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1. Introduction

Operads first appear in the book Geometry of Iterated Loop Spaces by J. P.
May [38], though Boardman and Vogt had earlier implicitly defined a mathemat-
ically equivalent notion as a “PROP in standard form” [7, §2]. In those works,
operads and operadic algebra structures provide a recognition principle and a de-
looping machine for n-fold loop spaces and infinite loop spaces. The basic idea is
that an operad should encode the operations in some kind of homotopical algebraic
structure. For example, an n-fold loop space ΩnX comes with n different multi-
plications (ΩnX)2 → ΩnX, which can be iterated and generalized to a space of
m-ary maps Cn(m) (from (ΩnX)m to ΩnX); here Cn is the Boardman-Vogt little
n-cubes operad (see Construction 3.5 and Section 11 below). The content of the
recognition theorem is that Cn specifies a structure that is essentially equivalent to
the structure of an n-fold loop space for connected spaces. It was clear even at the
time of introduction that operads were a big idea and in the almost 50 years since
then, operads have found a wide range of other uses in a variety of areas of mathe-
matics: a quick MathSciNet search for papers since 2015 with “operad” in the title
comes up with papers in combinatorics, algebraic geometry, nonassociative algebra,
geometric group theory, free probability, mathematical modeling, and physics, as
well as in algebraic topology and homological algebra.
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Even the topic of operads in algebraic topology is too broad to cover or even
summarize in a single article. This expository article concentrates on what the
author views as the basic topics in the homotopy theory of operadic algebras: the
definition of operads, the definition of algebras over operads, structural aspects of
categories of algebras over operads, model structures on algebra categories, and
comparison of algebra categories when changing operad or underlying category. In
addition, it includes two applications of the theory: The original application to n-
fold loop spaces, and an application to algebraic models of homotopy types (chosen
purely on the basis of author bias). This leaves out a long list of other topics that
could also fit in this handbook, such as model structures on operads, Koszul duality,
deformation theory and Quillen (co)homology, multiplicative structures in stable
homotopy theory (for example, on Thom spectra, K-theory spectra, etc.), Deligne
and Kontsevich conjectures, string topology, factorization homology, construction
of moduli spaces, and Goodwillie calculus, just to name a few areas.

Notation and conventions. Although we concentrate on operads and operadic
algebras in topology, much of the background applies very generally. Because of
this and because we will want to discuss both the case of spaces and the case of
spectra, we will use neutral notation: let M denote a symmetric monoidal cate-
gory [26, §1.4], writing � for the monoidal product and 1 for the unit. (We will
uniformly omit notation for associativity isomorphisms and typically omit notation
for commutativity isomorphisms, but when necessary, we will write cσ for the com-
mutativity isomorphism associated to a permutation σ.) Usually, we will want M
to have coproducts and sometimes more general colimits, which we will expect to
commute with � on each side (keeping the other side fixed). This exactness of � is
automatic if the monoidal structure is closed [26, §1.5], i.e., if for each fixed object
X of M , the functor (−)�X has a right adjoint; this is often convenient to assume,
and when we do, we will use F (X,−) for the right adjoint. The three basic classes
of examples to keep in mind are:

(i) “Convenient categories of topological spaces” including compactly gener-
ated weak Hausdorff spaces [45]; then � is the categorical product, 1 is
the final object (one point space), and F (X,Y ) is the function space, often
written Y X .

(ii) “Modern categories of spectra” including EKMM S-modules [19], symmet-
ric spectra [25], and orthogonal spectra [32]; then � is the smash product,
1 is the sphere spectrum, and F (−,−) is the function spectrum.

(iii) The category of chain complexes of modules over a commutative ring R;
then � is the tensor product over R, 1 is the complex R concentrated in
degree zero, and F (−,−) is the Hom-complex HomR(−,−).

(We now fix a convenient category of spaces and just call it “the category of spaces”
and the objects in it “spaces”, ignoring the classical category of topological spaces.)

In the context of operadic algebras in spectra (i.e., (ii) above), it is often techni-
cally convenient to use operads of spaces. However, for uniformity of exposition, we
have written this article in terms of operads internally in M . The unreduced sus-
pension functor Σ∞+ (−) converts operads in spaces to operads in the given category
of spectra.

Outline. The basic idea of an operad is that the pieces of it should parametrize a
class of m-ary operations. From this perspective, the fundamental example of an
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operad is the endomorphism operad of an object X,

EndX(m) := F (X(m), X) X(m) := X � · · ·�X︸ ︷︷ ︸
m factors

,

which parametrizes all m-ary maps from X to itself. Abstracting the symmetry
and composition properties leads to the definition of operad in [38]. We review this
definition in Section 2.

Section 3 presents some basic examples of operads important in topology, in-
cluding some A∞ operads, E∞ operads, and En operads.

May chose the term “operad” to match the term “monad” (see [39]), to show
their close connection. Basically, a monad is an abstract way of defining some kind
of structure on objects in a category, and an operad gives a very manageable kind of
monad. Section 4 reviews the monad associated to an operad and defines algebras
over an operad.

Section 5 gives the basic definition of a module over an operadic algebra and
reviews the basics of the homotopy theory of module categories.

Section 6 discusses limits and colimits in categories of operadic algebras. It in-
cludes a general filtration construction that often provides the key tool to study
pushouts of operadic algebras homotopically in terms of colimits in the underlying
category. Section 7 discusses when categories of operadic algebras are enriched, and
in the case of categories of algebras enriched over spaces, discusses the geometric re-
alization of simplicial and cosimplicial algebras. Although these sections may seem
less basic and more technical than the previous sections, the ideas here provide the
tools necessary for further work with operadic algebras using the modern methods
of homotopy theory.

Model structures on categories of operadic algebras provide a framework for
proving comparison theorems and rectification theorems. Section 8 reviews some
aspects of model category theory for categories of operadic algebras. In the termi-
nology of this article, a comparison theorem is an equivalence of homotopy theories
between categories of algebras over different operads that are equivalent in some
sense (for example, between categories of algebras over different E∞ operads) or
between categories of algebras over equivalent base categories (for example, E∞
algebras in spaces versus E∞ algebras in simplicial sets). A rectification theorem is
a comparison theorem when one of the operads is discrete in some sense: a compar-
ison theorem for the category of algebras over an A∞ operad and the category of
associative algebras is an example of a rectification theorem, as is the comparison
theorem for E∞ algebras and commutative algebras in modern categories of spec-
tra. Section 9 discusses these and other examples of comparison and rectification
theorems. In both Sections 8 and 9, instead of stating theorems of maximal gener-
ality, we have chosen to provide “Example Theorems” that capture some examples
of particular interest in homotopy theory and stable homotopy theory. Both the
statements and the arguments provide examples: the arguments apply or can be
adapted to apply in a wide range of generality.

The Moore space is an early rectification technique (pre-dating operads and A∞
monoids) for producing a genuine associative monoid version of the loop space; the
construction applies generally to a little 1-cubes algebra to produce an associative
algebra that we call the Moore algebra. The concept of modules over an operadic
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algebra leads to another way of producing an associative algebra, called the en-
veloping algebra. Section 10 compares these constructions and the rectification of
A∞ algebras constructed in Section 9.

Sections 11 and 12 review two significant applications of the theory of operadic
algebras. Section 11 reviews the original application: the theory of iterated loop
spaces and the recognition principle in terms of En algebras. Section 12 reviews
the equivalence between the rational and p-adic homotopy theory of spaces with
the homotopy theory of E∞ algebras.

Acknowledgments. The author benefited from conversations and advice from
Clark Barwick, Agnès Beaudry, Julie Bergner, Myungsin Cho, Bjørn Dundas, Tyler
Lawson, Andrey Lazarev, Amnon Neeman, Brooke Shipley, and Michael Shulman
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stitute for Mathematical Sciences for support and hospitality during the program
“Homotopy harnessing higher structures” (HHH) when work on this chapter was
undertaken; this work was supported by: EPSRC Grant Number EP/R014604/1.
The author was supported in part by NSF grants DMS-1505579 and DMS-1811820
while working on this project. Finally, the author thanks Andrew Blumberg for
extensive editorial advice.

2. Operads and Endomorphisms

We start with the definition of an operad. The collection of m-ary endomorphism
objects EndX(m) = F (X(m), X) provides the prototype for the definition, and we
use its intrinsic structure to motivate and explain it. Although the endomorphism
objects only make sense when the symmetric monoidal category is “closed” (which
means that function objects exist), the definition of operad will not require or
assume function objects, nor will the definition of operadic algebra in Section 4. To
take in the picture, it might be best just to take M to be the category of spaces, the
category of vector spaces over a field, or the category of sets on first introduction
to this material.

In our basic classes of examples, and more generally as a principle of enriched
category theory, function objects behave like sets of morphisms: the counit of the
defining adjunction

F (X,Y )�X −→ Y

is often called the evaluation map (and denoted ev). It allows “element-free” defi-
nition and study of composition: iterating evaluation maps

F (Y, Z)� F (X,Y )�X −→ F (Y,Z)� Y −→ Z

induces (by adjunction) a composition map

◦ : F (Y, Z)� F (X,Y ) −→ F (X,Z).

One can check just using the basic properties of adjunctions that this composition is
associative in the obvious sense. It is also unital: the identity element of M (X,X)
specifies a map 1X : 1→ F (X,X),

idX ∈M (X,X) ∼= M (1�X,X) ∼= M (1, F (X,X)),
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where the first isomorphism is induced by the unit isomorphism; essentially by
construction, the composite

1�X
1X�idX−−−−−−→ F (X,X)�X

ev−−→ X

is the unit isomorphism. It follows that the diagram

1� F (X,Y )
∼= //

1Y �idF (X,Y )

��

F (X,Y ) F (X,Y )� 1
∼=oo

idF (X,Y ) �1X

��

F (Y, Y )� F (X,Y ) ◦
// F (X,Y ) F (X,Y )� F (X,X)◦

oo

commutes, where the top-level isomorphisms are the unit isomorphisms. More
is true: the function objects enrich the category M over itself, and the �, F
parametrized adjunction is itself enriched [26, §1.5–6].

