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INTRODUCTION 

The object of this paper is to prove these results announced 

by Grothendieck. 

Theorem i. If A is an abe!ian scheme over S its universal 

extension is crystalline in nature and its Lie algebra is isomorphic 

to the one-dimensiona? crystalline eohomology of A* over S, 

Rlf.,erys(~A.,crys )" 

Theorem 2. If G is a Barsotti-Tate (= p-divisible) group on 

S , a base such that p is localiy nilpotent, then its universal 

extension is crystalline in nature, and its Lie algebra provides 

a generalization of the classical Dieudonn~ module theory for 

Barsotti-Tate groups. 

UNIVERSAL EXTENSIONS 

If A is an abelian variety over a field k , the 

universal extension of A is defined to be an extension of 

algebraic groups 

(*) 0 ~ V(~) -~ E(A) ~ A ~ 0 

where V(A) is a vector group over k and such that (*) is 

universal for extensions of A by vector groups. 

Rosenlicht [22] defined this notion and showed that any 

abelian variety A possesses a universal extension. The key 

to his construction are the isomorphisms 

Ext(A,Ga) ~ HI(A,~A ) ~ HOmk(~A.,G a) 

which gives 
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Extl(A,V) ~HOmk(~.,V ) 

where V is an arbitrary vector group over k , 

dual abelian variety, with zero section 

A* is the 

e: Speck ~ A* 

and ~. = e*~IA./S . Taking V = tq~. , the universal extension 

is the clement in Ext(A,V) corresponding to i ¢ Hom(~i.~, ~_~.). 

In the samc paper, Rosenlicht described the relationship be- 

tween differentials of the 2 nd kind and rational cross-sections 

of the universal extension. 

In [27] Weil observed that when working on an abelian variety 

A over an arbitrary field, consideration of extensions of A 

by a vector group replaces the study of differentials of the 

second kind, while consideration of extensions of A by a 

torus replaces the study of differentials of the third kind. He 

attributes these ideas (in the classical case) to Severio 

Over ¢ , Barsotti in [i bis] established algebraically the 

isomorphism Ext(A, Ga) ~ HI(~A ) 

differentials of second kind 

holomorphic differentials + exact differentials 

(See Serre's [24] and [25] for a beautiful account of these 

ideas). 

Another approach to the universal extension is provided by 

Tate's definition of generalized Picard varLeties [26]. He 

considers the group of divisors on A not containing the zero 

e , which are algebraically equivalent to zero, modulo the 

2 subgroup of principal divisors (f) where f ~ i mod m 
e 

(_me = maximal ideal at e). (See also [15 bis]). Both Tate and 

Lang ask whether this abstract group carries a natural algebraic 

structure. This algebraic structure was provided by Murre [18] 

and also by Oort (unpublished). 
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Grothendieck, more recently, provided still another viewpoint 

on the universal extension (by means of the theory of group 

extensions with integrable connections - which he called 

~-extensions). In a letter to Tate, Grothendieck announced that 

the universal extension over ~ is crystalline in nature and 

conjectured that the same is true over any base. In his Montreal 

lectures he discussed the relation between the universal exten- 

sion and "the generalized Dieudonn~ theory" [13]. 

A discussion of the crystalline nature of the universal 

extension and applications to the deformation theory of abelian 

varieties and Barsotti-Tate groups is given in [16] via the 

theory of the exponential. Previously Cartier had in [5] 

solved these problems (at least when the base is a perfect field) 

for p-divisible formal Lie groups. His approach also yielded 

the result that the Lie algebra of the universal extension is the 

Dieudonn~ module (a result which we generalize below). 

We shall treat alongside the theory for abelian varieties 

the corresponding theory for p-divisible (= Barsotti-Tate) 

groups. Amusingly enough, we repeat the complicated history sketched 

above. 

Thus, in Chapter I ~l we introduce the universal extension 

(in a more general context, but) in the spirit of Rosenlicht, 

and Serre. In Chapter I ~ 2 we identify the universal extension 

with something we call Extrig (rigidified extensions) which is 

modelled on Tate's approach. 

In Chapter I §3 we identify Extrig with Ext~ (h-extensions) 

s~ud thus pass to Grothendieck~s. 

From Ext~ one may establish the crystalline nature in a 

lengthy, but straightforward way (c.f. Chapter II), and also 

pass to a hypercohomological interpretation of the universal 
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extension Q~hapter I §4) thereby establishing the link with 

De Rham cohomology. 

In Chapter I ~5 we mention some connections between the 

constructions we have dealt with and the Mordell-Weil group of 

an e~liptic curve over Q . 

In chapter II we discuss the crystalline nature of the 
J 

universal extension, i.e. its relation to "generalized" Dieudonne 

Theory. The results of 99 and 13 and 15 imply that for 

A~ an abelian variety over a perfect field k (char k = p > 0)~ 

and G~ its associated p-divisible group, there is a canonical 

• f isomorphism between the D1eudonne module of G and the crystalline 

H 1 of A . The reduction modulo p of this statement was 

proven by 0da [ 18 his]. 

Throughout this chapter we rely heavily on the work of 

Berthelot, Grothendieck and Illusie. 

We refer the reader to the introduction to Chapter iI for 

more precision on its contents. 

OPEN QUESTIONS 

a) Give a comparison of our theory of Dieudonn~ crystals 

associated to p-divisible formal Lie groups (over S) with 

Cartier's theory. 

b) Find a Dieudonn~ crystal theory for finite, locally-free 

p-groups over S O (a base of characteristic p). 

c) Determine whether the functor G ~ ~*(G) on a base 

of characteristic p , is fully-falthful. 

S j 
o 
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CHAPTER ONE 

EXPLICIT CONSTRUCTIONS OF UNIVERSAL EXTENSIONS 

~l. GROUP SCHEMES AND THEIR RELATIONS TO VECTOR GROUPS 

By group scheme over S we shall mean commutative flat 

separated group scheme locally of finite presentation over S . 

If Q is any quasl-coherent OS-mOdule , we may regard Q 

as a sheaf for the fppf site by the rule: 

Q(S') = ~(S',®*Q) 

where ¢: S' ~ S is the structural morphism. If L is a 

locally free Os-module of finite rank, then L , regarded as a 

sheaf for the fppf site over S , is representable by a group 

scheme which is locally isomorphic to a finite product of Ga's. 

Call such a group scheme L a vector group over S . 

Fix a group scheme G over S and consider the following 

two universal problems: 

Problem A (Universal homormorphism problem): 

V,ec,t,o,r, group hull of G: 

Find a mapping 

: G ~ V 

to a vector group over S , which is universal for mappings of 

G , to vector groups, in the following sense: 

The induced mapping 

: HOr~s(V,M) -~ HOms(G,M ) 



is an isomorphism for all vector groups M over S . If 

such a V can be found, call it the vector-group hull of G . 

Quasi-coherent hull of G: 

Find a mapping 

~: G~Q 

where Q is a quasi-coherent sheaf, universal for mappings of 

G to quasi-coherent sheaves over S • 

Problem B (Universal extension problem): 

Assuming Hom(G,V) = (0) for all vector groups , V ; 

find an extension of group schemes over S : 

( e )  0 ~ V(G)  ~ E(G)  + G ~ 0 

s u c h  t h a t  V(G) i s  a v e c t o r  g r o u p ,  a n d  s u c h  t h a t  ( ¢ )  i s  

u n i v e r s a l  f o r  a l l  e x t e n s i o n s  o f  G b y  v e c t o r  g r o u p s  o v e r  S . 

More  p r e c i s e l y ,  we w o u l d  l i k e  t h e  m a p p i n g  

HOmos(V(GI,M) ~ Ext~(G,M) 

induced by (e) to be an isomorphism. If such an (¢) can 

be found call it the universal extension of G . Clearly (¢) 

and E(G) and V(G) are determined up to canonical isomorphism 

by their role in problem B , and they are functors on the sub- 

category of group schemes admitting a solution to problem B • 

Examples and discussion: (I. Existence of Solution to Problem A) 

(i.i). Suppose Homm(G,Ga) is a locally free O~module of 



finite rank. Set V = H Om~s(HO_~m(G,Ga),OS). Then 

Horn(G, M) = Hom(G,Ga)®osM 

= Ho___~mOs(V,M ) 

and consequently V is the vector group hull of G ° 

(1.2). Suppose that the Cartier dual of G is representable 

by a group scheme. By the Cartier dual we mean the presheaf on 

Sch/S given by 

Then if 

@* = HOmgr(G,Gm). 

S c e ~ G* 

denotes the zero-section of G*/S , let 

S c el .......... ~ G~ = Infl(G *) 

denote the first infinitesimal neighborhood of the zero-section. 

The commutative diagram 

s 

~ G* 

is a morphism of S-pointed S-schemes. 

There is a natural isomorphism of functors on the category 

Sch/S 

Homs_pointed S_schemes(G~,Gm) ~ . i e OG*/S 

and we shall use the notation ~L~G . to denote the quasi-coherent 



sheaf over S defined by either side of the above formula. 

We have a natural isomorphism 

G~ ~ Sp~c (~S~.) 

Let a: G ~ 9G . denote the composition 

~: G ~ Hom(G*,G m) ~ Homs_pointe d S_schemes(G~,Gm) = ~G* 

(1.3) Examples of groups G such that G* is representable 

are the following: 

a) G finite and locally-free 

b) G locally constant for the f.p.q.c, topology 

[!I,SGA 3 x 5.3] 

C) G of multiplicative type and quasi-isotrivial 

[ii, SGA 3 X 5.7] 

d) G an abelian scheme (here G* = (0) since denoting 

by ~: G ~ S the structural morphism~ v.(~G) = ~S uni- 

e) 

versally) 

G = Z[T] where T 

(i.e. for variable 

free-Z -module on 

is a finite, locally-free S-scheme. 

S' over S t F(S', G) is the 

[ Homs(S' ,T)]. 

The only example which requires (perhaps) any justification 

is e). But here Homg r (G ,Gm) ~ Hom(T,Gm) and hence its S'- 

valued points are simply the units in F(T × S',OT× S ). The 
S S 

representability follows now because we can (locally) choose a 

finite basis for the ~S "m°dule' ~T' and a unit is a section 

such that multiplication by it defines an automorphism. 
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(1.4) Proposition: Let G be any abe!Jan presheaf on SCh/s 

such that G* is representable. The functor on quasi-coherent 

OS-mOdules M ~ Homgr(G,M ) is representable by !~G* and 

the hom~morphism e: G ~ "~G* above is the universal homomorphism 

from G to quasl-coherent OS-mOdules. 

Proof: Let us first show that the functor is representable. 

For M a quasl-coherent OS-mOdule let S M be the affine 

S-scheme Spec(Os@M) , where OS~ M is made into an algebra by 

requiring ~ = (0) (i.e., it is the "dual numbers" on M). 

Denote by ~M(resp. ~M) the structural morphism (resp. unit 

section) of S M which corresponds to the algebra homomorphisms 

O S ~ Os@M (resp. O S@M ~ OS, M being mapped to zero). 

There is an obvious homomorphism ~M.(GmSM) ~ Gms which 

arises functorially because id(s~h/S ) = ~o ~ and because there 

is a map ~M* + ~ since ~M °HM = ids " The kernel of the 

map is M and using the definition of G we see that there m 
is an exact sequence: 

0 ~ M + ~M.(GmsM) ~ Gms + 0 

Thus Hom~r(G,M)~ Ker[Homgr(G,~M.(GmsM )) ~ Hom in 
gr~,~ms)] 

Ker[Homgr(W~(fi),G m ) ~ HOmgr(G,Gms)] 
S M 

=dfn. Ker[r(SM'G*) ~ F(S,G*)] 

Ker[F(SM,G*SM ) ~ F(S,~M.(G*)) ] 

Hom OSM(943.@ OSM, M) , by 

[8,II §4, 3.5] since G* is representable. Finally, by 

adJointness we have 



HOmOSM(i~G. @ OSM , M) ~ HOm~S(i~G,,M). 

Because all of the above isomorphisms are functorial in 

the quasi-coherent module M , it follows that !90* represents 

the functor M S-~ HOmgr(G,M). 

To calculate what the universal map G ~ ~G* is , let us 

first observe that for M = ~G*J SM is the first infinitesimal 

neighborhood of the unit section of G*,Infl(G*). From the 

explicit definition of the mapping 

iom~f~(G.),(~. ~ ~infl(G.),~.) ~ Ker[~(znflG*,a*) ~ ~(S,G*)] 

given in [8,11 4, 3.2] it follows that id~G,c Hom S(~.,~G, ) 

corresponds to the inclusion Infl(G*) c- --~G* . 

From this point on, the remainder of the proof of the 

proposition is entirely formal. Recall that G* =dfnHomgr(G,G m) 

and hence there is a tautological pairing G ~ G* ~ G m which 

and ~ ) the defines two group homomorphisms GG. GmG * G* G GmG 

knowledge of which allows us to reconstruct the pairing. The 

homomorphism GG. + GmG * is (by very definition of G*) 

universal in an obvious sense. Thus the morphism In'G*)+ G* 

defines a homomorphism GInfl(G.) ~ GmInf~ am well as a 

morphism InflG* G + GmG. In particular for any S-scheme T 

and point ~¢G(T) we obtain a morphism Inf]G*T ~ Gm T which 

is simply the restriction of the map G* T ~ GmT to InflG*T . 

This element is a(~) and hence the proposition is proved since 

the two ways of obtaining a map Tx Infl(G *) ~ T×Gm: 

a) viewing Ginfl(G.) ~ Gminfl(G.) as giving for 

¢ G(T) a map Infl(G*)T ~ GmT 



b) InflG * ~ G m as the restriction of G* T ~ GmT 
T 

both come from restricting the map G~ G* ~ G m to 

T xInfl(G *) ~ G×G*. 

(1.5) Corollary: For G an abelian scheme and M quasi- 

coherent, HOmgr(G,M) = (0) . 

Proof: In this case G* = (0) by 1.2(d) and hence ~G* = (0). 

(1.6) A given group scheme G/S may have a vector group hull 

and a quasi-coherent hull which differ. Consider S = Spec(~p) 

and G = Z/p. Its vector group hull is zero, whereas its 

quasi-coherent ~ull, by the previous proposition, is ~R~p. 

A related issue is the question of commutation with base 

change. The quasi-coherent hull, constructed by the previous 

proposition commutes with all base changes, whereas the vector 

group hull constructed in (1.1) does not. 

2. EXISTENCE OF SOLUTIONS TO PROBLEM B 

(i-7) Suppose that 

(a) Hom(G,Ga) = 0 

(b) E~t(G, Ga) is a locally free ~S-mOdule of finite rank 

as sheaves for the Zariski topology over S . Set 

V(G) = HOm~s(EXt(G,Ga),OS) 

Then a universal extension of G exists with the above V(G) 

as vector group. 

This assertion follows easily from the evident 



E t(G,M) = Ex__t(a,G a) ® sM 

where  M i s  any  l o c a l l y  f r e e  OS-mOdule o f  f i n i t e  r a n k .  

There are three important cases where hypotheses (a) 

and (b) hold: 

(1.8) BarSotti-Tate. groups over bases S such that p is 

nilpotent on S . 

If G is a Barsotti-Tate group (i.e. a p-divisible group) 

over such an S , let G* denote the Cartier dual of G , and 

let G(n) be the kernel of multiplication by pn . If n is 

sufficiently large so that pn = O on S , then ~G* = @~(n) 

is locally free of finite rank over S and the argument of 

( 16 IV, I) shows that E~(G,Ga) is HOm~S(~,,~S). Therefore the 

hypotheses (a) and (b) above hold. The construction given 

shows more. N~ely, there is the commutative di~ram 

pn 

0 ~ G(n) ~ G------~ G ~ 0 

0 ~ ~. ~E(G)--~ G ~ 0 

where the vertical map a is the vector group hull of G(n)o 

This construction clearly commutes with all base changes. 

(1.9) Abel!an schemes over any base S • 

If G is an abelian scheme over S of dimension d , it 

satisfies the following hypotheses for all S~/S: 

a) Any mo~hism of sheaves of sets over S' 

~: GS' ~ QS' 

to any quasi-coherent sheaf Q over S' is a constant map. 



Explicitly, admits a factorization: 

GS' ~Qs' 

fs' ~ / section 

S' 

(b) f*OGS, = OS' 

(C) Rlf*OGs ,= Rlf*OG ~ ~S' 

Here is a proof of a): 

is locally free of rank d . 

Lemma: Let f: A + S be an abelian scheme and M a 

quasi-coherent OS-mOdule. Any map A ~ M is constant. 

Proof: A map A + M , may be viewed as an element of F(A,f*(M)) 

= F(S,f.f*(M)). The map F(S,M) ~ F(S,f.f*M) corresponds then 

to ~: S ~ M ~-* ~of: A ~ M . Thus to conclude it suffices to 

show the map U(S,M) + F(S,f.f*M) is bijective. Let us form 

the cartesian square: 

A ~ .............. AS[ M] 

s ~. . . . . . . . . . . . .  s [  M] 

Then T'(S,O S) ~ F(S,M) = F(S[M],•S[M]) ~ F(S[M],fM.(~ A . 
SLM] 

: V(AsKMS,OAs[M] ~ = F(A,OA) ~ I '(A,f*(M)) 
I~(A, (}A)@ F(S, f .f*M) 

since (b) f.(~A) = O S, universally. 

)) 

Let 

~ = HOmos(Rlf.oG,(~S). 
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(I.i0) Proposition: If G satisfies the above hypotheses 

(a), (b), (c), then G possesses a universal extension, 

0 ~ ~ ~ E(G) + G ~ 0 

which is indeed universal for all extensions of G by quasi- 

coherent sheaves. (We assume G ~ S is quasi-compact). 

Proof. (After Rosenlicht, and Serre , [22,25]) 

Let M denote a quasi-coherent sheaf. By our assumptions 

(notably ~) the category of extensions, EXT(G,M) is rigid. 

Thus, the presheaf for the flat topology 

S' ~ E x t l ( G s , , M s  t ) 

is a sheaf. 

We shall show that the composition 

F(S, Rlf.f*M)o 

is an isomorphism. But by the above remark, we may assume 

S affine. 

k is injective: 

For let E be an extension of G by M and assume ~: G ~ E 

is a section (as sheaves of sets). By subtracting ~(0) we 

may suppose that ~(0) = 0 . The map G x G ~ E which expresses 

the obstrt%etion to ~ being a homomorphism actually maps G~ G 

into M and brings 0 to 0 . After hypothesis(a), one may see 

that this obstruction is zero. 
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k is surJective: 

Let E be a principal homogeneous space for M over the 

base G . Since S is affine, E admits a section e lying 

over the zero-section of G . We now follow Serre's prescription 

for imposing a group structure on E with zero-section e , 

which establishes E as a group extension 

O~M~E+G~O 

[25, VII, 15] • TO follow out this prescription one need only 

know that the cohomology class in Hl(G,f*M) representing the 

principal homogeneous space E is primitive. But Hl(G,f*M) 

consists entirely of primitive elements as follows from the Kunneth 

formula if G is an abelian scheme and [21 bls, III,4.2] in general. 

Our plan is to establish the isomorphism 

HOmoS(~,M) ~ ExtI(G,M) 

and, consequently, representability of the functor 

M ~ Extl(G,M) 

We do this by demonstrating these isomorphisms: 

r(s,Rlf.f*M) ~ r(s,Rlf.% e M) ~ iom%(,,,M) 

To establish the first isomorphism above, we need a lemma: 

RIf.OG® M ~ Rlf.f*M is an isomorphism, (i.11) Lemma: for 

M any quasi-coherent ~S-mOdule. 

(N.~. This follows from (c) but the following proof is valid 

whenever R*f.~ G is a flat ~S-module). 



12 

Proof. We shall force the Kunneth theorem (i0, EGAIII, 6.7.8) 

to yield this result, resorting to a technical trick. Let 

S[M] denote the scheme, affine over S , whose underlying space 

is S , and whose structural sheaf is OS~ M , taken to be a 

ring in the obvious say. Form the diagram, 

G ~a[M] M] 

S 

and note that RIF.< OG[M])= Rlf.~G ~ Rlf.f*M , using that gG 

is affine. 

But, by Kunneth, 

RIF.((}G[M]) = RIf.~G ~ (OS~ M) 

using that gs is affine. 

The lemma follows, and so does (1.10). 

(1.12) If A is an abelian scheme over the base S , where p 

is nilpotent on S , let G denote the p-divlsible group associated 

to A over S . It is an easy exercise to see the pullback to G 

of the universal extension of A over S is the universal exten- 

sion of G over S . More explicitly, consider the map 

which determines the pullback to G of the universal extension 

of A o This map ~ is easily seen to be the natural isomorphism. 
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02. RIGIDIFICATION OF HOM AND EXT 

(2.1) Fix an S-group scheme G and an exact sequence (of 

fppf sheaves of abelian groups over S) 

(¢) 0 ~ G ~ E ~ F ~ 0 

Infl(F) c F denote the first infinitesimal Let F 1 

F over S . Regard neighborhood of the zero section of 

F I as an S-pointed sheaf. 

By definition a rigidification 

is a homomorphism of 

commutative diagram: 

r of the extension (¢) 

S-pointed S-schemes making the following 

r 

F 1 > E 

F 

A rigidified extension of F by G is a pair consisting 

in an extension (¢) together with a rigidification of it , r . 

If H is an S-group scheme, an (¢)-rigidifled homomorphism 

from G to H consists in a homomorphism of S-groups 

~o: G~H 

together with a rigidification 

exact sequence (~.¢). 

If 

( ¢ )  0 ~ G ~ E ~ F ~ 0 

(¢') 0 ~ G ~ E'~ F ~ 0 

are two extensions, provided with rigidifications 

r of the induced (pushout) 

r • r ~ 
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respectively, then on the Baer sum (~) of (¢) and (e') 

there is a natural rigidifieation ~ , which we shall call 

the Baer sum of the rigidifieations r and r'. This is ob- 

tained from the natural rigidification on the external product: 

(e~ e'): 0 ~ G×G~ Ex~ > F×~ ~ 0 

~ v ~  ~r'.. 
(F~F) 1 ~FI~F 1 

Denote by Extrig (F,G) the set of isomorphism classes of 

rigidified extensions of F by G . Denote by (e)-Homrig(G,H) 

the set of isomorphism classes of (e)-rigidified homomorphisms 

from G to H . One checks easily that Baer sum induces an 

abelian group structure on Extrig(F,G) and on (e)-Homrig(G,H). 

Extrig(F,G) is bifunctorial in F and G . As for 

(e)-Homrig(G,H), it is functorial in H , and if ~:G ~ G' is 

a homomorphism of S-groups, one gets a natural homomorphism 

(~,e)-Homrig(G~,H) ~ (e)-Homrig(G,H). 

There are two objects of this section: 

To express the universal extension of a Barsotti-Tate 

group (over a base S on which p is locally nilpotent) as a 

direct limit of e-Homrig's ~.5-7). 

