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INTRODUCTION

The object of this paper is to prove these results announced

by Grothendieck.

Theorem 1. If A 1is an abelian scheme over S 1its universal
extension is crystalline in nature and its Lie algebra is isomorphic
to the one-dimensional crystalline cohomology of A% over S,

1
R f*,crys(GA*,crys)'
Theorem 2. If G is a Barsotti-Tate (= p-divisible) group on
S , a base such that p is localliy nilpotent, then its universal
extension is crystalline in nature, and its Lie algebra provides

a generalization of the classical Dieudonﬁ% module theory for

Barsotti-Tate groups.

UNIVERSAL EXTENSIONS

If A 1is an abelian variety over a field k , the

universal extension of A 1is defined to be an extension of

algebraic groups
(*) 0~>V(a) »EA)>A->0

where V(A) is a vector group over k and such that (*) 1is
universal for extensions of A by vector groups.

Rosenlicht [22] defined this notion and showed that any
abelian variety A possesses a universal extension. The key

to his construction are the isomorphisms

~s l ja¥d
Ext(A,G,) ¥ H (A,0,) ¥ Hom (wyx,Ga)

which gives



Iv
Extl A,V) =Hom V)
(A, = k(ﬂA*’
where V is an arbitrary vector group over k , A¥* 1is the

dual abelian variety, with zero section
e: Spec k > A¥

and  wpy = e*n}A*/S - Taking V = 4,4 , the universal extension
is the element in Ext(A,V) corresponding to 1 ¢ Hom{wp wax)-

In the same paper, Rosenlicht described the relationship be-
tween differentials of the 2nd kind and rational cross-sectionsg
of the universal extension.

In [27] Weil observed that when working on an abelian variety

A over an arbitrary field, consideration of extensions of A

by a vector group replaces the study of differentials of the
second kind, while consideration of extensions of A by a

torus replaces the study of differentials of the third kind. He
attributes these ideas (in the classical case) to Severi.

Over ¢ , Barsotti in [1 bis] established algebraically the

isomorphism Ext(A,G,) & Hl(oA)
~ differentials of second kind

holomorphic differentials + exact differentials
(See Serrets [24] and [25] for a beautiful account of these
ideas).

Another approach to the universal extension is provided by
Tate's definition of generalized Picard varieties [26]. He
considers the group of divisors on A not containing the zero
e , which are algebraically equivalent to zero, modulo the
subgroup of principal divisors (f) where f = 1 mod g_i
(mg= maximal ideal at e). (See also [15 bis]). Both Tate and
Lang ask whether this abstract group carries a natural algebraic
structure. This algebraic structure was provided by Murre [18]

and also by Oort (unpublished).



Grothendieck, more recently, provided still another viewpoint
on the universal extension {by means of the theory of group
extensions with integrable connections - which he called
h-extensions). Irn a letter to Tate, Grothendieck announced that
the universal extension over (¢ is crystalline in nature and
conjectured that the same is true over any base. In his Montreal
lectures he discussed the relation between the universal exten-
sion and "the generalized Dieudonné theory" [13].

A discussion of the crystalline nature of the universal
extension and applications to the deformation theory of abelian
varieties and Barsotti-Tate groups is given in [16] via the
theory of the exponential. Previously Cartier had in [5]
solved these problems {at least when the base is a perfect field)
for p-divisible formal Lie groups. His approach also yielded
the result that the Lie algebra of the universal extension is the
Dieudonné module (a result which we generalize below).

We shall treat alongside the theory for abelian varieties
the corresponding theory for p-divisible (= Barsotti-Tate)

groups. Amusingly enough, we repeat the complicated history sketched

above.

Thus, in Chapter I §1 we introduce the universal extension
(in a more general context, but) in the spirit of Rosenlicht,
and Serre. In Chapter I § 2 we identifyy the universal extension
with something we call Extrig (rigidified extensions) which is
modelled on Tatets approach.

In Chapter I §3 we identify Extrig with Exté'(g—extensions)
and thus pass to Grothendieck!'s.

From Ext# one may establish the crystalline nature in a

lengthy, but straightforward way (c.f. Chapter II), and also

pass to a hypercohomological interpretation of the universal
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extension {Ghapter I $4) thereby establishing the link with
De Rham cohomology.

In Chapter I 85 we mention some connection& between the
constructions we have dealt with and the Mordell-Well group of
an €lliptic curve over @ .

In chapter II we discuss the crystalline nature of the
universal extension, i.e. its relation to "generalized" Dieudonne
Theory. The results of $§9 and 13 and 15 imply that for
A, an abelian variety over a perfect field k {char k = p > O)}
and G, its associated p-divisible group, there is a canonical
isomorphism between the Dieudonné module of G and the crystalline
Hl of A . The reduction modulo p of this statement was
proven by 0da [ 18 bis].

Throughout this chapter we rely heavily on the work of
Berthelot, Grothendieck and Illusie.

We refer the reader to the introduction to Chapter II for

more precision on its contents.

OPEN QUESTIONS

a) Give a comparison of our theory of Dieudonné crystals
associated to p-divisible formal Lie groups (over 8) with

Cartierts theory.

b) Find a Dieudonné crystal theory for finite, locally-free

p-groups over S0 (a base of characteristic P

¢) Determine whether the functor G & D*(G) on a base SO R

of characteristic p , is fully-faithful.
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CHAPTER ONE
EXPLICIT CONSTRUCTIONS OF UNIVERSAL EXTENSIONS

§1. GROUP SCHEMES AND THEIR RELATIONS TO VECTOR GROUPS

By group scheme over S we shall mean commutative flat
separated group scheme locally of finite presentation over S .
If Q 1is any quasi-coherent Gs-module, we may regard Q

as a sheaf for the fppf site by the rule:
Q(S') = T‘(S’,CD*Q)

where ¢: S' » 8 1is the structural morphism. If L 1is a

locally free os-module of finite rank, then L , regarded as a
sheaf for the fppf site over S , is representable by a group
scheme which is locally isomorphic to a finite product of Ga’s.

Call such a group scheme I a vector group over S .

Fix a group scheme G over S and consider the following

two universal problems:

Problem A (Universal homormorphism problem):

Vector group hull of G:

Find a mapping
oa: G->V

to a vector group over S , which is universal for mappings of
G , to vector groups, in the following sense:

The induced mapping

a HO%S{V,M) > HsmS(G,M)



is an isomorphism for all vector groups M over S . If

such a V can be found, call it the vector-group hull of G .

Quasi-coherent hull of G:

Find a mapping
a: G+ Q
where Q 1is a quasi-coherent sheaf, universal for mappings of

G to quasi-coherent sheaves over S .

Problem B (Universal extension problem):

Assuming Hom(G,V) = (0) for all vector groups , V ;

find an extension of group schemes over S :
{e) 0> V{G) > EG)>G~>0

such that V(G) is a vector group, and such that (¢) 1is
universal for all extensions of G by vector groups over S .

More precisely, we would like the mapping

G,M)

1
HomOS(V(G),M) > Extg(

induced by (e) to be an isomorphism. If such an (e) can

be found call it the universal extension of G . Clearly (e)

and E{(G) and V{(G} are determined up to canonical isomorphism
by their role in problem B , and they are functors on the sub-

category of group schemes admitting a solution to preblem B .

Examples and discussion: (I. Existence of Solution to Problem A)

(1.1). Suppose Egg(G,Ga) is a locally free Ogmodule of



finite rank. Set V= Hom, {Hom(G,G_),0.). Then
'—mos —_ a S

Hom (G, M) I_{_gm(G,Ga)® M
- Og

IiQLnoS (V, M )

]

and consequently V 1is the vector group hull of G .

(1.2). Suppose that the Cartier dual of G 1is representable
by a group scheme. By the Cartier dual we mean the presheaf on

Sch/S given by

@* = Hom r(G,Gm).

Then if

denotes the zero-section of G¥*/S , let

€1 1
S ¢«—=— G¥ = Inf (G*)

denote the first infinitesimal neighborhood of the zero-section.

The commutative diagram

*
¢
s |

T
is a morphism of S-pointed S-schemes.

There is a natural isomorphism of functors on the category

Sch/S

~ 1
T oex
Eﬁﬂs-pointed S-schemes(Gi’Gm) & QG*/S

and we shall use the notation x to denote the quasi-coherent

(i3
e



sheaf over S defined by either side of the above formula.

We have a natural isomorphism

G?](_- ® Spec (Osqa'l{}*) .

Let a: G > w,y denote the composition

a: G > Hom(G*,G,) > Homs_pointed S-schemes (8+8p) = g
(1.3) Examples of groups G such that G¥% is representable
are the following:

a) G finite and locally-free

b} G 1locally constant for the f.p.q.c. topology

[11,86A; X 5.3]
¢) G of multiplicative type and quasi-isotrivial
[11, sGA; X 5.7)

d) G an abelian scheme (here G* = (0) since denoting

by T: G > 5 the structural morphism W*(OG) = Oy uni-
versally)

e} G = Z[T?] where T 1is a finite, locally-free S-scheme.

{(i.e. for variable S' over S, T(s', ¢) 1is the
free-Z -module on [Homs(S’,T)].

The only example which requires (perhaps) any justification
is e). But here Egggr (G ,Gm) - Hom(T,Gm) and hence its St~
valued points are simply the units in F(T><S',0T >(S). The
representability follows now because we caf (locally) choose a
finite basis for the os~module, GT’ and a unit is a section

such that multiplication by it defines an automorphism.



(1.4} Proposition: Let G be any abelian presheaf on SCh/S

such that G¥* 1is representable. The functor on gquasi-coherent
Gs—modules M- Homgr(G,M) is representable by W and
the homemorphism a: G > mw,y above is the universal homomorphism

from G to guasi-coherent os~modules.

Proof: Let us first show that the functor is representable.

For M a quasi-coherent os-module let SM be the affine
S-scheme §g§g(os®M), where os@h4 is made into an algebra by
requiring M2 = (0) (i.e., it is the "dual numbers” on M).
Denote by 7,(resp. nM) the structural morphism (resp. unit
section} of SM which corresponds to the algebra homomorphisms
Og > Og®M (resp. 0g®M > 0g, M being mapped to zern).

There is an obvious homomorphism WM*(GmSM) > GmS which
arises functorially because id(séh/s) = nﬁg vﬁ and because there
is a map WM* > nﬁ since WM onM = ids . The kernel of the
map 1s M and using the definition of Gm we see that there
is an exact sequence:

0> M>T(Gy ) >Gy >0
Sy S

Thus Homg, (G, M) Ker[Homgr(G,wM

*(Gms ) - Homgr(G,GmS)]

M
*
Kar[Homgr(ﬁﬂ(G),GmS ) > Homgr(G,Gms)]
M

Ker[T(8,,G*) ~ T(8,6%}]

[}

“dfn.

12

Ker[r(SM,G*SM) - F(S,WM¥(G*)) ]

¥ Hom ® 0g M), by
M

OSM(,[!.’G*
[8,I1I &, 3.5] since G* is representable. Finally, by

adjointness we have



HomoS (AJG*®OSM s M) = Hom , (e M) -
M S
Because all of the above isomorphisms are functorial in

the quasi-coherent module M , 1t follows that % represents
the functor M b= Homgr(G,M).

To calculate what the universal map G > w,y is , let us
[Py SM is the first infinitesimal
neighborhood of the unit section of G*,Infl(G*). FProm the

first observe that for M =

explicit definition of the mapping

Homg, ,1((}*)"(‘”6*@ Opprl(ge)rug) * Ker[D(Infox,%) > r(s,6%)]
T

given in [8,II 4, 3.2] it follows that id e Hgmms(ﬁb*’@G*)

Yox
corresponds to the inclusion Infl(G*)C~“‘€?G* .
From this point on, the remainder of the proof of the
proposition is entirely formal. Recall that G¥ zdfnﬂomgr(G,Gm)

and hence there is a tautological pairing G x G¥ - Gm which

defines two group homomorphisms GG* -> GmG* and G*G > GmG) the
knowledge of which allows us to reconstruct the pairing. The

homomorphism G is (by very definition of G¥%)

a* 7 GmG*
universal in an obvious sense. Thus the morphism Inf&G*)* G*

defines a homomorphism Grnri(ge) * @ am well as a

1 mIn:f']((}*)
morphism Inf G*G > Gm . In particular for any S-scheme T
G
and point geG(T) we obtain a morphism Inf'G¥; > Gmp which

is simply the restriction of the map Gy > Gy to InflG¥,

This element is o(g) and hence the proposition is proved since
the two ways of obtaining a map T=x Infl(G*) > TxG =
a) viewing GInfl(G*) > Gmlnfl(G*) as giving for

EcG(T) a ma Intt G*)p > G



b) Inflg* > Gp  as the restriction of G*; > G
T

Ty

both come from restricting the map Gx G* - Gm to

T x Infl(G*) > G x *.

(1.5) Corollary: For G an abelian scheme and M quasi-

coherent, Homgr(G,M) = (0) .
Proof: In this case G* = (0) by 1.2(d) and hence w., = (0).

(1.6) A given group scheme G/S may have a vector group hull
and a quasi-coherent hull which differ. Consider § = Specczp)
and G = Z/p. Its vector group hull is zero, whereas its
quasi-coherent Hull, by the previous proposition, is g“p'

A related issue is the question of commutation with base
change. The quasi~-coherent hull, constructed by the previous
proposition commutes with all base changes, whereas the vector

group hull constructed in (1.1) does not.

2. EXISTENCE OF SOLUTIONS TO PROBLEM B

(1.7) Suppose that
(a) Hom(G,Ga) = 0

(v) Ez;(G,Ga) is a locally free Og-module of finite rank
as sheaves for the Zariski topology over S . Set
V(G) = HomGS(Ext(G,Ga),GS)

Then a universal extension of G exists with the above V(G)
as vector group.

This assertion follows easily from the evident



Ext(G,M) = Ext(G,G,) ebsM

where M 1is any locally free os-msdule of finite rank.

There are three important cases where hypotheses (a)

and {b) hold:

(1.8) Barsotti-Tate groups over bases S such that p is

nilpotent on S .

If G 1s a Barsotti-Tate group (i.e. a p-divisible group)
over such an S , let G¥* denote the Cartier dual of G ,» and
let G{(n) be the kernel of multiplication by pn . If n is
sufficiently large so that pn = O on 8 , then Yox = @d?n)
is locally free of finite rank over S and the argument of

( 16 Iv,1) shows that E&E(G:Ga) is Hom Therefore the

OS(EQG*’GS} »
hypotheses (a) and (b) above hold. The construction given

shows more. WNamely, there is the commutative diagram

n
0=>G(n) »G——>G >0
T
o - QG*-»E(G)u* G > 0

where the vertical map a 1s the vector group hull of G(n).

This construction clearly commutes with all base changes.

(1.9) Abelian schemes over any base S .

If G 1is an abelian scheme over S of dimension d , it
satisfies the following hypotheses for all S'/S:

a) Any morphism of sheaves of sets over !

o: Ggy > Qg,

to any quasi~-coherent sheaf § over S! is a constant map.



Explicitly, o admits a factorization:

Gsv _— st

sz \\\\EN ////% section

Sty

b .6
() O,

(e) le*oc = le*00® Ogy is locally free of rank 4 .
St

= OS'

Here is a proof of a):

Lemma: Iet f: A+ S8 be an abelian scheme and M a

guasi-coherent os-module. Any map A > M 1is constant.

Proof: Amap A - M , may be viewed as an element of T(A,f*(M))

= (S, f*(M)). The map T(S,M) > T(S,f, f*M) corresponds then

to M: S>M¥r mof: A> M . Thus to conclude it suffices to

show the map T(S,M) > T(S,f,*M) is bijective. Let us form

the cartesian square:

| Jon
S < sl M)

Then T(8,05) ® T(S,M) = T(S[M], G yyp) = r(s[M],fM*(oAS[M]

= F(AS[M],OA V= T(A,0,) @ T(A,£*(M))
S[M]
T(A,0,)0 T(S,f,f M)

since (b) £4(04) = Og, universally.

Let

w = gggOS(le*oG,oS)-
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(1.10) Proposition: If G satisfies the above hypotheses

(a), (b), (c), then G possesses a universal extension,
0> @>EG) >G>0

which is indeed universal for all extensions of G by quasi-

coherent sheaves. (We assume G - S is gquasi-compact).

Proof. (After Rosenlicht, and Serre , [22,25])
Iet M denote a quasi-coherent sheaf. By our assumptions
{notably a) the category of extensions, EXT(G,M) is rigid.

Thus, the presheaf for the flat topology
51 v Extl(Ga,sM,)
SrrUge

is a sheaf.

We shall show that the composition
¥*
a: Ext1(G,M) > HY(G,£ M) > r(S,Rir M),

is an isomorphism. But by the above remark, we may assume

S affine.

% 1is injective:

For let E be an extension of G by M and assume o: G > E
is a section (as sheaves of sets). By subtracting m(o) we
may suppose that o(0) = 0. The map GxG > E which expresses
the obstruction to ¢ being a homomorphism actually maps GXG
into M and brings 0 to O ., After hypothesis(a), one may see

that this obstruction is zero.
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A 1is surjective:

Let E be a principal homogeneous space for M over the
base G . Since S is affine, E admits a section e lying
over the zero-section of G . We now follow Serre'!s prescription
for imposing a group structure on E with zero-section e ,

which establishes E as a group extension
O>M>E~->G~>0

{25, VII, 1581 . To follow out this prescription one need only
know that the cohomology class in Hl(G,f*M) representing the
principal homogeneous space E 1is primitive. But Hl(G,f*M)
consists entirely of primitive elements as follows from the Kunneth

formula if G is an abelian scheme and {21 bis, III,4.2] in general.

Our plan is to establish the isomorphism

Hom, (w,M) = Ext’(c,)
s

and, consequently, representability of the functor

M b Ext(G,M)

We do this by demonstrating these isomorphisms:

1

T(S,le*f*M) = T(8,R7f 0, ® M) = Hom, (w,M)

Og

To establish the first isomorphism above, we need a lemma:

1.11) Lemma: Rf,0.® M > RIf,f*M is an isomorphism, for
emma *C *

M any quasi-coherent OS-module.

(N.Br This follows from (c¢) but the following proof is valid

whenever R*fﬁﬂc is a flat os-module).
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Proof. We shall force the Kunneth theorem (10, EGA 6.7.8)

111’
to yield this result, resorting to a technical trick. Let

S[M] denote the scheme, affine over S , whose underlying space
is S , and whose structural sheaf is ng M , taken to be a

ring in the obvious say. Form the diagram,

G M]

G s[M]
F/
\\;\\& < 8s

S

1 _ ol 1 .
and note that R F*( GG[MD = R f*QG ®» R, *M , using that &g
is affine.

But, by Kunneth,
RIFL[ Ouyq )= RIELO, ® (048 M)
* Gl M) *G 57

using that 8g is affine.

The lemma follows, and so does (1.10).

(1.12) If A is an abelian scheme over the base S , where p

is nilpotent on S , let G denote the p-divisible group associated
to A over S . It is an easy exercise to see the pullback to G
of the universal extension of A over S 1is the universal exten-

sion of G over S . More explicitly, consider the map
Aiwgx T wpae

which determines the pullback to G of the universal extension

of A . This map % is easily seen to be the natural isomorphism.
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82. RIGIDIFICATION OF HOM AND EXT

(2.1) Fix an S-group scheme G and an exact sequence (of

fppf sheaves of abelian groups over 8)
(e) 0+>G>E->F~>0

Let F= Infé(F) c F denote the first infinitesimal
neighborhood of the zero section of F over S . Regard

F as an S-pointed sheaf.

1
By definition a rigidification r of the extension (e)

is a homomorphism of S-pointed S-schemes making the following

commutative diagram:

A rigidified extension of F by G 1is a pair consisting

in an extension (e) together with a rigidification of it , r .

