i}+\mathfrak{j}} \operatorname{THH}^S(\mathsf{H}\mathbb{F}_p).$$

This can be simplified: notice that

$$(\mathsf{H}\mathbb{F}_p)_*\mathbb{S} = \pi_*(\mathsf{H}\mathbb{F}_p \wedge \mathbb{S}) = \pi_*(\mathsf{H}\mathbb{F}_p) = \mathbb{F}_p$$
 in degree 0

Also, notice that $(H\mathbb{F}_p)^*(H\mathbb{F}_p) = [H\mathbb{F}_p, H\mathbb{F}_p]$ is the set of all cohomology operations mod p, or the Steenrod algebra. So $(H\mathbb{F}_p)_*(H\mathbb{F}_p)$ is the dual Steenrod algebra, which we write \mathcal{A}_p . So the E^2 -page of this spectral sequence simplifies to computing

$$\mathsf{E}^{2}_{\mathfrak{i},\mathfrak{j}} = \mathrm{HH}_{\mathfrak{j}}^{\mathbb{F}_{p}}(\mathcal{A}_{p})_{\mathfrak{i}} \implies (\mathsf{H}\mathbb{F}_{p})_{\mathfrak{i}+\mathfrak{j}} \operatorname{THH}^{\mathsf{S}}(\mathsf{H}\mathbb{F}_{p}).$$

Theorem 2.7 ([B85c, Theorem 1.1a]). As rings, THH_{*}($H\mathbb{F}_p$) $\cong \mathbb{F}_p[\sigma]$ where σ is in degree 2.

He also computes the topological Hochschild homology of the integers.

Theorem 2.8 ([B85c, Theorem 1.1b]).

$$THH_{n}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & (n = 0), \\ 0 & (n = 2i, i > 0), \\ \mathbb{Z}/_{i\mathbb{Z}} & (n = 2i - 1). \end{cases}$$

3 The trace map

The trace map is a way to extract information about K-theory, which is hard to compute, via topological Hochschild homology, which is significantly easier to compute. This frequently loses information, but the trace map factors through **topological cyclic homology**, which is much closer to K-theory.

3.1 Hochschild Homology of an Exact Category

Let **C** be an exact category.

Definition 3.1 ([McC94, Section 2]). The **additive cyclic nerve** of **C** is the simplicial abelian group $N_{\bullet}^{cyc}(\mathbf{C})$ with N-simplicies

$$N_{n}^{cyc}(\mathbf{C}) = \bigoplus_{(c_{0},c_{1},...,c_{n})} \operatorname{Hom}_{\mathbf{C}}(c_{1},c_{0}) \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathbf{C}}(c_{2},c_{1}) \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathbf{C}}(c_{n},c_{n-1}) \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathbf{C}}(c_{0},c_{n}) \otimes_{\mathbb{Z}} \operatorname{H$$

where the sum runs over all (n + 1)-tuples (c_0, c_1, \ldots, c_n) of objects in **C**. The face maps and degeneracies are

$$\begin{split} \mathbf{d}_{i}(\alpha_{0}\otimes\alpha_{1}\otimes\cdots\otimes\alpha_{n}) &= \begin{cases} \alpha_{0}\otimes\alpha_{1}\otimes\cdots\otimes\alpha_{i}\alpha_{i+1}\otimes\cdots\otimes\alpha_{n} & 0\leq i< n\\ \alpha_{n}\alpha_{0}\otimes\alpha-1\otimes\cdots\otimes\alpha_{n} & i=n \end{cases}\\ \mathbf{s}_{i}(\alpha_{0}\otimes\cdots\otimes\alpha_{n}) &= \begin{cases} \alpha_{0}\otimes\cdots\otimes\alpha_{i}\otimes\mathrm{id}_{c_{i+1}}\otimes\alpha_{i+1}\otimes\cdots\otimes\alpha_{n} & 0\leq i< n\\ \alpha_{0}\otimes\cdots\otimes\alpha_{n}\otimes\mathrm{id}_{c_{0}}i=n \end{cases} \end{split}$$

Definition 3.2. The **Hochschild homology** groups of an exact category **C** are the homotopy groups of the geometric realization of the additive cyclic nerve.

$$HH_n(\mathbf{C}) := \pi_n |\mathsf{N}^{cyc}_{\bullet}(\mathbf{C})|$$

This is an appropriate generalization of Hochschild homology, insofar as it agrees with the Hochschild homology of a ring when **C** is the category of finitely generated projective modules over that ring.