To express the universal extension of an abelian scheme as 

an Extrig (2.6.7). 

(2.2) Let us consider the special case where (¢) is an exact 

sequence of finite locally-free groups and where H = G m 

Furthermore let us assume that the base scheme, S , is affine. 
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(2.2.1) Proposition There is an exact sequence of abelian 

groups: 

(2.2.2) 0 ~ F(~S,~ F ) ~ (e)-Homrig(G,G m) ~ r(S,G*) + 0 

Proof: The map (~)-Homrig(G,G m) -* F(S,G*) is defined by 

forgetting the rigidification r of the rigidified homomorphism 

(q0,r). Given M: G ~ G m , consider the corresponding extension 

G 
(c~) 0 ~ G m ~ G m~E ~ F ~ 0 

G 
It makes G m ~ E a principal homogeneous space over F under 

the group ~ . Thus by descent [ll, lO; S.G.A 1 XI 4.3, EGAIv 17.7.3] 
G m 

G m/L E is a smooth F-scheme. Viewing F 1 as an F-scheme via 

the inclusion F 1 c F we view S as an F-scheme defined by 

the vanishing of an ideal of square zero: namely ~F " Because 

Gm G/~ E is smooth over F , the identity section can be lifted 

so as to obtain a commutative diagram: 

G 
G m iL E ~F ~ 0 0 ~ ~ G m 

" 1 

" S  

This shows the map (¢)-Homrlg(G,G m) ~ r(S,G*) is surJective. 

By definition the kernel of this map consists of pairs 

(0,~) where ~ is a rigldiflcation on the trivial extension: 

0 ~ G m ~ Gm× F ~ F ~ O. 

But to give a morphism of S-pointed S-schemesj F I ~ Gm~F J which 

projects to the inclusion F 1 c F; is equivalent to giving a 
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morphism of S-pointed S-scheme) F 1 ~ Gm)Which is the same as 

giving an element in F(S,~F ). 

Since it is clear that the map ~(S,~F) ~ (¢)-Homrig(G,G m) 

defined by the above is additive, the proof of the proposition 

is complete. 

(2.3) Let (e)-Homrig (G,Gm) denote the sheaf associated to the 

ZARISKI presheaf whose value on an S-scheme S' is 

(eS,)-Homrig(Gs,,Gms). Then without any hypothesis on the 

scheme S we have the following corollary: 

(2.3.1) Corollary: There is an exact sequence of ZARISKI 

(resp. f.p.p.f.,...) sheaves on S: 

0 ~ Z~ + (e)-Homrig(G,G m) ~ G* ~ 0 

In particular (e)-Homrig(G,Gm) is a commutative flat S-group, 

provided --~F is finite, locally-free. 

(2.4) Let (e) 0 ~ G ~ E + F ~ O be an exact sequence of finite, 

locally-free S-groups. The next proposition is the basic result 

relating (~)-rigidified homomorphisms to the construction given 

in (1.4) above. It and its analogue for abelian schemes given 

below in (2.6) are the basic results which will allow us to 

obtain an explicit description of the universal extension of a 

Barsotti-Tate group (resp. an abelian scheme). 

(2.4.1) Proposition. There is a canonical and functorial 

homomorphism of groups E* ~ (e)-Homrig(G,Gm), which will be 

explicitly constructed in the proof, rendering the following 
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diagram commutative: 

(2.4.2) 0 "~ F * ~  E *  . . . . . . . . . . . . . . .  ~ G * - - ~  0 

' ' ji 
0 ~ ~---~ . - . -(¢B-Homrig(G,G m) --* G* ~ 0 

Proof: (¢)-Homrig(G,Gm) is the sheaf associated to the pre- 

sheaf S' ~* (~S,)-Homrig(Gst G m ). Thus it suffices to con- 
, S t 

struct a mapping on the level of presheavesjand since every 

"object" occuring in (2.4.2.) commutes with base change it suffices 

to construct the map F(S,E*) ~ (¢)-Homrig(G,Gm). Let 

: E ~ G m be an element in V(S,E*). Because we require the 

right hand square of (2.4.2) to commute we must assign to 

a pair (~JG,r) where r is a rigldification of the extension 

(~JG),(c) . That is we must define r , a morphism of pointed 

S-schemesjwhich renders the following diagram commutative: 

(2.4.3) 0--* G ....... ~E ~ F ~ 0 

r ~  
" F  1 

a ? 
Using ~ we obtain a splitting, Gm~LE ~ G m, of the lower 

horizontal line of (2.4.3). Composing the ~'trivia~'rigidification 
G 

F with (~,~)'l:GmXF ~ G LE E we obtain the ro: Fl~-~* F~-~ Gm m 

desired rigidification r . 

It remains to show that the left hand square of (2.4.2) is 
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commutative. 
m 

corresponding to (2.4.3) is: 

0 ~ G--~ E -----~ F---*~O 

oI,o<  1 
0--~ Gin--* Gm~ E--~ F , 0 

I d e n t i f y i n g  G m ~ E  wi th  Gm× F , then 

with the automorphism of G~ F taking 

Thus let ¢: F ~ G be given so that the diagram 

(¢0~, v) is identified 

(x,f) to (x+¢(f),f). 

This shows that to CoY the pair (O,-¢~FI} is assigned. By 

definition of a and of the map ~ ~ (e)-Homrig(G,Gm) it 

follows that the diagram commutes. Finally the fact that the 

map E* ~ (¢~Homrig(G,Gm) j which has been defined above is a 

homomorphism of groups2follows directly from the definition~. 

(2.5) (The Universal Extension of a Barsotti-Tate group) 

Assume that our base S is killed by pn and fix a 

Barsotti-Tate group G on S . For any i ~ 1 let (~n~i) be 

the extension: 
i 

(¢n,i) 0-~ G(i)-~ G(n+i) P , G(n)-~ 0 

By (2.4.1) we obtain a commutative diagrams: 

(2.5.1 i ) 
n 

o-~ G*(n)-~ G*(n+i) ..... P ~ a*(i)--~ 0 

0--* ~_~G~-~(~Homrig(G(i),Gm ) _  ~, G*(i) --* 0 

From the proof of (2.4.1) and the explicit definition of (2.7) 

it follows that the following diagrams 



(2.5.2) 0 ~ 

0---~ 

i+l 
P 

P P 

G(i) ", a(n+t) Pi > G n)--, 0 

give rise to commutative diagrams: 

(2.5.3) 
0 ~ G*(n)__i 

o--~ ~( 

0 )f-~G (n) 

> Lt~G (n) 

~ G*(n+£) 
i+l 

G* n+i+l) P 

~ n~)Homrig 
~-~n,i+l)Homrig > G* 

i 
P ~ ( i )  -~ 0 

G*(i+l) .., > 0 

G*(i)-* 0 / 
i + l )  ~ 0 

Hence passing to the direct limit we find a commutative diagram: 

(2 .5 .4)  
n 

0--* G,(n) ~Y G* , ..p D G* -~ 0 

-or J, 
0 - - *  L~G(n) ,1_~( ¢n,l)Homrig--* G*--* 0 

But we know that pushing out the extension 
n 

D 
0 + G*(n) ~ G'C---> G* + 0 via ~ gives the universal extension 

Hence there is a canonical isomorphism E(G*)~ of G*. 

li_.~(~n,i~omrig(G(i),Gm) which makes the following diagram 

commute: 

(2.5.5) >Y 
O-~2G(n)-~li_~m(cn, i~Homrig , G* , 0 

Also it follows that the hypotheses that pn kills S can be 

replaced by the assumption that p is locally-nilpotent on S . 
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To be more precise consider the exact sequences: 

i 
(¢i) 0 ~ G(i) ~ G P -~ G ~ 0 

The map of sequence (¢n,i) to (el) defines the homomorphism 

(ei)-Homrig(G(i),Gm) ~ (~n,i)-Homrig(G(i),Gm). If pn kills 

S , then this map is an isomorphism because G 1 = Infl(G) m G(n) 

[16,II 3.3.16]. Thus the map (~i)-Homri~(G(i),Gm) ~ G*(i) 

is an epimorphism since this is a local property on S . Also 

the fact that G 1 is affine on S insures that the map 

L~G + (¢i)-H°mrig(G(i)'Gm) is well-defined and that the sequence: 

0 ~ ~G ~ (~i)-H°mrig(G(i)'Gm) ~ G*(i) ~ 0 

is exact. 

Passing to the direct limit we obtain an exact sequence: 

(2.5.6) 0 ~ ~ ~ li~(¢i)-Homrig(G(i),Gm) ~ G* ~ 0 

Let 0 ~ ~G ~ E(G*) ~ G* ~ 0 be the universal extension of G* 

by a vector group. Then there is a unique linear map ~G ~ ~G 

giving the extension (2.5.6) by pushing out. By (2.5.5) this map 

is -id locally and hence is -id . Finally because of the 

functoriality of Homrig discussed in (2.1) we can sta~e: 

(2.5.7) Proposition. Let S be a scheme on which p is locally 

nilpotent. The two contravariant functors from the category of 

Barsotti-Tate groups to the category of abelian (f.p.p.f) sheaves 

on S : 
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a) a ~ E(a*) 

b) G ~ li~(ci)-Homri~(G(i),G m) 

are canonically isomorphic. Furthermore the natural exact 

sequence 

0 ~ RG ~ lis(¢i)-H°mrig(G(i)'Gm) ~ G* ~ 0 

is "the" universal extension of G* by a vector group. 

(2.6) (The Universal extension of an ~he~i~n scheme) 

Let S be a scheme and A an abelian scheme on S . 

Let 0 ~ G ~ E ~ A ~ 0 be an extension of A by G . Then m m 

E is representable and the morphism E ~ A is smooth, so that 

if S is affine this extension admits a rigidification. Thus 

if we denote by Extrig(A,G m) the ZARISKI sheaf associated to 

the presheaf S' ~ Extrig(As,,Gms) we find (Just as in~.2.1)) 

an exact sequence: 

(2.6.1) 0 ~ ,~ ~ Extrig(A,G m) ~ ExtI(A,Gm ) ~ 0 

But the dual abelian scheme, A* , exists and is isomorphic to 

Extl(A,Gm ) [21,19]. From descent it follows that Extrig(A,G m) 

is representable and is a smooth S-group. 

(2.6.2) We shall see below that the extension (2.6.1) is the 

universal extension of A* by a vector group. Let us begin with 

a special case where an explicit isomorphism between the uni- 

versal extension and the extension (2.6.1) can be given. Thus 

assume pn is zero on S . Recall then that ~A(n) = '~A and 
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and that the universal extension of A* by a vector group is 

obtained as a "pushout" as in the following diagram: 

(2.6.3) 
n 

0 ~ A*(n)--~ A* -p ~ A*~ 0 

,i 
0 ~ ~A(n) --+ ~ ..... >A*--~ 0 

Our isomorphism is obtained from a homomorphism A* ~ Extrig(A,Gm) 

which renders the diagram obtained by replacing ~ by Extrig 

commutative. To define the map it suffices to do so on the level 

of presheaves/and hence~because everything is compatible with 

base change~to define a map r(S,A*) ~ Extrig(A,Gm). 

If 0 ~ G m ~ E ~ A ~ 0 is an extension we can pull it 
n 

back via the homomorphism A P~ A and obtain a commutative 

diagram: /Jln~l(A(n))=A(n)l 

0 ~ I!Gm---'~ ~ - - " *  Al/n 0 

0 ~ G-----~ E - - - ~  A-~ 0 m 

The ke rne l  of the  map E ~ A ~  E is  mapped i somorphica l ly  
under the p r o j e c t i o n  Pr2 :E~A ~ A to A(n). This al lows us 
to f ind  a unique arrow A(n)] ~ Ker making the diagram commute. 
Because pn kills S , Infl(A(n)) = Infl(A) = A 1 

and hence composing this arrow with the inclusion Ker c-~ E~ A 

we obtain a rigidified extension of A by G . This defines 
m 

the desired homomorphism. It remains to show that the diagram: 
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(2.6.5) 
n 

0 ~ A*(n) ......... ~ A*-- P > A*--* 0 

0 ~ --~E t ~ A*--* 0 ~A(n) x rig 

is commutative. The right hand square commutes by definition 

of the morphism A* ~ Extrig(A,Gm). To check the commutatlvity 

of the left hand square let the extension 

(c) O ~ G m ~ E ~ A ~ O 

represent an element in A*(n). Then there exists a unique 

homomorphism ~: E ~ A ~ G m which splits the extension in the 

upper row of (2.6.4). It follows from the explicit form of 

Cartier duality given for example in [18 bis] that the identi- 

fication of A*(n) with A(n)* = ~om(A(n),Gm) makes correspond 

to (c) the homomorphism ¢: A(n) ~ G m which is the following 

composition: 

(2.6.6) A(n)¢ ! ~ E~A ~ * G m 
A 

Thus going around the left hand square: 

A*(n) ~ 7 ~A(n) ~ Extr~g(A'Gm) assigns to (e) the trivial 

extension Gm~A together with the rigidification whose components 

are ¢IA(n)l: A(n)l ~ G m and the canonical inclusion 

A(n)l ~ A . 

We must check that this extension is isomorphic to the 

extension given by the upper row of (2.6.4), via an isomorphism 

respecting the rigidified structures. The unique isomorphism 

between these two extensions is given by the map T: E x A ~ GmXA 
A 
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whose components are ~ and pr 2 . 

For xj an S'-valued point of AI) the rigidification on 

E× A assigns to it the S'-valued point (0,x). Certainly the 
A 

second component of T~0,x)) is x while the first component 

is ~((0,x)) : ~ oi[Al(X ) = ¢IAl(X ). Thus ~ is an isomorphism 

of rigidified extensions and the diagram (2.6.5) commutes as 

asserted. 

(2.6.7) Proposition: Let S be a scheme, A an abelian scheme 

on S and let E(A*) denote the universal extension of A* by 

a vector group. The canonical morphism E(A*) + Extrig(A,O m) 

(arising from the definition of the universal extension and the 

extension (2.6.1)) is an isomorphism, which is functorial in A . 

Proof: Observe first that both the universal extension and 

Extrig(A,Gm) are compatible with arbitrary base change. For 

E(A*) this follows from the fact that all objects (= group or 

map between groups) entering into the proof of its existence in 

(1.9) are compatible with base change. To show the map 

E(A*) ~ ~(A,Gm) is an isomorphism is equivalent to showing 

that the map i~A ~ i~A giving rise to it is an isomorphism. 

This problem is local on S and hence S can be assumed to be 

affine. Because A is proper and smooth on S (hence of finite 

present&ti~n on S ) we can assume that S = Spec(R) where 

R is a ring of finite type over Z [10,EGAIv 8.9.1,8.10.5 .... 

From (2.6) it follows that for any maximal ideal m c R , the 

'~--AA + ~A/.~ iS an isomorphism (n > i). corresponding map r--n~°A- -Z~=A-- 

Hence the determinant of the corresponding endomorphism of 
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A A 
® R m is a unit in R m. This implies that this determinant 

is actually invertible in R Because this holds for all 
m 
m 

maximal ideals ~ , the endomorphism of ~--A is an automorphism. 

To check the functoriality of this isomorphism, consider 

two abelian schemes A, B on S and a homomorphism u: A ~ B° 

The assertion means that the following diagram is commutative: 

(2.6.8) 

o t 

o I >£A 

o --------~ ~ 

, ~ E ( B * )  ~B*  ~ 0 

) E x t r i g ( B , G m )  I ..... ~ B* , ~ 0 

| .... ~ E(A*) - - - - I - - - ->  A *  ~ 0 

) Extrig(A,Gm) ~ A ~ 0 

To check that the two ways of going from 

E(B*) to Extrig(A,Gm) coincide, observe that their difference 

is a map E(B*) ~ ~A which vanishes on m B and hence gives 

a map B* ~ ~A ' necessarily zero by (1.5)- 
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~3. RIGIDIFIED EXTENSIONS AND @--EXTENSIONS 

Let 

(*) 0 ~ G m ~ E ~ A ~ 0 

be an extension over an affine base S , where A/S is an 

abelian scheme. 

In this section we will show, in detail, how the following 

two additional structures on (*) are equivalent: 

(a) A rigidification of (*) 

(b) An integrable connection on E regarded as a 

Gm-torseur over A (this connection being required to 

be compatible with the group structure of the extension 

E). 

In this w~y wc shall obtain yet another explicit description 

of the universal extension of an abelian scheme. 

(3.1) The definitions. 

By torseur for G over S we shall mean principal homo- 

geneous space, locally trivial for the ~tale topology. There 

are many equivalent ways to define connection and we shall take 

the definition using the fewest words: 

Definition: Let X be an S-scheme, G a commutative smooth 

S-group, and P a torseur on X under the group G X. Let 

AI(x) = AI(x/s) denote the first infinitesimal neighborhood of 

the diagonal map X ~ X~sX . The two projections 
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p~: X ~X ~ X (J=l,2) induce morphisms pj:Al(x) ~ X . 

A co__nn~ction ~ on the Gx-torseur P is an isomorphism 

of GAl(x)-torseurs: 

which restricts to the identity on X . (That is , A*(~ = idp). 

Given an Ox-module E a connection on E is an O~l(x ) 

isomorphism ~:p~(E) ~ p~(E) restricting to the identity on 

X. Given (E,~), an OX-mOdule with connection, we may obtain 

an Os-linear homomorphism 

~':E ~ E e ~/S 

(satisfying the Leibniz product rule) as follows: 

Denote by jl, J2 the two ring homomorphisms OX + O~I(x) 

corresponding to the two projections pl,P2. One obtains the 

corresponding ~orphisms JI(E): E ~ p~(E), J2(E):E + p~(E). 

Define: 

V' = ~-ioJ2(E) - JI(E). 

(3.1.2) Examples 

a) If G = G m , then connections on the Gm-torseur P 

are in one-one correspondence with connections on the 

line bundle, i , which is associated to P . 

b) If G = Ga, then Ga-torseurs P correspond to 

extensions ~) of O X by OX: 

(~) 0~x ~ E ~ % ~ °  
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and connections on P correspond to isomorphisms of 

extensions p~(c)~-~ p~(e) which restrict to ide on X D 

(3.1.3) The G-torseurs with connection (P,V) are the 

objects of a category in which the morphisms, Hom(P,V),(Q,?)) 

are precisely those morphisms ~:P ~ Q of G-torseurs such 

that the following diagram commutes: 

p (P) > p (Q) 

P~(P) > P~(Q) 

Such an ~:P ~ Q is said to be horizontal when the connections 

on P and Q are understood as being given. 

(3.1.4) (The curvature of a connection). The curvature tensor 

2 
will be an element in F(X,~x/s~Li_ee(G)). First we define the 

curvature of a connection on the trivial bundle G X and then 

show that these tensors can be patched together to give a defi- 

nition for an arbitrary torseur P . 

A connection on G X is simply an automorphism of GAI(x ) 

which restricts to the identity. It is completely determined by 

telling what it does to the unit section and hence is determined 

by giving an arbitrary element ~ in Ker(F(AI(X),G) ~ F(X,G)) 

X/S ) = T( '~X/S Lie(G)). The image of = HOmoX(~/~3®O~,~ I X i @ 

2 "i 2 
in v(X,~x/S ® Lie(G))under d e id : ~X/S e Lie G ~ ~X/S ~ Lie(G) 

i6 by deflni~len the curvature form of the connection. 

Now if P is an arbitrary G-torseur on X , endowed with 

a connection, then after an @tale base change X'-~ X , by our 
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definition of torseur) P becomes trivial. There is an 

induced connection on PX'" Choosing a trivialization of 

PX'" construct the curvature of the induced connection which 

lies in T(X',~,/S ~ Lie(G)) = r(x,,f*~ /S ® Lie(G)). (We 

obtain the above equality because X' ~ X is ~tale.) In order 

to show that this local construction descends to define a 

section of ~2e Lie(G) over Xj which will be by definition 

the curvature)it suffices to show that the curvature of PX~ 

is independent of the choice of trivializationjsince then 

the application of p~ and p~ to our section in 

1 Lie(G)) yields the same section of F(X',~,/Se 

~(X'~ X', IX,×X,e Lie(G))__ and we can apply descent. To do this 

take two trivi~lizations 

7: P~G , 

and express the comparison 

g: X~G . 

¢:P~G 

¢o~ I as an S-mo~hism 

One checks readily that the difference between the two 

2 Lie(G)) where curvatures is given by d~ 6 r(X,~x/se 

= p~(g) - p~(g) is interpreted as an element in 

Ker(Hom(~l(x),G) ~ Hom(X,G)) 

(*) ~ -  i 
F(X,flX/s ® Lie (G)) 

and d is induced from exterior differentiation 

d: QxITs ~ n 2 x/s " 

We must now show 
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(3.1.5) Lemma: d~ = O 

Proof: Let the same letter v denote the structural morphisms 

~: G ~ S, ~: X ~ S for no confusion will result. 

The element a may be viewed as a homomorphism: 

1 
~: ~-~G ~ ~/S 

by means of the isomorphism 

1 ~ 1 (**) r(X,~/S® .Lie(G)) = Homos(~_~G,~,nX/S) 

Using the diagram: 

(3.1.6) 

subtraction 
(p ~ ........ > (o) 

AI(G) ...... ) Infs 1 ) 

x >a >s 
g 

and the isomorphisms (*), (**) above one can see that ~ is 

the composition of the two top horizontal arrows in the 

following diagram: 

~G 
1 dg ~ 1 

" > ~ * ~ / s  ~ *nxls 

2 ~ * ~ / s '  > ~ 2 ~ 'x / s  

i Since the image of ~G in *~/S is killed by d , the 
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lemma follows, and our construction of the global curvature 

of the G-torseur P is concluded. 

If the curvature associated to (P,7) is zero we say that 

the connection 77 is integrable. 

(3.1.7) (The multiplicativ e de Rham complex) 

Consider the map of sheaves for Xet, the small @tale site 

of X: 

G X ~ > ~/S ~ Lie G 

g , > ~ : p~(g)- p[(g) 

(3.1.5) implies that 

:defn % Lie a 2 X/S @ Lie G 

may be viewed as a complex of sheaves on Xet. 

If G = G we obtain the ordinary de Rham complex a 

• ...~ ~X/s@LIz~G, • .. 

~X -+ ~/S- ~ .... 

If G = G m , we obtain a complex called the multiplicative de 

Rham complex: 

d log i d 2 
~ ~ nx/s ........... ~ n×/s ~ "'" 

(3.1.8) A G-torseur endowed with an integrable connection is 

what Grothendieck calls a 9-torseur. The ~-torseurs form a 

full sub-category of the category introduced in (3,.1.3) Denote 
F 

this category by TORS q(X,G). 