If H is an S-group scheme, an (e)-rigidified homomorphism

from G to H consists in a homomorphism of S-groups
w: G > H

together with a rigidification r of the induced (pushout)
exact sequence (opye)e.
Ir
(¢) 0-+>G>E->F->0

(e') 0>G->E->F >0

are two extensions, provided with rigidifications r , rf
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respectively, then on the Baer sum (€) of (e) and (e')
there is a natural rigidification T , which we shall call
the Baer sum of the rigidifications r and r'. This is ob-

tained from the natural rigidification on the external product:

(exe'): O > GXG > EXE' ———3 FxF' > 0

Pl
(FxF)l——ﬁ\leFl

Denote by Extrig (F,G) the set of isomorphism classes of
rigidified extensions of F by G . Denote by (e¢)-Homrig(G,H)
the set of isomorphism classes of (e)-rigidified homomorphisms
from G to H . One checks easily that Baer sum induces an
abelian group structure on Extrig(F,G) and on (¢)-Homrig(G,H).
Extrig(F,G) is bifunctorial in F and G . As for
(e)-Homrig(G,H), it is functorial in H , and if o:G > G' is

a homomorphism of S-groups, one gets a natural homomorphism
(pge)-Homrig(G?,H) » (¢)-Homrig(G,H).

There are two objects of this section:

To express the universal extension of a Barsotti-Tate
group (over a base S on which p 1is locally nilpotent) as a
direct limit of e-Homrig's (2.5.7).

To express the universal extension of an abelian scheme as

an Extrig (2.6.7).

(2.2) Let us consider the special case where (e) is an exact

sequence of finite locally-free groups and where H = Gm .

Furthermore let us assume that the base scheme, S , is affine.
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(2.2.1) Proposition There is an exact sequence of abelian

groups
(2.2.2) 0> r(s,wp ) > (€)-Homrig(G,G,) > T(S,G¥) > 0

Proof: The map (e)—Homrig(G,Gm) -+ 1(S,6*) is defined by
forgetting the rigidification r of the rigidified homomorphism
(psr). Given o: G - Gm s consider the corresponding extension

G
€ ) 0->G >G LLE>F~->0
4 m m

G
It makes Gm.ﬂ_E a principal homogeneous space over F under

the group Gm . Thus by descent [11,10; S’.G.Al XI 4.3, EGAIV 17.7.3]
G

Gm.u_ E 1is a smooth F-scheme. Viewing F as an F-scheme via

1l

the inclusion Fl < F we view S as an F-scheme defined by

the vanishing of an ideal of square zero: namely o - Because

Gm ji E 1is smooth over F , the identity section can be lifted

s0 as to obtain a commutative diagram:

G
0~G - Gm.&

E
(2.2.3) N T

This shows the map (e)-Homrig(G,Gm) > 7(8,G%) is surjective.
By definition the kernel of this map consists of pairs

(O,T) where «+ is a rigidification on the trivial extension:
0~ Gm > Gmx F>F~»00

But to give a morphism of S-pointed S-schemes} Fl 4 GHfF) which

projects to the inclusion P, C F) is equivalent to giving a

1
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morphism of S-pointed S—sohemeJ F, - Gm}which is the same as

1

giving an element in T(S’@F)'
Since it is clear that the map T(S,wy) * (e)-Homrig(G,Gm)

defined by the above is additive, the proof of the proposition

is complete.

(2.3) Let (¢)-Homrig (G,Gm) denote the sheaf associated to the
ZARISKI presheaf whose value on an S~scheme S' is
(es,)-Homrig(GS,,GmS,). Then without any hypothesis on the

scheme S we have the following corollary:

(2.3.1) Corollary: There is an exact sequence of ZARISKI

(resp. f.p,p.f.,...) sheaves on S:

0> g > (e)-Homrig(G,Gm) > G¥ > 0

In particular (e)—Homrig(G,Gm) is a commutative flat S-group,

provided g is finite, locally-free.

(2.4) Let (e) 0> G > E->TF > 0 be an exact sequence of finite,
locally-free S-groups. The next proposition is the basic result
relating (e)—rigidified homomorphisms to the construction given
in (1.}) above. It and its analogue for abelian schemes given
below in (2.6) are the basic results which will allow us %o
obtain an expliczit description of the universal extension of a

Barsotti-Tate group (resp. an abelian scheme ).

(2.4.1) Proposition. There is a canonical and functorial
homomorphism of groups E* > (e)-Homrig(G,Gm), which will be

explicitly constructed in the proof, rendering the following
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diagram commutative:

(2.4.2) 0O ~> P¥—> E¥ oy Gk —> 0
‘ i
0 > wi—> ()-omrlg(cc})—-»cr*» 0

Proof: (e)-Hcmrig(G,Gm) is the sheaf associated to the pre-

sheaf St' (es,)-Homrig(GS,’GmS'). Thus it suffices to con-
struct a mapping on the level of presheaves)and since every
"object" occuring in (2.4.2) commutes with base change it suffices
to construct the map T(S,E*) - (e)«Homrig(G,Gm). Let

Z: E> G, be an element in T(S,E*)}. Because we require the
right hand square of {(2.4.2) to commute we must assign to ¢

a pair (#|G,r) where r 1is a rigidification of the extension
(#1G)y(e) . That is we must define r , a morphism of pointed

S-schemes)which renders the following diagram commutative:

WA

o— G e GllE —~——~+ Fv———>O

(2.4.3)

_._.)O

r\‘\\
Fy

G ~
Using ¢ we obtain a splitting, Gm,ﬂ_E-—z—» Gm’ of the lower
horizontal line of (2.4.3). Composing the "trivial' rigidification
G
. ey -1 .
r,: Fj&— F<> G XF with (4,7) :6xF > G I E we obtain the
desired rigidification r .

It remains to show that the left hand square of (2.4.2) is
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commutative. Thus let ¢: F - Gm be given so that the diagram

corresponding to (2.4.3) is:

0—> G—> E — F—>0
o} l@ov L ‘
G

0 — Gd“* Gmu-E-+ F— O

Identifying G § E with G xF , then (¢7, 7) 1is identified
with the automorphism of GX*F taking (x,f) to (x+¢(f),f).
This shows that to o7 the pair (O,-tlF]) is assigned. By
definition of a and of the map w; ~ (¢)-Homrig(G,G ) it
follows that the diagram commutes. Finally the fact that the

} which has been defined above is a

map E* > (e}Homrig(G,G ),

homomorphism of groups}follows directly from the definitions.

(2.5) (The Universal Extension of a Barsotti-Tate group)

Assume that our base S is killed by pn and fix a
Barsotti-Tate group G on S . For any 1 > 1 let{gn’i) be
the extension:
(en’i) 0= G(i)— G(n+i) —Ii» G(n)— 0O
By (2.4.1) we obtain a commutative diagrams:
(2'5‘11) 0 —> G*(n) — G*(n—fi)h—“—L——-——% G*(i)—> 0

-
N

0— %W(%J)Homrig((}(i},(}m)—-—» G*(1)— 0

From the proof of (2.4%.1) and the explicit definition of (2.7)

it follows that the following diasgrams
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i+1
p
(2.5.2) 0— G(i+l)— G(n+i+l) ———=>CG(n)— 0

Loy

0—> G(i) — ¢(n+l) ———> G(n)— 0

give rise to commutative diagrams:

0 ————> G*(n) 3 G*(n+l) —2——>G*(1) = 0
(2.5.3) id ¢// l 14//)G
o—> d?n) > G-(n+1+1 ‘————_> G*(1+1)

-01 1 %
[}/ l/ n,)Homrig /

0— ﬂG(n)‘“———*(r]i+l)Homr1g > G*(1i+1)

Hence passing to the direct limit we find a commutative diasgram:

n

(2.5.4) 0— G*(n) —o*—2 3 a¥x >0

-l |

0= wy(pn) —Linf ep,1)Homrig— G¥-— 0

But we know that pushing out the extension
n
P
0> G¥*(n) > G*¥—> G* > 0 via a gives the universal extension
of G*. Hence there is a canonical isomorphism E(G*)™>

£J§( QHomrlg(G(i) m) which makes the following diagram

commute:

(2.5.5) 0— %(n)——)E(G*)————)G*—» 0

] |

0w (n )—~>11m( 1)-Homr1g —> G¥—> 0

Also it follows that the hypotheses that p” kills S can be

replaced by the assumption that p 1is locally-nilpotent on S .
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To be more precise consider the exact sequences:
i
(e5) 0>G(i) »c-L—a->o0

The map of sequence (en i) to (ei) defines the homomorphism
»
(e;)-Homrig(G(i),G,) > (e, ;)-Homrig(G(i),G,). If 5 kills
3
S , then this map is an isomorphism because Gy = Infl(G) < G(n)
[16,IT 3.3.16]. Thus the map (ei)-Homrig(G(i),Gm) > G*(i)
is an epimorphism since this is a local property on S . Also

the fact that G1 is affine on S insures that the map

g (ei)-Homrig(G(i),Gm) is well-defined and that the sequence:
0> w, > (e;)- omrig(G(1),G,) > G*(1) » O

is exact.

Passing to the direct 1limit we obtain an exact sequence:

(2.5.6) 0> g > _l_i_n;(ei)-Homrig(G(i),Gm) > G* > 0

Let O > m; > E(G¥) > G¥ > 0 Dbe the universal extension of G¥

by a vector group. Then there is a unique linear map >

Y% 7 &g
giving the extension (2.5.6) by pushing out. By (2.5.5) this map
is =id locally and hence is -id . Finally because of the

functo riality of Homrig discussed in (2.1) we can state:

(2.5.7) Proposition. Let S be a scheme on which p is locally
nilpotent. The two contravariant functors from the category of
Barsotti-Tate groups to the category of abelian (f.p.p.f) sheaves

on S :
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a) G b E(G%)

b} G P ggp)(ei)- omrig((}(i),(}m}

are canonically isomorphic. Furthermore the natural exact

sequence

0> wy > lig ei)-Homrig(G(i),Gm) > G¥ > 0
is "the" universal extension of G¥* by a vector group.
(2.6) (The Universal extension of an abelian scheme)

Let S be & scheme and A an abelian scheme on S .
Let 0~ Gm > E-> A=+ 0 be an extension of A by Gm . Then
E 1is representable and the morphism E - A is smooth, so that
if S is affine this extension admits a rigidification. Thus
if we denote by Extrig(A,Gm) the ZARISKI sheaf associated to
the presheaf S' 1> Extrig(AS,,GmS) we find (just as in(2.2.1))

an exact sequence:
(2.6.1) 0 > w, > Extrig(A,G,) » Ext'(A,G,) > 0

But the dual abelian scheme, A¥ , exists and is isomorphic to
Extl(A,Gm) [21,19]. PFrom descent it follows that Extrig(A,Gm)

is representable and is a smooth S-group.

(2.6.2) We shall see below that the extension (2.6.1) is the
universal extension of A¥ by a vector group. Let us begin with
2 special case where an explicit isomorphism between the uni-
versal extension and the extension (2.6.1) can be given. Thus

assume pn is zero on S . Recall then that and

BA(n)T %a
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and that the universal extension of A* by a vector group is

obtained as a "pushout" as in the following diagram:

n
(2.6.3) 0 > A¥(n)— A¥ B ax 5 0

SR

0 > wy gy & ——sA*> 0

Our isomorphism is obtained from a homomorphism A% - Extrig(A,Gm)
which renders the diagram obtained by replacing & by Extrig
commutative. To define the map it suffices to do so on the level
of presheaves}and hence)because everything is compatible with
base change to define a map T(S,A¥) > Extrig(A,Gm).

If O~ G, *>E~>A~> 0 is an extension we can pull it

n
back via the homomorphism A -E> a4 and obtain a commutative
diagram: 1

® ,Inf*(A(n) )=A(n)
r
(2.6.4) Ker”"—A(n)
0~ Gm——» E ﬁAw-» A— 0O

LF

o > Gﬁ——é E —>p f=r O

or
The kernel of the map EA—=— E 1is mapped isomorphically

under the projection pry:E XA > A to A(n). This allows us
to find a unique arrow A(n)J - Ker making the diagram commute.
Because p' kills S, Inf (A(n)) = Inf'(A) = A;

and hence composing this arrow with the inclusion Ker < E‘K A

we obtain a rigidified extension of A by Gm . This defines

the desired homomorphism. It remains to show that the diagram:
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n

(2.6.5) 0 > A¥(n)—> A¥—P 5 a% > 0o
- |

0 - QJ'A(n)"”EXtrig —> A¥ — 0O

is commutative. The right hand square commutes by definition
of the morphism A% - Extrig(A,Gm). To check the commutativity

of the left hand square let the extension

(e) 0>G >E>A>0

represent an element in A*(n). Then there exists a unique
homomorphism ¢: E 3 A > G which splits the extension in the
upper row of (2.6.4). It follows from the explicit form of
Cartier duality given for example in [18 bis] that the identi-
fication of A(n) with A(n)* = Hom(A(n),G ) makes correspond
to (e) the homomorphism #: A(n) - Gm which is the following
composition:

(2.6.6) A(n)e—>i s Exa £ g
A

m

Thus going around the left hand square:
A*(n) 2 Ba(n) Extrig(A,G ) assigns to (e} the trivial
extension GmfA together with the rigidification whose components
are ¥|A(n);: A(n); > G and the canonical inclusion
A(n), <> A .

We must check that this extension is isomorphic to the
extension given by the upper row of (2.6.4%), via an isomorphism
respecting the rigidified structures. The unique isomorphism

between these two extensions is given by the map «+: Ex A » GmxA
A
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whose components are ¢ and pry -

For x,an St'-valued point of A the rigidification on

J 1)

Ex A assigns to it the S'-valued point (0,x). Certainly the
séiond component of T«O,X)) is x while the first component
is #((0,x)) = # °ilAl(x) = lel(x). Thus «r is an isomorphism
of rigidified extensions and the diagram (2.6.5) commutes as

asserted.

(2.6.7) Proposition: Let S be a scheme, A an abelian scheme
on S and let E(A*) denote the universal extension of A¥* by
a vector group. The canonical morphism E(A¥) > Extrig(A,G )

(arising from the definition of the universal extension and the

extension (2.6.1))is an isomorphism, which is functorial in A .

Proof: Observe first that both the universal extension and
Extrig(A,Gm) are compatible with arbitrary base change. For
E(A*) this follows from the fact that all objects (= group or
map between groups) entering into the proof of its existence in
(1.9) are compatible with base change. To show the map

E(A*) > Extrig(A,G ) is an isomorphism is equivalent to showing
>

that the map Wy giving rise to it is an isomorphism.

wa
This problem is local on S and hence S can be assumed to be
affine. Because A 1is proper and smooth on S (hence of finite
presentation on S ) we can assume that S = Spec(R) where

R 1is a ring of finite type over 2 [lo,EGAIV 8.9.1,8.10.5,... ].
From (2.6) it follows that for any maximal ideal mc< R, the
corresponding map Qﬁ/gnwA > ﬁ%/énﬁA is an isomorphism (n > 1).

Hence the determinant of the corresponding endomorphism of
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A A
wy ® Rm is a unit in Rm. This implies that this determinant

is act;élly invertible i;. Rm . Because this holds for all

maximal ideals m , the endo;orphism of Wy is an automorphism.
To check the functoriality of this isomorphism, consider

two abelian schemes A, B on S and a homomorphism wu: A - B.

The assertion means that the following diagram is commutative:

g
ii(///

w3 S E{B*)———>B¥ ——> 0

| |
(2.6.8) 0- —> )Extrig(B,Gm)_ﬂ__? B* 0
u*
u¥
0 > Wa y E(A%) > A% 5 0
A l-,/id
o — Wp y Extrig(A,G ) 5 A% 5 0

To check that the two ways of going from
E(B*) to Extrig(A,Gm) coincide, observe that their difference
is a map E(B*) ~ wy which vanishes on wg and hence gives

a map B¥* > g, , necessarily zero by {(1.5).
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§3. RIGIDIFIED EXTENSIONS AND é—EXTENSIONS

Let
(*) 0—>Gm->E—>A——>Q

be an extension over an affine base S , where A/S 1is an
abelian scheme.
In this section we will show, in detail, how the following
two additional structures on (*) are equivalent:
(a) A rigidification of (¥)
(b) An integrable connection on E regarded as a
Gm-torseur over A {this connectlon being required to
be compatible with the group structure of the extension

E).

In this w2y wc shall obtain yet another explicit description

of the universal extension of an agbelian scheme.

(3.1) The definitions.

By torseur for G over S we shall meean principal homo-
geneous space, locally trivial for the Btale topology. There
are many equivalent ways to define connection and we shall take

the definition using the fewest words:

Definition: Let X be an S-scheme, G a commutative smooth
S-group, and P a torseur on X under the group GX. Let
Al(X) = Al(X/S) denote the first infinitesimal neighborhood of

the diagonal map X - Xxsx . The two projections
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Py X %X > X (J=1,2) induce morphisms pJ:Al(X) > X .
A connection V on the Gy-torseur P 1is an isomorphism

of Gél(x)-torseurs:

V: p¥(P) > p¥(P)

which restricts to the identity on X . (That is , A*(VO = id

P)'
Given an ox-module E a connection on E 1is an Ggl(x)

isomorphism V7:pf(E) > p%(E) restricting to the identity on

X, @gliven (E,‘7), an ox-module with connection, we may obtain

an Os-linear homomorphism

1 1
V:E > E ®“x/s

(satisfying the Leibniz product rule) as follows:

Denote by 31’32 the two ring homomorphisms OX i OAI(X)
corresponding to the two projections PysPpe One obtains the
corresponding merphisms jl(E): E > pf(E), jg(E):E > pg(E).
Define:

Vi =Vl (B) - §,(E).

(3.1.2) Examples

a) If G = G, » then connections on the G -torseur P
are in one-one correspondence with connections on the
line bundle, £ , which is associated to P .

) If G = G,, then G, -torseurs P correspond to

extensions (&) of Oy by Oy:

(e) 0>0y, >E>0, >0
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and connections on P correspond to isomorphisms of

extensions pf(e):i? p%(e) which restrict to id_ on X .

(3.1.3) The G-torseurs with connection (P,V) are the
objects of a category in which the morphisms, Hom(P,V),(Q,V))
are precisely those morphisms TM:P - Q@ of G-torseurs such

that the following diagram commutes:

)
or(e) 2 )
vl lv
P) =Y Q)
PE( o3 (M) PA(

Such an M:P > Q 1is said to be horizontal when the connections

on P and @ are understood as being given.

(3.1.4) (The curvature of a connection). The curvature tensor
2
¥/3

curvature of a connection on the trivial bundle GX and then

show that these tensors can be patched together to give a defi-

will be an element in T(X,n @pig(G)). First we define the

nition for an arbitrary torseur P .

A connection on GX is simply an automorphism of GAl(X)
which restricts to the identity. It is completely determined by
telling what it does to the unit section and hence is determined
by giving an arbitrary element € in Ker(r(Al(X),G) > T(X,G))
= Homox(g}®ca, le/s) = r(x,ni/s ® Lie(G)). The image of g
in T(X,np g ® Lie(G))under d m 1d : af @ Lie G > 5 g @ Lie(G)

is by definition the curvature form of the connection.

Now if P 1is an arbitrary G-torseur on X , endowed with

a connection, then after an &tale base change X'—> X , by our
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definition of torseur) P Dbecomes trivial. There is an

induced connection on P Choosing a trivialization of

xt*
PX,, construct the curvature of the induced connection which
lies in r(x*,ni,/s ® Lie(G)) = P(X',r*c o ® Lie(a)). (Ve
obtain the above equality because X' > X 1is etale.) In order
to show that this local construction descends to define a
section of (?@ Lie(G) over XJ which will be by definition
the curvature)it suffices to show that the curvature of Pys
is independent of the choice of trivialization}since then

the application of pf and pg to our section in

(X! 0y, g® Lie(G)) yields the same section of

r(Xv§ X', 1 wxt® Lie(G)) and we can apply descent. To do this

Ox
take two trivfélizations

g: P>G, #: P > G

and express the comparison wod'l as an S-morphism

g: X>G .

One checks readily that the difference between the two
2

x/8
a = pg(g) - pi(g) is interpreted as an element in

curvatures is given by da € T{X,Q] ,.® Lie(G)) where

*) Ker(Hom(Al(X),G) -+ Hom(X,G))
Y
q%%\§< r(x,n%/s ® Lie (¢))
and d is induced from exterior differentiation
1 2

We must now show
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{3.1.5) Lemma: da = O

Proof: Let the same letter 7T denote the structural morphisms
T: G> 8, 7T: X~>S8 for no confusion will result.