In the case when M is the category of spaces, the evaluation map is just the map
that evaluates functions on their arguments; thinking in these terms will make the
formulas and checks clearer for the reader not used to working with adjunctions.
Since in the category of spaces 1 is the one point space, a map out of 1 just picks
out an element of the target space and the map 1→ F (X,X) is just the map that
picks out the identity map of X.

The basic compositions above generalize to associative and unital m-ary com-
positions; now for simplicity and because it is the main case of interest here, we
restrict to considering a fixed object X. The m-ary composition takes the form

F (X(m), X)� (F (X(j1), X)� · · ·� F (X(jm), X)) −→ F (X(j), X)

where j = j1 + · · ·+jm and (as in the introduction) X(m) denotes the mth � power
of X; we think of the m-ary composition as plugging in the m ji-ary maps into the
first m-ary map; it is adjoint to the map

F (X(m), X)� F (X(j1), X)� · · ·� F (X(jm), X)�X(j) ∼=
F (X(m), X)� F (X(j1), X)� · · ·� F (X(jm), X)�X(j1) � · · ·�X(jm) −→ X

that does the evaluation map

F (X(ji), X)�X(ji) −→ X,

then collects the resulting m factors of X and does the evaluation map

F (X(m), X)�X(m) −→ X.

In this double evaluation, implicitly we have shuffled some of the factors of X past
some of the endomorphism objects, but we take care not to permute factors of X
among themselves or the endomorphism objects among themselves. This defines a
composition map

Γmj1,...,jm : EndX(m)� EndX(j1)� · · ·� EndX(jm) −→ EndX(j).

The composition is associative and unital in the obvious sense (which we write out
in the definition of an operad, Definition 2.1, below).

We now begin systematically writing EndX(m) for F (X(m), X). We note that
EndX(m) = F (X(m), X) has a right action by the symmetric group Σm induced by
the left action of Σm on X(m) corresponding to permuting the �-factors. In general,
for a permutation σ, we write cσ for the map that permutes �-factors and aσ for the
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action of σ on EndX(m), i.e., the map that does cσ on the domain of EndX(m) =
F (X(m), X). We now study what happens when we permute the various factors in
the formula for Γ above. (As these are a bit tricky, we do the formulas out here
and repeat them below in the definition of an operad, Definition 2.1.)

First consider what happens when we permute the factors of X. We have nothing
to say for an arbitrary permutation of the factors of X, but in the composition
Γmj1,...,jm , we can say something for a permutation that permutes the factors only
within their given blocks of size j1, . . . , jm, i.e., when the overall permutation σ of
all j factors is the block sum of permutations σ1 ⊕ · · · ⊕ σm with σi in Σji . By
extranaturality, performing the right action of σi on EndX(ji) and evaluating is the
same as applying the left action of σi on X(ji) and evaluating. It follows that the
composition Γmj1,...,jm is (Σj1 × · · · ×Σjm)-equivariant where we use the Σji-actions
on the EndX(ji)’s in the source and block sum with the Σj-action on EndX(j) on
the target.

Permuting the endomorphism object factors is easier to understand when we also
permute the corresponding factors of X. In the context of Γmj1,...,jm , for σ in Σm,

let σj1,...,jm be the element of Σj that permutes the blocks X(j1),. . . , X(jm) as σ
permutes 1,. . . ,m. So, for example, if m = 3, j1 = 1, j2 = 3, j3 = 2, and σ = (23),
then σ1,3,2 is the permutation

(23)1,3,2 =

{
1

��

2

��

3

��

4

��

5

��

6

��
1 5 6 2 3 4

}
= (25364).

In EndX(j1)� · · ·� EndX(jm)�X(j), if we apply σ to permute the endomorphism
object factors and σj1,...,jm to permute the X factors, then evaluation pairs the
same factors as with no permutation and the diagram

(EndX(j1)� · · ·� EndX(jm))�X(j) ev //

cσ�cσj1,...,jm
��

X(m)

cσ

��

(EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))�X
(j)

ev
// X(m)

commutes. This now tells us what happens with Γmj1,...,jm and the permutation
action on EndX(n): the composite of the right action of σ on EndX(m) with Γmj1,...,jm

EndX(m)� (EndX(j1)� · · ·� EndX(jm))

aσ�id−−−−→ EndX(m)� (EndX(j1)� · · ·� EndX(jm))
Γmj1,...,jm−−−−−−→ EndX(j)

is equal to the composite of the �-permutation cσ on the End(ji)’s, the composition
map Γmjσ−1(1),...,jσ−1(m)

, and the right action of σj1,...,jm on EndX(j)

EndX(m)� (EndX(j1)� · · ·� EndX(jm))

id�cσ−−−−→ EndX(m)� (EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))

Γmj
σ−1(1)

,...,j
σ−1(m)−−−−−−−−−−−−−→ EndX(j)

aσj1,...,jm−−−−−−−→ EndX(j).

See Figure 2 on p. 9 for this equation written as a diagram.
Although we did not emphasize this above, we need to allow any of m, j1, . . . , jm,

or j to be zero, where we understand empty �-products to be the unit 1. The
formulations above still work with this extension, using the unit isomorphism where
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necessary. The purpose of allowing these “zero-ary” operations is that it allows us
to encode a unit object into the structure: For example, in the context of spaces 1
is the one point space ∗ and to describe the structure of a topological monoid, not
only do we need the binary operation X ×X → X, but we also need the zero-ary
operation ∗ → X for the unit.

Rewriting the properties of EndX above as a definition, we get an element-free
version of the definition of operad of May [38, 1.2].1

Definition 2.1. An operad in a symmetric monoidal category M consists of a
sequence of objects O(m), m = 0, 1, 2, 3, . . . , together with:

(a) A right action of the symmetric group Σm on O(m) for all m,
(b) A unit map 1: 1→ O(1), and
(c) A composition rule

Γmj1,...,jm : O(m)�O(j1)� · · ·�O(jm) −→ O(j)

for every m, j1, . . . , jm, where j = j1 + · · ·+ jm, typically written Γ when
m and j1, . . . , jm are understood or irrelevant,

satisfying the following conditions:

(i) The composition rule Γ is associative in the sense that for any m, j1, . . . , jm
and k1, . . . , kj , letting j = j1 +· · ·+jm, k = k1 +· · ·+kj , ti = j1 +· · ·+ji−1

(with t1 = 0), and si = kti+1 + · · ·+ kti+ji , the equation

Γjk1,...,kj
◦ (Γmj1,...,jm � idO(k1)� · · ·� idO(kj))

= Γms1,...,sm ◦ (idO(m)� Γj1k1,...,kj1
� · · ·� Γjmktm+1,...,kj

) ◦ c

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj) −→ O(k)

where c is the �-permutation

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj) −→
O(m)� (O(j1)�O(k1)� · · ·�O(kj1))� · · ·

· · ·� (O(jm)�O(ktm+1)� · · ·�O(kj))

that shuffles the O(k`)’s and O(ji)’s as displayed (see Figure 1 on p. 8 for
the diagram);

(ii) The unit map 1 is a left and right unit for the composition rule Γ in the
sense that Γ1

m ◦ (1� id)

1�O(m)
1�id−−−→ O(1)�O(m)

Γ1
m−−→ O(m)

is the unit isomorphism and Γm1,...,1 ◦ (id�1(m))

O(m)� 1(m) id�1(m)

−−−−−−→ O(m)�O(1)(m)
Γm1,...,1−−−−−→ O(m)

is the iterated unit isomorphism for O(m) for all m;
(iii) The map Γmj1,...,jm is (Σj1 × · · · × Σjm)-equivariant for the block sum in-

clusion of Σj1 × · · · × Σjm in Σj ; and

1In the original definition, May required O(0) = 1 in order to provide O-algebras with units,
which was desirable in the iterated loop space context, but standard convention has since dropped

this requirement to allow non-unital algebras and other unit variants.
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O(j)�O(k1)� · · ·�O(kj)

Γjk1,...,kj

��

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj)

Γmj1,...,jm
�id�···�id

//

c

��

O(k)

O(m)�

(
O(j1)�O(k1)� · · ·�O(kj1)� · · ·
· · ·�O(jm)�O(ktm+1)� · · ·�O(kj)

)

id�Γ
j1
k1,...,kj1

�···�Γjmktm+1,...,kj

// O(m)�O(s1)� · · ·�O(sm)

Γms1,...,sm

OO

Figure 1. The diagram for 2.1.(i)

Here c is the �-permutation that shuffles O(k`)’s past O(ji)’s as displayed,
j = j1 + · · ·+ jm, ti = j1 + · · ·+ ji−1 (with t1 = 0), si = kti+1 + · · ·+kti+ji ,
and k = k1 + · · ·+ kj = s1 + · · ·+ sm.

(iv) For any m, j1, . . . , jm and any σ ∈ Σm, the equation

Γmj1,...,jm ◦ (aσ � idO(j1)� · · ·� idO(jm))

= aσj1,...,jm ◦ Γmjσ−1(1),...,jσ−1(m)
◦ (idO(m)�cσ)

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm) −→ O(j)

where σj1,...,jm denotes the block permutation in Σj corresponding to σ
on the blocks of size j1, . . . , jm, a denotes the right action of (a), and cσ
denotes the �-permutation corresponding to σ (see Figure 2 on p. 9 for
the diagram).