(3.1.9) Because G is commutative we can define the contracted 
G 

product P A Q of two G-torseurs. It is by definition the 
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associated sheaf of the presheaf which is the quotient of P~Q 
G 

by the action of G: g.(p,q) = (gp,g-lq). P AQ is made into 

a G-torseur by letting G act on either of the factors. If 

P and Q are endowed with connections ~p and VQ, then 
G G 

¢I 
p~(PAQ) p*(PAQ) 

2 

d e f i n e s  a c o n n e c t i o n  on P ~ .  Fu r the rmore  t h e  c u r v a t u r e  t e n s o r  
G 

a s s o c i a t e d  to  ~ A  VQ i s  the  sum o f  t h a t  a s s o c i a t e d  to  ~ p  

and t h a t  a s s o c i a t e d  t o  ~ Q  . In  p a r t i c u l a r ,  t h e  c o n t r a c t e d  

p r o d u c t  o f  ~ - t o r s e u r s  i s  a ~ - t o r s e u r .  

I f  X i s  an S -g roup ,  t hen  i t  i s  p o s s i b l e  t o  impose a d d i t i o n a l  

structures on a Gx-tOzseur P: namely to require that P has 

the structure of an S -group so that we obtain a (central) 

extension 

0 ~ G ~ P ~ X ~ 0  

In our context (i.e. given that P is a torseur) the most 

convenient way to express this is by giving an isomorphism: 

G 
B: ~ ( P )  A v~(p)  ~ s*(P)  

(where ~ l ,V2 :  X× X ~ X a r e  the  p r o j e c t i o n s  and s:  X~X ~ X i s  

the  a d d i t i o n  law) and r e q u i r i n g  the  a p p r o p r i a t e  d i ag rams ,  ( e x p r e s -  

s i n g  the associatlvity and eommutativity ) to commute. 

(3.1.10) By combining the notion of torseur endowed with an 

integrable connection, with the notion of a group extension of 

G by X we are led to the following definition (following 
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again Grothendieck's terminology). 

Definition. A ~-extension of the smooth group G by the commutative 

group X is a triple (PV, G)j where (P,V) is a ~-torseur on 

X under G , (P,G) defines a group structure on P~ making it 
G 

an extension of X by G~ and where G:v~(P) f~(P) -~ s*(P) 

is a horizontal morphism. 

We denote by EXT~(X,G) the category whose objects are the 

~-extensions and whose morphisms are the horizontal morphisms 

between extensions. Because G is commutative, the category of 

extensions of X by G , EXT(X,G) is endowed with a "composition 

law" which corresponds to taking the contracted product of the 

underlying torseurs. Upon passing to the set of isomorphism 

classes of objects the induced composition law gives the standard 

group structure ~o ExtI(x,G). From the description of the 

composition law in terms of contracted product of torseurs it is 

clear that we can define the "Baer sum" of two ~-extensions 

and that by passing to isomorphism classes we obtain a group 

Ext~(x,a). 

Let 

0~A~B~C~0 

be an exact sequence of finite locally free (commutative) S -groups 

An (~)-~ homomorphism A ~ G is by definition a pair (~,~) where 
A 

~: A ~ G is a homomorphism and ~ is a connection on G~B 

making 

A 
~.~ 0~ G~ G~B ~ C ~ 0 
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a ~-extension of C by G . 

The set of (~)-~homomorphisms A ~ G is made into a group 

by defining (~,~)+(~', V') = (~+~', V) where ~ defines the 

structure of ~-extension on the "Baer sum" of (¢~) and (~,). 

We shall denote this group by (~)-$Hom(A,G). 

(3.2) (The isomorphisms) 

In this section we shall construct a homomorphism 

(3.2.1) Ext ~ (A,G) ~ Extrig(A,G). 

As a consequence, one then obtains a homomorphism 

(3.2.2) (¢)-~ Hom(A,G) ~ (~)-Homrig(A,G). 

Later we shall prove that over an affine base S (3.2.2) is an 

isomorphism if G = G m , and (3.2.1) is an isomorphism if 

G = G m and A is an abelian scheme. 

Let the ~-extension, 

(~) 0 ~ G ~ E ~ A ~ 0 

be given. 

Denote by i , the inclusion Infl(A) ~ A , ~: ~nfl(A) ~ S 

the structural morphism and by ~: Infl(A) ~ ~l(A) the morphism 

determined by plo~ = eAov , p2°~ = i . 

Since the ~-structure on E is given by an isomorphism 

V: p~(E) ~ p~(E) , we can "pull back" V via T to obtain: 

T*(V): v*oe~(E) ~ i*(E) 
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Since E is a group e~(E) and hence ~*e~(E) is equipped 

with an obvious choice of section, the unit section. Via T*(V) 

we transfer this section to obtain a section of i*(E) and 

hence by composition with i*(E) ~ E , we obtain finally a 

morphism ~: Infl(A) + E . It is this s , which we shall choose 

to be the rigidification of the extension (e). 

that this is legitimate let us verify that 

properties required of a rigidiflcation: 

i) ~ is a morphism of S-schemes 

2) the following diagram commutes 

E-- >A 

In order to show 

possesses the three 

= Infl(A) ~ Infl(A) ~ E proj + E ~ A ~ S = 

Infl(A) ~ Infl(A) ~ E -2r°J ~ Infl(A) ~* A ~ S = Infl(A) j ~ S . 

To check 2) it suffices to observe that i*(E) = Infl(A)~ E 

and that ~ is the composition of a section in ~(Infl(A),i*(E)) 

and the projection i*(E)-~ E . 

Finally let us check that 3) holds. We are to show that 

S ~ Infl(A) a)E = S e ~ E . The left hand side can be computed 

as follows: 

S~-~ Infl(A) --~a E = S ~* Infl(A) ~ Infl(~)~ E proJ) E 
&~A 

= SC-~ Infl(A) (id'e°F)> Infl(&)× E ~*(V)~ inql(A)~ E pr°J>E 

e~A broNzE ~ A  S~ InflA~ E ~*{~) > Infl(A)~ E 
e o~ i~ A 

3) ~ is a morphism of S-pointed schemes. 

To check 1): Infl(A) -~ ~ E ~ S = Infl(A) ~ .... ~ E ~ A ~ S 
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where the components of u: S ~ Inf~(~A)~ E are e~fl(A ) and 

eE . eo~ 

Thus to conclude (3) it must be shown that ~*(Q) preserves 

the second component of this morphism. To do this let us 

r~urn momentarily to the given ~: ~(E)~ P~(E). By composing 

eA: S~ A with A: A ~ ~I(A) , S may be viewed as a 

Al(A)-scheme. Via this both p~(E) and p~(E) have an obvious 

section ~l(resp 52) with values in the Al(A)-scheme S:namely the sec- 

tion with components SO-> AI(A) and S ~  E . Under the iden- 

tification of A~pi*(E) with E , the unit section S ~  E 

is identified with the section Just described of p~(E) with 

values in the ~l(A)-scheme S o But by definition of a connectio~j 

A*(~) = idEj and hence ~ must map ~i: S ~ p~(E) into the 

corresponding section &2: S ~ p~(E); that is the second com- 

ponent remains S ~E E . 

Let us now consider the first factor S ~ ~  Infl(A) 

Because T~einfl(A)= Aoe A , it follows immediately from the 

definitions that ~*(~i ) = u • This implies that T*(~ou has 

as its second component the unit section eE: S c-~ E , and 

completes the proof. 

(3.2.3) Proposition: a) If A is an abelian scheme the homo- 

morphism Ext~(A,Gm) ~ Extrig(A,Gm) is an isomorphism. 

b) The homomorphism 

(e~Hom(A,G~(~)Homrig(A,Gm) is an isomorphism if S is affine. 

Proof: a) In order to prove Ext~(A,Gm) ~ Extrig(A,G m) is an 

isomorphism, let us construct an inverse. Assume given a 
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rigidified extension 

0 ~ G~-~ E J ~ A--* 0 

I I(A) 

defines a section of i*(E)~ and hence a trivialization 

p: (eAolr) (E)-~ i*(E) via e~-~ (idlnfl(A),~). 

By definition of Infl(A), the map p2-p~: Al(A) ~ A factors 

through Infl(A). Let us write it as ~I(A)---~ Infl(A)C-~ A • 

Thus ~*(p): (eAO~Al(A))*(E)-~-~ (p2-Pl)*(E) is an isomorphism 

where VAl{A): &l(A) ~ S is the structural morphism. 

Multiplying both source and target of this map by p~(E) and 

using the fact that E is a group we obtain a diagram where 

the lower horizontal arrow is defined so as to render it commuta- 

tive 

(3.2.5) 

~*(p )Ap~(E) 
(eAovAI(A) )*(E)A p~(E) - # (p2-Pl)*(E)Apl(E) 

p[(E) V' . > p~(E) 

Our inverse mapping is now defined by associating to the 

rigidified extension above the ~-extension with the same under- 

lying extension and the ~-structure defined by V'. To show 

that the definition makes sense and actually gives an inverse, 

five statements must be proved: 

l) A*(~ = id E 

2) The map Extrig(A,Gm) ~ Ext~(A,G m) ~ Extrig(A,G m) 

identity. 

is the 
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3) The map Ext~(A,Gm) ~ Extrig(A,Gm) is injective 

4) V l is integrable 

5) The isomorphism ~(E) ~m ~(E) ~ s*(E) is horizontal. 

The proofs we give of the first two statements are 

entirely formal, while those of the remaining three actually 

use the assumptions that A is an abelian scheme and G = G m 

l) Since ~*(~ is a morphlsm over A , it suffices to show 

that it is the identity when E is viewed as a sheaf on Sch/S • 

Since our situation commutes with base change it suffices to 

show the mapping it induces~ E(S) ~ E(S)~ is the identity. Let 

~: S ~ E be given so that ~ defines morphisms ~l: ~--~ P~(E) 

and <2: S ~ p~(E). Since 4: A ~ Al(A) is a m~nom@rphism 

it suffices to show that ~7~ C1 = ~2 " To check that it is true 

let us recall the definition of the vertical isomorphisms in the 

diagram (3.2.5) above. 

Let ~,B: T ~ A be given and consider the torseurs 

E , E~, E + 6 deduced from E by the corresponding base changes. 

Em~E~ is a sheaf associated to the quotient of E~E~ by the 

action of G • Thus if T' is any S-scheme elements of 

F(T',Ea~E~) are given locally by triples (of S-morphisms) 
x 

x: T' ~ E, y: T' ~ E , t': T' ~ T where T' ---* E ~ A 

= T' ~ T ~ ~, A , T' Y~ E ~ A = T' ~ T ~ A . Thus the iso- 

morphism in question is determined by associating to (t',x,y) 

the pair (t',x+y) 6 F(T',Ea+G). 

Return now to diagram (3.2.4). Then ~l=(Aojo~,C), 

~2 = (Aojoc,~) and after the above explication of the vertical 
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isomorphism it is obvious that {1 corresponds to the class 

of (AoJo~,eE,{). On the other hand projection of 

(eAO~al(A))*(E) = ~*<eAO~infl(A))*(E)) to (eAO~Infl(A))*(E) 

assigns to (~oJoC,eE) the pair (~o~oJo{,e E) which it 

transforms via p into (~goJo~,~o~AoJ°~). Thus ~*(p) 

transforms (Ao JQ~, eE) inte (a~J~ ~, ~o ~o ~oj~ ~). Therefore 

~*(p)Ap~(E) will transform the class of (AoJ~{,eE,~) to the 

class of (~oj.~,~jo~,~). As eAo~ A = (p~-pl)°~ = i~q~A 

and also eAov A = iOeinfl(A)OlrA, it follows that ~o a = einfl(A)OVA • 

Hence ~o~A=J~ = ~einfl(A)¢VA=JO{ = eE~VA~J~ = eF • Thus un- 

der the isomorphism (p2-Pl)*(E)Ap~(E) ~-~ ~*(E) 

(A~J~, ~a~Jo~,~) corresponds to (&ojo~,~) which shows (finally) 

that A*(~) = id E. 

2) Let us begin with the rlgidifled extension 

0 -~ Gm -~ E -~ A -~ 0 

~!fl(A) 
We associate a connection ~' on E to a and then a 

rigidification a' is associated to A ~ . It is to be shown 

that ~' = ~. Using the definition of ~' it is the projection 

onto E of T*(~(Idlnfl(A )geEo~InfI(A )). Hence it is the pro- 

jection onto E of ~I - ~ ~ )(T'e~Inf!tA~) . But as it follows from 

the definition of ~" in terms of the diagram (3.2.5) above 

this projection is simply the sum: 
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proj. onto E(~*(p)(~,eEO~infl(A))) + eEO~infl(A ) 

= proj. onto E(~*(p)(~,eEo ~Infl(A))) 

= proj. onto E(p(~o~,eEOVinfl(A))) 

But since io~oT = (p2-Pl)O~ = P2O~-p!o~ = i - eA°~Infl(A ) = i~ 

and since i is a monomorphism, it follows that ~o~ = idlnfl(A ). 

This implies, by the very definition of p , that ~' = ~ • 

3) To show the map Ext~(A,Gm) ~ Extrig(A,Gm) is injective, we 

must show that if V defines a ~-structure on the trivial 

extension 

0-* Gm--* Gm~A-* A --* 0 

whose associated rigidification, ~ , is trivial, then V is 

trivial. But U is determined by giving a section of F(O~I(A )) 

of the form l+~, ~eF(A,O~) . The corresponding p (associated 

to the rigidification ~) is2because it is an automorphism of 

GmInfl(A)~determined by a unit in F(O~nfl(A )) of the form 

l+w', ~'~ F (S,~A). One has: ~' = v*(f~). But/because A is an 

abelian scheme2this mapping F(A,~/S) ~ F(S,~) is an isomorphism. 

4) To show the connection Q' is integrable we shall use a 

trick which will be repeated below in showing that V' is 

compatible with the group structure on E . The curvature tensor 

~(~') is an element of F(S,VA.(~2A/S)). As mentioned in (3.1), 

E corresponds to a line bundle !E and ~' to a comn~ction on 

this line bundle. Thus because A is an abelian scheme, and 

hence all global 1-forms are closed, the curvature c(~ is 
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actually independent of the connection on E • Notice this 

allows us to define a morphism E xt(A,Gm) 2 VA.(QA/S). Namely 

if S' is an (absolutely) affine S -scheme and 

0 + Gms,~ E' ~ AS. ~ 0 is an extension, we can take any structure 

of rigidified extension on it, then by the above procedure 

put a connection on E' and hence finally obtain the curvature 

~'~s,/~) 2 tensor which lies in r(S',~As,. ( ) = T(S',~A.(~A/S)S,). 

Passing to the associated sheaves gives the morphism 

2 
Ext(A,Gm) ~ ~A.(OA/S). Since Ext(A,Gm) is an abelian scheme 

2 
and VA.(QA/S) is a vector group, this morphism is constant. 

Clearly the image of the trivial extension is zero and thus the 

map is identically zero implying that the connection V' is 

integrab le. 

5) To show the connection V' is compatible with the group 

structure let us replace E by the corresponding line bundle 

gE" Then we are to show the isomorphism 

s*(gE) ~, v~(~E)® v~(gE) is horizontal. Using this isomorphism 

the problem can be interpreted as that of showing that two 

connections on s*(~E) are the same. Taking their "difference" 

we obtain a sectiQn, 8(V') in p(S,~_A~A). In order to imitate 

the trick used in 4) above, we will use the following lemma. 

(3.2.6) Lemma: Let X/S be a scheme, ~I'~ line bundles on X# 

~l,~2,Vl,~ 2 connections on ~i' ~: ~i ~2 an isomorphism. 

Let 8 (resp. 6 f) denote the "difference" between ~*(V2) and 

V 1 (resp ~*(~2' ) and~). Then we have the following formula 

~-8' = "difference" betgeen ~2 and ~ - "difference" between 
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V 1 and ~7~ . 

Proof: The assertion is local hence we can assume X = Spec(B) 

S affine, !l,~ 2 trivial. Translating then ~I' * i 

corresponding to differential forms (~l,I~,,,~,,~ ¢ ~ and 

corresponds to the mapping multiplication by a unit b e B*. 

Thus ~*~z 2) corresponds to ~ + w2 so ~*~2 )-vl = ~ $ (w2-~l) 

W t t = and analogously ~ ~22)-V 1 + (~,}~-~). Subtracting we find 

the result. 

In applying the lemma take !l = s*(~ ), /2 = ~(~ )~(!) 

and for any two connections V, V on i let V 1 : s*~), V~ : s*~), 

V 2 = ~I(~) ® ~(~), ~7~ = v~)ev~(~). Then if ~-~ = CeC(A,Q I) 

the lemma says that 6(~)- 6(~) = v~(¢)+v~(¢).s*(¢). But because 

A is an abelian scheme ¢ is primitive and hence &(~) = ~). 

Because 5~) is independent of the connection put on the 

line bundle Z , we can Just as in 4) above define a morphism 

Ext(A'Gm) ~ ~AwA" As the trivial connection on the trivial 

extension is compatible with the group structure, any connection 

placed on any extension is similarly compatible since the 

morphism is constantly zero. 

b) Assume S is affine and consider the extension of finite 

locally free-groups: 

0~A~B~C÷0 

From (2.2.1) there is an exact sequenc~ 

(3.2.7) 0 ~ U(S,2c ) ~ (~)-Homrig(A,Gm) ~ Homs_gr(A, Gm) ~ 0 
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The indeterminacy in putting a structure of 9-extension on 

the trivial extension 0 ~ G m ~ G~C ~ C ~ 0 is given by 

F(S,~JC ) since the differential form defining the connection must 

be primitive (i.e. translation invariant). Thus there is also 

an exact sequence 

(3.2.8) 0 ~ F(S,~c) + (~)-~Hom(A,G m) ~ Homs_gr(A,G m) 

Obviously (3.2.7) receives a map from (3.2.8) which is the 

identity on F(S,~c) and on Homs_gr(A,Gm) j and which is the 

map (3.2.2) on the middle terms. Hence to conclude that (3.2.2) 

is an isomorphism it suffices to prove that the map 

(~)-~Hom(A,Gm) ~ Homs_gr(A,Gm) is surJective. 

Let ~: A ~ G m be a homomorphism and consider the 

corresponding extension 

(~ 0 ~ G m m 

If the set of structures of ~-extension on (~) is not empty 

it is principal homogeneous under ~(S,Rc ) . Replacing S by 

an arbitrary S-scheme S' we see that for variable S' the 

functor S' ~-~ set of structures of ~-extension on (~)S' is 

formally principal homogeneous under ~C " Since C is finite 

and locally free Extl(C,Gm ) = (0) and hence locally for the 

f.p.p.f, topology2the extension (~) is trivial. This implies 

that we actually have a torseur. By descent it is locally trivial 

for the Zariski topology and thus because S is affine it is 

trivial. Hence (~) actually admits a structure of ~--extension; 

which proves (~)- ~Hom(A,Gm) ~ Homs_gr(A,Gm) is surjective. 
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~4. THE RELATION BETWEEN 0NE-DIMENSIONAL DE RHAM COHOMOLOGY 

AND THE LIE AI~EBRA OF THE UNIVERSAL EXTENSION 

Let A be an abelian scheme over S . We shall establish 

an isomorphism between H~R(A ) and the lie algebra of Extrig(A,Gm). 

The most convenient way to do this is to find yet another interpre- 

tation of Extrig(A,Gm) , this time in terms of differential 

forms (see the construction of E~below). 

(4.1). The Definition of E~. 

(4.1.1). Let A/S be an abelian scheme. Its De Rham cohomology 

is quite simple: 

H~R(A ) , Hq(~) are locally free (and hence a) all the 

their formation commuates with base change). 

b) The Hodge-DR spectral sequence degenerates at E 1 . 

C) H~R(A ) = A*H~R (A) 

The first thing we do is give a geometric interpretation to a 

portion of the long exact sequence of (hyper) cohomology associated 

to the short exact sequence of complexes 

o O~ O~ 

0 > nl > 1 

n n 

S , k 
which we abbreviate to: 

>o 

Define a functor on S-schemes by: 

S' ~ the group of isomorphism classes of line bundles on 

AS, endowed with an integrable connection. 
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Write p $ for this functor and B~ for the associated 

Zariski sheaf. For any S', there is the forgetting map: 

p~(S') ~ HI(~S,) 

which by passage to the associated sheaves yields ( since A is 

an abelian scheme) a homomorphism 

P_~ ~ Pie(A) 

Because global 1-forms on an abeliam scheme are closed, and 

o I because the map HO(~) d log > H (Q~) is the zero map, the 

indeterminacy in putting an integrable connection on the trivial 

bundle ~ is precisely V(A,0~) = ~(S,~_A). Passing to the 

associated sheaves we find the kernel of the map v to be ~ • 

What is the obstruction to putting an integrable connection on 

a line bundle ~ (over A)? The obstruction to putting an___yy 

connection on ~ is furnished by the cocycle arising as the 

logarithmic derivative of the transition function defining g: 

Hl(o~) H l, l) , dfij 

There is an obvious map 

given in terms of ~eeh coeyles (for some affine open cover 

of A) by 

dfij 
(fij) ~-* ((f,)),0) e CI(~,nl)~(_~,~) 

Ij 

If this cocycle is a coboundary there are closed l-forms ~i 
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such that ~..~-~= mi-mj and hence ! will admit an integrable 
zj 

connection. The converse is equally trivial. 

(4.1.2) Proposition: 

P~(S) ~ ~l(~) 

Proof: To any line bundle with integrable connection (i,~) we 
v 

associate the cohomology class of the cech cocycle 

((fij),(mi))e CI(o~)@ cO(~A) where fij are the transition 

functions and m i is the "connection form" for the induced 

connection on ~l~i. Q.E.D. 

Thus we have arrived at the geometrical description of a portion 

of the above mentioned cohomology sequence: 

0--~ H°(~A l) , > P~(S) .,~Pic(A) > ~(~l(~)) 

Now we shall consider Lie algebras. For any group functor 

G on Sch/S , the formation of Lig(G) commutes with taking of 

the associated Zariski sheaf. Thus to calculate the Lie algebra 

of P~ it suffices to calculate that of P~. 

(4.1,4) Proposition: H1 R (A/S) is canonically isomorphic to 

T,ie(P_~), 

Proof: We must examine Ker(P~(S[~]) ~ P~(S)) which by (4.1.2) 

can be regarded as the kernel of 

) ~ ~z(n*) . 
(aAs[ ~1 
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But we have a split exact sequence of complexes of sheaves of 

abelian groups on A: 

~-* %--*0 

and hence (at least as abelian groups) ~l . (a~) --~ Lie(P~) (S) 

The fact that the module structures coincide is a straightforward 

verification. Passing to the associated shemves we find 

H~(A/S) ~ Li_e~] as desired. 

(4.1.5) Lemma. ~*(~(~)) is locally free (and hence commutes 

with arbitrary base change). 