Theorem 3.3 ([McC94, Corollary 2.4.4]). When A is a commutative ring,

$$HH_n(A) = HH_n(\mathbf{Proj}^{\mathrm{rg}}(A)),$$

where **Proj**^{fg}(A) is the category of finitely generated projective A-modules.

We may likewise define the topological Hochschild homology of any category enriched in spectra. This is done in [BM12, Section 10].

3.2 The trace map

This section follows [McC94] and [KM00].

For an exact category **C**, we may construct the K-theory space of **C** via the Waldhausen S_• construction: $K(\mathbf{C}) = \Omega |S_{\bullet}\mathbf{C}|$. The trace map is defined via a map from S_•**C** to N^{cyc}(**C**) by inverting a weak equivalence as in the diagram below.

This gives a map from the q-simplicies of $S_{\bullet}C$ to the (q-1)-simplicies of $N_{\bullet}^{cyc}(C)$. Upon taking realizations, this gives a map of spaces

$$\mathsf{K}(\mathbf{C}) = \Omega |\mathsf{S}_{\bullet}\mathbf{C}| \to |\mathsf{N}_{\bullet}^{\mathsf{cyc}}(\mathbf{C})|$$

and taking homotopy groups, this gives a homomorphism

$$K_n(\mathbf{C}) \to HH_n(\mathbf{C})$$

When $\mathbf{C} = \mathbf{Proj}^{fg}(A)$ is the category of finitely generated projective *A*-modules, then this homomorphism is

$$K_n(A) \rightarrow HH_n(A).$$

A similar construction is made for topological Hochschild homology in [BM12, Section 10].

3.3 Dennis trace

For any ring R, we construct the K-theory space of R via the plus construction: $K(R) = B \operatorname{GL}(R)^+$. The Hurewicz map gives a homomorphism from the homotopy of this space to its homology.

$$K_n(R) = \pi_n(B \operatorname{GL}(R)^+) \xrightarrow{h} H_n(B \operatorname{GL}(R)^+; \mathbb{Z})$$

By properties of the plus-construction, the homology of $B \operatorname{GL}(R)^+$ and the homology of $B \operatorname{GL}(R)$ agree. Moreover, for any group G, the homology of BG is the same as the homology of G. So we may extend the Hurewicz homomorphism's codomain to be the group homology $H_n(\operatorname{GL}(R);\mathbb{Z})$.

$$K_{n}(R) = \pi_{n}(B \operatorname{GL}(R)^{+}) \xrightarrow{h} H_{n}(B \operatorname{GL}(R)^{+}; \mathbb{Z}) \cong H_{n}(\operatorname{GL}(R); \mathbb{Z})$$
(1)

By [Wei94, Example 9.1.2], there is a homomorphism from the group homology of G to the Hochschild homology of $\mathbb{Z}[G]$, for any ring \mathbb{Z} .

$$H_n(G;\mathbb{Z}) \to HH_n(\mathbb{Z}[G])$$

In the case $G = GL_m(R)$, there is an inclusion $\mathbb{Z}[GL_m(R)] \to M_m(R)$, where $M_m(R)$ is the ring of $m \times m$ matrices with coefficients in R. By Morita invariance of Hochschild homology, this last term is isomorphic to $HH_n(R)$, and the isomorphism is induced by the trace map tr: $M_m(R) \to R$. The composite yields a homomorphism:

$$H_{n}(GL_{\mathfrak{m}}(\mathbb{R});\mathbb{Z}) \to HH_{n}(\mathbb{Z}[GL_{\mathfrak{m}}(\mathbb{R})]) \to HH_{n}(\mathcal{M}_{\mathfrak{m}}(\mathbb{R})) \xrightarrow{\operatorname{tr}_{*}}_{\cong} HH_{n}(\mathbb{R}).$$

Now taking the colimit over all m, these together yield a homomorphism

$$H_{n}(GL(R);\mathbb{Z}) \cong \operatorname{colim} H_{n}(GL_{m}(R);\mathbb{Z}) \to HH_{n}(R)$$
(2)

The composite of (2) and (1) is referred to as the **Dennis Trace Map**, after Keith Dennis.