A map of operads consists of a map of each object that commutes with the
structure:

Definition 2.2. A map of operads ({O(m)}, 1,Γ) → ({O′(m)}, 1′,Γ′) consists of
Σm-equivariant maps φm : O(m)→ O′(m) for all m such that

Γ′mj1,...,jm ◦ (φm � φj1 � · · ·� φjm) = φj ◦ Γmj1,...,jm

for all m, j1, . . . , jm and 1′ = φ1 ◦ 1; in commuting diagrams:

O(m)�O(j1)� · · ·�O(jm)
Γmj1,...,jm //

φm�φj1�···�φjm
��

O(j)

φj

��

O′(m)�O′(j1)� · · ·�O′(jm)
Γ′mj1,...,jm

// O′(j)

1

1

��

1′

��

O(1)
φ1

// O′(1).
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O(m)�O(j1)� · · ·�O(jm)
aσ�id�···�id

//

id�cσ

��

O(m)�O(j1)� · · ·�O(jm)

Γmj1,...,jm
��

O(j)

O(m)�O(jσ−1(1))� · · ·�O(jσ−1(m))
Γmj
σ−1(1)

,...,j
σ−1(m)

// O(j)

aσj1,...,jm

OO

Figure 2. The diagram for 2.1.(iv)

Here σ ∈ Σm, cσ is the �-permutation corresponding to σ, σj1,...,jm ∈ Σj
is the block permutation performing σ on blocks of sizes j1, . . . , jm,
j = j1 + · · · + jm, and a denotes the Σm action on O(m) and the Σj-
action on O(j).

The endomorphism operad EndX gives an example of an operad in any closed
symmetric monoidal category (for any object X). Here are some additional impor-
tant examples.

Example 2.3 (The identity operad). Assume the symmetric monoidal category M
has an initial object ∅. If � preserves the initial object in each variable, ∅� (−) ∼=
∅ ∼= (−) � ∅ (which is automatic in the closed case, i.e., when function objects
exist), we also have the example of the identity operad I, which has I(1) = 1 (with
1 the identity) and I(m) the initial object for m 6= 1; this is the initial object in
the category of operads.

Example 2.4 (The commutative algebra operad). The operad Com exists in any
symmetric monoidal category:

Com(m) = 1

for all m with the trivial symmetric group actions and composition law Γ given by
the unit isomorphism; its category of algebras (see the next section) is isomorphic
to the category of commutative monoids for � in M (defined in terms of the usual
diagrams, i.e., [30, VII§3] plus commutativity); see Example 4.3.

Example 2.5 (The associative algebra operad). If M has finite coproducts and �
preserves finite coproducts in each variable, then we also have the operad Ass:

Ass(m) =
∐
Σm

1

with symmetric group action induced by the natural (right) action of Σm on Σm and
composition law Γ induced by block permutation and block sum of permutations,

σ ∈ Σm, τ1 ∈ Σj1 , . . . , τm ∈ Σjm 7→ σj1,...,jm ◦ (τ1 ⊕ · · · ⊕ τm) ∈ Σj .

Its category of algebras is isomorphic to the category of monoids for � in M ; see
Example 4.4.

For operads like Ass, it is often useful to work in terms of non-symmetric operads,
which come without the permutation action.
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Definition 2.6. A non-symmetric operad consists of a sequence of objects O(m),
m = 0, 1, 2, 3, . . . , together with a unit map and composition rule as in 2.1.(b) and
(c) satisfying the associativity and unit rules of 2.1.(i) and (ii). A map of non-
symmetric operads consists of a map of their object sequences that commutes with
the unit map and the composition rule.

Forgetting the permutation action on Com gives a non-unital operad called Ass
that is the non-symmetric version of the operad Ass. In general, under the fi-
nite coproduct assumption in Example 2.5, given a non-symmetric operad O, the
product O � Ass has the canonical structure of an operad; it is the operad asso-
ciated to O. In the category of spaces (or sets, but not in the category of abelian
groups, the category of chain complexes, or the various categories of spectra), an
operad O comes from a non-symmetric operad exactly when it admits a map to
Ass: the corresponding non-symmetric operad O has O(n) the subobject that maps
to the identity permutation summand of Ass, and there is a canonical isomorphism
O ∼= O �Ass (that depends only on the original choice of map O → Ass).

3. A∞, E∞, and En Operads

This section reviews some of the most important classes of examples of operads
in homotopy theory, the A∞, E∞, and En operads. We concentrate on the case of
(unbased) spaces, with some notes about the appropriate definition of such operads
in other contexts. For example, in stable homotopy theory, the unbased suspen-
sion spectrum functor Σ∞+ converts model En operads into operads in the various
modern categories of spectra. The universal role played by spaces in homotopy
theory typically allows for reasonable definitions of these classes of operads in any
homotopy theoretic setting.

The terminology of A∞ space and the basic model of an A∞ operad, due to
Stasheff [55], preceded the definition of operad by several years.

Definition 3.1. An A∞ operad in spaces is a non-symmetric operad whose mth
space is contractible for all m.

Informally, an operad (with symmetries) is A∞ when there is an understood
isomorphism to the operad associated to some A∞ operad. The definition of A∞
operad usually has a straightforward generalization to other symmetric monoidal
categories with a notion of homotopy theory: contractibility corresponds to a weak
equivalence with the unit 1 of the symmetric monoidal structure, and we should
add the requirement that the non-symmetric operad composition rule should be
a weak equivalence for all indexes (which is automatic in spaces). One wrinkle
is that a flatness condition may be needed and should be imposed to ensure that
the functor O(m)�X(m) is weakly equivalent to X(m) (cf. Section 9); in the case
of spaces, contractibility implicitly includes such a condition (although in spaces
itself, the monoidal product × preserves all weak equivalence in each variable).
In symmetric spectra and orthogonal spectra, a good flatness condition is to be
homotopy equivalent to a cofibrant object; in EKMM S-modules, a good flatness
condition is to be homotopy equivalent to a semi-cofibrant object (see [28, §6]).

We have already seen an example of an A∞ operad: the operad Ass is an A∞
operad. The associahedra K(m) of Stasheff [55, I.§6] have the structure of a non-
symmetric operad using the insertion maps [ibid.] for the composition rule, and this
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is an example of an A∞ operad. The Boardman-Vogt little 1-cubes (non-symmetric)
operad C1 described below gives a third example.

Next we discuss E∞ operads. Recall that a free Σm-cell complex is a space
built by cells of the form (Σm ×Dn,Σm × Sn−1), where Dn denotes the unit disk
in Rn. The definition of E∞ operad asks for the constituent spaces to have the
Σm-equivariant homotopy type of a free Σm-cell complex and the non-equivariant
homotopy type of a point.

Definition 3.2. An operad E in spaces is an E∞ operad when for each m, its mth
space is a universal Σm space: E(m) has the Σm-equivariant homotopy type of a
free Σm-cell complex and is non-equivariantly contractible.

Unlike the A∞ case, the operad Com is not E∞ as its spaces do not have free
actions. The Barratt-Eccles operad EΣ provides an example:

Example 3.3 (The Barratt-Eccles operad). Let EΣ(m) denote the nerve of the
category EΣm whose set of objects is Σm and which has a unique map between
any two objects. The symmetric group Σm acts strictly on the category and the
nerve EΣ(m) inherits a Σm-action; moreover, as the action of Σm on the simplices
is free, the simplicial triangulation of EΣ(m) has the structure of a free Σm-cell
complex. It is non-equivariantly contractible because every object of EΣm is a zero
object. The multiplication is induced by an operad structure on the sequence of
categories using block sums of permutations as in the operad structure on Ass. The
resulting operad is called the Barratt-Eccles operad.

Boardman and Vogt [7, §2] defined another E∞ operad, built out of linear isome-
tries.

Example 3.4 (The linear isometries operad). The Boardman-Vogt linear isometries
operad L has its mth space the space of linear isometries

(R∞)m = R∞ ⊕ · · · ⊕ R∞ −→ R∞

(where R∞ =
⋃
Rn), with operad structure defined as in the example of an endo-

morphism operad. The topology comes from the identification

L(m) = limk colimn I((Rk)m,Rn)

for I((Rk)m,Rn) the space of linear isometries Rk)m → Rn (with the usual manifold
topology). The Σm-action induced by the action on the direct sum (R∞)m is clearly
free; each I((Rk)m,Rn) is a Σm-manifold, and L(m) is homotopy equivalent to a
free Σm-cell complex. Since I((Rk)m,Rn) is (n−km−1)-connected, it follows that
L(m) is non-equivariantly contractible.

The Boardman-Vogt little ∞-cubes operad C∞ described below gives a third
example of an E∞ operad.

The requirement for freeness derives from infinite loop space theory. As we
review in Section 11, infinite loop spaces are algebras for the little ∞-cubes operad
C∞. As we review in Section 9, for any E∞ operad E in spaces, the category of
E-algebras has an equivalent homotopy theory to the category of C∞-algebras. On
the other hand, any algebra in spaces for the operad Com must be a generalized
Eilenberg-Mac Lane space, and the category of Com-algebras does not have an
equivalent homotopy theory to the category of C∞-algebras. In generalizing the
notion of E∞ to other categories, getting the right category of algebras is key.
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For symmetric spectra, orthogonal spectra, and EKMM S-modules and for chain
complexes of modules over a ring containing the rational numbers, it is harmless to
allow Com to fit the definition of E∞ operad (cf. Examples 9.3, 9.4); in spaces and
chain complexes of modules over a finite field, some freeness condition is required. In
general, the condition should be a flatness condition onO(m) for (O(m)�X(m))/Σm
as a functor of X (for suitable X) (cf. Definition 9.1).

Unlike the definition of E∞ or A∞ operad, which are defined in terms of homo-
topical conditions on the constituent spaces, the definition of En operads for other
n depends on specific model operads first defined by Boardman-Vogt [7] called the
little n-cubes operads Cn.