Proof: From the exact sequence 0--~ ~i(~)--+ [~--+ OA--~ 0 , 

using the local freeness of H~p(A) , H*(OA) and the degeneration 

of Hodge => De Rham, we read the result from the short exact 

sequences: 0 ~ Hi(%(~A )) ~ ~i(~) + Hi(OA ) ~ 0 

Knowing ~(T{QA) ) is a locally free module commuting 

with base change we obtain the exact sequence of Zariski sheaves 

on Sch/S. 

Let Us consider the dual abelian scheme A* = Pic°(A) and the 

composite of its inclusions into Pic(A) with the map 

Pic(A) ~2 • . (I(~A)). This composite is zero because there are 

no non-trlvial homomorphisms from a abelian scheme to a 

(locally-free) quasi-coherent module. Hence the image of P~ 

in Pi._~c(A) contains A* and there is an exact sequence 

P~ x A*-~ A* ~ 0 
0--* ~--A--* -- Pi__~C(A) 
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(4.1.6) Definition E @= P@ × A* 
-- Pie(A) 

Thus E@ is actually a smooth group scheme which is obtained 

by considering the Zariski sheaf associated to the presheaf 

assigning to S'/S the set of isomorphism classes of (~,V) 

where the cohomology class of ~ is primitive or equivalently the 

G m torseur corresponding to £ is an extension of AS, by 
A S , 

G m . 
S ~ 

Proposition% H~R(A/S ) is canonically isomorphic (4.1.7) to 

Li__~e (E~). 

@ × )Lie(A*) Proof: Lie([@pi~(A)A*) : Lie(P )Lie(Pic(A ) 

and as is well known Lie(A* ) + Li___e(~ic(A)) is an isomorphism. 

(4.2) The isomorphism between Ext@ and E~. 

For any abelian scheme A/S define a homomorphism, 

Ext~(A,Gm) ~ E~ = ~@×Pic(A)Pic°(A) 

as follows: Any element e in Ext@(A,Gm) may be regarded as 

an isomorphism class of invertible sheaves on A endowed with 

an integrable connection and with a horizontal isomorphism 

C 

s*(G) -~ p* l (L )  @ p~(L) 

where pl,P2: AX A ~ A are the projections and s = pl+P2 is 

the sum morphism. By forgetting ~ , (resp. the connection) we 

obtain an element of p~ (resp. Pic°(A)). 
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(~.2.1) Proposition 

The above morphism is an isomorphism, 

Ext~ ~ ~' E 
¢ 

Proof: It is inJective. Any two horizontal isomorphisms between 

line bundles differ by multiplication by a unit in V(S,~s). 

Thus if there is a horizontal isomorphism, an isomorphism compatible 

with the ¢'s is also horizontal. 

To show that it is surJective, we shall define a morphism 

of S-schemes ~:A~A~A which expresses the obstruction to 

surjectivity of (: Let L be in Ext(A,Gm). Choose any integrable 

connection V on L . This induces connections on s*(L),Pl*(L), 

p~(L), p~(L)@ p~(L). 

The extension-structure of L gives us an explicit 

isomorphism, 

s*(L)-~ p~(L) ~ p~(L) • 

Consider the difference between the connection on s*(L) 

and the pullback of the connection on p~(L)~p~(L) via the 

above morphism. This difference i(V) is a section of 2AxA " 

By (3.2.6) i(V) depends only on L and not on the integrable 

connection ~ chosen. 

We define ~(L) = i(V). Since A* is an abelian scheme and 

is a locally free module, ~ is a constant map. Since ~--Ax A 

~(0) = O, ~ is identically zero. It follows that ¢ is horizontal 

and ~ is surJective. 

(4.6.3) The sheaf ~ in concrete terms. 

Consider the morphism of complexes C~A/S ~ ~ and the 
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corresponding mapping induced on the exact sequence of terms 

of low degree, from the Leray spectral reference: 

O~ Hl(o+_)~ ~i(~) • r(s, Rlf. (O~)) -~ 0 

o ~  H~-(~) -+  H ( A , ~ )  ----*r(s, Pie(A) ) 0 

Consider on the other hand the group PiCe~(A) =dfn{iSomorphism 

class of triples (~,=,V) where (g,=) is an e-rigidified line 

bundle on A and ~7 an integrable connection on ~). Here 

isomorphisms are to be horizontal and respect the e-rigidification. 

There is an obvious map PiC~e(A ) P~(S) 

(~,~,~) ~ (~,V) 

If (~,~), (!',V') are isomorphic, an isomorphism compatible 

with the rigidifications can be chosen since to mo=lify an 

isomorphism we use a global section of F(A,O A) = F(S,O~) and 

clearly this will not alter the horizontality. Hence the map is 

inJective. We obviously have a commutative diagram: 

Given (~,V) 

(~, ~,V) PiC@e (A) • 

(~,c~) PiCe(A ) 

in P~(S) , ~ @ f*e*(~ -I 

>P~(S) 

is rigidified and 

f*e*(~ -I) can be given the "stupid" connection so that it is in 

the image of HI(s,o~) ~ ~{i(~). Thus the map PiCe~(A ) ~ P~(S) 

= H°(~If.(QA) ) is surJective, if (i,~,~) ~-~ O, then 

= f*(!'), ~ = trivial connection 2 and 0 S -~ e*(1) = e'f*(!' ) 

= ~, => ~ r~_ @~Aj and ~--trivial connectionjwhlch obviously 

implies (~,~,V)~--- (OA, Obv.,O). Thus the map PiC~e(A) ~ P~(S) 
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is an isomorphism and we have the desired description of ~(S) 

as [e-rig line bundles + V~, a description which is obviously 

compatible with the description of r(S,Pic(A)) as (e-rigidifled 

line bundles.~ 

P~ x Ext(A~Gm) ........ , it is clear that Since E ~ =dfn _~ic(A ) 

E # admits the following description, its points with values in 

S (or for that matter any S-scheme S') consist of isomorphism 

classes of extensions 0 ~ G m ~ E ~ A ~ 0 such that E is 

a~ GmA-torseur endowed with an integrable connection. 

(4.4) The Universal ~xtension of an Abelian Scheme in the 

Analytic Category over ~ . 

Let A/S be an abelian scheme over S , where S is a 

scheme locally of finite type over ~ . We may view A/S as 

a family of complex analytic spaces. The theory of Extrig 

carries over, with no significant change, in the analytic 

category. One thus obtains the analytic versions and natural 

maps below: 

[ Extrig (A, Gm) ] an __~ Extrig (Aan G~n) 

[Extri~(A,Ga)] an ~ Extrig(Aan,Ga an) 

(4.4.1) Proposition: The morphisms above are isomorphisms. 

Proof: This follows for each fibre (over S) by GAGA . 

Consequently our morphisms are analytic morphisms biJective on 

underlying pointsets. By consideration of vertical and 

horizontal tangent vectors one checks that the Jacobian criterion 

is satisfied. 

Q.E.D. 
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0---> 

As a consequence, the exponential sequence of analytic groups 

over C 
exp 

--~0 O ~ 2~i~-~ G a ~ G m 

gives rise to the following diagram: 

0 

~A 

Extrig(Aan,aa) 
RIf.z .> R if~OAan 

& 
0 

0 

>~ 

an 
> Extrig(A ,Gin) 

> P_~ic~ (A) > 

0 

which gives us (using the snake lemma) the following exact 

sequence: 

0-~ Hl(Aan,g)-* Extrig(Aan,Ga)-~ Extrig(Aan,Gm)--~ 0 

over any affine base S . 

(4.4.2) Corollary: One has an exact sequence of analytic groups 

over S: 

0--~ Rlf~--* HI~(Aan/s)--+ E(Aw)an---. 0 

Proof: Note that ~DR refers to relative de Rham cohomology 

over the base S . Rlf.~ refers to the locally constant sheaf 

of abelian groups. 

The corollary follows from our identifications 

Extrig(A,Gm) = E(A~ 

Extri6(A, Ga) = H~R(A/S) 
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/ 

FRAGMENTARY COMMENTS CONCERNING NERON MODELS AND 

UNIVERSAL EXTENSIONS 

Let S be a connected Dedekind scheme. ( S = Spec D where 

D is a Dedekind domain). Let N be a N~ron model over S • 

This means that there is a nonempty open U c S such that N/U 

is an abelian scheme, and N/S is the N~ron model of N/U. 

Let N'/U denote the dual abelian scheme and let N'/S be its 

Neron model over S . Define N ° ~ N to be the open subgroup 

scheme all of whose fibres are connected. 

The easy part of an unpublished duality theorem of Artin 

and Mazur asserts 

(5.1) Lemma The duality of Abelian schemes 

ExtI(Nu, Gm) ~ N~ 

extends to an isomorphism of functors evaluated on smooth S-schemes: 

Extl(N°,Gm ) _~ N' 

We sketch a proof of this lemma by showing that Extl(N°,Gm ) 

enjoys the N~ron property hI,SG~IX,I]. To do this one must 

take T/S a smooth "test" scheme and consider the diagram with 

exact rows, [ii, SG~VII I.B.5,1.B.8]: 

O ~ Extl(N°'Gm)(T)--*l ~o Pics~°)(T).~6 o _~> Pics(N°xN°)(T)~Y oS o 

O E Xtu(NG~Gm) (Tu)+ p_~(Nu) (Tu) PiCu(N ~ ~N~) (T U) 

where ~ = pros~ + proj~ - sum* 
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Since N ° ~ T and N°~ N°~ T are regular schemes and since 

N °~ N°~sT/T have connected geometric fibres, ~ and ¥ are 

isomorphisms. Thus a is an isomorphism as well, and the 

sketch of the proof of (5.1) is concluded. 

(5.2) Corollary There is an exact sequence of smooth groups/S: 

0 ~ "~--N' ~ ........ Extrigs(N'°'Gm)~,, ~ N ~ 0 

Proof: f,(~N,O) = ~S " Thus there is an exact sequence of 

Zariski sheaves on the category of smooth S-schemes. 

~o 0 * ~, * Extrig(N ,G m) * Ex~.~N'°,GmJ-" ' * 0 

(c.f. the discussion preceeding (2.6.1)) 

From the lemmaj N ~ Ext(NgO,Gm) J and hence Extrig(N'O,G m) is a 

smooth group. 

Write E(N) = Extrigs(N,e,Gm). 

A surprise is that the exact sequence 

( 5 . 2 . 1 )  0 ~ ~ ,  ~ E(N)  ~ N ~ 0 

i s  n o t  n e c e s s a r i l y  t h e  u n i v e r s a l  e x t e n s i o n  o f  N ' .  I n  f a c t ,  a s  

L.  B r e e n  a n d  M. R a y n a u d  h a v e  s h o w n :  t h e r e  a r e  N@ron m o d e l s  N 

w h i c h  p o s s e s s  n o  u n i v e r s a l  e x t e n s i o n .  A s k e t c h  o f  t h e i r  

elegant argument is included below. Therefore we refer to 

(5.2.1) as the canonical extension of a N~ron model N by a 

vector group. 

~°~T/~ 
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It appears to us that this canonical extension deserves 

systematic study, and indeed the first question one may ask 

about it is the following, which we pose in purposely vague 

language: 

Find a functorial characterization of the canonical extension 

(5.2.1) of a N~ron model. 

It is especially interesting to consider the canonical 

extension over the base S = Spec{~). 

Let M = N(Z) ~N(Q) denote the Mordell-Well group of the 

abelian variety NQ • This is a finitely generated group. 

Let M* = E(N)(Z). Since S is affine, (5.2.1) gives the 

exact sequence 

(5.2.2) 0 ~ !~N,(~) ~ M* ~ M ~ O 

Since _~,(~) is a free abelian group whose rank is dim N = d , 

we see that M* is a finitely generated abelian group of rank 

d + rank(M). What is curious is that M* has a strong tendency 

to be free. Explicitly: 

(5.3) Theorem: If p divides the order of the torsion subgroup 

of M* then either p = 2 or p is a prime of bad reduction 

for N . 

(5.4) Corollary: If the order of the torsion subgroup of M 

is relatively prime to 

2 × product of primes of bad reduction of N 

then M* is a free abelian group. 
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Proof of Theorem: Let x* ¢ M* be a nontrivial element of 

order p . Since E(N) is separated it suffices to show x* 

is zero, after having base changed to S = Spec(~p). 

By our assumption, N is an abelian scheme over S , and 

E(N) is the universal extension of N . Let N(P)/s be the 

Barsotti~Tate group associated to the abelian scheme N/S. Then 

over S = Spec(g/p ~) for any ~ , E(N)(p) is the universal 

extension of the Barsotti-Tate group N(p). The element x*¢M* 

may be viewed as a section of E(N)(p) and its image, y , in 

N(p) generates a finite flat group G over S of order p . 

Since p ~ 2 , and since G has a nontrivial rational section, 

by the classification theory of finite flat groups of order p 

over Z [20,Theorem 2] , G = ~/p . 
P 

Let the subscript ~ > 1 denote restriction to the base 

S = Spec ~/p~. 

Let N(p) et denote the etale quotient of N(p), and let 

E(N(p)et) denote the universal extension of N(p)e t We 

have the diagram 

E(N) (p) ~ N(p) 

~et g~p E(N(p ) )~ ~ )et 

Since G = ~/p the image of G in N(p) et is nonzero. 

Consequently the image of the section x* in N(p) et is nonzero. 

It follows that the image of x* in E(N(p) et) is nonzero. 

But this is a contradiction because the universal extension of 

an ~tale p-divisible group over ~ ~ Spf(•p) has no nontrivial 

section of order p . 
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(5.5) As a special case of the above theorem, take an elliptic 

curve C over Q whose Mordell-Weil group is a finite group 

F of odd order relatively prime to the conductor of C . 

Since any odd finite group of real points of C is 

cyclic, F is a cyclic group. 

Making a choice of sign of the N~ron differential of C 

enables us to identify I~N,(Z) ~ E (where N is the N~ron model 

of ~ and consequently the exact sequence (5.2.2) becomes 

(5.5.1) o ~ z ~  M* ~ F ~ 0 

But the theorem implies, under our hypotheses that M* is free, 

and consequently the exact sequence (5-5.1) becomes: 

(5.5.2) 0 ~  .... ~ - ~ F  ~ o 

where ~ consists in multiplication by the order of F . 

Consequently the canonical extension of the N~ron model 

of C determines in this case a canonical free resolution of 

the Mordell-Weil group of C . In particular, choosing a N~ron 

differential of C (there are two possible choice~ and to choose 

one of these two amounts to the same as orienting the real locus 

of C ) gives (in the case considered above) a canonical 

generator of the Mordell-Weil group, defined to be the image of 

1 ~ ~ under ~ in (5.5.2). (call this the generator defined 

~y the canonical extension) It may occur to the reader that the 

topology of the real locus of C enables one to obtain yet 

another canonical generator of F: Since F is a finite subgroup 

of the connected component of the real locus of C , which is 

a circle (oriented, after a choice of Neron differential), it 
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makes sense to consider that element of F , closest to the 

origin in the circle, where "closest" means in the direction of 

orientation of the circle. Call this the topologically-deflned 

generator. 

Tate has made some computations which abundantly support ~he 

opinion that there is no relation at all between the generator 

defined by the canonical extension and the topologically defined 

generator. 

(5.6) Example of Breen and Raynaud. 

The following is taken from a letter of L. Breen. 

Let R be a discrete valuation ring with uniformizer 

and residue field k . Let N/R be the NeUron model of an 

elliptic curve. Let ~ denote its fibre at k . Suppose on@ 

of two special cases 

I) ~ = G a 

II) N= G 
m 

Consider the short exact sequence of Zariski sheaves on the 

smooth site over S = Spec R , 

. . . .  ~ G~---+i,G a ~ 0 
0 + G a mult. by v 

(Here i : Speck ~ S is the canonical injection). 

This induces the exact sequence 

0 ~ Homs(N,i.Ga)--* ExtI(N, Ga ) ~ Extl(N, Ga ) + Ext~(N,i.G a) 

But 

HOms(N,i.G a) = HOmk(~,G a) 

Ext~(N,i.G a) = Ext~ (~,G a) 
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and consequently 

(*) Extl(N,Ga) ~ , Extl(N, Ga) enjoys the following properties 

in each of our two special cases: 

Case I: (*) is not inJective 

Case II: (*) is surjective 

Corollary: In either case, Extl(N,Ga) is not a locally (5.6.1) 

free sheaf of OS-mOdules, and there is no universal extension 

of N by a vector group (over R). 

Ex_~tl(N, Ga) were locally free then Extl(N,Ga ) Proof~ If 

= H°(S,Ex__tI(N, Ga)) would be a free R-module and consequently 

multiplication by v would be inJective and not surJective on 

(N.B. Extl(N,Ga) is not zero since the canonical extension it. 

is non-trivial). Moreover if there were an extension of N 

by a vector group V , which was universal we would have 

Hom(V,Ga) ~ Extl(N, Ga) 

Consider 

HOms(V,Ga) ~ ) Homs(V,Ga). 

Since V is a vector group2 v is not subjective and is 

injective, contradicting the situation that obtained in either 

case I or case II. 



CHAPTER TWO 

UNIVERSAL EXTENSIONS AND CRYSTALS 

In this chapter we describe the crystalline nature of the 

universal extension. More precisely we associate with an 

abelian scheme (resp. Barsotti-Tate group) G/S a crystal , ~*(G), 

on S whose value of S, E*(G)s , is the universal extension 

E(G*) of G* by a vector group, By applying the functor Lie 

we then obtain a crystal in locally-free modules, ~*(G). If 

f: G ~ S is an abelian scheme then ]D*(G) is nothing but the 

If usual crystalline cohomology, R crys.(O(G/S)cry 2.o On the 

other hand when G is a Barsotti-Tate group, -D*(G) is the 

generalized Dieudonn@ module associated to G . 

One procedure for constructing crystals from the universal 

extension was given in [16]. Here we shall use a completely 

different approach allowing us to construct the crystals intrinsically 

without making use of liftings. Unfortunately, it seems that 

in order to verify that our crystals have reasonable properties 

(and in fact that the sheaves constructed are crystals) we must 

fall back on liftings. 

We shall discuss separately the constructions for abelian 

schemes and for Barsotti-Tate groups. For abelian schemes the 

construction is straightforward. The procedure for Barsotti-Tate 

groups is more technical. The reason for the additional compli- 

cations is the following: For G an abelian scheme our descrip- 

tion of E(G*) uses exclusively the whole group G , while for 

G a Barsotti-Tate group we use the individual G(n)ts as 

wello But while G is smooth (resp. formally smooth) 
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and hence amenable to standard crystalline techniques, the 

individual G(n)'s are not usually smooth. We assume some 

familiarity with crystalline theory [2,3]. 
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§i. THE CRYSTALLINE NATURE OF THE UNIVERSAL EXTENSION OF AN 

ABELIAN SCHEME 

Let Sob S be a (locally)-nilpotent immersion defined 

by an ideal I) endowed with (locally) nilpotent divided powers 

(Yn)n>0 . Let A and B be abelian schemes on S and 

fo: Ao ~ Bo a homomorphism between their reductions to S o 

fo induces a map on the dual abelian schemes f~: B~ ~ A~ 

and hence a map on the corresponding universal extensions 

~(Bo) -~ E(A~) We've shown in chapter I [2.6.7,3.2 3] that this 

is the map 

(l.1) ,Ext~ (Bo,Gm) ~ Ext~(Ao,G m) 

induced by fo " 

We shall construct a homomorphism E(B*) ~ E(A*) lifting 

(1.1). Although this morphism depends on the triple (A,B, fo) 

we shall denote it by E~(fo). From the construction it follows 

that these homomorphisms enjoy the following properties: 

(i) transitivity (= functOriality): 
f 

Given A,B,C, A Q ~ B go> C 
O O O 

E~(%.f o) = E~(fo). ES(g o) 

(ii) additivity: 

Given two homomorphisms fo,fl: A ° ~ B ° 

E~(fo+f !) : ~(fo ) + E~(f I) 

(iii) functoriality in S: 

Assume given a commutative diagram 

S c >S o ~,g 
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where ~ is a divided power morphism [2,3]. 

Let A',B' be abelian schemes on S' with A = ~*(A'), 

= ~ B be a homomorphism as above. B ~*(B') and let fo: Ao o 

The following diagram commutes: 

~ *) E~(fo) > E(A*) 

g*(E(B,*)) ) ¢~(E(A'*)) 
~*(E~,(fo)) 

(iv) compatibility with liftable maps: 

Given a homomorphism f: A ~ B with reduction fo: Ao ~ Bo " 

E(f*) = E~(fo) 

(1.2) Remarks 

(i) Conditions (i) and (iv) imply E~(fo) is an isomorphism when 

fo is (take f = id A in (iv)) 

(ii) Note we do not assert and in general it will not be true 

that Es(fo) induces a morphism of extensions. 

(1 3) The construction of E~(fo). 

We construct for each flat S-scheme , T , a homomorphism 

Ext~(BT,Gm) ~ Ext'(AT, Gm). It is functorial in T and passing 

to the associated Zariski sheaves yields a homomorphism between 

sheaves on the small flat site of S : 

Ext@(B,Gm) ~ Ext~(A,am) . 

But because E(B*) is a flat S-scheme, the map "restriction 
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to the small flat site": 

Hom(E(B*),E(A*)) ~ Hom (E(B*),E(A*)) 

Sflat 

is bijective. Thus we obtain our homomorphism 

E~(fo): E(B*) ~ E(A*) . 

Because the construction of the map Ext~(BT,G m) ~ Ext$(AT,G m) 

is functorial in T , we shall assume that T = S . Consider 

the following diagram 

o J/°j 
*7 
S ( > S 
O 

Recall that if X is any smooth S-scheme, the category of line 

bundles with integrable connection on X is equivalent to the cate- 

gory ~f Invertlble modules on the nilpotent crystalline site of X/S. 

This equivalence is functorial in the smooth S-scheme X . 

Also it preserves the algebraic structure inherent in these 

categories, i.e. it is an equivalence of Picard categories [7]- 

In particular when we pass to the groups of isomorphism classes 

of objects, we obtain a canonical isomorphism. 

On the other hand since the ideal of the thickening 

SoC~ S has nilpotent divided powers, there is, for any stack 

Y , an equivalence of categories between Y-crystals on 

X ~ So/S and y-crystals on X/S . In particular~with 

= invertible modules/we find invertible modules on (Xo/S)crys--* in- 

vertible modu~ s on (X/S)cry s Once again this equivalence is 
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functorial in X and preserves the algebraic structure. 

Consider the map 

HlIB'  /Scry2 "lI o'° Bo/s s 12 s ~Ao/ )crys 

The fact that f is a group homomorphismjplus the 
o 

functoriality (indicated above) applied to the "primitivity maps" 

s*-p~ - p~ shows that our composite maps Ext@(B,Gm) to 

Ext~(A,Gm). This is the desired homomorphism. 

c_. S as above and A an abelian scheme (1.4) Remark: Given S O o 

on S o , we can define for a flat S-scheme Tj an abelian group 

to be the kernel of s*-p~-p~. 