3.4 An example

Example 3.4. We can try to find the K-theory of \mathbb{Z} using the Dennis trace map. We have

$$\mathrm{HH}_{\mathfrak{n}}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & (\mathfrak{n} = 0), \\ 0 & (\mathfrak{n} > 0). \end{cases}$$

So this can't give us any information about the K-theory of \mathbb{Z} , except $K_0(\mathbb{Z}) = 0$, which we already knew. This shortcoming is resolved by lifting the trace map to topological Hochschild homology in the next section.

Theorem 3.5 ([B85a, Theorem 1.1]). *The trace map* $\pi_{2k-1} K(\mathbb{Z}) \to \pi_{2k-1} THH(\mathbb{Z})$ *is surjective for all positive integers* k.

Example 3.6. In Example 3.4, we tried to use the Dennis trace map to learn about the K-theory of the integers, but this failed because $HH_n(\mathbb{Z}) = 0$ for $n \ge 0$. Let's try again with the trace map $K(\mathbb{Z}) \to THH(\mathbb{Z})$. We have

$$THH_{n}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & (n = 0), \\ 0 & (n = 2j, j > 0), \\ \mathbb{Z}/_{j} & (n = 2j - 1). \end{cases}$$

And moreover, the trace map $K_{2i-1}(\mathbb{Z}) \to THH_{2i-1}(\mathbb{Z})$ is surjective, so we learn that $K_{2i-1}(\mathbb{Z})$ is nontrivial for each i. This is a whole lot more than we learned with the Dennis trace!

References

- [AR05] Vigleik Angelveit and John Rognes. Hopf algebra structure on topological hochschild homology. *Algebraic and Geometric Topology*, 5:1233–1290, October 2005.
- [B85a] Marcel Bökstedt. The natural transformation from $k(\mathbb{Z})$ to th $h(\mathbb{Z})$. Universität Bielefeld Preprint, 1985.
- [B85b] Marcel Bökstedt. Topological hochschild homology. Universität Bielefeld Preprint, 1985.
- [B85c] Marcel Bökstedt. Topological hochschild homology of \mathbb{Z} and \mathbb{Z}/p . Universität Bielefeld Preprint, 1985.
- [BM12] Andrew Blumberg and Michael A Mandell. Localization theorems in topological hochschild homology and topological cyclic homology. *Geometry and Topology*, 16(2):1053–1120, 2012.

- [EKMM07] Anthony D Elmendorf, Igor Kriz, Michael A Mandell, and J Peter May. *Rings, modules, and algebras in stable homotopy theory*. Number 47 in Mathematical Surveys and Monographs. American Mathematical Society, 2007.
- [HHL⁺18] Gemma Halliwell, Eva Höning, Ayelet Lindenstrauss, Birgit Richter, and Inna Zakharevich. Relative loday constructions and applications to higher thh calculations. *Topology and its Applications*, 235:523–545, February 2018.
- [KM00] Miriam Ruth Kantorovitz and Claudia Miller. An explicit description of the dennis trace map. *Communications in Algebra*, 28(3):1429– 1447, 2000.
- [Lod13] Jean Louis Loday. Cyclic Homology, volume 301. Springer, 2013.
- [McC94] Randy McCarthy. The cyclic homology of an exact category. *Journal* of Pure and Applied Algebra, 93:251–296, 1994.
- [MS93] James E McClure and Ross E Staffeldt. On the topological hochschild homology of bu, i. *American Journal of Mathematics*, 115(1):1–45, February 1993.
- [Wei94] Charles Weibel. *An Introduction to Homological Algebra*. Number 38 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.