The element a may be viewed as a homomorphism:

1
@ mg > Tflyss

by means of the isomorphism
(*%) X L Lie(G)) = Hom, (wq,T at )
s O yg® L8 04\t "xlx /s
Using the diagram:

subtraction
G (¢)

(pl°g’p2°€) r
(3.1.6) / /I I
1

B 28 o) erl(e)

] J

X > G 35

and the isomorphisms (*), (%¥) above one can see that a is
the composition of the two top horizontal arrows in the

following diagram:

1 dg 1
8 > Tell s > Tl /s
d d
2 2
TF*QG/S > W.xn&x/s

Since the image of o in W*né/s is killed by d , the
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lemma follows, and our construction of the global curvature
of the G-torseur P 1is concluded.
If the curvature associated to (P,V) 1is zero we say that

the connection V is integrable.

(3.1.7) (The multiplicative de Rham complex)

Consider the map of sheaves for X_., the small €tale site

of X

3 1 .
GX S QX/S® Lie G

g b—————> o = pX(g)- pi(e) -
(3.1.5) implies that

may be viewed as a complex of sheaves on Xet’

If G = Ga we obtain the ordinary de Rham complex
A, L B
X ()X/S o e 2 0

If G = Gm , we obtain a complex called the multiplicative de

Rham complex:

d log
o% — n1~ d

a2
X X/s TYx/s o

(3.1.8) A G-torseur endowed with an integrable connection is
what Grothendieck calls a 9-torseur. The %-torseurs form a
full sub-category of the category introduced in (3.1.3) Denote
this category by TORS é(X,G).

(3.1.9) Because G is commutative we can define the contracted

G
product P A Q of two G-torseurs. It is by definition the
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associated sheaf of the presheaf which is the quotient of PxQ
G

1

by the action of G: g.(p,q) = (gp,& ~q). PN Q is made into

a G-torseur by letting G act on either of the factors. If

P and Q are endowed with connections ‘7? and Vé, then
G G
v, RVQ: pt(P) A p¥(a) > px(P) A pX(Q)
il §i
G G
p¥(PAQ) p*(PAQ)
2

defines a connection on ngﬂ, Furthermore the curvature tensor

G
associated to V, AV, 1is the sum of that associated to Vp

Q
and that associated to Vg . In particular, the contracted
product of §-torseurs is a Y-torseur.

If X is an S-group, then it is possible to impose additional
structures on a GX—torseur P: namely to require that P has

the structure of an S -group so that we obtain a (central)

extension

0>G~»P>X~>0

In our context (i.e. given that P is a torseur) the most
convenient way to express this is by giving an isomorphism:
G
B: TH(P) A TX(P)> s*(P)
(where T1sTyt X* X > X are the projections and s: XxX > X is
the addition law) and requiring the appropriate diagrams, (expres-

sing the associativity and commutativity } to commute.

(3.1.10) By combining the notion of torseur endowed with an
integrable connection, with the notion of a group extension of

G by X we are led to the following definition (following
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again Grothendieck's terminology).

Definition. A #%-extension of the smooth group G by the commutative
group X 1is a triple (PVLB)) where (P,V ) 1is a %-torseur on

X under G , (P,B) defines a group structure on P, making it

an extension of X by G, and where B:W{(P) N T%(P) = s*(P)

is a horizontal morphism.

We denote by EXT§(X,G) the category whose objects are the
4.extensions and whose morphisms are the horizontal morphisms
between extensions. Because G is commutative, the category of
extensions of X by G , EXT(X,G) is endowed with a "composition
law" which corresponds to taking the contracted product of the
underlying torseurs. Upon passing to the set of isomorphism
classes of objects the induced composition law gives the standard
group structure to Extl(X,G). From the description of the
composition law in terms of contracted product of torseurs it is
clear that we can define the "Baer sum" of two &-extensions
and that by passing to isomorphism classes we obtain a group
ExtLT(X,G).

Let
(e) 0>A>B->C~>0

be an exact sequence of finite locally free (commutative) S -groups
An {¢)-4 homomorphism A > G 1is by definition a pair (#,V) where
d: A > G is a homomorphism and ¥V is a connection on GiiB
making

A
(eg;) 0>G->GldB »C>0
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a Y4-extension of C by G .

The set of (e)-£7homomorphisms A > G 1is made into a group
by defining (#,V)+(4', V') = (#+4', V) where § defines the
structure of %-extension on the "Baer sum" of (ed) and (ej,).

We shall denote this group by (e)-% Hom(A,G).

(3.2) (The isomorphisms)

In this section we shall construct a homomorphism
(3.2.1) Ext” (A,G) » Extrig(A,G).
As a consequence, one then obtains a homomorphism
(3.2.2) (e)-% Hom(A,G) > (e)-Homrig(A,G).

Later we shall prove that over an affine base S (3.2.2) is an
isomorphism if G = G, and (3.2.1) is an isomorphism if
G = Gm and A 1s an abelian scheme.

Let the §—extension,
(e) 0>G=>E=>A>0

be given.

Denote by 1 , the inclusion Inf (A) «=> A , T: Tnfl(A) » S
the structural morphism and by r: Infl(A) > A}(A) the morphism
determined by p,°T = eA°W s Po%T =1 .

Since the %-structure on E 1is given by an isomorphism

< pf(E) = pg(E) s, we can "pull back" V wvia 1t to obtain:

*(y) : w*oeK(E) > i*(E) .
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Since E is a group eX(E) and hence W*eK(E) is equipped
with an obvious choice of section, the unit section. Via 1%(y)
we transfer this section to obtain a section of i*(E) and
hence by composition with i*(E) » E , we obtain finally a
morphism o Infl(A) - E . It is this ¢ , which we shall choose
to be the rigidification of the extension (e¢). In order to show
that this is legitimate let us verify that o possesses the three
properties required of a rigidification:

1) ¢ is a morphism of S-schemes

2) the following diagram commutes

E— A
\\ ]
Thel(a)

3) ¢ is a morphism of S-pointed schemes.

To check 1): Inf'(A)—%— E > S = Infi(A) -=— E>A > S
= Inft(a) - Infl(A) x g PXJ L posp >3-

[

Infl(a) » mel(a) 4 E RZ2L 1arl(a) & A > 5 = mria)T— s .

#

To check 2) it suffices to observe that i¥*(E) = Inf'(A)f E
and that ¢ 1is the composition of a section in r(Infl(A),i*(E))
and the projection i*(E)— E .

Finally let us check that 3) holds. We are to show that
S > Infl(A)——g9E =8 2> E . The left hand side can be computed
as follows:

§%> Infl(A)-2> E = 5 Infi(A) - Inf (ﬁ)ﬂ g —Bred; g

s> Tnri(a) (14:8°T) o e éA)X E—~—m-> Inf (A)x g —PXody g
SQ—»IanxE—%Inf&xE»—p—J)E 1

e
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1
where the components of wu: S » Inf_ (A)x E are e]hfl(A) and
e eem
E -

Thus to conclude (3) it must be shown that r*(V) preserves

the second component of this morphism. To do this let us

return momentarily to the given V: p¥(E)-~> P¥(E). By composing
eyt 8= A with A: A~ Al(A) , S may be viewed as a

Al(A)-scheme. Via this both p{(E) and pg(E) have an obvious
section gl(resp 52)with values in the Ai(A)-scheme S:namely the sec-
tion with components S< Al(A) and S‘—Q) E . TUnder the iden-
tification of A*pi*(E) with E , the unit section S£i§+ E

is identified with the section just described of p;(E) with
values in the Al(A)-scheme S . But by definition of a connection,
A (YY) = idy , and hence V must map §1: 8~ p{(E) into the
corresponding section g,: S > pg(E); that is the second com-
ponent remains S B, E .

Let us now consider the first factor S 2192}15; Infl(A)
Because TOeInfl(A)= Ao, it follows immediately from the
definitions that T*(&l) =wu . This implies that *({)eu has
as its second component the unit section e_: S~ E , and

E
completes the proof.

(3.2.3) Proposition: a) If A 1is an abelian scheme the homo-
morphism Ext§KA,Gm) > Extrig(A,Gm) is an isomorphism.
b) The homomorphism

()fHom(A,G )»{@Homrig(A,G, ) is an isomorphism if § is affine.

Proof: a) In order to prove Ext‘§(A,Gm) > Extrig(A,Gm) is an

isomorphism, let us construct an inverse. Assume given a
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rigidified extension

O*G“‘*E'—l—"A*’O

(3.2.4) \ \T

Inf (A
o defines a section of i¥*(E), and hence a trivialization
(epeT)*(E)=> i*(E), via er> (1dmf1(A),a).

By definition of Infl(A), the map p,~py: Al(A) + A factors
through Infl(A). Let us write it as Al(A)——9 Infl(A)¢~l> A .
Thus N*(p): (e OWAl(A))*(E)“‘* (p2-pl)*(E) is an isomorphism
where T l(A) Al(A) -+ § is the structural morphism.

Multiplying both source and target of this map by pi(E) and
using the fact that E is a group we obtain a diagram where

the lower horizontal arrow is defined so as to render it commuta-

tive () (E)
T (p)Ap®(E
(o407 1) *EIA BEE) —— > (o0 )* (IR (E)
(3.2.5) { l
p¥(E) - > p%(E)

Our inverse mapping is now defined by associating to the
rigidified extension above the §-extension with the same under-
lying extension and the %-structure defined by V'. To show
that the definition makes sense and actually gives an inverse,

five statements must be proved:

1) ax(v) = idg
2) The map Extrig(A,G ) > Ext7(A,G_ ) - Extrig(A,G ) is the

identity.
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3)  The map Ext§(A,Gm) > Extrig(A,Gm) is injective
4) V' is integrable

G
5) The isomorphism T#(E) A" 7x(E) &> s*(E) is horizontal.

*
2
The proofs we give of the first two statements are

entirely formal, while those of the remaining three actually

use the assumptions that A is an abelian scheme and G = Gm .

1) Since A*(¥) 1is a morphism over A , it suffices to show
that it is the identity when E 1is viewed as a sheaf on Sch/S .
Since our situation commutes with base change it suffices to
show the mapping it induces, E(S) - E(S)J is the identity. Let
¢z S~ E Dbe given so that ¢ defines morphisms ¢y: S — PT(E)
and (5: S > pg(E). Since A: A > Al(A) is a monomerphism
it suffices to show that Vle = ¢, - To check that it is true
let us recall the definition of the vertical isomorphisms in the
diagram (3.2.5) above.

Iet a,B: T -» A be given and consider the torseurs
Ea’ Eﬁ’ Ea+6 deduced from E by the corresponding base changes.
Ea(;(EB is a sheaf associated to the quotient of Ed;EB by the
action of G . Thus if T' is any S-scheme elements of
T(T',EaﬁEB) are given locally by triples (of S-morphisms)
Xx: Tt >E, y: T* > E , t': T' > T where T'-E--> E-> A
=Tt >T-%5>a, T Y>E>A="7" >7B> A . Thus the iso-
morphism in question is determined by associating to (t',x,y)

a+6)'
Return now to diagram (3.2.4). Then (,=(a°Jo¢,¢),

the pair (t',x+y) € T(T',E

¢, = (M Jog,¢) and after the above explication of the vertical
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isomorphism it is obvious that gl corresponds to the class
of { a0 Jo g,eE,g). On the other hand projection of
(2T a1 (a) ¥ (B) = (2T rnel (0))%(E)) %o (egeTyyplyy)*(E)
assigns to (AoJOC,eE) the pair (HOAOJog,eE) which it
transforms via p into (Meaejog,goMeacjog). Thus T¥*(p)
transforms (AaJo;,eE) into (AvJvt,00MoAee). Therefore
n*(p)Api(E) will transform the class of (Aojcg,eE,g) to the
class of (A°Je(,geTMoA°jol, ). As e,°m, = (pe-pl)°b

4

ie oA

it

and also e,om, = i°eInfl(A)°WA’ it follows that fToa eInfl(A)°WA‘
Hence ooNohodel = °°eInf1(A)°WAoJ°C = epeTojeg = ep . Thus un-
der the isomorphism (p,~p,)*(E)Ap%(E) = Ef(E)

(Aejog, ceNeAojol,() corresponds to (AeJel,() which shows (finally)
that A% (T) = 1d.

2} Let us bagin with the rigidified extension

O - Gm > E->A->0

N
Tnrt(A)

We associate a connection V' on E to o and then a
rigidification o' 1is associated to At'. It is to be shown
that o' = 0. Using the definition of o' 1t is the projection
onto E of T*(Vﬁ(1é1nfl(A)’eE°”1nf1(A))‘ Hence it is the pro=-
jection onto E of W! (T’eEvanfl(A))' But as it follows from
the definition of V' in terms of the diagram (3.2.5) above

this projection is simply the sum:
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proj. onto E(M*(p)(sepeTy e1on))) + g Trpel(g)

proj. onto E(ﬂ*(P)(T»eE° ”Infl(A)))

it

proj. onto E(p(ﬂ°Ter°WInfl(A)))

But since domonr = (pe-pl)°T = ppoT-pyorT = i - ervInfl(A) =1,
and since 1 1s a monomorphism, it follows that Tor = idlnfl(A)‘

This implies, by the very definition of p , that ¢' = o .

3} To show the map Exté(A,Gm) > Extrig(A,Gm) is injective, we
must show that if V defines a §—structure on the trivial
extension

0~ Gm’—> GmXA‘—) A— O

whose assoclated rigidification, ¢ , is trivial, then V is
trivial. But V is determined by giving a section of T(Ozl(é))
of the form l+y, wer(A,n&) . The corresponding p (associated
to the rigidification ¢) is,because it is an automorphism of
GmInfl(A))determined by & unit in T(ofnfl(A)) of the form
l+p', w'e T (S,QA). One has: w' = 7t*(w). But/because A is an

abelian scheme)this mapping T(A,ni/s) > F(S’QA) is an isomorphism.

4) To show the connection V' is integrable we shall use a
trick which will be repeated below in showing that V' 1is
compatible with the group structure on E . The curvature tensor
e(V') is an element of r(S,WA*(Q?A/S)). As mentioned in (3.1),
E corresponds to a line bundle £, and V' to a comnection on
this line bundle. Thus because A 1is an abelian scheme, and

hence all global l-forms are closed, the curvature c(V5 is
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actually independent of the connection on E . Notice this

. . 2
allows us to define a morphism Ext(A,G ) = WA*(QA/S). Namely
if 8* is an (absolutely) affine S -scheme and
0~ Gm > Et » AS, > Q0 1is an extension, we can take any structure

St
of rigidified extension on it, then by the above procedure
put a connection on E! and hence finally obtain the curvature
: 2 2

tensor which lies in r(S',WAS'*(QAS‘/g)) = r(S',WA*(QA/S)S,).
Passing to the associated sheaves gives the morphism

2 . . .
Ext(A,Gm) > WA*(QA/S)' Since Ext(A,Gm) is an abelian scheme
and WA*(Qi/S) is a vector group, this morphism is constant.
Clearly the image of the trivial extension is zero and thus the
map is identically zero implying that the connection V' is

integrable.

5) To show the connection ¥!' 1is compatible with the group
structure let us replace E by the corresponding line bundle
e Then we are to show the isomorphism

s*(£y) ©> TH(£;)® TH(2£;) is horizontal. Using this isomorphism
the problem can be interpreted ag that of showing that two
connections on s*(zE) are the same. Taking their "difference"
we obtain a sectien, §(V') in T(S,wpx,). In order to imitate

the trick used in 4) above, we will use the following lemma.

(3.2.6) Lemma: Let X/S be a scheme, £,,#, line bundles on X,
V1sVp5V{,V4 connections on L & £ > & an isomorphism.

let § (resp. s') denote the "difference" between d*bvg) and
Vg (resp #*(3,') and V{). Then we have the following formula

s-8' = "difference" between V, and Vg - "difference" between
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VvV, and Vi .

Proof': The assertion is local hence we can assume X = Spec(B)
. s s '

S affine, #,,#, trivial. Translating then Vl, vl’VQ’VE

corresponding to differential forms ml,mi,mg,u)é € r% and

# corresponds to the mapping multiplication by a unit b ¢ B¥.

Thus ¢*(V,) corresponds to -‘? + w, SO d*(Vg)-Vl = %B + (‘”2"”’1)

and analogously ;3’*(’;’2'}-?1 = %]3 + (mé-:gi}- Subtracting we find

the result.

[

In applying the lemma take .2, = s*(£ ), £, = TH(2 )@T4(2)
and for any two connections ?\f?, 6 on # let Vl s*@), Vi = 5*(6),
- = = = . ~ e 1
V2 = Wf(V)@ rrg(v), Vé = 77"{(‘7)5975(V)~ Then if V.V = &eT‘(A,QA)

the lemma says that §(7)- 8(¥) = T*(4)+74(¢)-s*(y). But because

i“

A is an abelian scheme ¢ 1is primitive and hence b(i:l) = §(7).
Because 3(V) is independent of the connection put on the
line bundle » , we can just as in 4) above define a morphism

Ext (A,Gg) = As the trivial connection on the trivial

LaxA*
extension is compatible with the group structure, any connection

placed on any extension is similarly compatible since the

morphism is constantly zero,.

b) Assume S is affine and consider the extension of finite

locally free-groups:
(8) 0»>A>B>C~>0
From (2.2.1) there is an exact sequence

(3.2.7) 0 > T(S,wa) > (8)-Homrig(A,G ) - Homg_on(A,Gp) > O
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The indeterminacy in putting a structure of % .extension on

the trivial extension 0 - Gm -> G£<C > C > 0 is given by

F(S’Qc) gsince the differential form defining the connection must
be primitive {i.e. translation invariant). Thus there is also

an exact sequence

(3.2.8) 0 > T(S,w,) > (8)-%Hom(A,G ) > Homg__(A,G )

S-gr

Obviously (3.2.7) receives a map from (3.2.8) which is the

identity on T(S,w,) and on Hom {(A,G and which is the

S-gr m})
map (3.2.2) on the middle terms. Hence to conclude that (3.2.2)
is an isomorphism it suffices to prove that the map
(a)-§Hom(A,Gm) > Homs_gr(A,Gm) is surjective.

et o&: A > Gm be a homomorphism and consider the

corresponding extension
(84) o»6 >E>Cc>0, E=qc_{B.

If the set of structures of & -extension on (6¢) is not empty

it is principal homogeneous under T(S’&c)' Replacing S by

an arbitrary S-scheme S' we see that for variable S' the
functor S' > set of structures of 9 -extension on (6d)S‘ is
formally principal homogeneous under we - Since C 1is finite
and locally free EEEI(C’Gm) = (0) and hence locally for the
f.p.p.f. topology, the extension (5¢) is trivial. This implies
that we actually have a torseur. By descent it is locally trivial
for the Zariski topology and thus because S 1is affine it is
trivial. Hence (8¢) actually admits a structure of £7~extension;

which proves (8)-‘§Hom(A,Gm) > Homs_gr(A,Gm) is surjective.
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34 . THE RELATION BETWEEN ONE-DIMENSIONAL DE RHAM COHOMOLOGY

AND THE LIE ALGEBRA OF THE UNIVERSAL EXTENSION

Let A Dbe an abelian scheme over S . We shall establish
an isomorphism between H%R(A) and the lie algebra of Extrig(A,Gm).
The most convenient way to do this is to find yet another interpre-
tation of Extrig(A,Gm) > this time in terms of differential

forms (see the construction of E#‘below).

(#.1).  The Refinition of EY.