Construction 3.5 (The little n-cubes operad). The mth space Cn(m) of the little
n-cubes operad is the space of m ordered almost disjoint parallel axis affine em-
beddings of the unit n-cube [0, 1]n in itself. So Cn(0) is a single point representing
the unique way to embed 0 unit n-cubes in the unit n-cube. A parallel axis affine
embedding of the unit cube in itself is a map of the form

(t1, . . . , tn) ∈ [0, 1]n 7→ (x1 + a1t1, . . . , xn + antn) ∈ [0, 1]n

for some fixed (x1, . . . , xn) and (a1, . . . , an) with each ai > 0, xi ≥ 0, and xi+ai ≤ 1;
it is determined by the point (x1, . . . , xn) where it sends (0, . . . , 0) and the point

(y1, . . . , yn) = (x1 + a1, . . . , xn + an)

where it sends (1, . . . , 1). So Cn(1) is homeomorphic to the subspace

{((x1, . . . , xn), (y1, . . . , yn)) ∈ [0, 1]n × [0, 1]n | x1 < y1, x2 < y2, . . . , xn < yn}

of [0, 1]n × [0, 1]n. For m ≥ 2, almost disjoint means that the images of the open
subcubes are disjoint (the embedded cubes only intersect on their boundaries),
and Cn(m) is homeomorphic to a subset of Cn(1)m. The map 1 is specified by
the element of Cn(1) that gives the identity embedding of the unit n-cube. The
action of the symmetric group is to re-order the embeddings. The composition law
Γmj1,...,jm composes the j1 embeddings in Cn(j1) with the first embedding in Cn(m),
the j2 embeddings in Cn(j2) with the second embedding in Cn(m), etc., to give
j = j1 + · · · + jm total embeddings. See Figure 3 for a picture in the case n = 2.
Taking cartesian product with the identity map on [0, 1] takes a self-embedding
of the unit n-cube to a self-embedding of the unit (n + 1)-cube and induces maps
of operads Cn → Cn+1 that are closed inclusions of the underlying spaces. Let
C∞(m) =

⋃
Cn(m); the operad structures on the Cn fit together to define an operad

structure on C∞.

The space Cn(m) has the Σm-equivariant homotopy type of the configuration
space C(m,Rn) of m (ordered) points in Rn, or equivalently, C(m, (0, 1)n) of
m points in (0, 1)n. To see this, since both spaces are free Σm-manifolds (non-
compact, and with boundary in the case of Cn(m)), it is enough to show that they
are non-equivariantly weakly equivalent, but it is in fact no harder to produce a
Σm-equivariant homotopy equivalence explicitly. We have a Σm-equivariant map
Cn(m) → C(m, (0, 1)n) by taking the center point of each embedded subcube. It
is easy to define a Σm-equivariant section of this map by continuously choosing
cubes centered on the given configuration; one way to do this is to make them all
have the same equal side length of 1/2 of the minimum of the distance between
each of the points and the distance from each point to the boundary of [0, 1]n. A
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a b Γ3
1,2,1(a; 1, b, 1)

Figure 3. Composition of Little 2-Cubes

The figure shows the composition

Γ3
1,2,1 : C2(3)× C2(1)× C2(2)× C2(1) −→ C2(4)

applied to the elements a ∈ C2(3), 1 ∈ C2(1), b ∈ C2(2), and 1 ∈ C2(1) with
a and b as pictured.

Σm-equivariant homotopy from the composite map on Cn(m) to the identity could
(for example) first linearly shrink all sides that are bigger than their original length
and then linearly expand all remaining sides to their original length. In particular,
Cn(1) is always contractible and Cn(2) is Σ2-equivariantly homotopy equivalent to
the sphere Sn−1 with the antipodal action. For m > 2, the configuration spaces
can be described in terms of iterated fibrations, and their Borel homology was
calculated by Cohen in [14] and [15, IV].

We can say more about the homotopy types in the cases n = 1, n = 2, and
n = ∞. For n = 1, the natural order of the interval [0, 1], gives a natural order
to the embedded sub-intervals (1-cubes); let C1(m) denote the subspace of C1(m)
where the sub-intervals are numbered in their natural order. The spaces C1(m) are
contractible and form a non-symmetric operad with C1 (canonically) isomorphic to
the associated operad. In other words, the map of operads C1 → Ass that takes
a sequence of embeddings and just remembers the order they come in is a Σm-
equivariant homotopy equivalence at each level. In particular C1 is an A∞ operad.

For n = 2, the configuration space C(m,R2) is easily seen to be an Eilenberg-
Mac Lane space K(Am, 1) where Am is the pure braid group (of braids with fixed
endpoints) on m strands (see, for example, [38, §4]).

For n = ∞, C∞ is an E∞ operad; each C∞(m) is a universal Σm-space. To see
this, it is easier to work with

C(m,R∞) :=
⋃
C(m,Rn).

Choosing a homeomorphism (0, 1) ∼= R that sends 1/2 to 0, the induced homeomor-
phisms Cn(m) → C(m,Rn) are compatible with the inclusions Cn(m) → Cn+1(m)
and C(m,Rn) → C(m,Rn+1); as these inclusions are embeddings of closed sub-
manifolds (with boundary in the case of Cn(m)), the induced map

C∞(m) =
⋃
Cn(m) −→

⋃
C(m,Rn) = C(m,R∞)

remains a homotopy equivalence. One way to see that C(m,R∞) is non-equivariantly
contractible is to start by choosing a homotopy though injective linear maps from
the identity on R∞ to the shift map that on basis elements sends ei to ei+m. We
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then homotope the configuration (which now starts with the first m coordinates all
zero) so that the ith point has ith coordinate 1 and the remainder of the first m
coordinates zero. Finally, we homotope the configuration to the configuration with
ith point at ei.

We use the operads Cn to define En operads:

Definition 3.6. An operad E in spaces is an En operad when there is a zigzag
of maps of operads relating it to Cn, each of which is a Σm-equivariant homotopy
equivalence on mth spaces for all m.

This definition is standard, but a bit awkward, because it defines a property,
whereas a better definition would define a structure and ask for at least a preferred
equivalence class of zigzag.

As we review in Section 9, such maps induce equivalences of homotopy categories
of algebras (indeed, Quillen equivalences). We have implicitly given two different
definitions of E∞ operad; the following proposition justifies this.

Proposition 3.7. An operad E of spaces is E∞ in the sense of Definition 3.2 if
and only if it is E∞ in the sense of Definition 3.6.

Before reviewing the proof, we state the following closely related proposition.

Proposition 3.8. An operad E of spaces is E1 if and only if it is isomorphic to
the associated operad of an A∞ operad.

The previous two propositions (and their common proof) are the gist of the
second half of §3 of May [38]. In each case one direction is clear, since C1 and
C∞ are A∞ and E∞ (respectively), and the conditions of Definitions 3.1 and 3.2
are preserved by the zigzags considered in Definition 3.6. The proof of the other
direction is to exhibit an explicit zigzag:

Proof. Let E be the operad in question and assume it is either E∞ in the sense of
Definition 3.2 (for the first proposition) or A∞ in the sense of Definition 3.1ff (for
the second proposition). In the case of the first proposition, consider the product
in the category of operads C∞ × E ; it satisfies

(C∞ × E)(m) = C∞(m)× E(m)

with the diagonal Σm-action and the unit and composition maps the product of
those for C∞ and E . The projections

C∞ ←− C∞ × E −→ E

give a zigzag as required by Definition 3.6. For the second proposition, do the same
trick with the non-symmetric operads E and C1 and then pass to the associated
operads. �

Definitions 3.1 and 3.2 mean that identifying A∞ and E∞ operads is pretty
straightforward. In unpublished work, Fiedorowicz [21] defines the notion of a
braided operad, which provides a good criterion for identifying E2 operads. For
n > 2 (finite), the spaces Cn(m) are not Eilenberg-Mac Lane spaces (for m > 1),
and that makes identification of such operads much harder; however, Berger [2,
1.16] proves a theorem (that he attributes to Fiedorowicz) that gives a method to
identify En operads that seems to work well in practice; see [44, §14], [3, §1.6].
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The work of Dunn [16] and Fiedorowicz-Vogt [20] is the start of an abstract
identification of En operads: The derived tensor product of n E1 operads is an En
operad. Here “tensor product” refers to the Boardman-Vogt tensor product of oper-
ads (or PROPs) in [8, 2§3], which is the universal pairing subject to “interchange”,
meaning that an O⊗P-algebra structure consists of an O-algebra and a P-algebra
structure on a space where the O- and P-structure maps commute (see ibid. for
more details on the construction of the tensor product). This still essentially de-
fines En operads in terms of reference models, though in principle, it gives a wide
range of additional models. (The author does not know an example where this is
actually put to use, but [12] comes close.) The concept of interchange makes sense
in any cartesian symmetric monoidal structure, so this also in principle tells how to
extend the notion of En to other cartesian symmetric monoidal categories with a
reasonable homotopy theory of operads for which the Boardman-Vogt tensor prod-
uct is reasonably well-behaved. (Again, the author knows no examples where this
is put to use, but perhaps work by Barwick (unpublished), Gepner (unpublished),
and Lurie [29] on En structures is in a similar spirit.)

In categories suitably related to spaces, En algebras are defined by a reference
model suitably related to Cn. For example, in the context of simplicial sets, the
total singular complex of the little n-cubes operad has the canonical structure of
an operad of simplicial sets, and we define En operads in terms of this reference
model. In symmetric spectra and orthogonal spectra, we have the reference model
given by the unbased suspension spectrum functor: an operad is an En operad
when it is related to Σ∞+ Cn by a zigzag of operad maps that are (non-equivariant)
weak equivalences on mth objects for all m. For categories of chain complexes, we
use the singular chain complex of the little n-cubes operad to define the reference
model. To make the singular chains an operad, we use the Eilenberg-Mac Lane
shuffle map to relate tensor product of chains to chains on the cartesian product;
the shuffle map is a lax symmetric monoidal natural transformation

C∗(X)⊗ C∗(Y ) −→ C∗(X × Y ),

meaning that it commutes strictly with the symmetry isomorphisms

C∗(X)⊗ C∗(Y ) ∼= C∗(Y )⊗ C∗(X) C∗(X × Y ) ∼= C∗(Y ×X)

and makes the following associativity diagram commute.