Passing to the associated sheaf for the Zariski topology we obtain 

a group which is canonically identified with the universal 

extension of (the dual of) any lifting of A ° . This is an 

example of an "intrinsic" definition of the crystal alluded to 

above. 

(].5) Now pass to tangent spaces. We've already seen that 

Lie(E(A*)) is canonically isomorphic to H 1 (A/S). The general 
DR 

crystalline machine, [2] tells us that this module is 

Hl(O(A/S)crys ). Alternatively, this result can be deduced in 

the standard way from the fact that the tangent space to G m 

is Ga: 

Consider the commutative diagram 
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7[ 
A { A[ ¢] 

s ~ s[ c] 

defining A[ e] • 

the zero ideal. 

Since A is smooth we can assume that I is 

The morphism of topoi (A[¢]/S[ ¢ ] ) c r y s  ~ (A/S)crys 

induced by ~ is easily understood (because SIc] ~ S is flat): 

For  F a s h e a f  on A [ ¢ ] / S [ ¢ ] ,  ~ . ( F ) ( u ~  ~ T , J ,  y) = F ( u [ c ] c - *  T [ ¢ ] , . . . ) .  

V i s i b l y  7[. i s  e x a c t .  For  any  (U ~-* T, J ,  Y ) i n  t h e  

c r y s t a l l i z e  s i t e  o f  A/S we have  a s p l i t  e x a c t  s e q u e n c e  o f  

ordinary sheaves (on T) 

o-~ %-~ ~.(~[ ~] )~ ~ ~ o 
This tells us we have a split exact sequence 

o - - ,  o A ~ ~-.(~_[ ~] ) ~  ~ ~ o 
erys crys crys 

Applying H 1 and using the exactness of w, to know 

HI(~. (O~[ e] ) ) = HI(o~[ e] ) we conclude. 

(1.6) Remark: In particular we see that the map HDR (B) --> HDR(A) 

furnished by crystalline cohomology is precisely the map obtained 

from E~(fo) by applying the funetor Lie. 
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~2. STABILITY OF (em,n)-HOM 

Fix a prime p , In §2-46 below we shall work with a pair 

N (S,N) where S is a scheme, and N a number such that p .1 S = 0 • 

Let G be a Barsotti-Tate group on S and 

(em, n ) 0 ~ G(n) G(m+n) pn ~ O(m) ~ 0 

the doubly indexed family of exact sequences. 

We have the push out maps 

n+l 
(~m,n+l) :0 -~ G(n+l) -~ G(m+n+l) P >G(m) -~ 0 

o II 
(¢m,fl) :0 ~ G(n) :~ G(m+n) p ) G(m) * 0 

and the pullback maps 

(em+l,n)O ~ G(n) ~ G(m+n+l) ~ G(m+l) + 0 

(~,n) 0 -~ G(n) -~ G(m+n) --~ G(m) -~ 0 

(2.1) Lemma (Stability in the second index): 

For n > N , the maps 

(i) (¢N,n)-Hom~ (G(n),Ga) ~ (eN,n+l)-Hom~(G(n+I),Ga) 

and (ii) H om(G(n),Ga) + Hom(~n+l),Ga) 

are isomorphisms. 

Proof: By the five-iemma it suffices to show the maps (ii) are 

isomorphisms. Consider the sequence 0 ~ O(1) ~ G(n+I)P G(n) ~ O. 

We must show Hom(~n+l),Ga) ~ Hom(G(1),Ga) is the zero map. 
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n 

But because G(n+l) --O > G(1) is an epimorphism, it suffices 

to note that Hom(G(n+l),Ga) pn ~ H°m(G(n+l)'Ga) is zero 

since pn kills S . 

(2.2) Lemma (Stability in the first index) 

(Cm,n)-Hom@(G(n),Ga) ~ (¢m, n)-Hom@(G(n),Ga) if m' >_ m > N 

Proof: Consider the commutative diagram 

0 ~ '~G(m')--* (¢m',n) - H°-m@(G(n)'Ga)--* H°m(G(n)'Ga) ~ 0 

0 ~G(m) (Cm, n)-Ho (G(n), a) Ho__mm(G(n),G a) -~ 0 

and use the fact that 

[ 16,1I. 3.3.20] 

i is an isomorphism if m' > m > N 

(2.3) Remark: The analogue of (2.2) remains true when 

replaced by any smooth group, and in particular by G m 

G is a 
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~3- EXTENSIONS OF TRUNCATED BARSOTTI-TATE GROUPS BY G a 

Assume now that S is affine. The following proposition 

tells us in particular that Extl(G,Ga) is isomorphic to 

ExtI(G(N),Ga ) via the map induced by G(N~-~ G and hence that 

Ext2(G,Ga) = (0). Undoubtedly this last fact can be obtained via 

Breen's method [4] for calculating Ext. 

(3.1) Proposition: The coboundary map coming from the sequence 

0 ~ a(~) ~ G(2~) ~ G(~) ~ 0 

Hom(G(N),Ga) ~ ~ ExtI(G(N),Ga) 

is an isomorphism. 

Proof: The proof of (2.1) shows that the map is inJective. 

Surjectivity is equivalent to the assertion that 

Extl(G(N),Ga) ~ Extl(G(2N),Ga) is the zero map. To see that 

this is true note that the groups in question are by the appendix 

(functorially) isomorphic to Extl(~(N)*,Ga ) (resp. ExtI(2.G(2N)~Ga)). 

But by [16, II, 3.3.10] this map is zero. 

(3.2) Corollary. The map Extl(G,Ga ) ~ ExtI(G(N) ~a) is an 

isomorphism. 

Proof: Consider the commutative diagram: 

0 ~ G(N) ~ G ~ G ~ 0 

Since the connecting homomorphism is functorial there is 
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a commutative diagram 

H°m(iiN)'Ga) ~~ > Extl(G'Ga) E~tl G N ) 

H o m ( G ( N ) , G a )  _ $ ) x ( ( ) , G  a 

Three sides being isomorphisms, the corol~ry is established. 



Let T be any scheme, 

T . Fix an extension of H 

L (in practice L = G m or 

7i 

ON THE EXISTENCE OF @ -STRUCTURES 

H a commutative group scheme on 

by a smooth commutative group scheme 

Ga). 

(4.1) 0 + L ~ E ~ H ~ 0  

Given a ~ - s t r u c t u r e  on this extension we can modify it by adding an 

element of F(T,igHe Lig(L)) to obtain a new ~-structure on the 

extension. Conversely if we have two f-structures on the 

extension then their difference is an element of F(T,~l_~e Lie(L)). 

We denote by HomV(H,L) the subgroup of Hom(H,L) consisting 

of the maps ~: H ~ L with d~ = O~F(t~H ® Lie(L))o For an 

arbitrary ~: H ~ L the automorphism of the trivial extension 

0 ~ L ~ L×H + H ~ 0 

corresponding to ~ , transforms the trivial ~-structure into 

the ~-structure given by d~ . This discussion explains why 

the following sequence is exact: 

(4.2) 0 ~ HomV(H,L) ~ Hom(H,L) ~F(I_eH® Lie(L)) ~ Ext~(H,L) ~ Extl(H,L) 

we can also pass to sheaves for the flat topology to obtain 

the sequence 

(4.3) 

(4.4) 

O ~ L ~ E ~ H ~ O  

be an extension which defines the zero section of 

0 ~ HomV(H,L) ~ Hom(H,L) ~ i~H ~ Lie(L) ~ Ext~(H,L) ~ Extl(H,L) 

Lemma:Assume T is affine and let 

F(T, ExtI(H,L)). 
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Then this extension carries a @-structure. 

Proof: For variable T'/T consider the ~-structures on the 

restriction of the extension to T i. As noted above we obtain 

in this way a sheaf which is formally principal homogeneous 

under t~H® Lie(L) . By assumption, locally this sheaf has sections, 

and hence the quasi-coherence of ,~_%He Lie(L) implies (since T 

is affine) that it has a global section. 

(4.5) Remark: The lemma can be explained "geometrically" as 

follows: By assumption our extension is a torseur under Ho_.~m(H,L). 

Let {Ui] be a cover of T on which it is trivial and 

~ij ~ F(UiNUj'H°~(H'L)) a corresponding eocycle. Since the cocycle 

(@@ij) is a coboundary we can find ~-structures @i on the 

trivial extension over U i such that pi-Pj = d~ij. Thus @ij 

is an isomorphism of ~-extensions over UinU j and by gluing 

we obtain a ~-structure on our original extension. 

(4.6) Remark: Let H be finite and locally-free and L = G m 

Since Extl(H,Gm ) = (0) it follows that (if T is affine) any 

extension of H by G m has a @-structure. 

(4.7) The following discussion will be used in the proof of 

(4.12) below. Let T be a scheme, and X an arbitrary T-scheme. 

Let T[~] be the scheme of dual numbers over T , 

X[¢] = dfn.X ~ T[c],~x:X[~] ~ X the structural map. On X 

there is an exact sequence of sheaves: 

0 ~ G a ~ ~,G m ~ G m ~ O 
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Corresponding to this sequence there is an "exact sequence" 

(of Picard categories) [7][15]: 

0 ~ TORS(X,G a) ~ TORS(X[ e] ,G m) + TORS(X,G m) ~ 0 

This means that we have an equivalence of categories, compatible 

with the "addition laws" 

(4.8) 

TORS(X,Ga)~ category of pairs (P,~) where P is a 

Gm-torseur on X[c] and ~:PIX ~ G m is 

an isomorphism of G m torseurs on X 

This equivalence is functorial in the T-scheme X ° Let us denote 

the above category of pairs by TORS( T[e]/T; X[e],Gm). Because 

a ~-torseur P on X under G a is the torseur P) plus the 

additional structure of an isomorphism of torseurs V:~[(P) ~ v~(P~ 

satisfying the condition ~*(~7) = idp (where vi,v2: ~I(x) ~ X 

are the projections)) it follows from the functorial nature of 

the above equivalence of categories that there is an induced 

equivalence: 

(4.9) TORS@(X,Ga) ~> TORS~(T[ e] /T ~ X[e], G m) 

where the category on the right has as objects those pairs (P,~) 

with P a ~-torseur and ~ a horizontal isomorphism. 

Let G be any T-group scheme. Extensions are torseurs 

P , plus isomorphisms 

s.(p)~. * . pl(P) ^ ps(P) 

satisfying the commutative diagram (i.I.4.1) and (i~2.1) of [ii, SGA 7, 

Expos~ VIII. Thus the functorial nature of (4.8) implies that 
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it induces an equivalence: 

(4.10) EXT(G,Ga)~ EXT(T[c]/T; G[c], G m) 

Combining (4.9) and (4.10) there is an equivalence of 

categories 

(4.11) EXT~(G,Ga)~+ EXT@(T[ e] /T; G[¢], Gin) 

(4.12) Proposition: Assume T is affine, H a finite locally-free 

T-group. Any extension of H by G a admits a ~-structure. 

Proof: Fix an extension E . View E via (4.10) as an extension 

of H[¢] by G m together with a trivialization, ~ , of the 

restriction of this extension to T • By (4.11), ~-structures 

on E are the same as ~-structures on E (thought of as an 

extension of H[e] by Gm) which satisfy the additional property 

that ~ is horizontal. 

Via ~ we transport the trivial ~-structure on HxG m 

to E~T to obtain a @-structure U Because H is finite and o 
locally free we can speak of the torseur (under ~I[ ¢] ) of 

~-structures on E . Denote it by W and denote by Jo(= J/T) 

the torseur under --~H of ~-structures on EIT. Since T 

is affine)we can choose an isomorphism ~H[¢]-~ ~whence an 

induced isomorphism ~ ~o " Viewing % as an element in 

F(~I), the (obvious) fact that F(WH[ ¢] )--* F(~H) is surJective 

shows that E has a ~-structure lifting ~o and completes the 

proof of the proposition. 
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§5. RELATION BETWEEN EXT@ AND e-HOM~ 

(5.1) Proposition: Let n > 2N . The natural homomorphism 

(¢n,n)-Hom@(G(n),Ga) ~ Ext~(G(n),G a) is an isomorphism. 

Proof: Consider the following commutative diagram: 

(5.2) 0 -~ ~L~G(n ) -~ (¢n,n)-Hom~(G(n),Ga) ~ Hom(G(n),G a) ~ O 

o -> ( n ) - "  Ext~7(a(n) 'Ga ) > E x t ( G ( n ) , a  a) -* 0 

Here 6 is the coboundary map which was shown above to be an iso- 

morphism in (3.1). The result will follow once it is shown that 

Ext~(G(n),G a) is inJective. To do this we must show ~G(n) 

that the map 

(5.4) H°m(G(n)'Ga) ~ ~G(n) 

occuring in (4.2) is the zero map. Consider the sequence 

0 -> G(n) -~ G(2n) -> O(n) -~ 0 

It has been shown in the proof of (2.1) that 

Hom(G(2n),Ga) ~ Hom(G(n),Ga) is the zero map~and has been shown 

in [16, II 3.3.20] that r~2O(2n) ~ ~-G(n) is an isomorphism. 

Thus (5.4) is the zero map and the proposition is proved. 

(5.5) Remark: The proposition probably remains true assuming only 

n > N . What must be shown is that (5.4) is the zero map under 

this weaker assumption. For N = 1 , it is very easy to show 

this. 
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§6. CRYSTALLINE EXTENSIONS AND Y-EXTENSIONS 

(6.1) Here we recall Grothendieek's definition of generalized 

extensions, and then we specialize the notion to arrive at the 

definition of crystalline extension. 

Crystalline extensions will be used in showing that 

Lie(E(G*)) is "crystalline in nature." 

We shall constantly work with the following structure: 

(6.2) Fix a scheme Tj and G a commutative T-group. For 

each T-scheme T' let gT' = category of GT,-torseurs. The 

usual contracted product of GT,-torseurs yields a functor 

~T'~ ~T ' ~T' 

This structure is an example of a fibe~ed cat~gory Y on 

= Sch/T which is fibered in strictly commutative Picard 

categories [7,15 ]. 

If y is any fibered category in strictly commutative 

Picard categories over ~ (&ny category), and H any commutative 

group in @ , we may define the notion of g-extension of H: 

(6.3) Definition: An Y-extenslon of H is an object P of 

YH equ ipped  w i th  an i somorphism s * ( P ) ' ~  p (P) ^ p2-(P) such 

t h a t  t he  a n a l o g u e s  o f  t he  u s u a l  d iagrams ( e x p r e s s i n g  the  

associativity and commutativity of the composition law) are commutative. 

If products do not exist in ~ , the definition is modified by 

requiring that for every pair of points pl,P2: X ~ H we be given 

an isomorphism (pl+P2) (P)-- pl(P) ^ p2(P) satisfying the 

usual conditions as discussed in [ll, SGATVII]. 

These extensions form a category EXT(H,y) whose morphisms 
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are the morphism ~: P ~ Q in ~H such that the following diagram 

commutes 

s*(P) ~ pl*(P) ^ p2(P) 

s*(~ i P~(~)̂ P~(~) 
pI(Q) ^ p2(Q) 

The functor A:Y ~ Y ~ Y induces a composition law on 

the category EXT(H,~). Passing to isomorphism classes of 

objects we obtain a commutative group Ext(H,F). Finally the 

category EXT(H,F) varies functorially with H and F • 

(6.4) We shall give several examples which illustrate the above. 

(6.5) ~ = (Sch/T) , y = G-torseurs, 

EXT(H,Y) is in a natural way equivalent to EXT(H,G). 

(6.6) ~ = (Sch/T) , G a smooth T-group, y = ~-torseurs 

under G • EXT(H,~) is in a natural way equivalent to EXT~(H,G). 

(6.7) Let (T,I,¥) be a divided power scheme, i.e. I~ T is endowed 

with divided powers. Let (Sch/T)' = % be the full sub-category 

of Sch/T consisting of those X ~ T such that the divided 

powers on I extend to X . Fix a smooth commutative T-group 

G(e.g. G = G a or G = Gm). For any X in (Sch/T)' let 

G x be the sheaf of groups on Crys(X/T,I,y), cf[3], defined by 

F((U,T',~),G X) = G(T') = HomT(T',G) 

If f: X' ~ X is a morphism in (Sch/T)', then there is an 

induced map fcrys(Gx) ~ GX, . This allows us to define the 
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fiber of Y at X 'YX , to be TORS(Crys(X/T,I,¥),Gx), the 

category of torseurs on the crystalline site of X with structural 

group G X . The operation ^ is just the usual contracted 

product of torseurs. Since morphisms between torseurs are 

necessarily isomorphism this category admits an alternative 

description: It is equivalent to the category of crystals in 

(small Zariski) G-torseurs, i.e. crystals for the stack 

(U,T',8) 5-* (Gx)(U,T,,~)-torseurs. If H is a group in (Sch/T)', 

we denote the category of extensions of H by ~ by 

EXTcrys/T(H,G) and refer to it as the category of crystalline 

extensions. 

(6.8) Remarks:(i) When G = Gm,TORS(Crys(X/T,I,y),Gm) is equivalent 

to the category of invertible modules on Crys(X/T,I, ~. 

(ii) Where G = G a , TORS(Crys(X/T,I,y),G a) is 

equivalent to the category EXT. (O X '~X ) 
~Xcry s crys crys 

(ili) Although the localization allowed in 

Crys(X/T,I,~) is quite coarse this will not be bothersome since 

for the groups G m and G a Zariski torseurs are the same as 

(say) f.p.p.f, torseurs. When we do use G m , the torseurs 

we'll consider will in fact have sections over closed sub-schemes 

defined by nilpotent ideals (c.f. §ll). Because, previously, 

"torseur" was used with reference to one of the large sites 

(ZARISKI, ETALE, F.P.P.F.: for G m and G a the notions coincide) 

we recall how to pass from torseurs on the small site to torseurs 

on the large one. For simplicity let's work in the 

Zariski topology. For any 
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scheme Y there are two morphisms of topoi: p : YZAR + Yzar ' 

r: Yzar ~ YZAR' The morphism p is defined by F(Z,p*(F)) 

= F(Z,g*(F)); if g:Z ~ Y and F is an ordinary Zariskl sheaf on 

Y . The morphism r is defined simply by restricting a sheaf 

on the large Zariski site to the sub-category of opens of Y • 

The functor p*(~) 
P ~ p*(P) A G m 

establishes an equivalence between Gm-tOrseurs on the small and 

large sites of Y (similarly for Ga-torseurs). The functoriality 

of this equivalence follows from that of the morphisms p in a 

straightforward manner. 

(iv) Given X/T , there are functors 

(6.9) ToRScrNs/T(X,Gm) ~ TORS~(X,Gm) 

(6.10) ToRScrys/T(X,Ga) ~ TORS#(X,Ga) 

If X/T is smooth and Crys(X/T) is replaced by the nil- 

potent crystalline site, then (6.9) is an equivaleuce of 

categories [2]. Using the fact that the "standard" connection 

of ~X is nilpotent together with the interpretation of an 

object in TORS~(X,Ga) as a short exact sequence of modules with 

integrable connection: 

(6.11) 0 ~ % ~ ~ ~ ~X ~ 0 

we see that (when X/T is smooth) (6.10) is an equivalence of 

categories. 

(6.9) and (6.10) are functorlal in X . Furthermore they 

are compatible with the "composition laws" with which both source 

and target are endowed. Let H be a T-group such that 
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H, H~H , H~H~H all belong to (Sch/T)' (e.g. H/T flat, I 

principal). There are induced functors (compatible with the 

composition laws): 

(6.12) ExTcrys/T(H,Gm ) ~ EXT~(H, Gm) 

(6.13) ExTcrys/T(H,Ga) ~ EXT@(H,G a) . 

If H/T is smooth and we restrict to the nilpotent 

crystalline site (resp. no restriction) then (6.12) (resp.(6.13)) 

is an equivalence of categories. 

(6.14) We shall need one last example of generalized extensions. 

Let (T,I,¥) be as above and let T O = Vat(I). Let ~ = (Sch/To). 

Let G be a smooth commutative T-group and define y exactly 

as in (6.7), i.e. ~X = category of Gx-torseurs on Crys(X/T,l,¥) 

for any To-SCheme X . If H is a group in ~ we shall 

denote the category EXT(H,~) by ExTcrys/T(H/To,G)/ and if it 

is clear that H is a To-grou p we shall drop the "To" from 

the notation. 

(6.15) Remarks: (i) The reason for distinguishing between 

(6.7) and (6.14) is that a To-grou p scheme is never a T-group 

scheme. 

(ii) If T' is a closed subscheme of T O and 

= (Sch/T'), then with Y as in (6.14) there is the category 

EXTCrys/T(H/T',G). T~is category differs from that of (6.14) 

since (because the ideal of T, in T need not have divided 

powers) even if H can be lifted to T , the category of 
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crystalline extension of a lifting can be different from 

this category. 

(6.16) Let us indicate the functorial variation of examples 

(6.7) and (6.14) when (T,I,y) varies. Let (T',I',Y') ~ (T,I,Y) 

be a divided power morphism. First assume X is a flat T-scheme, 

X' a flat T'-scheme/and assume we are given a commutative diagram 

X' . . . .  >X 

,L l 
(T,,I,,~,) ....... , (T,I,y) 

Let G be a am ooth T-group, G' = G~T' Since crystalline 

torseurs are crystals the general procedure for taking the 

inverse image of a crystal [3, IV 1.2; or 16, III, 3.8] permits 

us to define a functor 

(6.17) ToRScrys/T(x,G)--> TORS crys/T' (X' ,G' ) 

This functor varies functorially with (X',X). In particular 

if H is a flat T-group, H' = H~T') there is an induced 

functor 

(6.18) ExTcrys/T(H,G) ~ EXT crys/T' (H',G') 

If we assume X (resp X') is a To(res p. T ,) scheme#the 
o 

map (6.17) is still defined. Furthermore, if H is a T o group, 

H' = H~ T ' there is an induced functor 
Too~ 

ExTcrys/T(H/To,G) ~ EXT crys/T' (H'/T~,G') 
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~Z THE CRYSTALLINE NATURE OF EXT~(-,G a) 

Here we let S be a scheme on which p is locally nilpotent. 

and let (I,~) be a divided power ideal of ~S " Let G be a 

Barsotti-Tate group on S . The inclusions G(n)'-* G(n+l) 

induce functors 

ExTCrys/S(G(n+I),Ga)--+ ExTCrys/S(G(n),Ga ) 

EXT@(G(n+I),Ga) ~ EXT~(G(n),Ga) • 

By passage to~_!m,[9] , we obtain from (6.10) a functor 

(7.1) @Lim ExTcrys/S(G(n),Ga)-->~im EXT~(O(n),Ga) • 

(7.2) Theorem: The functor (7.1) is an equivalence of categories. 