(#.1.1). Let A/S be an abelian scheme. Its De Rham cohomology
is quite simple:

a) all the H%R(A) s Hq(ng) are locally free (and hence
their formation commuates with base change).

b) The Hodge-DR spectral sequence degenerates at E -

o) HE(A) = neHD(A)
The first thing we do is give a geometric interpretation to a
portion of the long exact sequence of (hyper) cohomology associated
to the short exact sequence of complexes

0] % o*

-
n
&
n

i Ok

which we abbreviate to: 0 - 7, (@) > Q% > 0% > 0
Define a functor on S-schemes by:
S' > the group of isomorphism classes of line bundles on

Ag, endowed with an integrable connection.
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Write PJ for this functor and _;gf? for the associated

Zariski sheaf. For any S', there is the forgetting map:
1
p7(s') > H (of )
St

which by passage to the associated sheaves yields ( since A is

an abelian scheme} a homomorphism
P! -Ls pic(a)

Because global l-forms on an abelian scheme are closed, and
because the map HO(OK)..Q.LQE_; HO(Q';) is the zero map, the
indeterminacy in putting an integrable connection on the trivial
bundle @ 1is precisely r(A,n:k) = r(s,m). Passing to the
associated sheaves we find the kernel of the map 7 to be oy -
What is the obstruction to putting an integrable connection on
a line bundle £ (over A)? The obstruction to putting any
connection on £ 1is furnished by the cocycle arising as the
logarithmic derivative of the transition function defining £:
dfij

v

B (o) > 1l (qp) , (£
There is an obvious map
Y (oF) > B () ()

given in terms of Eech cocyles (for some affine open cover U

of A) by
dfij 1 1 2
(£4) ((YT})’O) e C(wa )@y, a)
1

If this cocycle is a coboundary there are closed l-forms 0
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daf

such that Tuii =y and hence # will admit an integrable
ij

-(DJ

connection. The converse is equally trivial.

(¥.1.2) Proposition:

Pi(s) > w'(g) .

Proof: To any line bundle with integrable connection (£,V) we
associate the cohomology class of the gech cocyecle

1 o] .
((fij),@&))e C (oK)@ c (Qi) where fij are the transition
functions and wy is the "connection form"” for the induced
connection on 2|y .

Q.E.D.

Thus we have arrived at the geometrical description of a portion

of the above mentioned cohomology sequence:

0— Ho(ni)-—-—> p7(s)-e>pic(A)——a Hg(Tl(QA))
(%.2.3) s

0 — #(r ()= #(of)— H (op)—~ B (ry(n;))

Now we shall consider Lie algebras. For any group functor
G on Sch/S , the formation of Lig(G) commutes with taking of
the associated Zariski sheaf. Thus to calculate the Lie algebra

of gﬁ it suffices to calculate that of Pé.

(%.1.4) Proposition: H%R (A/S8) 1is canonically isomorphic to
Lie(gﬁ).

Proof: We must examine Ker(P#(S[e]) > P#(S)) which by (4.1.2)

can be regarded as the kernel of

1, % 1, %
H (0 Y > HOQ,) .
( Asl el Ca
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But we have a split exact sequence of complexes of sheaves of

abelian groups on A:

e o o
0> r— -— 0 - 0
A Agrep A

and hence (at least as abelian groups) lHl(Gﬁ):; Lig(Pé)(S)
The fact that the module structures coincide is a stralghtforward
verification. Passing to the associated sheaves we find

HéB(A/S)-Qi+ Lie(PT) as desired.

(4.1.5) Lemma. !ﬁ*(gﬁg@)) is locally free (and hence commutes

with arbitrary base change).

Proof: From the exact sequence O0— (@ )— G3— 6, 0,

using the local freeness of Hﬁp(A) , H*(OA) and the degeneration
of Hodge => De Rham, we read the result from the short exact
sequences: O > Hi(ﬁKQA)) > Hi(qA) > Hi(OA) >0

Knowing m?(rng)) is a locally free module commuting
with base change we obtain the exact sequence of Zariski sheaves

on Sch/S.

0 > w, » B7 > Pic(a) > H (r)(ny))

Let us consider the dual abelian scheme A% = EEE?(A) and the
composite of its inclusions into Pic(A) with the map

Pic(a) » E?(wl(gﬁ)). This composite is zero because there are
no non-trivial homomorphisms from a abelian scheme to a
(locally-free) quasimcoherent module. Hence the image of gﬁ

in EEE(A) contains A¥ and there is an exact sequence

QA-—> g§ x A¥~> A%
Pic(A)

O3
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(4.1.6) Definition £9 = 7 x A¥*
S

Thus Eé is actually a smooth group scheme which is obtained
by considering the Zariski sheaf associated to the presheaf
assigning to S'/S the set of isomorphism classes of («£,V)
where the cohomology class of ¢ 1is primitive or equivalently the

Gm torseur corresponding to »# 1is an extension of AS, by

AS’
G .
Mg
(4.1.7) Propositiont H%R(A/s) is canonically isomorphic to

Lie(E7).

Proof: ng(EﬁPig?A)A*) ~ Lig(P%) A%*)

B7) e (Bic(a)) el

and as is well known Lie(A*) > Lie(Pic(A)) is an isomorphism.

(4.2) The isomorphism between Ext5 and E%Q

For any abelian scheme A/S define a homomorphism,

%%(A’Gm) -—g Eé7 = E% XM(A)MO(A)

as follows: Any element e in Exté(A,Gm) may be regarded as
an isomorphism class of invertible sheaves on A endowed with

an integrable connection and with a horizontal isomorphism
€
s*(G) » p*; (L) ® px(L)

where PysPp* AXA ~ A are the projections and s = pytPp is
the sum morphism. By forgetting ¢ , (resp. the connection) we

obtain an element of F7 (resp. pic®(a)).
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(¥.2.1) Proposition

The above morphism is an isomorphism,

Ext‘%-'z—ar EY .
C

Proof: It is injective. Any two horizontal isomorphisms between
line bundles differ by multiplication by a unit in r(S,(}S).
Thus 1f there is a horizontal isomorphism, an isomorphism compatible

with the ¢'s 1s also horizontal.

To show that it is surjective, we shall define a morphism
of S8-schemes n:A"f‘_“_nAxA which expresses the obstruction to
surjectivity of ¢: Let L Dbe in Ext(A,Gm). Choose any integrable
connection V on L . This induces connections on s*(L),pl*(L),

p%(L), p¥(L)® p%(L).

The extension-structure of L gives us an explicit
isomorphism,

s*(L)% p¥(L) ® p%(L) .

Consider the difference between the connection on s%{L)
and the pullback of the connection on p*{(L)@E(L) via the
above morphism. This difference 1i(V) is a section of Yaxp °
By (3.2.6) i(V) depends only on L and not on the integrable
connection V chosen.
We define 1(L) = i(V). Since A% 1s an abelian scheme and
®p % A is a locally free module, 1 1is a constant map. Since
N(0) = 0, 7 is identically zero.It follows that e is horizontal

and ¢ 1is surjective.

(4.6.3) The sheaf gﬁf in concrete terms.

Consider the morphism of complexes QK/S > ¢} and the
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corresponding mapping induced on the exact sequence of terms

of low degree, from the Leray spectral reference:

0 ngog)n» H'(0f) — T(S,R'%, (0f))— 0

0—> Hl(iz;g)w ' (A,08) —r(s,Pic(A)) — O
Consider on the other hand the group PicZ(A) =dfn{isomorphism
class of triples (#,a,Y) where (£,a) 1is an e-rigidified line
bundle on A and V an integrable connection on «£}. Here
isomorphisms are to be horizontal and respect the e-rigidification.
There is an obvious map PicZ(A) - Pé’(s)

(2,28 ) > (2£,9)

it (&V), (2',V') are isomorphic, an isomorphism compatible
with the rigidifications can be chosen since to modify an
isomorphism we use a global section of r(A,GX) = r(s,og) and
clearly this will not alter the horizontality. Hence the map is

injective. We obviously have a commutative diagram:

(£,9,V) PicZ(A) b—*——)P%(S)
(#£,a) Pic,(A) ——ul(a,of)

Given (2£,V) in Pé'(S) y £ ® f*e*(;fl) is rigidified and
f‘*e*({'l) can be given the "stupid" connection so that it is in
the image of Hl(S,o*s‘") —*\Hl(();). Thus the map PicZ(A) > 317(8)
= B° (Blf*(ﬂz)) is surjective. If (2,a,V} > O, then

= f%(¢'),V= trivial connection,and Og =2 e¥(p) = e¥f¥(s)

J
= gt => 2 = OA; and V=trivial connection}which obviously

implies (#,a,V) < (oA, obv,0). Thus the map Pic’Z(A) > Eé’(s)
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is an isomorphism and we have the desired description of 39(3)

as f{e-rig line bundles + V1, a description which is obviously
compatible with the description of r(S,gig(A)) as f{e-rigidified
line bundles.}

since EV =gen B7  x Ext(A,G ) , it is clear that

“Pic(A)

——
E% admits the following description, its points with values in
S (or for that matter any S-scheme 31') consist of isomorphism
classes of extensions O - Gp ™ E->A-> 0 such that E 1is

as Gm -torseur endowed with an integrable connection.
A

(4.4) The Universal Extension of an Abelian Scheme in the

Analytic Category over € .

et A/S be an abelian scheme over S , where S is a
scheme locally of finite type over ¢ . We may view A/S as
a family of complex analytic spaces. The theory of Extrig
carries over, with no significant change, in the analytic
category. One thus obtains the analytic versions and natural
maps below:

[Extrig(A,G,)]1%" — Extrig(a®,e")
1an any

[Extrig(A,6,)]1%" — Extrig(a®",c,

(B.4.1) Proposition: The morphisms above are isomorphisms.

Proof: This follows for each fibre (over S) by GAGA .
Consequently our morphisms are analytic morphisms bijective on
underlying pointsets. By consideration of vertical and
horizontal tangent vectors one checks that the Jacobian criterion

is satisfied.
Q.E.D.
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As a consequence, the exponential sequence of analytic groups
over €
exp
0 ~» 2riZ—> G —> G— O
a m
gives rise to the following diagram:

0 0

J

wa ~ > ®5

12
-

Extrig(A®*",0,) — 5 Extrig(a™",6 )

4

o—> r'r,z —» le*oAan > P_i_q\C(A) —> 0
0 0

which gives us (using the snake lemma) the following exact

sequence:

0> BH(A*,z) > Extrig(A®",c, )—> Extrig(aA®",¢ ) —> 0
over any affine base S .

(4.4.2) Corollary: One has an exact sequence of analytic groups

over S:

0— R'fZ— HE (A%"/5)— E(a%) %> o

Proof: Note that EDR refers to relative de Rham cohomology

over the base S . le*Z refers to the locally constant sheaf

of abelian groups.

The corollary follows from our identifications

Extrig(A,Gm) = E(A%¥)
Extrig(A,G,) = Hyg(A/S)
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s
§5, FRAGMENTARY COMMENTS CONCERNING NERON MODELS AND

UNIVERSAL EXTENSTONS

Let S be a connected Dedekind scheme. { S = Spec D where
D is a Dedekind domain). Let N be a Néron model over S .
This means that there is a nonempty open U« S such that N/U
is an abelian scheme, and N/S5 is the Néron model of N/U.
Let N'/U denote the dual abelian scheme and let N'/S be its
Neron model over S . Define N° ¢ N to be the open subgroup
scheme all of whose fibres are connected.

The easy part of an unpublished duality theorem of Artin

and Mazur asserts
(5.1) Lemma The duality of Abelian schemes
Ext (N Gp) = N
extends to an isomorphism of functors evaluated on smooth S-schemes:

Ext (N Gp) &> N

We sketch a proof of this lemma by showing that Ext (N s G
enjoys the Néron property Dl,SGA7IX,1]. To do this one must
take T/S a smooth "test" scheme and consider the diagram with
exact rows, [11, SGATVII 1.3.5,1.3.8]):

1 :
0~ Ex'cs(m‘;,Gm)('l‘)~—> pic M°)(T) = PlcS(NoxSNo)(T)

B Jy
0~ ExtU( 905G ,) (Ty)> Loy (NG) (Ty)—%> _P_i_gU(uUXN°)(T )

where ¢ = proi§ + proj% - sum¥*
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to]

Since N ?;T and NOg NOE'I are regular schemes and since NogT/T

N’é HQET/T have connected geometric fibres, f and vy are
isomorphisms. Thus a is an isomorphism as well, and the

sketch of the proof of (5.1) is concluded.
(5.2) Corollary There is an exact sequence of smooth groups/S:

0 > wyy > ExtrigS(N'O,Gm) + N->0

Proof': f*(GN,O) = OS . Thus there is an exact sequence of

Zariski sheaves on the category of smooth S-schemes.

t 1
0 > my, > Extrig(N 06 ) - Ext(N °,6 ) > 0

m

(¢.f. the discussion preceeding (2.6.1))

From the lemma, N = Ext(N*0,G ), and hence Extrig(N'0,G )} 1is a

smooth group.

write E(N) = Extrigg(Nt°,G ).

A surprise is that the exact sequence
(5.2.1) 0> wey ™ E(N) » N=>0

is not necessarily the universal extension of N'. In fact, as
L. Breen and M. Raynaud have shown: there are Néron models N
which possess no universal extension. A sketch of their
elegant argument is included below. Therefore we refer to

(5.3.1) as the canonical extension of a Néron model N by a

vector group.
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It appears to us that this canonical extension deserves
systematic study, and indeed the first question one may ask
about it is the following, which we pose in purposely vague
language:

Find a functorial characterization of the canonical extension
(5.2.1) of a Néron model.

It is especlally interesting to consider the canonical
extension over the base S = Spec(Z).

Let M = N(Z) T N(Q) denote the Mordell-Weil group of the
abelian variety NQ . This is a finitely generated group.

Let M¥ = E(N)(Z). Since S 1is affine, (5.2.1) gives the

exact sequence
(5.2.2) 0> wy, () > M¥ > M >0

Since QN,QZ) is a free abelian group whose rank is dim N =4 ,
we see that M* 1is a finitely generated abelian group of rank
d + rank(M). What is curious is that M* has a strong tendency

to be free. Explicitly:

(5.3) Theorem: If p divides the order of the torsion subgroup
of M¥ +then either p =2 or p 1is a prime of bad reduction

for N .

(5.%) Corollary: If the order of the torsion subgroup of M

is relatively prime to
2 x product of primes of bad reduction of N

then M¥* is a free abelian group.



56

Proof of Theorem: Let x*e¢ M* be a nontrivial element of

order p . Since E(N) is separated it suffices to show x¥
is zero, after having base changed to S = Spec(lp).

By our assumption, N 1is an abelian scheme over S , and
E(N) 1is the universal extension of N . Let N(p)/s be the
Barsegtti-Tate group associated to the abelian scheme N/S. Then
over Sv = Spec(Z/pV) for any  , E(N)(p) 1s the universal
extension of the Barsotti-Tate group N(p). The element x*eM¥
may be viewed as a section of E(N){p) and its image, y , in
N(p) generates a finite flat group G over S of order p .
Since p ¥ 2 , and since G has a nontrivial rational section,
by the classification theory of finite flat groups of order p
over 25 [20,Theorem 2] , G = Z/p .

Let the subseript y > 1 denote restriction to the base
Sv = Spec Z/pV.

Let N(p)et denote the etale quotient of N(p), and let
)et

\

E(N(P)et)” denote the universal extension of N(p . We

have the diagram
E(M)(p) , — N(p)

et

t
E(NE)®) g N(p)T

Since G = Z/p the image of G 1in N(p)et is nonzero.
Consequently the image of the section x* in N(p}et is nonzero.
It follows that the image of x¥* in E(N(p)it) is nonzero.

But this is a contradiction because the universal extension of
an étale p-divisible gyroup over ﬁ = Spf(zp) has no nontrivial

section of order p .
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(5.5) As a special case of the above theorem, take an elliptic
curve C over € whose Mordell-Weil group i8 a finite group
F of odd order relatively prime to the conductor of C .

Since any odd finite group of real points of C is
cyclic, F 1s a cyclic group.

Making a choice of sign of the Néron differential of ¢
enables us to identify wy,(Z) ¥ Z (where N is the Néron model

of C) and consequently the exact sequence (5.2.2) becomes
(5.5.1) 0> Z>M¢>F >0

But the theorem implies, under our hypotheses that M* 1is free,
and congsequently the exact sequence (5.5.1) becomes:

[} T
(5.5.2) O>»&Z~——>Z—> F > 0

where ¢ consists in multiplication by the order of F .
Consequently the canonical extension of the Néron model

of C determines in this case a canonical free resolution of

the Mordell-Weil group of ¢ . In particular, choosing a Néron

differential of C (there are two possible choicegjand to choose
one of these two amounts to the same as orienting the real locus
of C ) gives (in the case considered above) a canonical
generator of the Mordell-Weil group, defined to be the image of

1l ¢Z under T in (5.5.2). (call this the generator defined

by the canonical extension) It may occur to the reader that the

topology of the real locus of C enables one to obtain yet
another canonical generator of F: Since F 1is a finite subgrowp
of the connected component of the real locus of C , which is

a circle (oriented, after a choice of Neron differential), it
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makes sense to consider that element of F , closeSt to the
origin in the circle, where "closest" means in the direction of

orientation of the circle. Call this the topologically-defined

generator.

Tate has made some computations which abundantly support ¢he
opinion that there is no relation at all between the generator
defined by the canonical extension and the topologically defined

generator.

(5.6) Example of Breen and Raynaud.

The following is taken from a letter of L. Breen.

Let R be a discrete valuation ring with uniformizer 7
and residue field k . Let N/R be the Néron model of an
elliptic curve. Let f denote its fibre at k . Suppose one

of two special cases

I) N=Ga

II) N = G

Consider the short exact sequence of Zariski sheaves on the

smooth site over S = Spec R,

0~ G - G 1,G, > 0
& mult. by T a a

(Here i : Spec k > S is the canonical injection).

This induces the exact sequence

: 1 ™ 1 1
0~ HomS(N,l*Ga)-—» Ext™(N,G,) — Ext (N,Ga) > ExtS(N,i*Ga)

But

HomS(N, i*Ga)

Homk(N',Ga)

g s 1
Extg(N,1,6,) = Exty (W,G,)
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and consequently

(*) Extl(N,Ga)~E—+ Extl(N,Ga) enjoys the following properties
in each of our two special cases:
Case I: (*) is not injective

Case II: (*) is surjective

(5.6.1) Corollary: In either case, Ezgl(N,Ga) is not a locally
free sheaf of Os—modules, and there is no universal extension

of N by a vector group {over R).

Proof; If Ext'(N,G,) were locally free then Ext'(N,G,)

= HO(S,Eggl(N,Ga)) would be a free R-module and consequently

multiplication by 7 would be injective and not surjective on

it. (N.B. Extl(N,Ga) is not zero since the canonical extension

is nonetrivial). Moreover if there were an extension of N

by a vector group V , which was universal we would have
Hom(V,G,) ¥ Extl(N,G,)

gonsider

T
HomS(V,Ga)-———é HomS(V,Ga).

Since V 1is a vector group) T is not surJective and is
injective, contradicting the situation that obtained in either

case I or case II.



CHAPTER TWO

UNIVERSAL EXTENSIONS AND CRYSTALS

In this chapter we describe the crystalline nature of the
universal extension. More precisely we associate with an
abelian scheme (resp. Barsotti-Tate group) G/S a crystal , E*(G),
on S whose value of &, IE*(G)S s is the universal extension
E(G¥) of G* by a vector group, By applying the functor Lie
we then obtain a crystal in locally-free modules, D*(G). If
f: G » § 1is an abelian scheme then 1*(G) is nothing but the
usual crystalline cohomology, lecrys*(O(G/S)cryg. On the
other hand when G 1is a Barsotti-Tate group, D*(G) is the

generalized Dieudonné module associated to G .

One procedure for constructing crystals from the universal
extension was given in [16]. Here we shall use a completely
different approach allowing us to construct the crystals intrinsically
without making use of liftings. Unfortunately, it seems that
in order to verify that our crystals have reasonable properties
(and in fact that the sheaves constructed are crystals) we must
fall back on liftings.

We shall discuss separately the constructions for abelian
schemes and for Barsotti-Tate groups. For abelian schemes the
construction is straightforward. The procedure for Barsotti-Tate
groups is more technical. The reason for the additional compli-
cations is the following: For G an abelian scheme our descrip-
tion of E{G¥*) uses exclusively the whole group G , while for
G a Barsotti-Tate group we use the individual G{n)'s as

well. But while G 1is smooth (resp. formally smooth)
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and hence amenable to standard crystalline techniques, the
individual G(n)'s are not usually smooth. We assume some

familiarity with crystalline theory [2,3].
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§1. THE CRYSTALLINE NATURE OF THE UNIVERSAL EXTENSION OF AN

ABELIAN SCHEME

Let So“+ S be a (locally)-nilpotent immersion defined
by an ideal I, endowed with (locally) nilpotent divided powers
(Yn)n>0’ Let A and B be abelian schemes on S and
fo: A: -> BO a homomorphism between their reductions to So .
f, 1induces a map on tha dual abelian schemes fg: Bg - Ag
and hence & map on the corresponding universal extensions
E(BX) > E(A%). We've shown in chapter I [2.6.7,3.2.3] that this

is the map
(1.1) Exté(Bo,Gm) > Exté(AO,Gm)

induced by fo .