C∗(X)⊗ C∗(Y )⊗ C∗(Z) //

��

C∗(X × Y )⊗ C∗(Z)

��

C∗(X)⊗ C∗(Y × Z) // C∗(X × Y × Z)

See, for example, [42, §29].
The fact that En operads need to be defined in terms of a reference model is not

entirely satisfactory, especially in homotopical contexts that are not topological.
Nevertheless, the definition for spaces, simplicial sets, or chain complexes seems to
suffice to cover all other contexts that arise in practice.2

2In theory, the definition for simplicial sets should suffice for all homotopical contexts, but
this may require changing models, which for a particular problem may be inconvenient or more

complicated, or make it less concrete.
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4. Operadic Algebras and Monads

In the original context of iterated loop spaces and in many current contexts
in homotopy theory and beyond, the main purpose of operads is to parametrize
operations, which is to say, to define operadic algebras. For a closed symmetric
monoidal category, there are three equivalent definitions, one in terms of operations,
one in terms of endomorphism operads, and one in terms of monads. This section
reviews the three definitions.

Viewing O(m) as parametrizing some m-ary operations on an object X means
that we have an action map

O(m)�X(m) −→ X.

Since the right action of Σm on O(m) corresponds to reordering the arguments of
the operations, applying σ ∈ Σm to O(m) (and then performing the action map)
should have the same effect as applying σ to permute the factors in X(m). A
concise way of saying this is to say that the map is equivariant for the diagonal
(left) action on the source O(m) � X(m) and the trivial action on the target X
(using the standard convention that the left action σ on O(m) is given by the right
action of σ−1). The action map should also respect the composition law Γ, making
Γ correspond to composition of operations, and respect the identity 1, making 1
act by the identity operation. The following gives the precise definition:

Definition 4.1. Let M be a symmetric monoidal category and O = ({O(m)},Γ, 1)
an operad in M . An O-algebra (in M ) consists of an object A in M together with
action maps

ξm : O(m)�A(m) −→ A

that are equivariant for the diagonal (left) Σm-action on the source and the triv-
ial Σm-action on the target and that satisfy the following associativity and unit
conditions:

(i) For all m, j1, . . . , jm,

ξm ◦ (idO(m)�ξj1 � · · ·� ξjm) = ξj ◦ (Γmj1,...,jm � id
(j)
A ),

i.e., the diagram

O(m)�O(j1)� · · ·�O(jm)�A(j)
Γmj1,...,jm�id

(j)
A
//

idO(m) �ξj1�···�ξjm
��

O(j)�A(j)

ξj

��

O(m)�A(m)

ξm

// A

commutes.
(ii) The map ξ1 ◦ (1� idA) : 1�A→ A is the unit isomorphism for �.

A map of O-algebras from (A, {ξm}) to (A′, {ξ′m}) consists of a map f : A→ A′ in
M that commutes with the action maps, i.e., that make the diagrams

O(m)�A(m) ξm //

idO(m) �f
(m)

��

A

f

��

O(m)�A′(m)

ξ′m

// A′
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commute for all m. We write M [O] for the category of O-algebras.

Example 4.2. When M has an initial object and � preserves the initial object in
each variable, the structure of an algebra over the identity operad I is no extra
structure on an object of M .

As per (ii) above and as illustrated in the previous example, the 1 in the structure
of the operad corresponds to the identity operation. In some contexts algebras
have units; when that happens, the unit is encoded in O(0) as in the examples of
monoids and commutative monoids. Recall that a monoid object for � in M (or
�-monoid for short) consists of an object M together with a multiplication map
µ : M �M →M and unit map η : 1→M satisfying the following associativity and
unit diagrams

M �M �M
µ�id

//

id�µ

��

M �M

µ

��

M �M
µ

// M

1�M
η�id

//

∼=
%%

M �M

µ

��

M � 1
id�η
oo

∼=
yy

M

(where the diagonal maps are the unit isomorphisms in M ). The opposite multi-
plication is the composite of the symmetry morphism c : M �M → M �M with
µ, and a �-monoid is commutative when µ = µ ◦ c.

Example 4.3. Given a Com-algebra A, defining η to be the action map ξ0

η : 1 = Com(0)
ξ0−−→ A

and µ to be the composite of the (inverse) unit isomorphism and the action map ξ2

µ : A�A ∼= Com(2)�A�A
ξ2−−→ A

endows A with the structure of a commutative �-monoid: associativity follows
from the fact that the maps Γ2

1,2 and Γ2
2,1 are both unit maps for � so under the

canonical isomorphisms

A�A�A ∼= Com(2)� (Com(1)� Com(2))� (A�A�A)

A�A�A ∼= Com(2)� (Com(2)� Com(1))� (A�A�A)

both maps induce the same map A � A � A → A. Likewise, the unit condition
follows from the fact that

Γ2
0,1 : Com(2)� (Com(0)� Com(1)) −→ Com(1)

Γ2
1,0 : Com(2)� (Com(1)� Com(0)) −→ Com(1)

are both unit maps. The multiplication is commutative because the action of the
symmetry map on 1 = Com(2) is trivial. Conversely, we can convert a commuta-
tive �-monoid to a Com-algebra by taking ξ0 to be the unit η, ξ1 to be the unit
isomorphism for �, ξ2 to be induced by the unit isomorphism for � and the mul-
tiplication, and all higher ξm’s induced by the unit isomorphism for � and (any)
iterated multiplication. This defines a bijective correspondence between the set of
commutative �-monoid structures and the set of Com-algebra structures on a fixed
object and an isomorphism between the category of commutative �-monoids and
the category of Com-algebras.



18 MICHAEL A. MANDELL

For a non-symmetric operad, defining an algebra in terms of the associated
operad or in terms of the analogue of Definition 4.1 without the equivariance re-
quirement produce the same structure.

Example 4.4. The constructions of Example 4.3 applied to the non-symmetric op-
erad Ass give a bijective correspondence between the set of �-monoid structures
and the set of Ass-algebra structures on a fixed object and an isomorphism between
the category of �-monoids and the category of Ass-algebras.

The monoid and commutative monoid objects in the category of sets (with
the usual symmetric monoidal structure given by cartesian product) are just the
monoids and commutative monoids in the usual sense. Likewise, in spaces, they are
the topological monoids and topological commutative monoids. In the category of
abelian groups (with the usual symmetric monoidal structure given by the tensor
product), the monoid objects are the rings and the commutative monoid objects
are the commutative rings. In the category of chain complexes of R-modules for a
commutative ring R (with the usual symmetric monoidal structure given by tensor
product over R), the monoid objects are the differential graded R-algebras and the
commutative monoid objects are the commutative differential graded R-algebras.
In a modern category of spectra, the monoid objects are called S-algebras or some-
times strictly associative ring spectra. Some authors take the term “ring spectrum”
to be synonymous with S-algebra, but others take it to mean the weaker notion of
monoid object in the stable category (or even weaker notions). Work of Schwede-
Shipley [50, 3.12.(3)] shows that the homotopy category of monoid objects in any
modern category of spectra is equivalent to an appropriate full subcategory of the
(mutually equivalent) homotopy category of monoid objects in EKMM S-modules,
symmetric spectra, or orthogonal spectra (at least when “modern category of spec-
tra” is used as a technical term to mean a model category with a preferred equiv-
alence class of symmetric monoidal Quillen equivalence to the currently known
modern categories of spectra); cf. Example Theorem 9.6 below. The analogous
result does not hold for commutative monoid objects; see [27]. The term “commu-
tative S-algebra” is typically reserved for examples where the homotopy category
of commutative monoid objects is equivalent to an appropriate full subcategory of
the (mutually equivalent) homotopy category of commutative monoid objects in
EKMM S-modules, symmetric spectra, or orthogonal spectra.

Returning to the discussion of operadic algebras, in the case when M is a closed
symmetric monoidal category, adjoint to the action map

ξm : O(m)�A(m) −→ A

is a map

φm : O(m) −→ F (A(m), A) = EndA(m).

Equivariance for ξm is equivalent to equivariance for φm. Similarly, conditions (i)
and (ii) in the definition of O-algebra (Definition 4.1) are adjoint to the diagrams
in the definition of map of operads (Definition 2.2). This proves the following
proposition, which gives an alternative definition of O-algebra.

Proposition 4.5. Let M be a closed symmetric monoidal category, let O be an
operad in M , and let X be an object in M . The adjunction rule ξm ↔ φm above
defines a bijection between the set of O-algebra structures on X and the set of maps
of operads O → EndX .
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In the case when M is (countably) cocomplete (has (countable) colimits) and
� preserves (countable) colimits in each variable (which includes the case when
it is closed), algebras can also be defined in terms of a monad. The idea for the
underlying functor is to gather the domains of all the action maps into a coproduct;
since the action maps are equivariant with target having the trivial action, they
factor through the coinvariants (quotient by the symmetric group action), and this
goes into the definition.

Notation 4.6. Let M be a symmetric monoidal category with countable colimits,
and let O be an operad in M . Define the endofunctor O of M (i.e., functor
O : M →M ) by

OX =
∞∐
m=0
O(m)�Σm X(m)

(where O(m)�Σm X(m) := (O(m)�X(m))/Σm).

(When we use other letters for operads, we typically use the corresponding letters
for the associated monad; for example, we write A for the monad associated to an
operad A, B for the monad associated to an operad B, etc.)