Proof: Note that (7.1) is induced by the functor 

(7.3) ~im ToRScrFs/S(G(n),Ga)--~ TORS~(G(n),Ga). 

Since the category of crystalline extensions (resp. @ -extensions) 

is defined as consisting of crystalline (resp.~) torseurs, P , 

endowed with an isomorphism s*(P)~pl(P) A p2(P) (satisfying 

the associativity condition) and since the functor (7.3) is itself 

functorial with respect to the Barsotti-Tate group, G ; it suffices 

to show that (7.3) is an equivalence of categories. Assuming 

momentarily (7.7) below~we shall show that (7.3) is faithful, full 

and essentially surjective. 

l) faithful. Let (~n),(¢n) be two morphisms between the 

object (Pn) and (Qn) of <Lim ToRScrys/S(G(n),Ga ) Assuming 

• = we must show (~n) = ($n). 
(~nG(n) ~G(n) ) (#nG(n)id_~ G(n) )) 
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Fix an n and let (UC-* T,J,6) be an object of the crystalline 

site Crys(G(n)/S,I,¥). Obviously it is permissible to assume 

T is affine. By (7-7) below we can find for m sufficiently 

large a commutative diagram 

(7.4) 

U q ~/T 

/ 
G(n) / 

G(n+m) 

Let us use a vertical bar "I" to denote restriction 

(or more properly inverse image). By hypothesis there are 

commutatIye diagrams: 

Pn Pn+m IG(n) 

(7-5) 'n [\ ~ 'n+m 'G(n) 

Qn Qn+m IG(n) 

pn,, , '~  Pn+mlG(n ) 

Cn i i ¢n+mlG(n) 

Qn Qn+m IG(n) 

But by definition of the inverse image of a crystal 

[3,IV 1.2, or 16, III, 3.8] we have 

(~+mIO(n))u~_~T = f*(~n+mG(n+m)i d ) G(n+m) ) 

and similarly for (¢n+mlG(n))ua_~ T. Hence the commut6tivlty 

of the diagrams (7.5) allow us to conclude (~ n)UC_~T = (#n)UC_~ T • 
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2) full: Here it will be convenient to denote the image of 

an object (Pn)(res p. on arrow (~)) of ~im ToRScrys/S(G(n),Ga) 

under (7.37 by (~n)(resp.(~n)). Let (an): (~n) ~ (~n) be a 

morphism in (LimgTORS (G(n),Ga). We must show that there is a 

morphism ~n): (Pn) ~ (Qn) in ~im TORSerys/S(G(n),Ga ) with 

(~n) = (~n) . Just as in the proof of faithfulness above, we fix 

an n and an object (U c-* T,J,g) of Crys(G(n)/S,I,¥). Using 

diagram (7.4) we define ~nuc_~ T to be the map obtained via 

transport of structure using the isomorphisms Pn~--Pn+mlG(n) 

and Qn ~-- Qn+mlG(n) from f*(an+m). It must be shown that this 

definition is independent of the choice of f:T ~ G(n+m)) a 

lifting of U ~ G(n) ~-* G(n+m). Let fl,f2 be two liftings. 

By definition of the divided power neighborhood [3,I 4.32] 

of g: G(n+m)--* G(n+m)~ G(n+m), there is a map ?: T ~D~+m)/S 
A A 

with Pl ° f = fl ' P2 ° f = f2 " Augmenting m if necessary 

we can assume that ~(n+m)/S is locally-free of finite rank 

[16,II 3.3.20]. Since a ~-torseur under G a can be interpreted 

as an exact sequence of modules with integrable connectionjit 

follows from [3,II,4.3.4,4.3.10 ] that pl(~n+m) is identifiable 

with p~(~n+m) ) once we identify pi(Pn+m) with P m 
. n+ G (n÷m)~I~G2 ) %. 

(and similarly for pi(Qn+m~. Hence we can identify (,rmm~ 
f@ * A *  . . A@. *. . 
l(~n+m) and f2(~n+m) with f (pl(an+m)) = f (p2(~n+m)). This 

' is independent of the choice shows our definition of ~nu~-* T 

of lifting and completes the proof that (7.3) is full. 

3) essentially surJective: The proof here is quite similar 

to the proof of fullness above. Given an object (P~) in 

~Lim TORS~(G(n),Ga) ) we obtain (Pn) in~_~ToRsCrys/S(G(n),Ga) 
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by defining Pnbv_ ~ to be f*(P~+m) l where f is any morphism 

making (7.4) commutative. The fact that this definition makes 

sense and yields an object (Pn) such that (~n) ~ (P~) follows 

by again invoking the above cited results in Berthelot's thesis 

[3,1~ 4.3.4, 4.3.1o]. 

(7.6) Remark: The proof of faithfulness is valid if G a is re- 

placed by any smooth commutative S-group. For fullness and 

essential surjectivlty the interpretation of Ga-torseurs as 

extensions of O by O (and hence as modules with additional 

structure) was necessary in order to apply the results in [2,3]. 

we modify the target by replacing TORS~(G(n),Gm) by But if 

TORS nil --~(G(n),Gm ) (i.e. the category of line bundles endowed 

with a nilpotent integrable connection) or if we modify the source 

by using the nilpotent crystalline site (s) , then the above 

proof carries over to yield equivalences 

(7.6.1) (Lim ExTCrys/S(G(n),Gm)~--~im EXT nil -~(G(n),Gm) 

(7.6.2) ~im EXT Nil'crys/S (G (n), G m )~-~ ~im EXT~(G (n), G m ) 

In the course of the above proo~ use was made of: 

(7.7) Lemma: Let G be a Barsotti-Tate group on S . G is 

formally smooth for nilimmersions (i.e. if X is an (absolutely) 

affine scheme over S) and X ° is a closed sub-scheme defined 

by an ideal in which every element is nilpotent, then any morphism 

X ° ~ G can be lifted to X ) 



86 

Proof: Let (X, Xo) be as in the above explication. Write 

X = Spec(A), X = Spec(A/I). For k ~ L = (set of finite subsets 
O 

of I )~ let I k be the finitely generated sub-ideal of I 

generated by kj and let X k = Spec(A/Ix). Since X ° is affinej 

the map X ° ~ G factors through some G(n). Because G(n) is 

locally of finite presentation over S and X ° = ~im X k j it fol- 

lows from [IO,EGAIv8.13.1] that X ° ~ G(n) can be lifted to 

XkC-~ G(n ) (for some k). But Xk~-~ X is a nilpotent immersion. 

The result now follows since Barsotti-Tate groups are formally 

smooth [16, II,3.3.13]. 

(7.8) Corollary (of 7.2):The category~im ExTcrys/S(G(n),Ga ) 

is rigid. 

Proof: By (7.2) this category is equivalent toni m EXT~(G(n),Ga). 

The automorphism group of the zero object (G(n)×G a, trivial con- 

nection) of this category consists of compatible families of 

homomorphisms gn: G(n) ~ G a with dg n = 0 • But 

(gn) ~ lim Hom(G(n),Ga) = Hom(G,Ga) =(0) and hence each gn g--- 

is zero. 

(7.9) Let us denote by ExTcrys/S(G,Ga) the category 

~im ExTcrys/S(G(n),Ga ) . Similarly we write 

EXT@(G,Ga)(res p. TORS~(G,Ga) , EXTRIG(G,Ga) .... for the categories 

~im EXT~(G(n),Ga)(res p. ~im TORS~(G(n),Ga), ~im EXTRIG(G(n),G a) .... ). 

Finally we write Extcrys/S(G,Ga), etc. for the abelian group 

of isomorphism classes of objects of ExTcrys/S(G,Ga), etc. 

Observe that the action of F(S,~s) on G a gives ExtCrys/S(G,Ga ) 

a module structure. 
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Having introduced all this notation we can state the following 

immediate consequence of (7.8): 

(7.10) Corollary: The (small) Zariski presheaf on S 

U~* ExtCrys/U(GIU,Ga) is a sheaf of Os.modules. 

(7.11) Let us denote this ~S-mOdule by ExtCrys/S(G,Ga ) • The 

following proposition tells us that ExtCrys/S(G,Ga) is canonically 

isomorphic with Lie(E(G*)), the tangent space of the universal 

extension of the Cartier dual of G . 

(7.12) Proposition: Assume S is affine and pN kills S . The 

natural map ExtCrys/S(G,Ga) ~ Ext~(G(n),Ga) is an isomorphism 

provided n > 2N . 

Proof: By (7.2) we may replace the source by Ext~(G,Ga). Let 

(Pi) represent an element in Ext~(G,Ga). To demonstrate injectivity 

we must show that 

[Pn -~ trivial @-extension of G(n) by G a] 

[ (Pi) ~ trivial @-extension of G by G a] 

Let 0 i denote the trivial @-extension of G(i) by G a . 

We are to produce for each i ~ n an isomorphism el: Oi~ Pi 

such that the~e form a compatible family. 

Let (~i) be the object of EXT(G,G a) obtained by forgetting 

the ~-structure on each Pi " Since our definition of EXT(G,G a) 

as ~im EXT(G(i),G a) coincides with the usual definition as the 

category of extensions of fppf sheave~it follows from (3.2) 
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m 

that there is a unique isomorphism (~i):(Pi)-~ (~i). By 
-1 

hypothesis there is an isomorphism ~: Pn ~ O n . But ~°~n 

is (by the proof of (5.1)j where it is shown that (5.4) is 

the zero map) a horizontal automorphism of O n . Hence ~n 

is actually an isomorphism between Pn and O n (and not 

only between the underlying extensions). It remains to explain 

why each ~i is horizontal. Using ~i we obtain, via transport 

of structure, a ~ structure on Ui" This corresponds to an 

element ~i of F(S,~G(i)). By hypothesis 3n = 0 and since 

for i ~ n the maps W-G(i) ~ ~-~G(n) are isomorphisms it follows 

that each ~i = 0 . Thus for i ~ nj ~i is horizontal and 

injectivity is established. 

Let R be a @-extension of G(n) by G a • To prove 

surjectivity we must establish the existence of an object (Pi) 

in EXT~(G,G a) with Pn~" R. By (3.2)j there is an object (~i) 

in EXT(G,Ga) with ~ , ~ being the underlying extension of 
n 

R • Choosing an isomorphism ~ between ~n and ~j we endow, 

via transport of structure, ~n with a @-structure so that 

becomes a horizontal isomorphism. We must endow each Bi(i ~ n) 

with a ~-structure so that the given maps ~'~iIG(n) n 
are horizontal. Via transport of structure we put a @-structure 

on ~ilG(n). Since S is affine~(4.12) tells us that ~i has 

at least one @-structure. But the set of ~-structures on 

Pi(resp.~ilG(n)) is principal homogeneous under 

F(S,W_G(i))(resp.T(S,~G(n)). SurJectivity now follows since the 

map F(S,~_G(i)) ~ F(S,~G(n)) is onto. 
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(7.13) Corollary: Let p be locally nilpotent on S,(I,¥) be 

a divided power ideal in ~S ' G a Barsotti-Tate group on S . 

There is a (functorial in G) exact sequence 

~7.14) 0 ~ ~G ~ ExtCrys/S(G,Ga) ~ Ext(G,G a) ~ 0 

which is canonically identified with the sequence obtained from 

the universal extension of G* by taking tangent spaces. 

In particular Extcrys/S(G,Ga ) is a locally-free (of finite 

type) OS-mOdule. 

Proof: This follows immediately from (8.7), (3.2),(5.1) and 

(7.12). 

(N.B.) The reader can check that our forward reference to 

(8.7) does not involve any logical circularity. 
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~8. PASSAGE TO LIE ALGEBRAS 

To apply the results of ~2-~7 to the universal extension 

must relate Homrig(-,Gm) to Homrig(-,Ga) and Hom@(-,G m) we 

to Hom (-,Ga). 
Consider as usual an exact sequence of finite locally free 

S-groups 

(¢) 0 ~ A ~ B ~ C ~ 0 

giving rise to the sequence 

(8.1) 0 ~ (UC ~ (¢)-Homrig(A,Gm) ~ A ~ 0 

For affine S , the sequence of S-valued points is exact. 

Thus the snake lemma together with a previously noted fact 

(passage to Lie algebra commutes with passage to associated 

Zariski sheaf) tells us that the corresponding sequence 

(8.2) 0 ~ ~--C ~ Lie((~)-H°mrig(A'Gm)) ~ Lie(A*) ~ 0 

is also exact. 

If we replace G m by G a we have the ~alogue of (8.1): 

(8.3) 0 ~ ~C ~ (¢)-Homrig(A,G a) ~ Hom(A,G a) ~ 0 

Let ~: S[£] ~ S 

all exact sequence on 

be the structural map so that there is 

S 

~.(Gm) ~ G ~ 0 0~Ga m 

Let ~ ! A ~ G a be a homomorphism and 

on the resulting extension 

be a rigidification 
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0--* A--* B---* C --~0 

0-* G---* E--~ C--* 0 a I~\ 

Inf(c) 

Applying v to the whole diagram and "pushing out" along the 

*(%) * map ~ ~ ~ (~.Gm) ~ G m) we obtain an element of 

Lie((¢)-Homrig(A,Gm) ). This prodedure defines a homomorphism from 

the extension (8.3) to (8.2))which is an isomorphism on end-groups. 

Hence 

Lie((¢)-Homrig(A,Gm) ) ~ (¢)-Homrig(A,Ga) 

(8.4) Remark: The above discussion is valid also when "Homrig" 

is replaced by "Hom~ ")and hence Lie((¢)-Hqm~(A, Gm)) ~ (e)-Hom~(A,Ga). 

Let S be a scheme with pN-i S = 0 and let G be (8.5) a 

Barsotti-Tate group on S . The universal extension of G 

a vector group is 

by 

(8.6) 0 

Because "lim" is exact and Lie is defined as a kernel it ) y 

follows from the preceeding discussion that 

Li.e(li~._(CN,n)-Hgm@ (G(n),Gm)) 

: l_~Lie((¢N,n)-Hom@ ((G(n),Gm)) 

= lim>(eN, n)-Hom~(G(n),Ga) 

= (~N,N)-Hom~(G(n),Ga) (by 2.1)) 

Summarizing) we state 
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(8.7) Proposltion: If pN kills S and n ~ N , then the 

tangent space Lie(E(G*)) is (¢N,n)-Hom@(G(n),Ga)o 
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~9. THE CRYSTALLINE NATURE OF THE LIE ALGEBRA OF THE 

UNIVERSAL EXTENSION 

Fix a scheme S on which p is locally nilpotent and let 

G &B.T.(S) , the category of Barsotti-Tate groups on S . 

Let us explain how to endow Lie(E(G)) with a crystalline 

structure. More precisely we'll define a contravariant fmnet~r 

D*: B.T.(S)" ~ (Crystals in locally-free modules on S). 

Let U be open in S and let U + (T,I,y) be a divided 

power thickening and assume p is locally nilpotent on T . Let 

G be a Barsotti-Tate group over S and let G (again) denote its restric- 

tion to U .Let G' be any lifting of G to T . Using the 

abuse of notation indicated in (6.14)jwe know 

ExTcrys/T(G,G a) ~EXTcrys/T(G',Ga) since reduction module 

a divided power ideal induces a functorial equivalence between 

crystals (of any species whatsoever) on G'(n)/T and 

crystals on G(n)/T . As a consequence of the work of Grothendieck 

and Illusie [13, 14 ] we know that, locally on T , we can 

find such a G'. If H t is a Barsotti-Tate group on T and 

H = H' ~ U then a homomorphism u: G ~ H induces a map 

Exterys/T(H,Ga) + ExtCrys/T(G, Ga) . Thus we obtain a map 

fu: Lie(E(H'*)) + Lie(E(G'*)). If u is an isomorphism, then 

fu is an isomorphism. In particular2it follows that whenever 

G' and G" are liftings of G to a divided power neighborhoodj 

Lie(E(G'*)) and Lie(E(G"*)) are canonically isomorphic. 

Let V ~-* (T',I',¥~-~ UC-~ (T,I,y) be a morphism in the 

crystalline site of S . If G' is a lifting of G to T 
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then %*(G') is a lifting of GIV to T'. 

commutative diagram of isomorphisms 

Thus we obtain a 

(9.1) ~*(h~e(E(G~))) ~ > me(E(~(a'*))) 

~(ExtCrys/~(G,Ga))  ~ ~ ExtCrys/T'(GiV,Ga ) 

ThUs the functor ~* can be explicity defined bY, 

(9.2) D*(G)u ~ (T,i,y)= ExtCryS/T(G,Ga) 

(9-3) Remark: The above definition of ]D* is intrinsic, i.e. 

it is defined entirely in terms of S (without using liftings of 

Barsotti-Tate groups). Liftlngs are used to show that 

D*(G)u~-+ (T,I,Y) is locally-free and to show that ]D*(G) is 

a crystal rather than just a sheaf on the crystalline site. 
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810. A DEFORMATiONAL DUALITY THEOREM FOR BARSOTTI-TATE GROUPS: 

AN EASY CONSEQUENCE OF THE THEORY OF ILLUSIE 

Let S be an affine scheme on which pN is zero. Let 

So<-* S be a closed subscheme defined by the vanishing of an 

ideal I ~ ~S with I k+l = (0). Let G be a Barsotti-Tate 

group on S . Denote by G(S/So) the kernel of G(S) ~ G(So) 

and denote by EXT(S/So; G , G m) the category of extensions of 

G by G m trivialized over S o We write Ext(S/So~G,Gm) 

for the group of isomorphism classes of objects of EXT(S/So;G,Gm). 

In [16,appendix, 2.5] under the additional assumptions 

I) S = S~ec(R), R an artin local ring 

2) S ° = Spec(k), k = residue field of R , k perfect 

3) a : 

i t  w a s  p r o v e d  t h a t  t h e r e  i s  a c a n o n i c a l  i s o m o r p h i s m  

(i0.i) ~(R)~ Exts(%/Zp,Gm) 

* = Spec(k), and k is Since I~ = G is a formal group and since S O 

a field; ~(S) = G*(S/So). On the other hand the fact that k 

is perfect implies Ext(S/So,G,Gm)~Ext(G,Gm). ThUs the iso- 

morphism can be written as 

G*(S/So) ~ Ext(S/So;G, Gm) 

Making extensive use of L. Illusie's deformation theory 

[14, VII ], we prove the following generalization: 

(10.2) Deformational duality Theorem: If S, So, G satisfy the 

initial conditions above then there is a canonical (functorial) 
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isomorphism 

G*(S/So)~--~Ext(S/So;G,Gm) , 

We shall give two constructions of a map 

G * ( S / S o )  ~ EXT(S/So;G,Gm). 

(10.3) Let ~: G(n) ~ G m be an element of G*(S). 

out the Kummer sequence we obtain an extension of 

By pushing 

G by G m 

o - ~  G(n)-~ O ~  ~ o 

°l l 
0----~ G m "> E--~ G---~ 0 

E 

If 

to S o 

¢ G*(S/So), then the restriction of the extension 

has a canonical trivialization. 

(10.4) Let US write TORS(S,Tp(G*)) for the category 

Lim TORS(S,G*(n)) (i.e. the category whose objects are compatible ( 

families of torseurs, P(n) a torseur under G*(n), where the 

transition morphism G*(n+m)--* G*(n) is pm). Similarly we 

write TORS (S/So,Tp(G*)) for the category of torseurs under 

Tp(G*) equipped with a trivialization over S o . 

Because the G(n)'s are finite and locally-free 

Ex}l(G(n),Gm) = (0) and hence TORS(S,G*(n))~ EXT(G(n),Gm). 

Explicitly an equivalence is given as follows: 

Given a G*(n) torseur P we twist G x G(n) by the torseur-p. 
m 

In down to earth terms this means we take the sheaf-theoretic 

quotient of p x (Gm~ G(n)) by the action of G*(n) given by 

(p,g,x) + ~-- (p-~ , g-~(x),x) 
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where pgP(S'), g~Gm(S' ) , xeG(n)(S'), ~: G(n)s,~ Gms ' , 

S' an S-scheme. 

A quasi-inverse to this functor is given by assigning to 

an extension 

0 ~ G m i ~ E ~ G(n) ~ 0 

the G*(n)-torseur of splittings of this extension, i.e. the 

torseur P with 

P(S') = {~: E ~ Gml~ • i = id G ] 
msT 

where ~+~ = def ~ + ~ ° ~ ' for ~:G(n)s , ~ Gms ' . Since 

TORS(S,Tp (G*))--~ Lim~ EXT (G (n),Gin) ~ EXT (G,Gm) 

we define a map G~(S) ~ EXT(G,G ) by composing the 

above equivalence with the map G*(S) ~) TORS(S,Tp(G*)) whose 

definition is as follows: if g* ~ G*(S), let ~(g*) be the 

family (P(n)) where P(n) is the G*(n)-torseur (pn)-l(~.) 

arising from the exact sequence 

n 

0 + G*(n) ~ G* P , G* ~ 0 

Clearly this induces a map G*(S/So)--* TORS(S/So,Tp(G))0 

Rem&rk: The fact that the two definitions in (10.3) and (10.4) 

are equivalent is a trivial exercise in the use of the defini- 

tion of the Cartier dual. For the proof of (10.2) it is more 

convenient to work with (10.4) while for the eventual application 

to the construction of crystals (10.3) is more convenient. 

(10.5) Let us observe that the category EXT(S/So~G,Gm) is rigid. 

For if we identify an automorphism of the trivial extension 
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0 ~ G ~ G ~ G ~ G ~ 0 m m 

with an element f , of Hom(G,G m) then to say this automorphism 

defines a map in EXT(S/So; G,Gm) is equivalent to saying 

flS o = 0 . But from [16,II 3.3.17 + proof of 3.3.21] we know 

this implies f = 0 . 

(10.6) Let us prove the map G*(S/So) ~ Tors(S/So,Tp(G*)) is 

inJective. Given g* e G*(S/So) , to say the corresponding 

torseur P(g*) is trivial means that there is a sequence of 

elements (gn) , gn E G*(S) such that 

i) P'gn+l = gn 

2) prig n = g* 

3) gnISo = 0 for all n 

But G*(S/S o) ~ r(S,Infk(G*)) ~ G(Nk) [16,II 3.3.16]. 

Hence pNk kills each gn " It follows that 

g*= 0. 

(10.7) The proof of the surJectivity of the map 

G*(S/So) + Tors(S/So,Tp(G*)) seems to be more difficult. Since 

this is an assertion about any Barsotti-Tate group, we shall drop 

the "*". 

(10.8) Let Po be a torseur under Tp(Go)(Go = G ~ So). Denote 

by D(Po)(res p. D(Po(n))) the set of isomorphism classes of 

deformations of Po (resp. Po(n)) to a Tp(G) (resp. G(n)) 

torseur on S . 
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(10.9) Proposition (using lllusie): 

(i) For each n , D(Po(n)) ~ 

(ii) For n ~ n' ~ N , D(Po(n)) ~ D(Po(n')) is surJective 

(iii) D(Po) ~ ~im D(Po(n)) is onto and hence by (i) and (ii), 

D(P o) ~ ~ • 
(iv) For n Z n' h kN , the map D(Po(n)) ~ D(Po(n')) is 

bijective. 