We shall construct a homomorphism E(B*) » E(A*) lifting
(1.1). Although this morphism depends on the triple (A,B,fo)
we shall denote it by E;(fo). From the construction it follows

that these homomorphisms enjoy the following properties:

(1) transitivity (= functoriality):
g
Given A,B,C, A—2>B —>cC_,
* _ % \ *
Es(g0°f0) = Es(fo/u Es(go)
(11) additivity:
Given two homomorphisms fO,fl: Ao > BO
% — % 3%
Es(fo+fl) Es(fo) + Es(fl)
(iii} functoriality in S:

Assume given a commutative diagram

S Sy

\isd
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where ¢ 1is a divided power morphism [2,3].
Let A',B' be abelian schemes on S' with A = #%(a'),
B = #%(B!') and let f,: A, > B Dbe a homomorphism as above.

The following diagram commutes:

E(B*) E&(f,) 3 E(A¥)
i i
g*(E(B'*)) > #*(E(AT*))

g (B8 ()

(iv) compatibility with liftable maps:
Given a homomorphism f: A » B with reduction fo: AO > By
E(f¥) = E4(f )
(1.2) Remarks
(1) Conditions (i) and {(iv) imply Eg(fo) is an isomorphism when
£, 1is (take f = id, in (iv))
(ii) Note we do not assert and in general it will not be true

*
that ES(fO) induces a morphism of extensions.

(1 3) The construction of Eg(fo).

We construct for each flat S-scheme , T , a homomorphism
Ext§(BT,Gm) > Exté(AT, Gm). It is functorial in T and passing
to the associated Zariski sheaves yields a homomorphism between

sheaves on the small flat site of 8
Ext’?(B,Gm) > Exté(A,Gm) .

But because E(B*) 1is a flat S-scheme, the map "restriction
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to the small flat site':

Hom(E(B*),E(A*)) > Hom (E(B*),E(A*))
Sflat
is bijective. Thus we obtain our homomorphism

E§(fo): E(B*) > E(A*) .

Because the construction of the map Exté(BT,Gm) > Extq(AT,Gm)
is functorial in T , we shall assume that T = S ., Consider

the following diagram

0

v €
0
&

—

o
Recall that if X is any smooth S~scheme, the category of line
bundles with integrable connection on X 1is equivalent to the cate-
gory of invertible modules on the nilpotent crystalline site of X/S.
This equivalence is functorial in the smooth S-scheme X .

Also it preserves the algebraic structure inherent in these
categories, i.e. it is an equivalence of Picard categories [7].
In particular when we pass to the groups of isomorphism classes
of objects, we obtain a canonical isomorphism.

On the other hand since the ideal of the thickening
SOC+ 3 has nilpotent divided powers, there is, for any stack
J , an equivalence of categories between J-crystals on
X x So/S and J-crystals on X/S . 1In particular)with
in-

7 = invertible modules we find invertible modules on (XO/S)Cry;EQ

vertible module s on (X/S)crys . Once again this equivalence is
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functorial in X and preserves the algebraic structure.
Consider the map
1
H™ (B, 0% )
B/Scrys

£
1 1 ~
> H'(B_,0 ) Su(a_,0 ) H (4, Yy )
° TBO/Sme ° ?Ao/s)crys OEVSCIYS
The fact that fo is a group homomorphism}plus the
functoriality (indicated above) applied to the "primitivity maps”
s¥-p¥ - pX , shows that our composite maps Exté(B,Gm) to

Ext§(A,Gm). This is the desired homomorphism.

(1.4) Remark: Given So“+ S as above and Ao an abelian scheme
on So s we can define for a flat S-scheme Tj an abelian group
prim(H*fa_ ,0 ] < ut Ao, 0 N\
Om AOT T, (a ) }

o o/T OTO/T crys

crys

to be the kernel of S*-pf—pg.

Passing to the associated sheaf for the Zariski topology we obtain
a group which is canonically identified with the universal
extension of (the dual of) any lifting of A, - This is an
example of an "intpinsie" definition of the crystal alluded to

above.

(1.5) Now pass to tangent spaces. We've already seen that

Lie(E(A*)) 1is canonically isomorphic to ut (A/8). The general
zie R

crystalline machine, [2] tells us that this module is

Hl(o ). Alternatively, this result can be deduced in
(A/3) arys

the standard way from the fact that the tangent space to Gm

is :
Ga

Consider the commutative diagram
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T
A¢————Ale]

! !

S €&——————53[¢]

defining Ale]. Since A is smooth we can assume that I 1is
> (A/S)

induced by 7 is easily understood (because S[e] » S 1is flat):

the zero ideal. The morphism of topoi {(Afe}l/S[el)

crys crys

For F a sheaf on alel/Slel, Tu(F)(1py 0,5, 9 = F(ulele Tel,...).
Visibly 7, 1is exact. For any (U~ T, J,Y) in the
crystalline site of A/S we have a split exact sequence of

ordinary sheaves (on T)

U T_—) O.'i,‘*‘) 0 .

This tells us we have a split exact sequence

O (}T-—> W*(OK[ ¢] )

T { 3% *
o oAcrys_» *(GA[E]crys)—» GAcryé—* °

Applying Hl and using the exactness of 7, to know

Hl(ﬁk(Oﬁ[e])} = Hl(cﬁ[el) we conclude.

(1.6) Remark: In particular we see that the map Hpp (B) —> Hp(A)
furnished by crystalline cohomology is precisely the map obtained

from Eg(fo) by applying the functor Lie.
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$2. STABILITY OF (¢ n)-HOMé’f
2

Fix a prime p , In $§2-%86 below we shall work with a pair
(S,N) where S 1is a scheme, and N a number such that pN-ls =0 .

Let G be a Barsotti-Tate group on S and

} 0= G(n) > G(m+n)-22~* G(m) » 0

(em,n

the doubly indexed family of exact seguences.
We have the push out maps

n+1
(e ) :0 > G(n+l) > G(m+n+l) -2 3G(m) > O
m,n+l

T A |

(em’.) :0 » G(n) — G(m+n) Jil————é G{m) » 0

and the pullback maps

(eme1 O > G(n) = G(mtn+l) > G(m+l) > O
E

(2.0.2) l{ | I lp \Lp

(em’n 0+ G(n) » G(mtn) —> G(m) =0

(2.1) Lemma (Stability in the second index):

FPor n > N , the maps
(1) (ey,q)-HomT (G(n),C,) > (ey n,.1)-Hom7( G(n+1),G,)

and (ii) Hom(G(n),G,) - Hom( G(n+1),G,)
are isomorphisms.

Proof: By the five-lemma it suffices to show the maps (ii) are
p
isomorphisms. Consider the sequence 0 + G(1) = G{(n+l)— G(n} = 0.

We must show Hom(G{n+l),Ga) -»> Hom(G(l),Ga) is the zero map.
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n

But because G(n+l) —P 5 G(1) is an epimorphism, it suffices
n

to note that Hom(G(n+1),G,)—2—> Hom(G(n+1),G,) 1is zero

since pn kills S .

(2.2) Lemma (Stability in the first index)

(em,n)-@é’(a(n),aa)z(em,’n)-_ggﬁ(c(n),ca) if omt>m >N

Proof: Consider the commutative diagram

¥
o

0 > wo (i)™ (epe,p) - Hon? (G(n),G,)— Hom(G(n),G,)
i

¥
(o)

0 > wg () > (eq,n)-Hom7(G(n),G,) — Hom(G(n),G,)

and use the fact that 1 is an isomorphism if m' >m > N
[16,11. 3.3.20]

(2.3) Remark: The analogue of (2.2) remains true when G, 1is

replaced by any smooth group, and in particular by Gm



69

§3. EXTENSIONS OF TRUNCATED BARSOTTI-TATE GROUPS BY Ga

Assume now that S 1is affine. The following proposition
tells us in particular that Extl(G,Ga) is isomorphic to
Extl(G(N),Ga) via the map induced by G(N)& G and hence that
Exte(G,Ga) = (0). Undoubtedly this last fact can be obtained via

Breen's method [4] for calculating Ext.
(3.1) Proposition: The coboundary map coming from the sequence

0+ G(N) » G(2N) » G(W) » 0
Hom(G(N),a,) - Ext'(G(N),c,)

is an isomorphism.

Proof: The proof of (2.1} shows that the map is injective.

Surjectivity is equivalent to the assertion that

Ext'(6(N),G,) > Ext’(G(2N),G,) is the zero msp. To see that

this is true note that the groups in question are by the appendix
(functorially) isomorphic to Extl(ﬂP(N)*,Ga) (resp. Extl(i.G(ZN)fGa)).

But by [16, II, 3.3.10] this map is zero.

3.2) Corollary. The map Ext (G,G. ) - Ext'(G(N) 2.) is an
—— e e a a8

isomorphism.
Proof: Consider the commutative diagram:

0~ G(N) > G(2N) > G{(¥)~>0

NN

N
0+>G(N)» ¢ —P—>a >0

Since the connecting homomorphism is functorial there is
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a commutative diagram

1
N,
Ext (G,Ga)

5} o

Hom{G(N),G_)

a

> Ext(G(N),G,)

1}f| on

Hom(G(N),Ga)

Three sides being isomorphisms, the corollary is established.
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§4. ON THE EXISTENCE OF % -STRUCTURES

Let T be any scheme, H a commutative group scheme on
T . Fix an extension of H by a smooth commutative group scheme
L (in practice L =G, or G,).
(4.1) 0> L->E->H->0
Given a L?-structure on this extension we can modify it by adding an
element of F(T,£H® Lie(L)) to obtain a new 4 _structure on the
extension. Conversely if we have two 7-structures on the
extension then their difference is an element of F(T’QH® Lie(L)).
We denote by HoﬂV(H,L) the subgroup of Hom(H,L) consisting
of the maps & H > L with d& = Ocl(wy® Lie(L)). For an

arbitrary &: H > L the automorphism of the trivial extension
0->L~->IxH>H~>0

corresponding to &, transforms the trivial &-structure into
the E?-structure given by d¢§ . This discussion explains why

the following sequence is exact:
(4.2) 0~ HomV(H,L) -+ Hom(H,L) -T (&,H@ Lie(L)) - Ex’cbf(H,L) > Extl(H,L)

We can also pass to sheaves for the flat topology to obtain

the sequence
(4.3) © > HomV(H,L) » Hom(H,L) > w® Lie(L) > Ext‘T(H,L) > Ext’(H,L)
(4.4) ZLemmatAssume T 1is affine and let

0>L>E->H~>0

be an extension which defines the zero section of T(T,Extl(H,L)).
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Then this extension carries a #-&tructure.

Proof': For variable T'/T consider the H .structures on the
restriction of the extension to T'. As noted above we obtain

in this way a sheaf which is formally principal homogeneous

under wy® Eig(L) . By assumption, locally this sheaf has sections,
and hence the quasi-coherence of .,® EES(L) implies (since T

Wy
is affine) that it has a global section.

(4.5) Remark: The lemma can be explained "geometrically"” as
follows: By assumption our extension is & torseur under ggg(H,L).
Let {Ui} be a cover of T on which it is trivial and

éij er(UinUJ,ﬁgm(H,L)) a corresponding cocycle. Since the cocycle
(d%ij) is a coboundary we can find §.structures p; on the

trivial extension over U, such that pi—pj = d@ij. Thus &

1 i3
is an isomorphism of &4-extensions over U;nU;  and by gluing

we obtain a & -structure on our original extension.

(4.6) Remark: Let H be finite and locally-free and L =G .
Since Ext™(H,G ) = (0) it follows that (if T is affine) any

extension of H by G has a H_structure.

(4.7) The following discussion will be used in the proof of

(%.12) below. Let T be a scheme, and X an arbitrary T-scheme.
Let T[{e] Dbe the scheme of dual numbers over T ,

X[el = 4o, X X Tlel,my:X[e] » X the structural map. On X

there is an exact seguence of sheaves:

0>G, > TG »>G >0
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Corresponding to this sequence there is an "exact sequence"

(of Picard categories) [7][15]:
0 > TORS(X,G,) > TORS(X[e],G ) > TORS(X,G,) > O

This means that we have an equivalence of categories, compatible

with the "addition laws"

TORS(X,Ga)jE» category of pairs (P,%) where P is a
(4.8) G, -torseur on X[e] and @:P|x—>Gm is

an isomorphism of Gm torseurs on X

This equivalence is functorial in the T-scheme X . Let us denote
the above category of pairs by TORS( T[e]l/T; X[s],Gm). Because

a E?-torseur P on X under Ga is the torseur P/ plus the
additional structure of an isomorphism of torseurs §7:WI(P) 2 W;(Pb

. s * . 1
satisfying the condition A () = id, (where TsTat A(X) > X

P
are the projectionsb it follows from the functorial nature of
the above equivalence of categories that there is an induced

equivalence:
(%.9) Tors%(x,6, ) £ TorsH(TI el /T ;5 X[e, G )

where the category on the right has as obJects those pairs (P,Q)
with P a Y-torseur and & a horizontal isomorphism.

ILet G be any T-group scheme. Extensions are torseurs
P , plus isomorphisms

s*(P)=> p;(P) A p;(P)

satisfying the commutative diagram (1.1.%.1) and (1.2.1) of [11, SGA 7,

Exposg VII]. Thus the functorial nature of (4.8) implies that



74
it induces an equivalence:
(4.10) EXT(G,6,)% EXT(T(]/T; Glel, G)

Combining (4.9) and (4.10) there is an equivalence of

categories
(4.11) EXTAV(G,Ga)"-"; EXTT(T( ] /5 Glel, G )

(4.12) Proposition: Assume T 1s affine, H a finite locally-free

T-group. Any extension of H by G, admits a & _structure.

Proof: Fix an extension E . View E via (4.10) as an extension
of H[e] by G, together with a trivialization, § , of the
restriction of this extension to T . By (4.11), §-structures
on E are the same as é?-structures on E {thought of as an
extension of H[e] by Gm) which satisfy the additional property
that 2 is horizontal.

Via § we transport the trivial @-structure on HxGm
to E|T to obtain a Y-structure Vg . Because H 1is finite and
locally free we can speak of the torseur (under QH[Q]) of
E?-structures on E . Denote it by . and denote by JO(= 2/T)
the torseur under Wy of §-structures on E[T. Since T
is affine)we can choose an isomorphism QH[efZP ,thence an
induced isomorphism Qﬁﬁa J, - Viewing VL as an element in
T(wy), the (obvious) fact that T(-"iﬁ[ ¢l )— F(QH) is surjective
shows that E has a @-structure lifting V@ and completes the

proof of the proposition.
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$5. RELATION BETWEEN EXTY AND e-HoMT

(5.1) Proposition: Let n Z 2N . The natural homomorphism
(en,p)-Hom¥(G(n),C,) Ext%(G(n),G,) 1is an isomorphism.

Proof: Consider the following ccommutative diagram:

(5.2) 0> wg(n) 7 (on,n)-BOMN(G(n),G,) > Hom(G(n),G,) > O
8

0~ B ()™ Ext§(G(n),Ga) —_— Ext(G(n),Ga) >0

Here g 1s the coboundary map which was shown above to be an iso-
morphism in (3.1). The result will follow once it is shown that
1 (n) > Extq(G(n),Ga) is injective. To do this we must show
that the map

(5.4) Hom(G(n),G,) > wg(n)
oceuring in (%.2) is the zero map. Consider the sequence
0 > G(n) » G(2n) » G(n) » 0

It has been shown in the proof of (2.1) that
Hom(G(2n),G,) > Hom(G(n),G,) is the zero map, and has been shown

in [16,IT 3.3.20] that is an isomorphism.

4 (2n) 7 Ya(n)
Thus (5.4) is the zero map and the proposition is proved.

(5.5) Remark: The proposition probably remains true agsuming only
n >N . What must be shown is that (5.4) is the zero map under
this weaker assumption. For N=1 , it is very easy to show

this.
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§6. CRYSTALLINE EXTENSIONS AND A?-EXTENSIONS

(6.1) Here we recall Grothendieck's definition of generalized
extensions, and then we specialize the notion to arrive at the
definition of crystalline extension.

Crystalline extensions will be used in showing that
Lie(E(G#*)) 1is "crystalline in nature."
We shall constantly work with the following structure:

(6.2) Fix a scheme T, and G a commutative T-group. For
each T-scheme T' let Fpy = category of GT,-torseurs. The

usual contracted product of G,,-torseurs yields a functor

T
Fps X Tpr > T

This structure is an example of a fibered category J on
¢ = Sch/T which is fibered in strictly commutative Picard
categories (7,15 .

If 7 is any fibered category in strictly commutative
Picard categories over ~ (any category), and H any commutative

group in  , we may define the notion of 7-.extension of H:

(6.3) Definition: An JZ-extension of H 1is an object P of

’H

that the analogues of the usual diagrams (expressing the

equipped with an isomorphism s*(P)ﬁi-pI(P) A p;(P) such

associativity and commutativity of the composition law) are commutative.
If products do not exist in @ , the definition is modified by
requiring that for every pair of points PysPp: X > H we be given

an isomorphism (pl+p2)*(P):i p;(P) A p;(P) satisfying the

usual conditions as discussed in [11, SGAVII].

These extensions form a category EXT(H,7) whose morphisms
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are the morphism & P ~» Q in J

H such that the following diagram

commutes

s*(®) p,*(P) A Ps(P)

s*(éiL i Py (8)ADS ()
s¥(Q) —=——p](Q) A p,(Q)

The functor a:J X J > 7 induces a composition law on
the category EXT(H,J). Passing to isomorphism classes of
objects we obtain a commutative group Ext(H,J). Finally the

category EXT(H,7) varies functorially with H and 7.

(6.4) We shall give several examples which illustrate the above.
(6.5) ¢ = (Seh/T) , J = G-torseurs,

EXT(H,7) 1is in a natural way equivalent to EXT(H,G).

(6.6) ¢ = (Sch/T) , G a smooth T-group, J = &_torseurs
under G . EXT(H,Z7) 1is in a natural way equivalent to EXT§QH,G).

(6.7) Let (T,I,y) be a divided power scheme, i.e. Isop is endowed
with divided powers. Let (Sch/T)' = # be the full sub-category
of Sch/T consisting of those X > T such that the divided
powers on I extend to X . Fix a smooth commutative T-group

G(e.g. G=0G, or G= G,). For any X in (Sch/T)' 1let

Gy be the sheaf of groups on Crys(X/T,I,y), crl[3], defined by

T((U,T',4),Gy) = G(T') = Homy(T',G) -

If f: X' > X is a morphism in (Sch/T)!', then there is an
*

induced map fcrys

(GX) > Gy, - This allows us to define the
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fiber of 7 at X s Ty s to be TORS(CryS(X/T,I,Y),GX), the
category of torseurs on the crystalline site of X with structural
group GX . The operation A 1is Jjust the usual contracted
product of torseurs. Since morphisms between torseurs are
necessarlily isomorphism this category admits an alternative
description: It is equivalent to the category of crystals in
(small Zariski) G-torseurs, i.e. crystals for the stack

(U,T',8) +— (GX)(U’T,,A)-torseurs. If H is a group in (Sch/T)',
we denote the category of extensions of H by J by

EXTCTYS/T(H,G) and refer to it as the category of crystalline

extensions.

(6.8) Remarks: (i) When G = Gm,TORS(Crys(X/T,I,Y),Gm) is equivalent
to the category of invertible modules on Crys(X/T,I, ¥).
(i1) Wnere G =G, , TORS( Crys(X/T,1,v),G,} 1is

equivalent to the category EXT (64 e )

chrys crys Xcrys

(411) Although the localization allowed in
Crys(X/T,I,Y) is quite coarse this will not be bothersome since
for the groups Gm and Ga Zariski torseurs are the same as

(say) f.p.p.f. torseurs. When we do use G, » the torseurs

we'!ll consider will in fact have sections over closed sub-schemes
defined by nilpotent ideals (c.f. §11). Because, previously,
"torseur" was used with reference to one »f the large sites
(ZARISKI, ETALE, F.P.P.F.: for Gm and G, the notions coincide)
we recall how to pass from torseurs on the small site to torseurs
on the large one. For simplicity let!'s work in the

Zariski topology. For any
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scheme Y there are two morphisms of topoi: p : YZAR -> Yzar s

r:+ Y > Y,,». The morphism p is defined by T(Z,p*(F))

= r(Z,g*(F))} if g:Z>Y and F 1is an ordinary Zariski sheaf on
Y . The morphism r is defined simply by restricting a sheaf

7 on the large Zariski site to the sub-category of opens of Y .