The action maps for an O-algebra A then specify a map ξ : OA → A; the con-
ditions for defining an O-structure also admit a formulation in terms of this map.
The basic observation is that we have a canonical isomorphism

(OX)(m) ∼=
∞∐
j1=0

· · ·
∞∐

jm=0

(O(j1)�Σj1
X(j1))� · · ·� (O(jm)�Σj1

X(jm))

∼=
∞∐
j=0

∐
j1,...,jm∑

ji=j

(O(j1)� · · · O(jm))�Σj1×···×Σjm
X(j)

using the symmetry isomorphism to shuffle like factors without permuting them.
We can use this isomorphism to give OX the canonical structure of an O-algebra,
defining the action map

µm : O(m)� (OX)(m) −→ OX
by commuting the coproduct past �, using the operad composition law, and passing
to the quotient by the full permutation group

O(m)� (OX)(m) ∼=
∞∐
j=0

∐
j1,...,jm∑

ji=j

O(m)� (O(j1)� · · · O(jm))�Σj1×···×Σjm
X(j)

∐∐
Γmj1,...,jm

�id
(j)
X−−−−−−−−−−−−−−→

∞∐
j=0

O(j)�Σj1×···×Σjm
X(j) −→

∞∐
j=0

O(j)�Σj X
(j) = OX.

The pictured map is well-defined because of the (Σj1 × · · · × Σjm)-equivariance of
Γmj1,...,jm (2.1.(iii)). The other permutation rule (2.1.(iv)) implies that µm is Σm-
equivariant. The remaining two parts of the definition of operad show that the µm
define an O-algebra structure map: 2.1.(i)–(ii) imply 4.1.(i)–(ii), respectively. This
O-algebra structure then defines a map

µ : OOX −→ OX
as above, which is natural in X. The map 1� idX also induces a natural transfor-
mation

η : X −→ OX.
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These two maps together give O the structure of a monad.

Proposition 4.7. Let M be a symmetric monoidal category with countable colimits
and assume that � commutes with countable colimits in each variable. For an
operad O, the functor O and natural transformations µ, η form a monad: the
diagrams

OOOX
µ
//

Oµ
��

OOX

µ

��

OOX
µ

// OX

OX
η
// OOX

µ

��

OX

commute (where the top map in the lefthand diagram is the map µ for the object
OX).

The proof is applying 4.1.(i)–(ii) for OX.

Example 4.8. Under the hypotheses of the previous proposition, the monad associ-
ated to the identity operad I is canonically isomorphic (via the unit isomorphism)
to the identity monad Id. The monad associated to the operad Com is canonically
isomorphic to the free commutative monoid monad

PX =
∞∐
j=0

X(j)/Σj .

The monad associated to the algebra Ass is canonically isomorphic to the free
monoid monad

TX =
∞∐
j=0

X(j).

An algebra over the monad O consists of an object A and a map ξ : OA → A
such that the diagrams

OOA
µ
//

Oξ
��

OA

ξ

��

OA
ξ
// A

A
η
// OA

ξ

��

A

commute. Given an O-algebra (A, {ξm}), the map ξ : OA → A constructed as the
coproduct of the induced maps on coinvariants then is an O-algebra action map.
Conversely, given an O-algebra (A, ξ), defining ξm to be the composite

O(m)�A(m) −→ OA ξ−→ A,

the maps ξm make A an O-algebra. This gives a second alternative definition of
O-algebra.

Proposition 4.9. Under the hypotheses of Proposition 4.7, for X an object of M ,
the correspondence {ξm} ↔ ξ above defines a bijection between the set of O-algebra
structures on X and the set of O-algebra structures on X and an isomorphism
between the category of O-algebras and the category of O-algebras.
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5. Modules over Operadic Algebras

Just as an operad defines a category of algebras, an algebra defines a category of
modules. Because this chapter concentrates on the theory of operadic algebras, we
will only touch on the theory of modules. A complete discussion could fill a book
and many of the aspects of the theory of operads we omit in this chapter (including
Koszul duality, Quillen (co)homology, Deligne and Kontsevich conjectures) corre-
spond to statements about categories of modules; even an overview could form
its own chapter. We restrict to giving a brief review of the definitions and the
homotopy theory.

The original definition of modules over an operadic algebra seems to be due to
Ginzburg and Kapranov [22, §1.6].

Definition 5.1. For an operad O and an O-algebra A, an (O, A)-module (or just
A-module when O is understood) consists of an object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M) −→M

for m ≥ 0 such that the associativity, symmetry, and unit diagrams in Figure 4
commute. A map of A-modules is a map of the underlying objects of M that
commutes with the structure maps.

Although the definition appears to favor A on the left, we obtain analogous
righthand structure maps

O(m+ 1)� (M �A(m)) −→M

satisfying the analogous righthand version of the diagrams in Figure 4 by applying
an appropriate permutation. Thus, an A-module structure can equally be regarded
as either a left or right module structure. The following example illustrates this
point.

Example 5.2. When O = Ass, the (symmetric) operad for associative algebras and
A is an O-algebra (i.e., �-monoid), an (O, A)-module in the sense of the previous
definition is precisely an A-bimodule in the usual sense: it has structure maps

λ : A�M −→M and ρ : M �A −→M

satisfying the following associativity, unity, and interchange diagrams

A�A�M
µ�id

//

id�λ
��

A�M

λ

��

M �A�A
id�µ

//

ρ�id

��

M �A

ρ

��

A�M
λ

// M M �A
ρ

// M

A�M

λ
((

1�M ∼= M � 1

��

η�id
oo

id�η
// M �A

ρ
vv

M

A�M �A λ�id //

id�ρ

��

M �A

ρ

��

A�M
λ

// M

where µ denotes the multiplication and η the unit for A and the unlabeled arrow
is the unit isomorphism for �.

Obtaining a theory of modules closer to the idea of a left module (or right
module) over an associative algebra requires working with non-symmetric operads.



22 MICHAEL A. MANDELL

O(j + 1)� (A(j) �M)

ζj

��

O(m+ 1)� (O(j1)� · · ·�O(jm)� 1)� (A(j) �M)

(Γm+1
j1,...,jm,1

◦(id�···�id�1))�id
//

c

��

M

O(m+ 1)�

(
(O(j1)�A(j1))� · · ·
· · ·� (O(jm)�A(jm))�M

)

id�(ξj1�···�ξjm�id)
// O(m+ 1)� (A(m) �M)

ζm

OO

O(m+ 1)�A(m) �M

aσ−1�cσ�id

��

ζm

**

1�M

∼=

""

1�id // O(1)�M

ζ0

��

M

O(m+ 1)�A(m) �M
ζm

44

M

Figure 4. The diagrams for Definition 5.1

In the first diagram, j = j1 + · · · + jm and c is the �-permutation that
shuffles the O(ji)’s past the M and A’s as displayed composed with the unit
isomorphism for �; ξi denote the O-algebra structure maps for A. In the
second diagram, σ is a permutation of {1, . . . ,m}, permuting the factors of
A, viewed as an element of Σm+1 for permutation action on O(m+ 1). In
the third diagram, the diagonal isomorphism is the unit isomorphism for
�.

Definition 5.3. Let O be a non-symmetric operad and let A be an O-algebra.
A left (O, A)-module (or just left A-module when O is understood) consists of an
object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M) −→M

for m ≥ 0 such that the associativity and unit diagrams in Figure 4 commute (with
O in place of O). A map of left A-modules is a map of the underlying objects of
M that commutes with the structure maps.

We also have the evident notion of a right A-module defined in terms of structure
maps

ζm : O(m+ 1)� (M �A(m)) −→M

and the analogous righthand associativity and unit diagrams.
Unlike in the case of operadic algebras, where working with a non-symmetric

operad and its corresponding symmetric operad results in the same theory, in the
case of modules, the results are very different.
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Example 5.4. When O = Ass, the non-symmetric operad for associative algebras
and A is an O-algebra (i.e., a �-monoid), a left (Ass, A)-module in the sense of
the previous definition is precisely a left A-module in the usual sense defined in
terms of an associative and unital left action map A�M → M . Likewise, a right
(Ass, A)-module is precisely a right A-module in the usual sense.

Under mild hypotheses, the category of (O, A)-modules is a category of modules
for a �-monoid called the enveloping algebra of A.

Construction 5.5 (The enveloping algebra). Assume that M admits countable
colimits and � preserves countable colimits in each variable. For an operad O
and an O-algebra A, let UOA (or UA when O is understood) be the following
coequalizer

∞∐
m=0
O(m+ 1)�Σm (OA)(m) //

//

∞∐
m=0
O(m+ 1)�Σm A(m) // UOA

where we regard Σm as the usual subgroup of Σm+1 of permutations that fix m+1.
Here one map is induced by the action map OA → A and the other is induced by
the operadic multiplication

O(m+1)� (OA)(m) ∼=
∐

j1,...,jm

O(m+1)� (O(j1)�A(j1))� · · ·� (O(jm)�A(jm))

∼=
∐

j1,...,jm

(
O(m+ 1)� (O(j1)� · · ·�O(jm)� 1)

)
�A(j)

∐
Γm+1
j1,...,jm,1

�id
−−−−−−−−−−−→ O(j + 1)�A(j)

(where we have omitted writing 1: 1→ O(1) and as always j = j1 + · · ·+ jm). Let
η : 1 → UA be the map induced by 1: 1 → O(1) and the inclusion of the m = 0
summand and let µ : UA� UA→ UA be the map induced from the maps

(O(m+ 1)�A(m))� (O(n+ 1)�A(n)) −→ O(m+ n+ 1)�A(m+n)

obtained from the map ◦m+1 : O(m+ 1)�O(n+ 1)→ O(m+n+ 1) defined as the
composite

O(m+1)�O(n+1) ∼= O(m+1)� (1� · · ·�1�O(n+1))
Γm+1

1,...,1,n+1−−−−−−−→ O(m+n+1)

(where again we have omitted writing 1: 1 → O(1)). Associativity of the operad
multiplication implies that η and µ give UA the structure of an associative monoid
for � and the resulting object is called the enveloping algebra of A over O.

An easy argument from the definitions and universal property of the coequalizer
proves the following proposition.