(v) If n Z kN , the map D(Po) ~ D(Po(n)) is biJective. 

Proof: (i) By using an induction on k , we can assume k = 1 . 

Then from the theory of deformations of torseurs [14,VII:2.4.4, 

2.4.4.1, 4.1.1.3] we know that the obstruction to lifting Po(n) 

lies in ~(S,~ ~ I). Using the notation of [16,II 3.3.9], 
V L 

~G @ I "is" the complex L~ ® I ~ L~l® I , a complex of quasi- 

coherent sheaves on S . Since S is affine the H 2 is 

zero and Po(n) can be lifted. 

(ii) Once again using induction on ~ leads us to the case 

k = 1. 

From [14,VII 2.4.4, 2.4.4.1, 4.1.1.3] we know that D(Po(n)) 
v L 

is principal homogeneous under Hl(s, ~G ® I). Since 

n, n T > N , it follows from [16,II 3.3.6,3.3.20] that this H 1 
V 

is r(~G(n)@ I)(resp C(~(n,)® I)). But by [16,II 3.3.4,3.3.7, 

3.3.16] we know the projection G(2n) ~ G(n) (resp. G(2n) ~ G(n')) 

induces an isomorphism ~G(n) ~ ~G(2n) (resp. ~G(n,)--> ~G(2n)) 

From the functorial nature of the co-Lie complex follows a 

commutative diagram 
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-~G (n ' ) -- )nG (n) 

N(2n) 
v n v Thus the map ~G(n)@ I ~ ~(n~)® I is an isomorphism and 

(ii) follows now from the fact that D(Po(n) ~ ~ . 

(iii) Let (~n) ~im D(Po(n)) and choose for each n a represen- 

tative Pn of ~n " Then PnG(~)G(n-1)--~Pn_l and we can 

sucessively choose these isomorphisms so that (Pn) is a 

"torseur" under Tp(G) which lifts Po The remainder of 

(iii) is clear. 

(iv) For k = 1 , the assertion follows from the fact noted in 

(ii) that ~G(n)~G(n,) . Let us filter S by the closed 

sub-schemes defined by powers of I : Som S 1 ~ ...~ Sk_l ~ S k = S . 

By induction on k , we can assume (iv) true for the pair 

SoC-> Sk_ 1 . Let P(n), P'(n) be two deformations of Po(n) 

such that the induced G(n')-torseurs P(n'),P'(n t) are isomorphic 

deformations of Po(n'). We are to prove that P(n)--NP(n'). 

Let u(n'):P(n')-~-> P'(n') be an isomorphism of deformations. 

By the induction hypothesis we can find an isomorphism 

v(~:Pk_l(n)--* P~_l(n) (where the subscript "k-l" indicates restric- 

tion to Sk_l). 

v(n') and Uk_l(n') are two isomorphisms between the deformations 

Pk_l(n') and P~_l(n'). Their "difference" is thus an element of 

Gk_l(n') (Sk_i/So). But from [16, II, 3.3.16] we know 

Infk-l(Gk_l ) = Infk-l(Gk_l((k-l)N). Thus multiplication by p~-!)N 
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kills this difference. Since n' > kN , this tells us that 

v(N) = Uk_l(N). Observe that via v(n)) P'(n) becomes a defor- 

mation of Pk_l(n)j while P(n) is via idPk_l(n ) a defor- 

mation of Pk_l(n). The equality v(N) = Uk_l(N) says precisely 

that p(N) and P'(N) are, via u(N), isomorphic as deformations 

of Pk_I(N). Thus we may apply the result known to be true for 

the case k = 1 , to the pair Sk_l~-~ S and the integers 

n ~ N (after all,~_~ -~ S is a first order thickening). Thus 

there is an isomorphism v': P(n) ~ P'(n) which lifts v . 

This completes the proof. 

(v) Let P,P'6D(Po) and assume P(kN)~ P'(kN). We are to show 

P is isomorphic to P'. From (iv) we know that for n ~ kN , 

P(n) is isomorphic to P'(n). For any n and any i let 

and ¢ be two isomorphisms between P(n+kN+i) and P,(n+kN+i). 

Their "difference" is an element of G(n+kN+i)(S/So). As noted 

already in the proof of (iv), this group is killed under 

multiplication by pkN. Thus ~ and ¢ induce the same iso- 

morphism between P(n) and P'(n) : call it ~n It is clear 

that the an'S fit together to give an isomorphism between P 

and P'. This completes the proof of the proposition. 

(lO.lO) To complete the proof of (10.2) we must establish 

surJectivity. From 10.9 (v), it suffices to establish surJecti- 

vity for the composite map 

(i0.ii) G(S/So) + Tors(S/So, Tp(G)) ~ Tors(S/So,G(kN)) 

(10.12) Lemma. Let S be a scheme on which p is locally nil- 
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potent, G be a Barsotti-Tate group on S; and P be a torseur 

on S under G . Then, P is formally smooth. 

Proof: We must show that there is an arrow rendering the following 

diagram commutative (where X is affine and X ° is defined by 

the vanishing of an ideal of square-zero). 

i 
S( \X 

By making the base change X ~ S, we can assume S is affine 

(hence killed by a power of p ). We are given a section of 

P over S and our problem is to lift it. Since G is 
o 

formally smooth, and P is a G-torseur, it suffices 

to show that P is trivial (i.e. has a section). Since S 

is affinej [ll,SGA4VI (5.2)] tells us that Hl(s,G)~l~Hl(s,G(n)). 

Hence we can assume that for some n , P' is a GCn]-torseur 
G(n) 

on S which has a section over S and that P' ^ G--~JP . 
0 

Viewing P~ as a deformation of the trivial Go(n)-torseur on 

S O it defines an element in Ext~ (n),I). From [16,1I 3-3.9] 
O 

~e know that if n , m are taken sufficiently larg~ the map 

Extl(~Go(n),I) ~ Extl~. (n+m)#)_ is zero. This tells us in 

particular that ~ P'~(n)G(n+m) is a trivial torseur. 

Hence P has a section. 

(10.13) We consider the exact sequence 

pn 
O ~ G(n) ~ G ~ G ~ 0 

where n is an integer > N . 

TORS(S/So,G(n))--~ TORS(S/So,G) 

The functor 

induces an equivalence of 
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categories between TORS(S/So,G(n)) and the category of pairs 

(Q,s)~where (Q,s) is an object of TORS(S/So,G) and s is 

G ~P~,n 
a section of Q _ . ~_~ n such that siS O = ~ ^° ~G O (8 being 

an element in F(So,Q)). This follows immediately from a 

momentary perusal of the proof of the corresponding fact when 

S is supressed [9,111)3.2.~.~he point is that the quasi-inverse 
o 

functor is given by ((Q,~),s)~--~ v-l(s)) where v is the ob- 

G~.pn 
vious map Q ~ Q ^~G . 

(lO.14) 
sequence 

It is now standard [12, p. 17-18] that from the exact 

n 

0--9. G ( n ) - - *  G P ~G--> 0 

we obtain a long exact sequence: 

(10.15) 0 ~ G(n)(S/So)-,G(S/So)-*G(S/So~-.~Tors(S/So,G(n))-*TOrs(S/So,G) 

where 3 is the map (10.ll). 

From this sequence the surJectivity of 8 follows immediately 

since (10.12) tells us in particular that the map 

Tors(S/So,G(n)) ~ Tors(S/So,G) is the zero map. Hence (10.~) 

has been proved. 

(10.16) Corollary: A.ssume the extension 

0 - *  G ~ E -~ G 4 0 
m S o o 

o 

arises from pushing out along go 6 r (So,Go*)- The set of iso- 

morphism classes of extensions lifting E o is in bijective 

correspondance with [g ~F (S,G*)Ig lifts go]. 
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S be a scheme on which 

a Barsotti-Tate group on 

presentation we know 

Proof: One checks immediately that the set of extensions lifting 

E ° is principal homogeneous under Ext(S/So;G,Gm) ~ and hence 

the assertion follows immediately from (10.2). 

(lO.l~It is quite simple to globalize the above result. Let 

p is locally nilpotent and let G be 

S . Since G is locally of finite 

G(S/Sre.d) = ~ G(S/S k) 
S k def ined  by a 

nilpotent ideal 

whenever S is affine. By abuse of notation we shall continue 

to write this even if S is not affine. On the other hand 

if SoC SIC S and S is an infinitesimal neighborhood of S o , 

then there is a natural functor EXT(S/SI~G,Gm) ~ EXT(S/So½G, G m) 

which is easily seen to be fully-faithful. By abuse of 

notation we shall write EXT(S/Sred~G,Gm) for the category 

li B EXT(S/S ;G,Gm) where the limit is taken over the index set 

of sub-schemes S k defined by a nilpotent ideal. Notational 

consistency dictates that we further abuse notation by writing 

Ext(S/Sre;d;G,Gm) = lim>Ext(S/Sk~G,Gm). It is easy to show that 

we are guilty of a genuine abuse of notation for even if S con- 

sists of one point and is of characteristic p , there are 

extensions of ~/~p by G m which split over Sre d but do not 

split where pulled back via a nilpotent immersion. 

We've defined above a homomorphism of presheaves on (Sch/S) 

(10.18) T ~ G*(T/Tred) ~ T ~ Ext(T/Tred;GT,Gm). 
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Furthermore (10.2) tells us that this is an isomorphism 

whenever T is affine. 

(lO.19) If F is an abellan presheaf on Sch/S we denote 

by F the presheaf on Sch/S defined by Ti~ UF(T/Tk) ~ 

T k running through subschemes of T defined by the vanishing 

of a nilpotent ideal. As an exception, if G is a Barsotti-Tate 

group on S , "G" will be used to denote the formal Lie group 

associated to G. Passing, in (lO.18) to associated sheaves for 

the Zariski topology on Sch/S we obtain an isomorphism 

(10.20) G "~ /"~> ~ (G, Gm) 

where Ext is the presheaf T i~ Ext(T/Tred;GT,Gm). (N.B. Since 

G is ind-representable by affine schemes (relative to S) 

sheafification for the Zariski topology gives us an f.p.p.f. 

sheaf whose sections over an arbitrary S-scheme T can be 

explicitly described: ~(T) = {x~G*(T)I x restricted to any 

affine open U of T~ dies when further restricted to a closed 

sub-scheme U o m U defined by a nilpotent ideal~ . 
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~i!. THE CRYSTALLINE NATURE OF THE FORMAL COMPLETION OF THE 

UNIVERSAL EXTENSION 

Let So¢~* (S,I,y) be a nilpotent immersion defined by a 

divided power ideal I • Let G o be a Barsotti-Tate group on 

S O We wish to assign to G O a formal group ~(Go)So • ~ S 

which will be canonically isomorphic to the formal group associated 

to E~G*), E(G*), wherever G is a lifting of G O to S . 

We shall give an explicit description of the points of this functor 

with values in a flat S-scheme S'. 

(ii.i) Let S~ : S' %S O and let G~ : Go~ S~ . As explained 
o 
crys/S G in (6.14) we can consider the category EXT ( ~,G m) 

=dfn~im EXTcrys/S'(G;(n),Gm ) • 

any S o ' defined by a nilpotent For closed subscheme ~c_, 

ideal, we have the notion of a crystalline extension of 

G~ ~'~oo by Gm(relative to S') as given in (6.15). This allows 
o o 

us to speak of the category whose objects are pairs ~P,~) where 

P is an object of EXTcrys/S'(G~,Gm ) and ~ is a trivialization 

of the underlying ~-extension of P restricted to ~oo " When 

~i- is allowed to vary we obtain a direct system of categories 
o 

and taking the direct limit we obtain a category which we denote 

by ExTcrys/S'(s~/s~ ~G',G ). We write 3E~crys/S'(G~,Gm ) for 
re~ o m 

the group of isomorphism classes of objects of th~s category. 

(11.2) Let G' be a Barsotti-Tate group on S' which lifts 

G' • For any closed sub-scheme ~T , of S' which is defined 
o 

by a nilpotent ideal there is the category of ~r-trivialized 
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q-extensions of G' by G Passing to the limit over such m 

closed sub-schemes and then taking isomorphism classes of objects 

we obtain a group E'~(G',Gm). 

(11.3) Proposition: The natural functor 

~Tcrys/S'(G,,Gm ) ~(G~Gm) 

is an equivalence of categories. 

Proof: The fact that the functor is fully-faithful is proved 

exactly as was done in the proof of (7.2). In fact it follows 

immediately from (7.6.1) since ExTni~(G',Gm ) is a full 

sub-category of EXT~(G',Gm). 

Let E be an object in k'~$(G',Gm). Since E becomes the 

trivial ~-extension when we pass to a closed sub-scheme 

~-* S' defined by a nilpotent ideal, if we view E as a family 

of line bundles with integrable connection, ~n ~ G'(n), each of 

these line bundles becomes trivial on ~'. Fix an n and let 

D be a nilpotent S' derivation of ~G'(n) to itself. For 

N >> 0 V(D)N(~n) g (ideal of ~ in S'). ~n (since 

~nlG,(n ) M ~I-~(~, standard connection). Since the ideal of 
S' 

in S' is nilpotent, ~(D) is a nilpotent endomorphism of 

~ • Thus the connection on each ~n is nilpotent [3,II,4.3.6] 

(N.B. Berthelot defines this notion only when ~I is locally-free 

of finite rank so a more correct assertion would be for n >> 0 

the connection on each ~n is nilpotent). ThUs our ~-extension 

E is isomorphic to a crystalline extension and the proof is 

complete. 
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(11.4) Corollary: The natural functor 

m) 
is an equivalence of categories. 

Proof. Since the closed sub-schemes of S' defined by a nil- o 

p o t e n t  i d e a l  d e f i n e  by  c o m p o s i t i o n  w i t h  S 'c-~ S '  a c o - f i n a l  o 
s y s t e m  of  c l o s e d  s u b - s c h e m e s  of  S '  ( d e f i n e d  by  a n i l p o t e n t  i d e a l )  I 

and since the ideal of S' in S' has divided powers;{ll.4},. o 

follows i m m e d i a t e l y  from ( 1 1 . 3 )  p l u s  t h e  u s u a l  e q u i v a l e n c e  

ExTCrys/S'(G,,G )~ ExTcrys/S'(G,,Gm ). 
o m 

(11.5) Proposition: Let S be affine. There is a natural 

exact sequence 

(11.6) 0 ~ ~u_G(S/Sre d) ~ Z~-~Q(G,Gm) ~ ~-~(G,Gm) ~ 0 

Proof: Given ~ ~G(S/Sred) let ~' denote the ~-structure 

on Gm× G defined by ~ . Assume (GmXG,~') is isomorphic to 

the trivial ~-extension (G m ~ G, trivial) via an isomorphism 

which reduces to idGmx G modulo some nilpotent ideal. T~n 

is necessarily equal to idGm× G and hence ~ must be 0 • 

Let E be a trivialized ~-extension whose underlying 

extension is isomorphic to Gm× G via an isomorphism, ~ , respec- 

c_~ S ting the trivializations (all trivializations over some S o 

. ×G defined by a nilpotent ideal) Using @ let us equip G m 

with a ~-structure, ~', by transport of structure. Since 
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~' comes from a unique ~ eF(S,~/~) and since the restriction 

of ~ to S O is compatible with trivializations it follows 

that ~ 6T(S/Sred,~) and exactness at ~G,Gm) has been 

established. 

It remains to check the surJectivity of k'~@(G,Gm) ~ ~(G,Gm). 

Let E be an extension of G by Gm) and ~o a trivialization 

of E ~ S O . From (4.4) it follows that each of the induced 

extensions 

0--~ Gm--~ E ~ G(n)--~ G(n)--~ 0 

has a #-structure. Since for n large the maps 

F(S,~G(n+l)) + F(S,~G(n)) are onto it follows that E itself 

carries at least one ~-structure, p . The "difference" 

between Po and the ~-structures on E o obtained via ~ is 

an element of F(So,~_Go). Since the map T(S,~G)--~ F(So,L~Go) 

is onto we can modify p to obtain a new ~-structure on E so 

that ~o is horizontal. This completes the proof. 

(11.7) Corollary: Assume p is locally nilpotent on S , G 

a Barsotti-Tate group on S. Sheafifying the sequence (ll.6) 

we obtain an exact sequence 

(ll.8) 0 ~_.~ ~ '~ '~ '~(G,  Gm) ~ 'E'~(G,G m) ~ 0 • 

This sequence is canonically isomorphic to the exact sequence of 

formal groups obtained by completing the universal extension of 

G along the identity section: 
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Proof: The exactness of (11.9) is proved in [16,IV (1.2.1)]. 

From (4.6) we know that for S affine F(S,E(G*)) is equal to 

lim (¢n)~Hom~(G(n),Gm) where (¢n) is the exact sequence 

n 
(gn) 0 ~ G(n) ~ G P , G ~ 0 

and where (Cn)-Hom~(G(n),Gm) is the group whose elements are 

pairs (~:G(n) ~ Gm, p a ~-structure on tha extension ~@(Cn)). 

Thus using (10.3) we obtain a commutative diagram 

0--> ~--* li~¢n)-Hom~(G(n),Gm)--> G* ; 0 

0-* ~G--~ k-~k-~(G,Gm) ) k'~(G,Gm) ~ 0 

The corollary now follows from (i0. 2~ and the five lemma. 

(ll. lO) Let S o + (S,I, W) be as in the beginning of this 

section. Assume given two Barsotti-Tate groups G,H on S 

and a homomorphism Uo: Go--* H ° between their restrictions 

to S We shall associate to u a homomorphism 
o o 

v: EC~*~ ~ E(~) which lifts E(u~). 

If T is flat over S , the isomorphism (ll.4): 

~(GT,Gm)~-~crys/T(G~T ,Gm) ) together with the corresponding 

isomorphism with H repla~ing G j gives us an arrow v T 

rendering the following diagram commutative: 

~w~rys/T(uo~%) 7 
E~t~crys/T(HoT ,Gm) 

o 

~'3~(GT,G m ) 

Sheafifying and using ( i~7) we find for T flat over S a 

~orphism E(H*)(T) ~ E(a*)(T). 
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The ~ existence of the homomorphism E(H*) + E(G*) now follows 

since E(H*)I = li~Infk~)) and each Inf k is flat over S. 

(ii. Ii) It follows immediately from (ll.lO) that if G and 

H are t'~o liftings of the Barsotti-Tate group G o on S O , 

then E(G) is canonically isomorphic to ~(~ Exactly as in 

(7.17), (7.18), the funetor ~ is explicitly defined by 

setting for S' an S-scheme 

~(S' ,~(Go)SoC ~ ~, i,¥)) : V(S' ,~crys/S(Go,Gm) ) 

where ~rys/S(Go,Gm) denotes the prolongation to 

the sheaf on the small flat site of S 

sheaf: 

~rys/T 
T ~* (GOTo,Gm) 

( ll. 12 ) Remarks 

(i) In order to know that IE*(Go)sc__~ S 

have made use of a lifting G of G 
o 

if 

So ~--> (S', J,y') 

(S, I,Y ) 

(Sch/S) 
associated to the pre- 

is a formal group we 

In order to know that 

of 

is a commutative diagram where f is a divided power morphism, 

then f*( ~*(G°)s~*S)o ~ ~*(G°)So ~* S' is an isomorphism; we 

make use of a lifting of G O . (If we don't assume the existence 

of a lifting then there doesn't appear to be any standard termi- 

nology which describes what ~*(Go) is). 
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(ii) ~--*(Go) is a crystal relative to a crystalline site which 

sits in-between the nilpotent site and the full Berthelot 

site: objects are divided power thickenings So¢-> (S,I,~) 

where I is a nilpotent ideal• but the divided powers are not 

necessarily nilpoten t. The reason for this was alluded to in 

(10.16). 

(11.13) Let us check that Lie(~(Go) ) is canonically isomorphic 

to ]D*(Go) on their common domain of definition: Let SoC-~(S,I, y) 

be a divided power thickening of S O by a nilpotent ideal. 

Assume S is affine. 

ExtCrys/S(Go,Ga) 

For any S -scheme X 
o 

We shall define a map 

Ker[~tcrys/S[ ¢] (G°s[ e] Gm) ~ E-xtCrys/S(G~m]]' 

• there is a commutative di~ram 

x[ ~] ~ s[ ~] 

X ~ . S  

which gives rise to a morphism of topoi 

~: (X[e]/S[c])crys) (X/S)crys , 

Using the definition of ~ [3•III,2.2.3] one checks 

easily that for any object (U c-~ T,J, 6) of the crystalline site 

of X • ~-I(u~-" T) = U[ e]c--~ T[ e]. ThUs ~*(Gm)u~-* T = G 
mT[ c] 

and there is an exact sequence of sheaves of groups in (X/S)cry s 

0 ~ G a ~ ~.(Gm) ~ G m ~ 0 

Thus we obtain an equivalence of categories 
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(ii. 14 ) ToRScrys/S(X,Ga)~Ker[TORScrys/S[ ~-]~[ c] ,G~ * TORSerys/S(X,Gm)], 

This equivalence if functorial in the S -scheme X and 
o 

hence we obtain 

( 1 1 . 1 5 )  EXTcrys/~Go,Ga)~_.Ker [ ExtCrys/S[¢](Gj¢],Gm)~EXTCrys/S(Go,Gm )] , 

This permits Us to define the map 

~1.16) ExtCryS/~o,Ga~Ker(E~rys/S[¢](Gd¢],Gm ) ~ E~-crys/S(Go,Gm)), 

Before we prove the bijectivity of this map, let us note 

that the category ~Tcrys/S(Go,Gm) is rigid. This follows im- 

mediately from (11.4) (and hence we use once again the fact that 

Barsotti-Tate groups can be lifted). 

Let P,Q be representatives of elements of ExtCrys/S(Go,Ga). 

To say they define the same element in Ker is equivalent to 

asserting that there is an isomorphism of crystalline extensions 

G a G 
p:  P ^ V.(G m) ~ Q ~ V.(G m) 

such that p A G m induces the identity automorphism of the 
G G 

@-extension Gm× G O (once we identify P ^aG m and Q ~ G m with 

Gm~ Go). But using the rigidity of E~crys/S(Go,G m) noted 

above, it follows that p A G m is actually the identity auto- 

morphism of the crystalline extension Gm× G O . It now follows 

from (11.15) that P~Q . 