)

The functor . prioY
Pe p*(P) A

establishes an equivalence between Gm-torseurs on the small and

m

large sites of Y (similarly for Ga-torseurs). The functoriality
of this equivalence follows from that of the morphisms p in a

straightforward manner.

(iv) Given X/T , there are functors
(6.9) TORScryS/T(X,Gm) > TORS#(X,Gm)
(6.10) Toascrys/’r(x,ea) > Toas‘?(x,ca)

If X/T 1is smooth and Crys(X/T) is replaced by the nil-
potent crystalline site, then (6.9) is an equivalence of
categories [2]. Using the fact that the "standard" connection
of Ox is nilpotent together with the interpretation of an
object in TORSQYX,Ga) as a short exact sequence of modules with

integrable connection:

(6.11) 0> 0y >m> 0y >0

we see that (when X/T is smooth) (6.10) is an equivalence of
categories.

{6.9) and (6.10} are functorial in X . Furthermore they
are compatible with the "composition laws" with which both source

and target are endowed. Iet H be a T-group such that
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H, HfH , H¥HXH all belong to (sch/T)! (e.g. H/T flat, I
principal). There are induced functors (compatible with the

composition laws):
(6.12) EXTcrys/T(H,Gm) > EXTéTH,Gm)
(6.13) EXTcryS/T(H,Ga) > EXTY(H,G,) .

If H/T 1is smooth and we restrict to the nilpotent
crystalline site (resp. no restriction) then (6.12) (resp.(6.13))

is an equivalence of categories.

(6.14) We shall need one last example of generalized extensions.
Let (T,I,y) be as above and let T = Var(I). Let = (Sch/To).
Let G Dbe a smooth commutative T-group and define 7z exactly

as in {6.7), i.e. 7= category of Gy -torseurs on Crys(X/T,1,¥v)

X
for any To—scheme X. If H is a group in ~ we shall

denote the category EXT(H,7) by EXTcrys/T(H/TO,G)j and if it
is clear that H is a T_-group we shall drop the "To" from

the notation.

(6.15) Remarks: (i) The reason for distinguishing between
(6.7) and (6.14) is that a T -group scheme is never a T-group
scheme.

(i1) If T' is a closed subscheme of T_ and
@ = (Sch/T'), then with J as in (6.14) there is the category
Echrys/T(H/Tv,G). ThHis category dirfers from that of (6.1%)
since (because the ideal of T' in T need not have divided

powers) even if H can be lifted to T , the category of
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crystalline extension of a lifting can be different from

this category.

(6.16) Let us indicate the functorial variation of examples
(6.7) and (6.1%) when (T,I,y) varies. Let (T!',I',Y') > (T,I,Y)
be a divided power morphism. First assume X 1is a flat T-scheme,

Xt a flat T'-schemeiand assume we are given a commutative diagram

X! >X
(Tr,It,9') =~ (T,I,vy)

Let G be a smmooth T-group, G' = G%T' « Since crystalline
torseurs are crystals the general procedure for taking the
inverse image of a crystal [3, IV 1.2; or 16, III, 3.8] permits

us to define a functor

(6.17) TorsCTYS/T (1,6)—> TorsSTYS/T! (x+,61)

This functor varies functorially with (X',X). In particular
if H is a flat T-group, H!' = HéT') there is an induced

functor
(6.18) ExTTYS/T(1,6) > ExrCTYS/T! (41, gr)

If we assume X (resp X') is a To(resp. T ') scheme,the
o
map (6.17) is still defined. Furthermore, if H 1is a T, &roup,

H' = H;'IQ') there is an induced functor

EXTcryS/T(H/TO,G) > EXTCTyS/T‘(Ht/Té,G') .



82

&7, THE CRYSTALLINE NATURE OF EXTéQ-,Ga)

Here we let S be a scheme on which p is locally nilpotent.
and let (I,¥) be a divided power ideal of 0g + let G bea
Barsotti-Tate group on S . The inclusions G{n)™* G(n+l)

induce functors

crys/s

EXT (G(n+1),G,)— EXTcrys/S(G(n},Ga)

Exﬁ(a(ml),ca) — Exﬁ(@(n),c}a) »

By passage to Lim,[9], we obtain from (6.10) a functor

crys/s

(7.1) &im EXT (6(n),G,)—> Lim EXTQ(G(n),Ga) .

(7.2) Theorem: The functor (7.1) is an eguivalence of categories.
Proof: Note that (7.1) is induced by the functor

. erys/s . &
(7.3) Lim TORS (G(n),G,)—> Lim TORS7(G(n),G, ).

Since the category of crystalline extensions (resp. 4 _extensions)
is defined as consisting of crystalline (resp.g') torseurs, P,
endowed with an isomorphism s*(P)::p;(P) A pg(P) {satisfying
the associativity condition) and since the functor (7.3) is itself
functorial with respect to the Barsotti-Tate group, G ; it suffices
to show that (7.3) is an equivalence of categories. Assuming
momentarily (7.7) below)we shall show that (7.3) is faithful, full
and essentially surjective.

1) faithful. ILet (Qn),(tn) be two morphisms between the
object (P,) and (q,) of (I_.i__r_nTORScryS/S(G(n),Ga). Assuming
we must show (&) = (¥,)-

(@nG(n) —iﬁi—»cr(n)) ) (*nc;(n)i—@» G(n)))
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Fix an n and let (U< T,J,6) be an object of the crystalline
site Crys(G(n)/S,I,Y). Obviously it is permissible to assume
T is affine. By (7.7) below we can find for m sufficiently
large a commutative diagram
ﬁ C——————e;T
s/

.4 /s

(7 ) G‘(n) y

/7 f
s

G{(n+m) L

Let us use a vertical bar "|" +to denote restriction
(or more properly inverse image). By hypothesis there are

commutative diagrams:

P, lo(n)

(7-5) ) J/ l by G (1)
Qn.—/V_‘ m1G(0)
Bz, l0(n)

er wn’Q‘m'G(n)
U Qg lG(0)

But by definition of the inverse image of a crystal

[3,IV 1.2, or 16, III, 3.8] we have

¥*
( 1G(n)) = f (% .
totm U=sT NG (n+m)id 5 G (n+m)
and similarly for (¢, . 1G(n))y p Hence the commutstivity

of the diagrams (7.5) allow us to conclude (in}Uf—)’l’: (*n)UC—)T .
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2) full: Here it will be convenient to denote the image of

an object (Pn)(resp. on arrow ( gﬁ) of Lim TORScrys/S(G(n),G )
under (7.3) by (?ﬁ)(resp.{in)). Let (a,): (?h) »> (q,) bea

morphism in (LiquORS (G(n),Ga). We must show that there is a

a

morphism (g ): (P,) > (Q,) in Lim TORSCryS/S(G(n),Ga) with
(3,) = (o,) . Just as in the proof of faithfulness above,we fix
an n and an object (U< T,J,8) of Crys(G(n)/S,I,y). Using

diagram (7.4) we define g to be the map obtained via
T
transport of structure using the isomorphisms Péﬁ-Pn+miG(n)

and Q= q_, |G(n) from ¥ It must be shown that this

(%nem)-
definition is independent of the choice of f:T > G(n+m), a

lifting of U < G(n)*> G(n+m). Let f be two liftings.

1!
By definition of the divided power neighborhood [3,I 4.32}
N
. . v,
of A: G(n+m)~+ G(m—m)X G(n+m) there is a map f: T 9Dé€n+m)/s
with pqye f = f1 s Ppe f = f2 . Augmenting m 1if necessary
we can assume that Qé(n+m)/s is locally-free of finite rank
[16,IT 3.3.20}. Since a ¥-torseur under G, can be interprated
as an exact sequence of modules with integrable connectionjit
¥*
follows from [3,II,4.3.%,4.3.10 ] that pl(cn+m) is identifiable
2 * r3 '] * .
with p2(°n+m)) once we identify pi(Pn+m) with Pn+m ¢ (nem)
* E(
(and similarly for p.(Qn+m». Hence we can identify (n+myé
* . A% % A%, *
f1(op,q) and f2(°n+m) with £ (pq(e,,,)) = (poloy,,))- This

shows our definition of ¢ is independent of the choice
Ty

of 1lifting and completes the proof that (7.3) is full.

3) essentially surjective: The proof here is quite similar

to the proof of fullness above., Given an object (Pﬁ) in

Lim Toas?(c(n),aa)) we obtain (P,) in Lim TORScryS/S(G(n),Ga)
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by defining P to be f*(P' ), where f is any morphism
Nyesp n+m’} any

making (7.4) commutative. The fact that this definition makes

sense and yields an object (Pn) such that (P5} 9'(Pﬁ) follows

by again invoking the above cited results in Berthelot's thesis

[3,IT 4.3.4, 4.3.10].

(7.6) Remark: The proof of faithfulness is valid if G, 1is re-
placed by any smooth commutative S-group. For fullness and
essential surjectivity the interpretation of Ga-torseurs as
extensions of ¢ by @& (and hence as modules with additional
structure) was necessary in order to apply the results in {2,3].
But if we modify the target by replacing TORS§(G(n),Gm) by

Tors Pid ”“%XG(n),Gm) (i.e. the category of line bundles endowed
with a nilpotent integrable connection) or if we modify the source
by using the nilpotent crystalline site (s) , then the above

proof carries over to yield equivalences

(7.6.1) Lim EXTcryS/S(G(n),Gm)ﬁ Lim gxT° ! 'Q(G(n),c}m)
(7.6.2) Lim EXTVI=CTYS/S (6 (n),¢ )% Lim EXT7(G(n),C )

In the course of the above proof}use wa.s made of:

(7.7) Lemma: Let G be a Barsotti-Tate group on S . G 1is
formally smooth for nilimme}sions (i.e. if X 1is an (absolutely)
affine scheme over S) and X, is a closed sub-scheme defined

by an ideal in which every element is nilpotent, then any morphism

X, > G can be lifted to X ).
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Proof: Let (X,XO) be as in the gbove explication. Write
X = Spec(Aa), X, = Spec(A/I). For x & L = {set of finite subsets

of I ))let I, be the finitely generated sub-ideal of I

X

generated by 1, and let X, = Spec(A/Ix). Since X_ 1is affine

A
the map X > G factors through some G(n). Because G{n) is

J

locally of finite presentation over S and XO = ]im Xx) it fol-
lows from {lO,EGAIv8.13.l] that X > G(n) can be lifted to

X{;i G(n) (for some %). But X{;+ X 1is a nilpotent immersion.
The result now follows since Barsotti-Tate groups are formally

smooth [16,1I,3.3.13].

{7.8) Corollary (of 7.2):The category Lim EXTcryS/S(G(n),Ga)

is rigid.

Proof: By (7.2) this category is equivalent to Lim EXT%(G(n),Ga).
The automorphism group of the zero object (G(n)xGa, trivial con-
nection) of this category consists of compatible families of
homomorphisms g: G(n) ~» G, with dg = 0. But

(gn) € lim Hom(G(n),Ga) = Hom(G,Ga) ={0) and hence each g,

is zero.

(7.9) Let us denote by EXTSTYS/S

crys/S

(G,Ga) the category

im EXT (G(n),G,). Similarly we write

EXT7(G,G ) (resp. TORS%YG,Ga), EXTRIG(G,G,),--. for the categories

Zin EXT(G(n),G, ) (resp. Lim TORSY(G(n),G,), Lim EXTRIG(G(n),G,),-..).

crys/S

Finally we write Ext (G,Ga), etc. for the abelian group

of isomorphism classes of objects of EXTcryS/S

(G,Ga), etc.
Observe that the action of T(5,65) on G, gives Extcrys/S(G,Ga)

a module structure.
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Having introduced all this notation we can state the following

immediate consequence of (7.8):

(7.10) Corollary: The (small) Zariski presheaf on S

Ues Extcrys/U(G!U,Ga) is a sheaf of Og-modules.

(7T.11) Let us denote this Og-module by Extcrys/s(c,aa). The
following proposition tells us that ExtcryS/S(G,Ga) is canonically
isomorphic with Lie(E(G*)), the tangent space of the universal

extension of the Cartier dual of G .

(7.12) Proposition: Assume S is affine and p" kills S . The

natural map Extcrys/s(a,ga) > Ext*(G(n),Ga) is an isomorphism

provided n > 2N .

Proof: By (7.2) we may replace the source by Extg(G,Ga). Let
(Pi) represent an element in Extg(G,Ga). To demonstrate injectivity

we must show that

[P, € trivial #-extension of G(n) by Ga]

N

{(Pi) & tyivial -extension of G by Ga]
Let 0, denote the trivial & _extension of G(i) by G, -
We are to produce for each i > n an isomorphism ei: Oiﬁ% P.l
such that these form a compatible family.

Let (B;) be the object of EXT(G,G,) dbtained by forgetting
the 9 -structure on each P, . Since our definition of EXT(G,Ga)

as [Lim EXT(G(i),Ga) coincides with the usual definition as the

category of extensions of fppf sheaveg}it follows from (3.2)
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that there is a unique isomorphism (Ti):(;;):; (0;). By
hypothesis there is an isomorphism o: P~ O, . But U.¢;l

is (by the proof of (5.1)) where it is shown that (5.4) is

the zero map) a horizontal automorphism of On . Hence T

is actually an isomorphism between Pn and On (and not

only between the underlying extensions)}. It remains to explain
why each TS is horizontal. Using T, we obtain, via transport
of structure, a % structure on Ui' This corresponds to an
element 1; of r(S,QG(i)). By hypothesis 1 = 0 and since

for 1 > n the maps are isomorphisms it follows

(1) 7 Y (n)
that each ni = 0 . Thus for 1 > n) T is horizontal and
injectivity is established.

Let R be a %-extension of G(n) by G, . To prove
surjectivity we must establish the existence of an object (Pi)
in EXTé(G,Ga) with P2 R, By (3.2), there is an object (F;)
in EXT(G,Ga) with P;iR , K being the underlying extension of
R . Choosing an isomorphism # between Ph and F} we endow,
via transport of structure, ?h with a % -structure so that #
becomes & horizontal isomorphism. We must endow each Fi(i > n)
with a %-structure so that the given maps P2 T, |G(n)
are horizontal. Via transport of structure we put a 4 _structure

on P,|G(n). Since S is affine,(4.12) tells us that F,

at least one &-structure. But the set of % -structures on

has

Pi(resp.FilG(n)) is principal homogeneous under
F(S,QG(i))(reSp.?(S,QG(n)). Surjectivity now follows since the

map T(s’%(i)) e r(S,QG(n)) is onto.
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(7.13) Corollary: Let p be locally nilpotent on S,(I,y) be
a divided power ideal in 06, , G a Barsotti-Tate group on S .

There is a (functorial in G) exact sequence
S
(7.1%) 0> > Ext CYYS/ (6,G,) > Ext(G,6,) > 0

which is canonically identified with the sequence obtained from
*

the universal extension of G by taking tangent spaces.

In particular Ex‘l:crys’/S

(G,G,) 1is a locally-free (of finite

type) Og-module.

Proof: This follows immediately from (8.7), (3.2),(5.1) and
(7.12).

(N.B.) The reader can check that our forward reference to

(8.7) does not involve any logical circularity.
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§8. PASSAGE TO LIE ALGEBRAS

To apply the results of §2-87 +to the universal extension
we must relate Homrig(-,Gm) to Homrig(-,Ga) and Homél-,Gm)
to Homé(-,Ga).

Consider as usual an exact sequence of finite locally free

S-groups
(e) 0>A->B->C~>0
giving rise to the sequence

(8.1) 0 -~ -> (e)-Homrig(A,Gm) > A% 50

(CTod

For affine 8 , the sequence of S-valued points is exact.
Thus the snake lemma together with a previously noted fact
(passage to Lie algebra commutes with passage to associated

Zariski sheaf) tells us that the corresponding sequence
*
(8.2) 0~ wy > Lie((e)-Homrig(A,Gm)) > Lie(A) > 0

is also exact.

If we replace G by G, we have the analogue of {8.1):
(8.3) 0> wy (e)-Homrig(A,Ga) > Hom(A,Ga) -0

Let m: S[e)] > 3 be the structural map so that there is

an exact sequence on S
0 ~> Ga > v*(Gm) -> Gm >0

Iet 3¢ A ~> Ga be a homomorphism and ¢ be a rigidification

on the resulting extension
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0> A— B—> (0 —0

R

0> G—> E—> C— 0
a ®

N
g ~
Inf(C)

*
Applying T  to the whole diagram and "pushing out" along the

* *
map T (Ga) > T (W*Gm) -> Gm) we obtain an element of
Lie((e)-Homrig(A,Gm)). This prodedure defines a homomorphism from
the extension (8.3) to (8.2))which is an isomorphism on end-groups.

Hence
Lie((e)-Homrig(A,G )) = (¢)-Homrig(A,G,)

{8.4) Remark: The above discussion is valid also when "Homrig"

is replaced by "Hom¥ ",and hence Lie((e)-Homé(A,Gm)) 4 (e)-Hom§(A,Ga).
(8.5) Let S be a scheme with p'-1 =0 and let G be a
Barsotti-Tate group on S8 . The universal extension of G* by

a vector group is
(8.6) 0= wy(n) ™ 1ig(eN,n}-ggg?(G(n),Gm)-+ "= 0

Because "lim" is exact and Lie is defined as a kerneljit

follows from the preceeding discussion that

Lie(1in(ey ,)-Hon¥ (G(n),G,))

#

lim Lie((ey )-Eom¥ ((G(n),G,))
Lim, ey, p)-Hon” (G (), G,)
~Hom9(G(n),G,)  (by 2.1))

i

= (eNn N)

Summarizing)we state
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{(8.7) Proposition: If pN kills S and n > N, then the

tangent space EE(E(G*)) is (eN,n)_}m__m-‘%’(G(n),Ga).
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89, THE CRYSTALLINE NATURE OF THE LIE ALGEBRA OF THE

UNIVERSAL EXTENSION

Fix a scheme S on which p 1is locally nilpotent and let
G €B.T.(S) , the category of Barsotti-Tate groups on S .
Let us explain how to endow Lie(E(G)) with a crystalline

structure. More precisely we'll define a contravariant functor

p*: B.T.(S)" > (Crystals in locally-free modules on s).

Let U be open in S and let U~ (T,I,y) be a divided
power thickening and assume p 1s locally nilpotent on T . Let
G be a Barsotti-Tate group over S and let ¢ (again) denote its restric-
tion to U .Let G' be any lifting of G to T . Using the
abuse of notation indicated in (6.141’we know
Ex'rc”ysﬂ(s,ea) & Ex'rcrys/f(a',aa) since reduction module
a divided power ideal induces a functorial equivalence between
crystals (of any species whatsoever) on G'(n)/T and
crystals on G(n)/T . As a consequence of the work of Grothendieck
and Illusie [13, 14 ] we know that, locally on T , we can
find such a G!'. If H' 1is a Barsotti-Tate group on T and
H= H"E U then a homomorphism u: G » H induces a map
gfgéryS/T(H,Ga) > Egi?rys/T(G,Ga) . Thus we obtain a map
w Lie(E(H'™)) > Lie(E(G'*)). If u is an isomorphism, then
fu is an isomorphism. In particularjit follows that whenever
G* and G" are liftings of G to a divided power neighborhood)
Lie(E(G'*)) and Lie(E(G"*)) are canonically isomorphic.
Let V < (T',It,Y}—-?é U= (T,I,y) be a morphism in the

crystalline site of S . If G' is a 1ifting of G to T
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then 3*(G') is a lifting of G|V to T'. Thus we obtain a

commutative diagram of isomorphisms

(9.1) s*(Lie(E(GH))) ——> Lie(B(#*(G'*)))
zx i
8 %(Ext®V/(a,6,)) <> mxt°TVS T (6 |v,6,)

Thus the functor ID* can be explicity defined by .