Proposition 5.6. Assume M admits countable coproducts and � preserves them
in each variable. Let O be an operad and let A be an O-algebra. For an object X of
M , (O, A)-module structures on X are in bijective correspondence with left UOA-
module structures. In particular, the category of (O, A)-modules is isomorphic to
the category of left UOA-modules.

Similarly, in the case of non-symmetric operads, we can construct a left module

enveloping algebra UOA (denoted UA when O is understood) as the following
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coequalizer

(5.7)
∞∐
m=0
O(m+ 1)� (OA)(m) //

//

∞∐
m=0
O(m+ 1)�A(m) // UOA

with maps defined as in Construction 5.5. The analogous identification of module
categories holds.

Proposition 5.8. Assume M admits countable coproducts and � preserves them in
each variable. Let O be a non-symmetric operad and let A be an O-algebra. For an
object X of M , left (O, A)-module structures on X are in bijective correspondence

with left UA-module structures. In particular, the category of left (O, A)-modules

is isomorphic to the category of left UA-modules.

We develop some tools to study enveloping algebras in the next section. In the
meantime, we can identify the enveloping algebra in some specific examples.

Example 5.9. For O = Ass and A an Ass-algebra (a �-monoid), UAssA is A�Aop,

the usual enveloping algebra for a �-monoid. Viewing A as an Ass-algebra, UAssA
is the �-monoid A. If A is a Com-algebra (a commutative �-monoid), then UComA
makes sense and is also the �-monoid A.

Example 5.10. Let L denote the Boardman-Vogt linear isometries operad of Exam-
ple 3.4. For an L-algebra, the underlying space of ULA is the pushout

L(2)×L(1) L(0)

◦1
��

id×ξ0 // L(2)×L(1) A

��

L(1) // ULA

where ◦1 is the map induced by 1: ∗ → L(1) and Γ2
0,1 (as in Construction 5.5) and

the right action on L(2) of L(1) ∼= L(1) × ∗ is via Γ2
1,1 ◦ (id×1). The inclusions

of the m = 0 and m = 1 summands induce the map from the pushout above to
the coequalizer defining ULA; the inverse isomorphism uses the “Hopkins’ Lemma”
[19, I.5.4] isomorphism

(HL) L(2)×L(1)×L(1) (L(i)× L(j)) ∼= L(i+ j)

for i, j ≥ 1. The pushout explicitly admits maps in from the m = 0 and m = 1
summands of the coequalizer and for m > 1, we have the following map.

L(m+ 1)×Σm A(m) ∼= L(m+ 1)×Σm×L(1) (A(m) × L(1))

∼=
(HL)
L(2)×L(1)×L(1) ((L(m)×Σm A(m))× L(1))

id×(ξm×id)−−−−−−−−→ L(2)×L(1)×L(1) (A× L(1)) ∼= L(2)×L(1) A

The previous display also indicates how the multiplication of ULA works in the
pushout description: it is induced by the map

(L(2)×L(1) A)× (L(2)×L(1) A) ∼= (L(2)× L(2))×A(2)

◦2×id−−−−→ L(3)×A(2) −→ L(3)×Σ2
A(2) −→ L(2)×L(1) A
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where the last map is the m = 2 case of the map above. It turns out that the map
ULA → A induced by the operadic algebra action maps is always a weak equiv-
alence. (The proof is not obvious but uses the ideas from EKMM, especially [19,
I.8.5,XI.3.1] in the context of the theory of L(1)-spaces as in for example [1, §6],
[4, §4.6], or [5, §4.3].) If we forget the symmetries in L to create a non-symmetric

operad L6Σ, then UL6ΣA ∼= ULA. Even when A is just an L6Σ-algebra, UL6ΣA can
still be identified as the same pushout construction pictured above using the anal-
ogous comparison isomorphisms with the coequalizer definition (5.7). Analogous
formulations also hold in the context of orthogonal spectra, symmetric spectra, and
EKMM S-modules using the operad Σ∞+ L (in the respective categories). In the con-
text of Lewis-May spectra, these observations are closely related to the foundations
of EKMM S-modules and the properties of the smash product (∧L, ∧, and ∧A);
this is the start of a much longer story on monoidal products and balanced products
for A∞ module categories (see, for example, [37] and [6, §17-18]).

Although in both of the previous two examples, we had an isomorphism of en-
veloping algebras for symmetric and non-symmetric constructions, this is not a

general phenomenon, as can be seen, for example, by comparing UAss and UAss6Σ

where Ass 6Σ is the non-symmetric operad formed from Ass by forgetting the sym-

metry. (In this style of notation, Ass = Com 6Σ.)
The left module enveloping algebra construction for the non-symmetric little 1-

cubes operad, UC1(−), also admits a concrete description [37, §2], which we review
in Section 10. It shares the feature with the previous two examples that for any

C1-algebra A, UC1A is weakly equivalent to A (see [ibid.,1.1] or Proposition 10.3).
Given Propositions 5.6 and 5.8, the homotopy theory of modules over operadic

algebras reduces to (1) the homotopy theory of modules over �-monoids and (2)

the homotopy theory of UOA (or UOA) as a functor of O (or O) and A. The latter
first requires a study of the homotopy theory of operadic algebras that we review (in
part) in the next few sections before returning to this question in Corollary 9.8. On
the other hand the homotopy theory of modules over �-monoids is very straight-
forward, and we give a short review of the main results in the remainder of this
section. We discuss this in terms of closed model categories. (For an overview
of closed model categories as a setting for homotopy theory, we refer the reader
to [18].) The following theorem gives a comprehensive result in some categories of
primary interest.

Theorem 5.11. Let (M ,�,1) be the category of simplicial sets, spaces, symmet-
ric spectra, orthogonal spectra, EKMM S-modules, simplicial abelian groups, chain
complexes, or any category of modules over a commutative monoid object in one
of these categories, with the usual monoidal product and one of the standard cofi-
brantly generated model structures. Let A be a monoid object in M . The category of
A-modules is a closed model category with weak equivalences and fibrations created
in M .

The proof in all cases is much like the argument in [19, VII§4] or [51, 2.3].
Heuristically, whenever the small object argument applies and � behaves well with
respect to weak equivalences, pushouts, and sequential or filtered colimits, a version
of the previous theorem should hold. For an example of a more general statement,
see [51, 4.1].
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A map of monoid objects A→ B induces an obvious restriction of scalars functor
from the category of B-modules to the category of A-modules. When M admits
coequalizers and � preserves coequalizers in each variable (as is the case in the
examples in the previous theorem), the restriction of scalars functor admits a left
adjoint extension of scalars functor B �A (−) which on the underlying objects is
constructed as the coequalizer

B �A�M //
// B �M // B �AM,

where one map is induced by the A-action on M and the other by the A action
on B (induced by the map of monoid objects). In the case when the categories
of modules have closed model structures with weak equivalences and fibrations
created in the underlying category M , this adjunction is automatically a Quillen
adjunction, which implies a derived adjunction on homotopy categories. When the
map A → B is a weak equivalence, we can often expect the Quillen adjunction to
be a Quillen equivalence and induce an equivalence of homotopy categories; this is
in particular the case in the setting of the previous theorem.

Theorem 5.12. Let M be one of the symmetric monoidal model categories of
Theorem 5.11. A weak equivalence of monoid objects induces a Quillen equivalence
on categories of modules.

Again, significantly more general results hold; see, for example, [28], especially
Theorem 8.3 and the subsection of Section 1 entitled “Extension of scalars”.

6. Limits and Colimits in Categories of Operadic Algebras

Before going on to the homotopy theory of categories of operadic algebras, we
say a few words about certain constructions, limits and colimits in this section,
and geometric realization in the next section. While limits of operadic algebras are
pretty straightforward (as explained below), colimits tend to be more complicated
and we take some space to describe in detail what certain colimits look like.

We start with limits. Let D : D → M [O] be a diagram, i.e., a functor from a
small category D , where M is a symmetric monoidal category and O is an operad in
M . By neglect of structure, we can regard D as a diagram in M , and suppose the
limit L exists in M . Then for each d ∈ D , we have the canonical map L → D(d),
and using the O-algebra structure map for D(d), we get a map

O(m)� L(m) −→ O(m)�D(d)(m) −→ D(d).

These maps satisfy the required compatibility to define a map

O(m)� L(m) −→ L,

which together are easily verified to provide structure maps for an O-algebra struc-
ture on L. This O-algebra structure has the universal property for the limit of D
in M [O].

Proposition 6.1. For any symmetric monoidal category M , any operad O in M ,
and any diagram of O-algebras, if the limit exists in M , then it has a canonical
O-algebra structure that gives the limit in M [O].

We cannot expect general colimits of operadic algebras to be formed in the
underlying category, as can be seen from the examples of coproducts of �-monoids
(Ass-algebras) or of commutative �-monoids (Com-algebras). The discussion of
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colimits simplifies if we assume that M has countable colimits and that � preserves
countable colimits in each variable, so that Proposition 4.9 holds and the category
of O-algebras is the category of algebras over the monad O. The main technical
tool in this case is the following proposition; because we have assumed in particular
that � preserves coequalizers in each variable, it follows that the mth �-power
functor preserves reflexive coequalizers (see [19, II.7.2] for a proof) and the filtered
colimits that exist (by an easy cofinality argument).

Proposition 6.2. If M satisfies the hypotheses of Proposition 4.7, then for any op-
erad O, the monad O preserves reflexive coequalizers in M and the filtered colimits
that exist in M .

Recall that a reflexive coequalizer is a coequalizer

X
a //

b
// Y

c // C

where there exists a map r : Y → X such that a ◦ r = idY and b ◦ r = idY ; r is
called a reflexion. The proposition says that if the above coequalizer exists in M
and is reflexive then the diagram obtained by applying O

OX
Oa
//

Ob
// OY Oc

// OC

is also a (reflexive) coequalizer diagram in M . Now suppose that a and b are maps
of O-algebras. Then the diagrams

OX Oa
//

��

OY
��

OX Ob
//

��

OY
��

X
a
// Y X

b
// Y

commute (where the vertical maps are the O-algebra structure maps) and we get
an induced map

OC −→ C.