On the other hand the surJectivity of (11.16) is clear 

since a crystalline extension, P , of Go[el by G m trivialized 

as ~-extension over some closed subscheme T g S[¢] and J 

which is trivialized over S as crystalline extension (in a 



114 

compatible fashion over S n T ~ S[¢]) defines a crystalline 

extension of G o by G a , Q, which is isomorphic to P as a 

crystalline extension (an isomorphism certainly compatible 

with the trivialization over S 0 T). 
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§12. THE CRYSTALLINE NATURE OF THE UNIVERSAL EXTENSION (ON 

THE NILPOTENT CRYSTALLINE SITE) 

In this section we shall show that the universal extension 

of a Barsotti-Tate group can be extended to a crystal on the 

nilpotent crystalline site. 

Let S o be a scheme~(S,I,¥) a nilpotent divided power 

thickening. Fix a Barsotti Tate group G o on ~ Following 

the procedure(s) used in previous sections we shall define for 

S' a flat S-schemeja group E(Go)So~._> s(S')j such that sheafifi- 

cation gives us the value of our crystal on (S,I,y). 

(12.1) Consider the category whose objects are triples: 

(12.2) (i) an element go 6 r(So,Go) 

(ii) a nilpotent crystalline extension of G o by G m 

(relative to S), E~EXT nil crys/S(Go,G m) 

(iii) an isomorphism p between the extension Pgo' 

associated to go ' and the ordinary extension 

underlying E . 

Morphisms between (go,E,p) and (g~,E',p') are defined 

= ' and then a morphism is a morphism of crystalline only if go go 

extensions E ~ E' which is compatible with p and p'. 

(12.3) Definition: Let ~ (Go) S ~_~s(S) = group of isomorphism 
o 

classes of objee~s of the above category. 

(12.4) 

affine. 

Let G be a lifting of G to S which we assume to be o 

We construct a map F(S,E(G*))--> N~Go)SoC_>s(S) by 
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interpreting an element of F(S,E(G*)) as an element, ~, of 

li~en)-Hom~(G(n),Gn) (as in the proof of (11.7)) and assigning 

to @ the isomorphism class of the triple: 

(i) go = restriction to S O of the element of F(S,G*) which 

is the image of @ under E(G*) ~ G* 

(ii) Ej the object of ExTNil-crys/S(Go,Gm) corresponding to 

via the equivalence (7.6.2) plus the equivalence 

ExTN~'crys/S(Go,Gm)~ExTNil-crys/S(G,Gm) 

(iii) the canonical isomorphism P ~ E (i.e. the identity map). 
go 

(12.5) Pro~9_sition: The map defined in (12.4) is an isomorphism. 

Proof: To show inJectivity let ~ ~ F(S,E(G*)) be given, let 

g = image of ~ under E(G*) ~ G*. Assume the triple defined 

by ~ is isomorphic to the trip1~ (0, trivial crystalline extension, 

identity), i.e. there is a map E~G o × G m of crystalline exten- 

sions and the map on underlying extensions is the identity. 

Since we can interpret the crystalline extensions E and 

GoX G m as ~-extensions of G by G m ~ it follows from (10.3) 

that g = 0 • Hence i is given by an element of ~(S,~G). The 

rigidity of the category EXT(S/So;G,Gm) insures that the iso- 

morphism E~Go× G m ~ when interpreted as a map of ~-extension 

of G by Gmj is the identity. This forces the element of 

F(S,~_~G) J and hence ~ , to be zero. 

To prove surJectivity, let (go,E,p) be a triple. We 

interpret E (as explained in 12.4(ii)) as an object of 
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EXTU(G,Gm) whose underlying structure of extension we denote 

by E'. From (10.161 the pair (E',p) determines an element 

g, of F'(S,G*) which lifts go " Let ~ be the f-structure 

on Pg obtained via transport of structure from E using t h e 

isomorphism P ~--E'. If ~ = (g,V) then, by construction, the g 

image of t is the class of the triple (go,E,p). 

(12.61 Corollary: Sheafifying the map 

r(S,E(G*)) ~ ]E*(Gols~s(S) 
O 

we obtain an isomorphism (of sheaves of groups on the small 

flat site of S) 

E(G*) ~IE*(Go)s~ S 

(12.7) Let G1,G 2 be two liftings of G o to S • Just as in 

(ll. lO), (ll.ll) there is a canonical isomorphism E(G~)~E(~2). 

In fact mQre gener~lly we can s~ate 

(12.8) Corollary: There is a functor 

B.T.(So)° ~ Crystals in groups on the nilpotent site of S o 

given by Go~--~!E*(Go) (where * (ao)s~* s 
0 

defined via (12.4)). 

has been explicitly 

(12.9) We now wish to shag that "completing along the identity 

crystal S*(Go) gives us a crystal in formal groups element" the 

canonically isomorphic to the crystal ~*(Go) (of 911), which is 

when the latter is restricted to the nilpotent crystalline site. 
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c_, (S,I,y) be a thickening of the nilpotent site Let S o 

of S O In order to show the formal groups on S . (~*(Go)So~S) 

and ~ (Go)s ~ S are isomorphic, it suffices to show that their 
o 

values on flat S-schemes are f u n c t o r i a l l y  i somorph ic .  Thus by 

localization it suffices to treat the case when S is affine. 

Since ~ (Go)s c-* S i s  i n d - r e p r e s e n t a b l e  by a f f i n e  g r o u p s T i t  
o 

follows that 

F(S, (~*(Go)  Sc__.S)) = group o f  c l a s s e s  of 
o 

triples (go,E,p) 

such that for some nilpotent immersion ~ S O , the inverse 

image to T of the f-extension underlying E becomes isomorphic 

via PT to the trivial ~-extension of GOT by G m . 

To check that this description is correct we use the fact 

= i (~ (G o)S~ S )) i: SoC--~ S being t h a t  ~ ( G ° ) S o ~ o  o 
the inclusion}and the fact that the crystalline extensions off 

G o by G m (relative to So) are simply the ~-extensions. 

Consider now the map 
crys/S 

(go ' E ' P )  ~ c l a s s  o f ( E 'P t  T) in  ~ (Go,Gin) 

The inJectivity of this map follows from the inJectivity of 

map G~(So/T) ~ Ext(So/T~Go,Gm). For if (g~,E~,p') is a second 

triple and (E',p,/T)~(E,p/T) , then there is an isomorphism of 

crystalline extensions ~: E ~ E~ such that KIT . pIT = p'IT. 

But ~op and p' are then equal by (10.5). 

N.B. We view E as an object of ExTcrys/S(Go,Gm ) using 

(ll.3)° The surjectivity of the map follows immediately from 

the assertion of surJectivity implicit in (10.3). 



119 

~13. RELATION BETWEEN THE UNIVERSAL EXqENSION CRYSTAL OF AN 

ABELIAN VARIETY AND THAT OF ITS ASSOCIATED BARSOTTI-TATE 

GROUP 

We shall now show that our construction of the crystals 

(of various sorts) associated to a Barsotti-Tate group is com- 

patible with our earlier construction of the crystals associated 

to an abelian scheme. 

Let S o b e  a scheme ( w i t h  p l o c a l l y  n i l p o t e n t ) ,  A o / S  o 

an abelian scheme, G o = lim~Ao(n ) the associated Barsotti- 

group. Fix a nilpotent divided power thickening Sot-> (S,I,y) Tate 

and assume S is affine. o 

(13.1) Lemma: Let the triple (go,E,@) deline an element of 

F(S, * E (Go)sc_~ S ). Then up to isomorphism there is a unique 
o 

crystalline extension E' in EXTnil-crys/S(Ao,Gm) such that 

there is an isomorphism p' between the extension of A o by 

G m defined by go and the extension underlying E~) such that 

(go,E' IG o, p' I%) is isomorphic to (go,E, p). 

(N.B. p' is necessarily unique). 

Proof: Let A/S be any abelian scheme lifting A ° , let G be 

the associated Barsotti-Tate group. Corresponding to the triple 

(go,E,p) , there is a pair gEF(S,G*),~7a ~4tructure on the 

extension 

(13.2) 0 ~ G m ~ 8 ~ G ~ 0 

obtained by pushing out the "Kummer sequence" along g • 

~-strueture defines a rigidification on (13.2). But 

This 
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(13.2) is obtained by restricting to G an extension 

0 ~ Gin+ ~t ~ A + 0 

Since Infl(G) = Infl(A), this extension has a canonical rigidi- 

flcation, i.e. a canonical ~-structure. It follows immediately 

from [1,(3.2.3)] that this q-structure extends the given 

q-structure on (13.2). Via the equivalence of categories 

E~(A,Gm)~Tnil-crys/S(Ao,Gm ) 4' defines an object E' of 

EXTnil-crys/S(Ao,Gm) such that E'~ Go~ E ) and E' clearly 
o 

satisfies the conditions with p' = "id". 

Let E" be a second object of EXT nil crys/S(Ao,Gm) which 

satisfies the conditions, i.e. so that there is a p". By 

h~othesis there is an isomorphism ~ :E'IGo~ E".Go of crystalline 

extensions such that the following diagram commutes 

E, IG ° ........ > E"IG o 

Pgo 

We must show that E' and E" are isomorphic crystalline 

extensions. Corresponding to E" is a ~-extension ~" of A 

by G m . Since ~ is a map of crystalline extensions there is 

a map p : ~'IG ~ ~"IG which lifts ! As the extension under- 

lying the ~-extension ~"-~' is triviallzed over S o , this 

extension is obtained via pushing out a "Ku~er sequence" along 
w 

an element, g' , of F(S,G )j such that g'IS ° = 0 [19,(19.1)]. 

But g and g+g' we two sections in F(S,G*) lifting go 
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with the corresponding extension~yielding via FIG ° iso- 

morphic deformations of Pgo" Hence from (lO.16) it follows 

that g' = 0 and hence that the extensions underlying ~' and 

~" are isomorphic via a unique isomorphism ~ . By the rigidity 

of EXT(Ao,Gm), VlSoO p= p") and hence by the rigidity of the 

category of deformations of Pgo " ~IG = F . Since Infl(A) = G 

induces an isomorphism of the rigidified extensions ~' 

and ~". But from [I,(3.2.3)] we know this means ~ is an iso- 

morphism of ~-extensions. Via the equivalence 

EXT~tA,Gm)~---EXT nil crys/S(Ao~Gm) j we see ~ induces an iso- 

morphism between E I and E". This completes the proof. 

(13.3) Remark: Although we have used a lifting in the proof 

of (13.1) the result is clearly independent of any such 

choice. 

(13.4) Let A and B be abelian schemes on S , G, H the 

corresponding Barsotti-Tate groups. Assume Uo: A ° + B ° is 

a homomorphism inducing ~o: Go ~ Ho " In §i (resp. §12)) 

there is associated a homomorphism E(B*) ~ E(A*) 

(resp. E(H*) ~ E(G*)). It is an immediate consequence of 

(13.1) that the following diagram commutes: 

(13.5) 2 
E(B*) ' E(A*) 

Passing to tangent spaces we find that the map 
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D*(Ho)s~_ ~ * S ~ ~ (Oo)s~-~ s o 

coincides with the map HI(B,~Bcrys) ~ HI(A,OA ) induced 
crys 

(from Uo) by crystalline cohomology. 
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614. QROTHENDIECK'S DUALITY FORMULA FOR THE LIE COMPLEX 

Let S be a scheme, G a finite, locally-free (commutative) 

S-group. In the course of the proof given below we shall recall 

a construction of the co-Lie complex, ~, associated to G . Let 

M be a quasi-coherent OS-mOdule. From [14,VII, l.1] we know 

it is entirely harmless to identify ~ and M with the corres- 

ponding objects that they define on the flat site of S . With 

this understanding the formula is: 

(14.1) R HOmes (~9,M) ~-- R _~.mz (G*, M) 
~<1 

This isomorphism is functorial in both arguments and when S 

is affine there is a similar isomorphism with "Hom" replacing 

"Horn" • 

Taking 

(14.2) 

If S is affine applying 

yields 

(14.3) 

M = ~S we find a formula for the Lie complex: 

i VG 
' -- <i R HomE~(G*,G a) 

H I (to the formula involving R Hom) 

ExtI(~,M)~Ext~G*,M) 

(a formula used above in (3.1)) 

If instead we took H ° the formula becomes 

14.4 ) HOmes ~ G, M) ~- Horn (G*, M) 

Proof (Grothendieck): From [II,SGA 4 VII,3.5] we know there is 

a p~rtial resolution of G . 
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(14.5) L 2 ~ L 1 ~ L o ¢~ O 

Each L i is a sum of sheaves of the form ~Ti] where T i is 

a finite product of copies of G , L is simply ~[G]. This 
o 

resolution is functorial in G . From (I,(1.3)) it follows 

that G i * = dfn. Li is a smooth commutative group scheme. Because 

• Rif~ (G ) = 0 : T ~ S being the structural E x t l ( z [ T ] ' G m  ) : x .  m T (fT 

map for a finite locally-free S-scheme)j the complex 

G" = G ° -~ G I -~ G 2 

has  

/ H ° ( G  ~ ) = G* 

(14.6) < 
~HI(G" Extl(G,Gm ) = (0) since finite, ) G is 

locally-free 

Thus if ~ = Ker(G 1 ~ G 2) we obtain an exact sequence 

(14.7) 0 -~ G* G ° -> ~[~0 

It follows from [8,11,5.~2] tJIa~ ~ is a smooth S-gromp. We 
w d e f i n e  t h e  c o - L i e  complex of  G by:  

(14.8) ~ =dfn ~ ~G ° 

(where ~ is placed in degree -1) 

In (I,(1.2)) we've defined a map 

L i ~,~G i 

Applying Hom(,M) (resp. Hom(,M)) we obtain a morphism of 

complexes 
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(14.9) 
Hom(~!~o,M)--~ H om(~l,M)--+ Hom(~2,M) 

Hom(Lo,M ) ---> Hom(Ll, M ) ---+ Ho_mm(L2,M ) 

(1,(1.4)) tells us that (14.9) is an isomorphism of complexes. 

Observe that Exti~[T],M) = RifT.fMT) = (0) for i > 0 

since the map fT is affine and M is quasi-coherent. Further- 

more if S is affine) Exti(Z[T],M) = (0) for i > 0 • Since 

each ~G i is locally-free, it is also true that 

ExtJ(~i,M) = (0) for J > 0 (resp. ExtJ(,,!Gi,M ) = 0 if S is 

affine). 

Since L is a partial resolution of G , the complex 

Hom(Lo,M ) ~ Hom(LI,M)+ Hom(L2,M ) has H O = Hom(G,M), H I= ExtI(G,M) 

(resp. without underlining if S is affine). In fact "killing" 

the H 2 of this complex we obtain the complex ~<I R Hom~G,M). 

On the other hand by applying v<1( ) to (14.9) we obtain 

Hom(~o,M) ~ > Hom(tt~,M) 

~<i (R HOmz(G,M)) 

Since the source of this arrow is R Hom(~ G ,M) (14.1) is 

established. 
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915. COMPARISON WITH CLASSICAL DIEUDONNE THEORY 

(15.1) Denote by ~n = Spec(~[W~ .... Wn_l]) the group scheme 

of Witt vectors of length n and by ~n: ~n ~ (Ga ~ the 

homomorphism given by ghost components. Let T: ~n ~ ~n+m be 

the homomorphism defined on S-valued points (S any scheme) by 

T(W O, .... Wn_ I) = (O,...,O,wo,...,Wn_ I) 

and let R: ~n+l + Wn be the homomorphism defined on S-valued 

points by 

R(W 0 ..... W n) = (W O ..... Wn_ I) 

Using the mappings T , the ~n'S form an inductive system and 

we denote by ~ the direct limit. 

(15.2) Let k be a perfect field of characteristic p • 

ClasBi~dLlly [18 hiss3.12], one defines the Dieudonn~ module of 

a unipotent p-divisible group, O ,as 

D*(G) = HOmk_gr(G,~_~k) 

This definition can be extended to a toroidal p-divisible group, 

G , by setting 

D*(G) = D * ( G * )  V 

In (9.2) we defined for G a Barsotti-Tate group over an 

arbitrary base S (with p locally nilpotent) a crystal on S 

in locally-free modules, ~D*(G). The category of crystals in 

locally-free modules on S o = Spec(k) (relative to ~p) is equi- 

valent to the category of free W(k)-modules. Explicitly the 
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equivalence is given by 

M ~ ~ MWn(k ) 

where M is a crystal and ~n(k ) denotes its value on the 

thickening So~--> S n = Spec(Wn(k) ) 

Regarding ~D*(G) as a free W(k)-module we can ask about 

its relation to D*(G). The answer is provided by the following 

theorem of Grothendieck. 

(15.3) Theorem: There is a canonical isomorphism of functors 

D* >]D* (which will be explicitly constructed below). 

(15.4) Because of the decomposition of the category of p-divisible 

groups/k into the product of the category of toroidal p-divisible 

groups and the category of unipotent p-divisible groups, it suf- 

fices to consider only unipotent groups. 

The key to proving (15.3) is Grothendieck's observation that, 

over ~, the extension 

0~ aa-~ v-Y-~w%-~ 0 (15.5) 

is endowed with a canonical structure of ~-extensions. 

To see this one first considers the extensions 

(15.6 a) 0-~ ~a T ~tWn+l ' R ~iWn > 0 • 

Let s: ~n---~Wn+ I be the set-theoretic section given by: 

S(W O, .... Wn_ I) = (W O ..... Wn_l,O) 

The section s determines a trivialization of the 

~81Wn-tOrseur 59n+l° Using this trivialization, endow ~Wn+ 1 

with a structure of ~-torseur, ~70 . 



128 

We modify Z 

(15-7 n) 

where 

(!5-8 n ) 

by defining a new 

Vn : Vo - '~n 

@-structure 

{~n = W~on-ldwo+'''+Wnf!-IdWn-i E I"(~,[II~w ) 
n 

AS will be shown in (15.10)~7 n makes the extension 

(15.6n) into a ~-extension. From the explicit construction of 

it is immediate that the following is compatible with 

-structures 

(15.9) 
o-~ ~a---~.~T ~n+~-~--i---~ ~----~. o 

o--> %-~-~T ~}n+--~---~ tWn+-~ 0 

Passing to the limit we obtain Z ' the desired structure 

of ~-extension on (15.5). 

Let us stop here to check 

(15.10) Proposition: 

(i) Let t:(~a)u-~ (~a)n+l 

(x o .... ,Xn_l~-> (Xo,...,Xn_l,O). 

the extension 

be the map 

View t as a splitting of 

0 --> ~a --'-> _n+l ~a ~ ~n_> 0 
a 

and endow this extension with its trivial @-structure. 

Over Z[ I] the diagram 

i 
(15. l~ l  o - - ~  n+--~--~ ~n----~ o 

Cn+l ~n 
pnx 

o.  :,~a____~®~+._~.S__._~ ~n :~ 0 
a 
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allows us to transport the just-described @-structure on the 

lower row to (15.6n). 

Assertion: This @-structure coincides with V n 

(ii) ~7 n makes (15.6n) into a ~-ex~nsion. 

Proof: (ii) is an immediate consequence of (i) since the 

obstruction to the isomorphism 

s*6Wn+l )-~ P~(~n+l ) ^ P~0Wn+I ) 

being horizontal is an element of the free abelian group 

T( ~l[g~ n) which dies when we tensor this group with =[~]. 

Let t' = ~lot o ~n be the splitting obtained by transport 

of structure. It suffices to show 

( 15.12 ) d (t, - s ) = -,,,n 

But t'-s (w ° ..... Wn_ I) = (0 ..... O,w n) 
n 

where p n w  n + p n - l ~ n _  1 + . . . +  w p = 0 . o 

n 
-4 (WPo +" +pn-lwPn-1) That is w n = .. 
P n 

Thus d(t'-s)=-(<-idWo+...+WPn-ldWn_l) : -,,, n . 

(15.13) Remark: It follows from (15.10) (i) that the rigidification 

on (15.6n) associated to ~n is the restriction of s to 

Infl( ~n ) • 

(15.14) We can now define the map D*(G) ~*(G). For each n 

interpret the restriction to Wn(k) of the @-extension (15.5) 

as being an object in EXTcryS/Wn(k)(l~k,~a,Wn(k)~°---\_~! Pulling back 
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this object by a homomorphism ~G ~9, k gives us an object 

in EXTcrys/Wn(k)(G,~a). These objects, for variable n , piece 

together and we obtain the desired map 

D*(G) . . . . . . . . . . . .  ~ ]D* (G) 

 omk_gr(a ) . . . .  > 

Proof of (15.3): By Nakayama's lemma it suffices to prove 

that the reduction modulo p of this map is injective since 

the source and target are free W(k)-modules of the same rank 

(= height (G)). 

Let ~: G ~ k  be such that ~*(~Z) is the trivial structure 

of ~-extension. We are to show that ~ admits a factorization 

@ 

By assumption there is a unique arrow ¢: G ~ W which 

makes the following diagram commutative. 

0---> Ga---+~..~ ~W × G- ~ G ....... > 0 

0---~ a )J~W - ~ IW 0 

We want to show that ¢ can be written as 

,k To show this it suffices to ,k ' for some T . 

show ¢IKer(F G) = 0 • Continue to denote this restricted map by 

@ . For n >> 0 (15.15) induces a diagram 

0--~ @a---~Wn+l × Ker(FG) > Ker(FG) ~0 

0 ) Ca T > iWn+l 
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From our assumption that ~(~) = trivial structure of 

~-extension and (15.13) it follows that 

(15.16) s~ Ro ~iInfl(Ker(FG )) =~Infl(Ker(FG)). 

The following lemma shows that this ~mplies ~ = 0 • 

and completes the proof of (15.3). 

(15.17) Lemma: Let H be a finite commutative k-group satis- 

fying 

a) F H = 0 

b) V H is nilpotent 

Let #:H ~IWn+ I have components ¢o'''''~n and assume 

~n I Infl(H) = 0 • Then ~, = 0 . 

Proof. We use induction on the index of nilpotency of V H . 

T If V H = 0, then @ factors through @a-------~n+l and we may 

view @ as a homomorphism H ¢ >@a " The assumption 

¢IInfl(H) = 0 implies Lie(q) = 0 and the result follows from 

[8, II, 97, 4.3(b)]. 

Assume the result for groups killed by V m and that V m+l 

kills H . Consider the exact sequence (which defines K): 

0--~ K--~ H Vm>H (p-m) . 

Because V m+l kills H , VH/K = 0 • The induction assumption 

tells us that @ factors as 

H > H/K 

IWn+ 1 
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To conclude we must show Lie(~) = 0 . Because F H = 0 , 

VK., VH. , V(H/K)* are all zero. The exact sequence 

0 -~ (H/~)* -~ H* -~ K* -~ 0 

g i v e s  r i s e  t o  an  e x a c t  s e q u e n c e  o f  D i e u d o n n e  m o d u l e s  

|I 
0 ~i~.(K) >m_m~(H) 

BUt ¢ llnfl(H) = 0 

onto Lie (H/K) 

>~*((~{/K)*) > o JJ 
> Li!e (H/K)-------~ 0 

implies Lie(,) = 0 and since L~(H) maps 

it follows that Li__~e(¢) : 0 . 
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