(9.2) D*(G) - BtV (g,0.)

Ues (Ty I’Y‘)

(9.3) Remark: The above definition of ¥ is intrinsic, i.e.
it is defined entirely in terms of S (without using liftings of
Barsotti-Tate groups). Liftings are used to show that

D*(G) is locally-free and to show that I*(G) is

U~ (T,I,Y)
a crystal rather than just a sheaf on the crystalline site.
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810. A DEFORMATIONAL DUALITY THEOREM FOR BARSOTTI-TATE GROUPS:

AN EASY CONSEQUENCE OF THE THEORY OF ILLUSIE

Let S be an affine scheme on which pN is zero. Let
SQC—> S Dbe a closed subscheme defined by the vanishing of an
ideal I oy with ™1 - (0). Let G be a Barsotti-Tate
group on S . Denote by G(S/SO) the kernel of G(S) » G(So)
and denote by EXT(S/SO; G, Gm) the category of extensions of
G by Gy trivialized over So . We write Ext(S/SO;G,Gm)
for the group of isomorphism classes of objects of EXT(S/SO;G,Gm).

In [16,appendix, 2.5] under the additional assumptions

1) 8 = Spec(R), R an artin local ring

2) S, = Spec(k), k = residue field of R , k perfect
G = .

3) 0, /7,

it was proved that there is a canonical isomorphism
(10.1) m(R)ﬁfExts(Qp/Zp,Gm)

Since = G* is a formal group and since SO= Spec(k), and k is
a fieldy w(s) = G*(S/SO). On the other hand the fact that k
is perfect implies Ext(S/SO,G,Gm)=fExt(G,Gm). Thus the iso~

morphism can be written as

* o~ .
G (S/So) Ext(S/SO,G,Gm)
Making extensive use of L. Illusie's deformation theory

[14%, vITI ], we prove the following generalization:

(10.2) Deformational duality Theorem: If 8, 8, G satisfy the

initial conditions above then there is a canonical (functorial)
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isomorphism
G*(S/So)£%>Ext(S/SO;G,Gm).
We shall give two constructions of a map
G*(S/5,) > EXT(8/5,;G,G ).
(10.3) Let §: G(n) » G, Dbe an element of G*(S). By pushing

out the Kummer sequence we obtain an extension of G by Gm

0= G(n)— G— G— 0

A

O-—?Gﬁr——+ E— G— 0

If 3 ¢ G*(S/SO), then the restriction of the extension

E to So has a canonical trivialization.

(10.4) Let us write TORS(S,Tp(G*)) for the category

QEEE TORS(S,G*(n)) (i.e. the category whose objects are compatible
families of torseurs, P(n) a torseur under G*(n), where the
transition morphism  G¥(n+m)— G*(n) is p™). Similarly we
write TORS (S/So,Tp(G*)) for the category of torseurs under
Tp(G*) equipped with a trivialization over §,.

Because the G(n)'s are finite and locally-free
Ext'(G(n),6_) = (0) and hence TORS(S,G*(n))% EXT(G(n)sG, ).
Explicitly an equivalence is given as follows:

Given a G*(n) torseur P we twist GmX-G(n) by the torseur-p.
In down to earth terms this means we take the sheaf-theoretic

quotient of P x(GmX G(n)) by the action of G¥*(n) given by

(p,gsx) + & = (p-% , g-8(x),x)
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where peP(S'), geGm(S') » xeG(n)(8'), &: G(n)g,> GmS' ,
S' an S-scheme.

A quasi-inverse to this functor is given by assigning to

an extension
i T
0o~ Gm-———9 E —> G(n) > 0

the G*(n)-torseur of splittings of this extension, i.e. the

torseur P with

P(S')

{o: E>G lo » 1= 1id

where ot = 4.0 o+ § o T, for @:G(n)s, - GmS' . Since
TORS(S, T, (G*) )/—"'V(Lﬂ EXT(G(n),G ) & EXT(G,G, )

we define a map G*(8) - EXT(G,G,,) by composing the

above equivalence with the map G*(S)Jla TORS(S,TP(G*)) whose
definition is as follows: 1if g* € G¥(S), let a(g*) be the
family (P(n)) where P(n) 1is the G*(n)-torseur (p”)'l(g*)

arising from the exact sequence
n
0+ G*(n) » G* B g% » o
Clearly this induces a map G*(S/S )— TORS(S/SO,TP(G)) .

Remark: The fact that the two definitions in (10.3) and (10.4)
are equivalent is a trivial exercise in the use of the defini-
tion of the Cartier dual. For the proof of (10.2) it is more
convenient to work with (10.4) while for the eventual application

to the construction of crystals (10.3) is more convenient.

(10.5) Let us observe that the category EXT(S/SO;G,Gm) is rigid.

For 1f we identify an automorphism of the trivial extension
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o~ Gm > Gmx G>G~>0
with an element f , of Hom(G,Gm) then to say this automorphism
defines a map in EXT(S/SO; G,Gm) is equivalent to saying
flSo = 0 . But from [16,IT 3.3.17 + proof of 3.3.21] we know
this implies £ = O .

(10.6) Let us prove the map G*(S/S ) - Tors(S/So,Tp(G*)) is
injective. Given g*eiz*(S/SO) , to say the corresponding
torseur P(g*) is trivial means that there is a sequence of

elements (g,) , g, €G*(S) such that

1) prgny = &,
2) pngn g*
3) gnlso =0 for alln

But G*(5/S,) < r(s,Int¥(G*)) < a(Nk) [16,II 3.3.16).
Nk

Hence p kills each g, . It follows that
g* = 0.
(lo0.7) The proof of the surjectivity of the map

G*(S/So) > Tors(S/SO,Tp(G*)) seems to be more difficult. Since
this is an assertion about any Barsotti-Tate group, we shall drop
the "*",

= X
(10.8) Let P, be a torseur under Tp(Go)(Go G % So)' Denote

by D(Po)(fesp. D(Po(n)b the set of isomorphism classes of

deformations of P_ (resp. Po(n)) to a Tp(G) (resp. G(n))

torseur on S .
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(10.9) FProposition (using Illusie):

(i) For each n , D(Po(n)) 4

(i1) For n > n' > N, D(P (n)) ~ D(P,(n')) is surjective

(ii1) D(P,) > lim D(P (n)) 1is onto and hence by (i) and (ii),
D(P) # & .

(iv) For n > n' > kN , the map D(P (n)) » D(P (n')) is
bijective.

(v) If n » kN, the map D(p,) » D(Po(n)) is bijective.

Proof: (i) By using an induction on k , we can assume k = 1 .
Then from the theory of deformations of torseurs [14,VII:2.4.4,
2.4.%.1, 4.1.1.3] we know that the obstruction to 1lifting Po(n)
lies 1in H2(S,lé ¥ I). Using the notation of [16,II 3.3.9],
_lg g I "is" the complex LZ ® I~ L!l® I, a complex of quasi-
coherent sheaves on S . Since S 1is affine the H2 is
zero and Po(n) can be lifted.
(ii) Once again using induction on kj leads us to the case
k= 1.

From [14,VII 2.4.4, 2.4.%.1, 4.1.1.3] we know that D(Po(n))
Y

L
is principal homogeneous under H S,.lé ® I). Since

n, nf >N, it follows from [16,II 3.3.6,3.3.20] that this H'
: \ v

is F(EG(n)® I)(resp F(EG(n')® I)). But by [16,II 3.3.4,3.3.7,
3.3.16] we know the projection G(2n) - G(n) (resp. G(2n) > G(n'))
induces an isomorphism 05 (n)” Dg(2n) (resp. EG(n'y—9 EG(2n))

From the functorial nature of the co-Lie complex follows a

commutative diagram
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S6(nt) "G (n

—_— S )
o /
EG(En)

Thus the map Bz(n)g I~ Eg(n’)® I is an isomorphism and

(ii) follows now from the fact that D(Po(n) £ 4.

(iii) Let (gn) € lim D(Po(n)) and choose for each n a represen-
: G(n) ~

tative P of g . Then P 7\ G(n-1)=P _, and we can

sucessively choose these isomorphisms so that (Pn) is a

"torseur" under TP(G) which lifts P_ . The remainder of

(1ii) is clear.

(iv) For k = 1 , the assertion follows from the fact noted in

(ii) that Let us filter S by the closed

Be(m)™ () -
sub-schemes defined by powers of I : Soc sl S ..t Sk_lc Sk =5 .
By induction on k , we can assume (iv) true for the pair

S 8, 1 - Let P(n), P'(n) be two deformations of P_(n)

such that the induced G{n')-torseurs P(n!'),P'{n') are isomorphic
deformations of Po(n'). We are to prove that P(n)=P(n').

Let u{n?):P(n'} > P!'(n') be an isomorphism of deformations.

By the induction hypothesis we can find an isomorphism

V(P _q(n)— P{_;(n) (where the subscript "k-1" indicates restric-
Sk-l)'

v(n') and u,_;(n') are two isomorphisms between the deformations

tion to

Pk_l(n‘} and ?ﬁ_l(n’). Their "difference” is thus an element of

Ge-1(n') (8, _,/S.). But from [16, II, 3.3.16] we know

me* 1, 1) = Ir® (e, (k-1)N). Thus multiplication by Ph-1N
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kills this difference. Since n! > kN , this tells us that
v(N) = u._,(N). Observe that via v(n), P'(n) becomes a defor-

mation of Pk-l(n)) while P{n) 1is via id a defor-

Pk-l(n)
mation of Pk~l(n)' The equality v(N) = uk~1(N) says precisely
that P(N) and pP'{N) are, via u(N), isomorphic as deformations
of P, _1(N). Thus we may apply the result known to be true for
the case k = 1 , to the pair Sk_il% S and the integers

nyN (after all,s, > § 1is a first order thickening). Thus
there is an isomorphism v': P(n) » P'(n} which lifts v .

This completes the proof.

(v) Let P,P'é.D(PO) and assume P(kN)~ P'(kN). We are to show
P is isomorphic to P'. From (iv) we know that for n > kN ,
P{n) 1is isomorphic to P!'(n). For any n and any i let

3 and ¢ be two isomorphisms between P(n+kN+i) and P'(n+ki+i).
Their "difference" is an element of G(n+kN+i)(S/So). As noted
already in the proof of (iv), this group is killed under
multiplication by pkN. Thus % and ¢ induce the same iso-
morphism between P(n) and P'(n) i call it g, . It is clear

that the gn's fit together to give an isomorphism between P

and P'. This completes the proof of the proposition.

(10.10) To complete the proof of (10.2) we must establish
surjectivity. From 10.9 (v), it suffices to establish surjecti-

vity for the composite map

(10.11) G(S/So) > Tors(S/S Tp(G)) > Tors(S/So,G(kN))

OJ

{10.12) Lemma. Let S be a scheme on which p is locally nil-
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potent, G be a Barsotti-Tate group on S, and P be a torseur

on S5 under G . Then, P is formally smooth.

Proof: We must show that there is an arrow rendering the following
diagram commutative (where X is affine and X, is defined by

the vanishing of an ideal of square-zero).

Pe— X,
ls f
~
~
~
S¢e——X
By meking the base change X > S, we can assume S 1s affine
(hence killed by a power of D ). We are given a section of
P over So and our problem is to 1ift it. Since G 1is
formally smooth, and P 1is a G-torseur, it suffices
to show that P is trivial (i.e. has a section). Since S
is affine, {11,SGA4v1 (5.2}] tells us that Hl(s,G)ﬂ lim Hl(S,G(n)).
Hence we can assume that for some n , P' is a Gf{n)-torseur
G(n}
on S which has a section over So and that P! A G=~P .
Viewing P! as a deformation of the trivial Go(n)~torseur on
8, it defines an element in EthCEO(n)’I)‘ From [16,II 3.3.9]
we know that if n , m are taken sufficiently largg,the map
1 1 . . .
Ext (QGO(n),I) » Ext (%O(n+m)ﬁ) is zero. This tells us in
particular that P'%(n)G(n+m) is a trivial torseur.

Hence P has a section.
(10.13) We consider the exact sequence
n
0>Gn)>e2—>ac~>0

where n 1s an integer > N . The functor

TORS(S/SO,G(n))—> TORS(S/SO,G) induces an equivalence of



103

categories between TORS(S/SO,G(n)) and the category of pairs
(Q,s), where (Q,8) 1is an object of TORS(S/SO,G) and 8 is

G p" Gqy pk
a section of Q A MG such that slSO = 8 A —E*GO (s being

an element in F(SO,Q)). This follows immediately from a
momentary perusal of the proof of the corresponding fact when
s, is supressed [9,IIT,3.2.1 The point is that the quasi-inverse

functor is given by ((Q,A),8) > w“l(s)) where T 1is the ob-
G pn
vious map Q > Q A—\ﬁﬁ .

(10.14%) It is now standard [12, p. 17-18] that from the exact

sequence
n
0= G(n)— ¢ ~L—a—> 0
we obtain & long exact sequence:
(10.15) 0 ~» G(n)(S/So)ﬂ'(S/So)»G(S/SO)—aé Tors(S/So,G(n))—VFOrS(S/SO,G)

where O 1is the map (10.11).

From this sequence the surjectivity of o follows immediately
since (10.12) tells us in particular that the map
Tors(S/SO,G(n)} > Tors(S/SO,G) is the zero map. Hence (1l0»2)

has been proved.
{10.16) Corollary: A.ssume the extension

0-+G =>E ~->G_->0
mg o] o]
o

arises from pushing out along g €T (SO,Gg). The set of iso-

morphism classes of extensions lifting EO is in bijective

correspondance with {g €r (S,G¥*)|g 1lifts go}.
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Proof: One checks immediately that the set of extensions lifting
EO is principal homogeneous under Ext(S/SO;G,Gm)) and hence
the assertion follows immediately from (10.2).
(10.17YKt is quite simple to globalize the above result. Let

S be a scheme on which p 1is locally nilpotent and let G be
a Barsotti-Tate group on S . Since G 1is locally of finite

presentation we know

G(S/Srad} = \\~)) G(S/SX)

SX defined by a

nilpotent ideal
whenever S is affine. By abuse of notation we shall continue
to write this even if S is not affine. On the other hand
if Sa: Si: S and S is an infinitesimal neighborhood of So >
then there is a natural functor EXT(S/S,;G,G,) > EXT(S/S;G, G)
which is easily seen to be fully-faithful. By abuse of
notation we shall write EXT(S/Sred;G,Gm) for the category
ggggEXT(S/S ;G,Gm) where the limit is taken over the index set
of sub-schemes SX defined by a nilpotent ideal. Notational
consistency dictates that we further abuse notation by writing
Ext(s/smd;a,em) = }E_H?Ext(S/Sl;G,Gm). It iz easy to show that
we are gullty of a genuine abuse of notation for even if S con-
sists of one point and 1is of characteristic p , there are
extensions of Qp/Zp by G~ which gplit over Sred but do not
split where pulled back via a nilpotent immersion.

Wetve defined above a homomorphism of presheaves on (Sch/S)

*
(10.18) Tr G (T/T,4) > TP Ext(‘I‘/Tred;GT,Gm).
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Furthermore (10.2) tells us that this 1s an isomorphism

whenever T is affine.

(10.19) If F 1is an abellan presheaf on Sch/S we denote
by F the presheaf on Sch/S defined by TI> UF(T/T,),

TX running through subschemes of T defined by the vanishing

of a nilpotent ideal. As an exception, if G 1is a Barsotti-Tate
group on S , "G" will be used to denote the formal Lie group

associated to G. Passing, in (10.18) to associated sheaves for

the Zariski topology on Sch/S we obtain an isomorphism

(10.20) G* <> EXE (G, G)

where Ext is the presheaf Ti» Ext(T/‘l‘red;GT,Gm). (N.B. Since
¢ is ind-representable by affine schemes {relative to S)
sheafification for the Zariski topology gives us an f.p.p.f.
sheaf whose sections over an arbitrary S-scheme T can be
explicitly described: T¥(T) = {xéG*(T)l x restricted to any
affine open U of T, dies when further restricted to a closed

sub-scheme U_ = U defined by a nilpotent ideal}}.
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§11. THE CRYSTALLINE NATURE OF THE FORMAL COMPLETION OF THE

UNIVERSAL EXTENSTION

Let Ss;+ (S,I,y) be a nilpotent immersion defined by a
divided power ideal I . Let Go be a Barsotti-Tate group on
: w—
S, . We wish to assign to G_ a formal group E (GO)SO‘~+ 3

which will be canonically isomorphic to the formal group associated

»*
to E(G¥*), E(G ), wherever G is a lifting of G  to S .
We shall give an explicit description of the points of this functor

with values in a flat S-scheme S'.

il

= ! i
(11.1) Let S! = 8'%S_  and let G} = G_¥ S! . As explained

Ocrys/s?

in {6.14) we can consider the category EXT (G1,G,)

= g Lim Exmcrysfs'(gé(n),em).

For any closed subscheme §;C-¢ Sé defined by a nilpotent
ideal, we have the notion of a crystalline extension of

Gl gégg by Gm(relative to S') as given in (6.15). This allows
us to speak of the category whose objects are pairs (P,7) where

P 1is an object of EXTcrys/S'

(Gé,Gm) and M 1is a trivialization

of the underlying &_extension of P restricted to Sg .  When

Sg is allowed to vary we obtain a direct system of categories

and taking the direct limit we obtain a category which we denote
crys/S? . rys/S!

by EXT (Sé/%; re&Gé’Gm)' We write EXT- (GS’Gm) for

the group of isomorphism classes of objects of this category.

(11.2) Let G' be a Barsotti-Tate group on S' which 1lifts
G! . For any closed sub-scheme BY , of S' which is defined

by a nilpotent ideal there is the category of JT-trivialized
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9-extensions of G' by Gm . Passing to the limit over such
closed sub-schemes and then taking isomorphism classes of obJects

we obtain a group EEFéQG',Gm).

(11.3) Proposition: The natural functor
EXTCTYS/S (Gr,g ) > Exr7(cﬁam)

is an equivalence of categories.

Proof: The fact that the functor is fully-faithful is proved
exactly as was done in the proof of (7.2). In fact it follows
immediately from (7.6.1) since EXT™'¥7(G',6 ) is a full
sub-category of EXT%ZG',Gm).

Let E Dbe an object in EXTéYG',Gm). Since E becomes the
trivial %-extension when we pass to a closed sub-scheme
BST<> 3! defined by a nilpotent ideal, if we view E as a family

of line bundles with integrable connection, en G'(n), each of

Zp
these line bundles becomes trivial on T'. Fix an n and let
D be a nilpotent S' derivation of oG'(n) to itself. For
N>>0 ‘V(D)N(in) < (ideal of BT in S§'). £, (since

gn{G*(n) E'ST'cz(G, standard connection). Since the ideal of
3T in B' is nilpotent, V(D) is a nilpotent endomorphism of

Z,

7, - Thus the connection on each 2 1s nilpotent [3,II,%.3.6]

(N.B. Berthelot defines this notion only when gq' is locally-free
of finite rank so a more correct assertion would be for n >> 0
the connection on each 2 1is nilpotent). Thus our 4 _extension
E is isomorphic to a crystalline extension and the proof is

complete.
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(11.4) Corollary: The natural functor
1
ERTCYYS/S (G1,6.)— m£7(cv,am)
is an equivalence of categories.

Proof. Since the closed sub-schemes of Sé defined by a nil-
potent ideal define by composition with S:;C» St a co-final
system of closed sub-schemes of S!' (defined by a nilpotent ideal))
and since the ideal of Sé in S' has divided powers)(ll.U)
follows immediately from (11.3) plus the usual equivalence

ExTCYYs/S! (61,6 ) & ExTCTYS/S! (g ,G_).

(11.5) Proposition: Let S be affine. There is a natural

exact sequence

{11.6) o - 2,G(S/'s ) = E&T?(G,Gm) -> W(G,Gm) > 0

red
Proof: Given 71 € w;(S/8,..4) 1let ' denote the § _structure
on G x G defined by « . Assume (G _x G,+') is isomorphic to
the trivial % -extension (G, * G, trivial) via an isomorphism
¢ which reduces to idG x G modulo some nilpotent ideal. Then §
is necessarily equal to midGmx G and hence 1 must be O .

Ilet E be a trivialized §-extension whose underlying
extension is isomorphic to Gmx G via an isomorphism, § , respec-
ting the trivializations (all trivializations over some So"—-» S

defined by a nilpotent ideal). Using & let us equip G, x G

with a “-structure, ¢!, by transport of structure. Since
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Tt comes from & unique q'er(S,gG) and since the restriction
of § to So is compatible with trivializations it follows
that +eT(S/S..4>w )} and exactness at Exfé(G,G ) has been
red = m
established.
It remains to check the surjectivity of EXt7 (G,G_ ) » EXE(G,G,).

Let E be an extension of G by Gm and Qo a trivialization

)
of E % S, . PFrom (4%.%) it follows that each of the induced

extensions
0= G~ E ¥ G(n)— G(n)— 0

has a & _structure. Since for n large the maps

r(s,%(ml)) > r(s,%(n)} are onto it follows that E itself
carries at least one ¥-structure, p . The "difference”
between Po and the §-structures on EO obtained via & 1is
an element of r(so’ﬁGo)’ Since the map r(s,@C)—> r(SO,QGO)

is onto we can modify p to obtain & new & _structure on E s0

that QO is horizontal. This completes the proof.

(11.7) Corollary: Assume p is locally nilpotent on S , G
a Barsotti-Tate group on S. Sheafifying the sequence (11.6)

we obtain an exact sequence
(11.8) 0>y, > 7 (G,G,) > ExE (G,Gm) >0,

This sequence is canonically isomorphic to the exact sequence of
formal groups obtained by completing the universal extension of

*
G along the identity section:

(12.9) 0> G, > E(G¥) > G* > 0 »
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Proof: The exactness of (11.9) is proved in [16,IV (1.2.1)].
From (%.6) we know that for § affine T(S,E(G*)) is equal to

1lim (en)—-Homl?(G(n),Gm) where (en} is the exact sequence
n
(&) 0>aG(n)»>e¢L>a-~>0

and where (en)—HomL"(G(n),Gm) is the group whose elements are
pairs (#:G(n) - G P & §_structure on the extension ¢*(en))

Thus using (10.3) we obtain a commutative diagram

ll

O-*w*-)E_E§(GG)—~——-—>E'T(GG )— 0

w ™ #e )-Hombf(G(n) G )> G*% ———> 0

The corollary now follows from (10.20) and the five lemma.

(11.10) Let S, > (8,1, yv) be as in the beginning of this
section. Assume given two Barsotti-Tate groups G,H on S
and a homomorphism u,t GO~—> HO between their restrictions
to SO . We shall associate to u, & homomorphism

v: E(H¥) > B(C*) which lifts E(u¥).

If T is flat over S , the isomorphism (11.4):
Exf%(G »G )zmcrys/'l‘(% G}, together with the corresponding
T m T m’ )
isomorphism with H replaging GJ gives us an arrow Vip
rendering the following diagram commutative:
rys/T ~ 3,
ExEC (GOT »Gp) EXT 7(Gs Gy )

o
E,—fcrys/'l’(u G) .
rys —~
oY /T(HCJT ,G,) —— EXT §(H,I,,Gm)
o
Sheafifying and using ( 11.7) we find for T flat over S a

morphism E(H*)(T) > E(G*)(T).



111

The- existence of the homomorphism E(H*) > E(G¥*) now follows
k

since E(H*) = lin InfRC%(H*)) and each Inf  1is flat over S .

(11.11) It follows immediately from (11.10) that if G and

H are two liftings of the Barsotti-Tate group Go on So s

then E(G) is canonically isomorphic to E({H) Exactly as in
(7.17), (7.18), the functor ¥ ig explicitly defined by
setting for S' an S-scheme

r(S"E*(GO)S “*(S,I,Yp = F(S"EEEFrYS/S(Go’Gm))
)

where Exfcrys/S(Go,Gm) denotes the prolongation to (Sch/S) of
the sheaf on the small flat site of S associated to the pre-

sheaf:

T+ EXEC I'ys/T(crg ,G,)
T
o]

(11.12) Remarks:
s ‘-* >
{1) 1In order to know that IE (GO)SS.#_> g 1s a formal group we
have made use of a lifting G of GO . In order to know that
if
SOC‘> (S':J’Y')

f

(8,I,v)

is a commutative diagram where f 1is a divided power morphism,
then I¥( m*(Go)Sg+S) > m*(Go)So‘* g1 1s an isomorphism; we
make use of a lifting of Gye (If we don't assume the existence
of a lifting then there doesn't appear to bs any standard termi-

nology which describes what iﬁ*(Go) is).
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(i1} ﬁﬁ(Go} is a crystal relative to a crystalline site which
sits in~between the nilpotent site and the full Berthelot

site: obJects are divided power thickenings So‘> (S,1,8)

where I 1is a nilpotent ideal, but the divided powers are not

necegsarily nilpotent. The reason for this was alluded to in

(10.16).

(11.13) Let us check that Lig(E*(GO)) is canonically isomorphic
to D*(G ) on their common domain of definition: Let Sg;#(é,l,y)
be a divided power thickening of SO by a nilpotent ideal.

Assume S 1is affine. We shall define a map

Extcrys/s(Go:Ga) R Ker[iitcrys/S[e](G G )~ E;tcrYS/S(GOGm)]’

C)S[ e]

For any So-scheme X , there is a commutative diagram

X[ e] — S[e]

b s

¥ —m—>» S

which gives rise to a morphism of topoi

T (x[e]/s[e]) —> (X/S)

crys crys

Using the definition of 7 [3,I1I1,2.2.3] one checks
easily that for any object (U< T,J,s) of the crystalline site
of X, Tr‘l(U<—> T) = Ul e]*> T[e]. Thus W*(Gm)Uc» T = GmT[ ]
and there is an exact sequence of sheaves of groups in (X/Ss:crys

0> G, > Te(G,) > G =0

Thus we obtain an equivalence of categories
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(11.1%) TORSCWS"S(X,G&)”S Ker[ TorsSTYS/SL el S Toascrys/s(x,c,m)] .

This equivalence if functorial in the So~scheme X and

hence we obtain
crys
(11.15) ExTCYY /S(GO,Ga)’-:’Ker[Extcrys/s[e](GJe],'Gm)»EXTcrys/S(GO,Gm)] .
This permits us to define the map
erys
01.16) Ext®TY /ﬁgo,Ga}>Ker(Exfcrys/S{ekstld,Gm) -+ Exfcrys/s(Go,Gm))»

Before we prove the bijectivity of this map, let us note
that the category mcrys/s((}o,cm) is rigid. This follows im-
mediately from (11.%) (and hence we use once again the fact that
Barsotti-Tate groups can be lifted).

Let P,Q be representatives of elements of ExtcryS/S(GO,Ga).
To say they define the same element in Ker is eguivalent to
asserting that there is an isomorphism of crystalline extensions

pr B A Te(0) 22 o R T(,)

such that p A G induces the identity automorphism of the
%-extension Gmx Go (once we identify P AaGm and @ % Gm with
G, G,). But using the rigidity of mcrys/S(Go,Gm) noted
above, it follows that p A Gm is actually the identity auto-
morphism of the crystalline extension Gmx Go' It now follows
from (11.15) that P=Q .

On the other hand the surjectivity of (11.16) is clear
since a crystalline extension, P , of Go{g] by G trivialized
as S-extension over some closed subscheme T < S[e¢], and

}
which is trivialized over S as crystalline extension (in a
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compatible fashion over S N T < S{e]) defines a crystalline
extension of GO by Ga , &, which is isomorphic to P as a
crystalline extension ({an isomorphism certainly compatible

with the trivialization over S n T).
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$12. THE CRYSTALLINE NATURE OF THE UNIVERSAL EXTENSION (CN

THE NILPOTENT CRYSTALLINE SITE)

In this section we shall show that the universal extension
of a Barsotti-Tate group can be extended to a crystal on the
nilpotent crystalline site.

Let So be a scheme,(S,I,y) a nilpotent divided power
thickening. Fix a Barsotti Tate group GO on § . Following
the procedure(s) used in previous sections we shall define for
St a flat S-scheme a group EKGO)S;>> g(8'), such that sheafifi-

cation gives us the value of our crystal on (S,I,Y).
(12.1) Consider the category whose objects are triples:

*
(12.2) (1) an element g €T(S,,G.)

ii) a nilpotent crystalline extension of G_ by G
o m
(relative to ), E€ExT’! crys'/S((}O,Gm)

(iii) an isomorphism p between the extension P_ ,

o
associated to &y s and the ordinary extension

underlying E .
Morphisms between (gO,E,p) and (gé,E',p') are defined
only if g, = gs and then a morphism is a morphism of crystalline

extensions E » E' which is compatible with p and p’'.

L3
{12.3) Definition: Let E:(GO)S (ES(S) = group of isomorphism
o)

classes of objects of the above category.

(12.4) Iet G Dbe a lifting of Go to S which we assume to be

affine. We construct a map r(S,E(G*))—9 EYGO)S<;9S(S) by
o
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interpreting an element of T(S,E(G¥)) as an element, &, of
lig‘en)—HomékG(n),Gn) (as in the proof of (11.7)) and assigning

to § the isomorphism class of the triple:

(1) g, = restriction to S_ of the element of T(S,G*) which

is the image of § under E(G*) » g¢*

(i1) E, the object of EXTNil'CryS/S(GO,Gm) corresponding to

$ via the equivalence (7.6.2) plus the equivalence
EXTNﬂ-crys/S(Go,Gm)g‘_, EXTNll'crys/s(G,Gm)
(1ii) the canonical isomorphism P, = E (i.e. the identity map).
o

(12.5) Proposition: The map defined in (12.%) is an isomorphism.

gggg{: To show injectivity let & & r(S,E(G*)) be given, let
g = image of § under E(G*) > G'. Assume the triple defined
by ¢ 1is isomorphic to the triple (0, trivial crystalline extension,
identity), i.e. there is a map E=G x G =~ of crystalline exten-
sions and the map on underlying extensions is the identity.
Since we can interpret the crystalline extensions E and
Gx G, as 9-extensions of G by G, , it follows from (10.3)
that g = 0 . Hence § is given by an element of F(S’QG)' The
rigidity of the category EXT(S/SO;G,Gm) insures that the iso-
morphism EﬁﬁGox G, , when interpreted as a map of % -extension
of G by GmJ is the identity. This forces the element of
F(S’QG)) and hence 3§ , to be zero.

To prove surjectivity, let (go,E,p) be a triple. We

interpret E (as explained in 12.4(ii)) as an object of
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EXTE/(G,Gm) whose underlying structure of extension we denote
by E'. From (10.16) the pair (E',p) determines an element
g, of I"(S,G*) which 1lifts g . Let V be the §_structure
on Pg> obtained via transport of structure from E using the
isomorphism Pgﬂ E'. If &= (gV) then, by construction, the

image of & 1is the class of the triple (go,E,p).
(12.6) Corollary: Sheafifying the map
* *
T(S,E(G)) » E (GO)SS_,S(S)

we obtain an isomorphism (of sheaves of groups on the small

flat site of 8)
k3 %
(@) 2T (G )geng

(12.7) Let G,,G, be two liftings of G  to § . Just as in
*
(11.10), (11.11) there is a canonical isomorphism E(G])=E(G,).

In fact more generally we can sfate

(12.8) corollary: There is a functor

B.T.(SO)O > Crystals in groups on the nilpotent site of S_

given by GOF—)E (Go) (where [E (GQ}SO‘L—) g has been explicitly
defined via (12.4)),

(12.9) We now wish to shos that "completing along the identity

element” the crystal E*(GO) gives us a crystal in formal groups
—*

which is canonically isomorphic to the crystal E (Go) (of 811),

when the latter is restricted to the nilpotent crystalline site.
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Let Saﬁé (S,I,¥) be a thickening of the nilpotent site
of §2¥. In order to show the formal groups on S iE (Go)sgas)
and [E (G_) are isomorphic, it suffices to show that their
o} SO°+ S

values on flat S-schemes are functorially isomorphic. Thus by
localization it suffices to treat the case when S is affine.

. * Py Py * *
Since E;(GO)S;;+ g 1is ind-representable by affine groupsjlt

follows that

*

T(S,OE (Go)s<;+S>> = group of classes of
o

triples (g_,E,p)

such that for some nilpotent immersion T<> S0 , the inverse
image to T of the §-extension underlying E Dbecomes 1isomorphic

via Py to the trivial Y-extension of GO by Gm .

T
To check that this description is correct we use the fact

* LR % i .

that [E (GO)SO id S, =i (E (GO)SS;» S)) i: 8£> S being

the inclusion)and the fact that the crystalline extensions of

G, by G, (relative to S ) are simply the 7-extensions.
Consider now the map

crys/S
(852Esp) Potass or(B2PIT) in EXET (GgsGp)
The injectivity of this map follows from the injectivity of
*
map GO(SO/T) > Ext(SO/T;GO,Gm). For if (gé,E',p') is a second
triple and (E',pyT)=(E,p/T) , then there is an isomorphism of
crystalline extensions M: E - E! such that 1|T « p|T = p'|T.

But Tep and p! are then equal by (10.5).

N.B. We view E as an object of ExTCTYS/S

(Go,Gm) using
(11.3)s The surjectivity of the map follows immediately from

the assertion of surjectivity implicit in (10.3).
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§13. REILATION BETWEEN THE UNIVERSAIL EXTENSION CRYSTAL OF AN

ABELIAN VARIETY AND THAT OF ITS ASSOCIATED BARSOTTI-TATE

GROUP

We shall now show that our construction of the crystals
(of various sorts) associated to a Barsotti-Tate group is com-
patible with our earlier construction of the crystals associated
to an abelian scheme.

Let So be a scheme (with p locally nilpotent), AO/So
an abelian scheme, G_ = ;}g>Ao(n) the associated Barsotti-
Tate group. Fix a nilpotent divided power thickening 56;9 (S,I,Y)

and assume SO is affine.

(13.1) Lemma: Let the triple (gO,E,p) define an element of
*

T(S,E (GO)S;‘> g)+ Then up to isomorphism there is a unique

erystalline extension E' in EXTnll'crys/S(Ao,Gm) such that

there is an isomorphism p' between the extension of A by

Gm defined by g, and the extension underlying E') such that

(go,E'IGO, p'iGo) is isomorphic to (gO,E,pL

(N.B. p' is necessarily unique).

Proof: Let A/S Dbe any abelian scheme lifting A  , let G be
the associated Barsotti-Tate group. Corresponding to the triple
(go,E,p) , there is a pair ger(5,6%),V a &structure on the

extension
(13.2) 0o ~> Gm > 8 >G>0

obtained by pushing out the "Kummer sequence" along g . This

glstructure defines a rigidification on (13.2). But
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(13.2) 1is obtained by restricting to G an extension
0>G> &' >A>0

. 1
Since Inf (G) Infl(A), this extension has a canonical rigidi-

#

fication, i.e. a canonical t?-structure. It follows immediately
from [I,(3.2.3)] that this é—structure extends the given

§ _structure on (13.2). Via the equivalence of categories
EXTé(A,Gm)ﬁfEanil'crys/S(Ao,Gm) §' defines an object E' of

nil-crys/S(

EXT AO,Gm) such that E'X G =~ E, and E' clearly

A
o
satisfies the conditions with p' = "id".
Let E' be a second object of EXTUIL CTYE/S(n g ) wnich
satisfies the conditions, i.e. so that there is a p". By

hypothesis there is an isomorphism & :E"Go:$ E”iGO of crystalline

extensions such that the following diagram commutes

E'lG —~—————————¢> E"iG

pti(}\/n‘(}

O

We must show that E' and E" are isomorphic crystalline
extensions. Corresponding to E" is a 4 _extension 4" of A
by Gm . Since & is a map of crystalline extensions there is
amap ¥: 8'|G > 8"|G which 1ifts § . As the extension under-
lying the Y-extension 4"-§' is trivialized over S_ , this
extension is obtained via pushing out a "Kummer sequence" along
an element, g' , of r(S,G*)J such that g'iSo =0 [19,(19.1)}].

*
But g and g+g' are two sections in T(S,G¢ ) lifting g,
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with the corresponding extensions}yielding via FIG0 iso~
morphic deformations of Pgo. Hence from (10.16) it follows
that g' = 0 and hence that the extensions underlying &' and

4" are isomorphic via a unique isomorphism ¢ . By the rigidity
of EXT(A_,G ), Tlsoo p= p", and hence by the rigidity of the
category of deformations of Pgo , 11G =F . Since Infl(A) <G
T induces an isomorphism of the rigidified extensions &'

and &". But from {I,(3.2.3)] we know this means 1 1s an iso-
morphism of é?-extensicns. Via the equivalence

EXTékA,Gm)& 0 C””YS/S(AO,G

morphism between E'!' and E". This completes the proof.

m)) we see ¢ 1induces an iso-

(13.3) Remark: Although we have used a 1lifting in the proof
of (13.1) the result is clearly independent of any such

choice.

(13.4) Let A and B be abelian schemes on S, G, H the
corresponding Barsotti-Tate groups. Assume u,: AO -> Bo is
a homomorphism inducing GO: G,>H, . In 81 (resp. §12))
there is associated a homomorphism E(B¥) - E{A%)

(resp. E{(H*) > E(G*)). It is an immediate consequence of

(13.1) that the following diagram commutes:

(13.5) E(H) ————— E(GY)

|

E(B¥) —— E(a™)

Passing to tangent spaces we find that the map
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D* (1) — 3 D (G.)
0 Sg* S o) SS;» S

coincides with the map Hl(B,GB ) > Hl(A,GA ) induced
erys crys
(from uo) by crystalline cohomology.
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§14. GROTHENDIECK'S DUALITY FORMULA FOR THE LIE COMPLEX

Let S5 Dbe a scheme, G a finite, locally-free (commutative)
S-group. In the course of the proof given below we shall recall
a construction of the co-Lie complex,,ﬂg, assoclated to G . Let
M be a guasi-coherent os—module. From [14,VII,1.1] we know
it is entirely harmless to identify ﬁg and M with the corres-
ponding objects that they define nn the flat site of S . With

this understanding the formula is:

(14.1) R Hom S( 28, M) = R Hom,, (G, M)
<

This isomorphism is functorial in both arguments and when S
is affine there is a similar isomorphism with "Hom" replacing
"Hom"'
Taking M = os we find a formula for the Lie complex:
VG

(14.2) L. '-"TSlR Hom, (G%,G_)

If S is affine applying Ht (to the formula involving R Hom)
yields

(14.3) Ext (£, M) & ExtL(c*, m)

(a formula used above in (3.1))

If instead we took H° <the formula becomes

(14.4) Hom M)e2 Hom (G*, M)

{w,
OS =G

Proof (Grothendieck): From [11,5GA, VII,3.5] we know there is

a partial resolution of G .



124

(1%.5) L, > L, > L —5G

1

Each L is a sum of sheaves of the form ZTTi] where Ti is

i
a finite product of copies of G , L_ is simply Z[G]. This

resolution is functorial in G . PFrom {I,{1.3)) it follows

i *
that G° = dfn Li is a smooth commutative group scheme. Because

1,0 me i _ . .
Ext™(2[Ti,G,) = R fT*(GmT) =0 (fp: T > S being the structural

map for a finite locally-free S~scheme)}the complex

Gt - GQ . Gl > G‘2
has
*
H(GY) = 6
(14.6)
1
H(6") = Ext'(G,G,) = (0) since G 1is finite,

locally-free

Thus if & = Ker(Gl > G2) we obtain an exact sequence

(1%.7) 06 > >T»o0

It follows from {8,11,5.22] thas & 1s a smooth S-group., We
define the co-Lie complex of G* by:

*

(1%.8) A8 =ien mp meo

(where e 1s placed in degree -1)
In (I,(1.2)) we've defined a map

Ly » mgi

Applying Hom( ,M) (resp. Hom( ,M)) we obtain a morphism of

complexes
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Hom(m;0,M) — Hom(w,1,M)— Hom(w,2,M)
(14%.9)
Hom(Lo,M) — Hom(L,,M) — Hom(L,,M)

(1,{(1.4)) tells us that (14.9) is an isomorphism of complexes.
Observe that Extl(z[T],M) = RifT*{MT) = (0) for 150
since the map fT is affine and M is quasi-coherent. Further-
more if § 1is affine,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>