Repeating this for OX //
// OY and the two maps OOX //

// OOY to OX //
// OY ,

we see that the map OC → C constructed above is an O-algebra structure map and
an easy check of universal properties shows that C with this O-algebra structure
is the coequalizer in M [O]. This shows that if a pair of parallel arrows in M [O]
has a reflexion in M , then the coequalizer in M has the canonical structure of an
O-algebra and is the coequalizer in M [O].

We can turn the observation in the previous paragraph into a construction of
colimits of arbitrary shapes in M [O]. Given a diagram D : D → M [O], assume

that the colimit of the underlying functor to M exists, and denote it by colimM D.
If colimM OD also exits, then we get a pair of parallel arrows

(6.3) O(colimM OD) //
// O(colimM D)

where one arrow is induced by the O-algebra structure maps OD(d) → D(d) and
the other is the composite

O(colimM OD)
Oi−−→ OO(colimM D)

µ−→ O(colimM D)

where µ is the monadic multiplication OO→ O and

i : colimM OD −→ O(colimM D)
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is the map assembled from the maps OD(d)→ O(colimM D) induced by applying

O to the canonical maps D(d)→ colimM D. We also have a reflexion

O(colimM D) −→ O(colimM OD)

induced by the unit map D(d)→ OD(d). Thus, the coequalizer of (6.3) in M has
the canonical structure of an O-algebra which provides the coequalizer in M [O];
a check of universal properties shows that the coequalizer is the colimit in M [O]
of D.

Proposition 6.4. Assume M satisfies the hypotheses of Proposition 4.7. For any
operad O and any diagram D : D → M [O], if the colimit of D and the colimit of
OD exist in M , then the colimit of D exists in M [O] and is given by the coequalizer
of the reflexive pair displayed in (6.3).

For example, the coproduct A qM [O] B in M [O] can be constructed as the
coequalizer

O(OAqOB) //
// O(AqB) // AqM [O] B.

In the case when B = OX for some X in M , we can say more by recognizing that
the category of O-algebras under A is itself the category of algebras over an operad.

Construction 6.5 (The enveloping operad). For m ≥ 0, define UOA (m) by the
coequalizer diagram

∞∐
`=0

O(`+m)�Σ` (OA)(`) //
//

∞∐
`=0

O(`+m)�Σ` A
(`) // UOA (m)

where one arrow is induced by the operadic multiplication

Γ`+mj1,...,j`,1,...,1
: O(`+m)�O(j1)� · · ·�O(j`)� 1� · · ·� 1 −→ O(j +m)

and the other by the O-algebra action map OA → A. We think of the ` factors
of A (or OA) as being associated with the first ` inputs of O(` + m), leaving the
last m inputs open. We then have a Σm-action induced from the Σm-action on
O(`+m) on the open inputs, unit map 1: 1→ UOA (1) induced by the unit map of
O (on the summand ` = 0), and operadic composition Γ induced by applying the
operadic multiplication of O using the open inputs.

This operad is called the enveloping operad of A and generalizes the enveloping
algebra UOA of Construction 5.5: for m = 1, UOA (1) is precisely the coequalizer
defining UOA and the operad unit and multiplication Γ1

1 coincide with the �-
monoid unit and multiplication.

To return to the discussion of the category of O-algebras under A, we note that
for m = 0, the coequalizer in Construction 6.5 is

OOA //
// OA // UOA (0),

giving a canonical isomorphism A → UOA (0), and so a UOA -algebra T comes with a
structure map A→ T . Looking at the summands with ` = 0 above, we get a map
of operads O → UOA , giving T an O-algebra structure; the map A → T is a map
of O-algebras. On the other hand, given an O-algebra B and a map of O-algebras
A→ B, we have maps

O(`+m)�A(`) �B(m) −→ O(`+m)�B(`) �B(m) −→ B
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which together induce maps UOA (m)�B(m) → B that are easily checked to provide
UOA -algebra structure maps. This gives a bijection between the structure of an
O-algebra under A and the structure of a UOA -algebra.

Proposition 6.6. When M satisfies the hypotheses of Proposition 4.7, then for an
object X of M , the set of UOA -algebra structures on X is in bijective correspondence
with the set of ordered pairs consisting of an O-algebra structure on X and a map
of O-algebras A→ X for that structure.

As a consequence we have the following description of the coproduct of O-
algebras AqM [O]OX, since AqM [O]O(−) is the left adjoint of the forgetful functor
from O-algebras under A to M .

Proposition 6.7. When M satisfies the hypotheses of Proposition 4.7,

AqM [O] OX ∼= UOAX =
∞∐
m=0
UOA (m)�Σm X(m)

(where the coproduct symbol undecorated by a category denotes coproduct in M ).

The decomposition above can be useful even without further information on UOA ,
but in fact we can be more concrete about what UOA looks like in the case when A
is built up iteratively from pushouts of free objects in M [O]. As a base case, an
easy calculation gives

UOOX(m) =
∞∐
`=0

O(`+m)�Σ` X
(`).

Now suppose A′ = AqM [O]
OX OY for some maps X → A and X → Y in M ; we can

then describe UOA′ in terms of UOA and pushouts in M [O] as follows. (In particular,
the calculation of UOA′(0) describes A′ in these terms and the calculation of UOA′(1)
describes UA′ in these terms.) First, using the observations on colimits above, a
little work shows that the coequalizer defining UOA′ simplifies in this case to

∞∐
`=0

UOA (`+m)�Σ` (X q Y )(`) //
//

∞∐
`=0

UOA (`+m)�Σ` Y
(`) // UOA′(m)

where one map is induced by the map X → A (= UOA (0)) and the other is induced by
the map X → Y . We then have a filtration on UOA′(m) by powers of Y ; specifically,
define F kUOA′(m) by the coequalizer

k∐
`=0

UOA (`+m)�Σ` (X q Y )(`) //
//

k∐
`=0

UOA (`+m)�Σ` Y
(`) // F kUOA′(m)

Then colimk F
kUOA′(m) = UOA′(m). Comparing the universal properties for F k−1UOA′(m)

and F kUOA′(m), we see that the following diagram is a pushout (in M ).

UOA (k +m)�Σk−1
(X � Y (k−1)) //

��

UOA (k +m)�Σk Y
(k)

��

F k−1UOA′(m) // F kUOA′(m)

This describes UOA′ in terms of iterated pushouts in M , but we can do somewhat
better, as can be seen in the example where M is the category of spaces and X → Y
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is a closed inclusion. In the pushout above, the top horizontal map comes from the
map

Σk ×Σk−1
(X × Y k−1) −→ Y k

which fails to be an inclusion for k > 1 except in trivial cases; however, the image
of this map can be described as an iterated pushout, starting with Xk and gluing
in higher powers of Y . This works as well in the general case (which we now return
to).

Let Qk0(X → Y ) = X(k), an object of M with a Σk-action and a Σk-equivariant
map to Y (k). Inductively, for i > 0, define Qki (X → Y ) as the pushout

(6.8)

Σk ×Σk−i×Σi (X(k−i) �Qii−1(X → Y )) //

��

Σk ×Σk−i×Σi (X(k−i) � Y (i))

��

Qki−1(X → Y ) // Qki (X → Y )

with the evident Σk-action and Σk-equivariant map

Qki (X → Y ) −→ Y (k).

Then for all j > 0, we have a (Σj × Σk)-equivariant map

X(j) �Qki (X → Y ) −→ Qj+ki (X → Y )

induced by the map

X(j) �X(k−i) � Y (i) ∼= X(j+k−i) � Y (i) −→ Qj+ki (X → Y )

and the compatible (inductively defined) map

X(j) �Qki−1(X → Y ) −→ Qj+ki−1 (X → Y ) −→ Qj+ki (X → Y ),

which allows us to continue the induction. In the case when M is the category of
topological spaces and X → Y is a closed inclusion, the maps

Qk0(X → Y ) −→ · · · −→ Qkk−1(X → Y ) −→ Y (k)

are closed inclusions with Qki (X → Y ) the subspace of Y k where at most i coor-
dinates are in Y \ X. In the general case, an inductive argument shows that the
map

Σk ×Σk−i×Σi (X(k−i) � Y (i)) −→ Qki (X → Y )

is a categorical epimorphism and that the map

UOA (k +m)�Σk−1
(X � Y (k−1)) −→ UOA (k +m)�Σk Q

k
k−1(X → Y )

is a categorical epimorphism. Since this factors the map

UOA (k +m)�Σk−1
(X � Y (k−1)) −→ UOA (k +m)�Σk Y

(k),

we get the following more sophisticated identification of F kUOA′(m) as a pushout.

(6.9)

UOA (k +m)�Σk Q
k
k−1(X → Y ) //

��

UOA (k +m)�Σk Y
(k)

��

F k−1UOA′(m) // F kUOA′(m)

In practice, the map Qkk−1(X → Y )→ Y (k) is some kind of cofibration when X →
Y is nice enough; the above formulation is then useful for deducing homotopical
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information in the presence of cofibrantly generated model category structures, as
discussed in Section 8.

7. Enrichment and Geometric Realization

Categories of operadic algebras in spaces or spectra come with a canonical enrich-
ment in spaces, i.e., they have mapping spaces and an intrinsic notion of homotopy.
While more abstract notions of homotopy, for example, in terms of model struc-
tures, now play a more significant role in homotopy theory, the topological enrich-
ment provides some powerful tools, including and especially geometric realization
of simplicial objects.

We begin with a general discussion of enrichment of operadic algebra categories.
When M satisfies the hypotheses of Proposition 4.7, Proposition 4.9 describes the
maps in the category of O-algebras as an equalizer:

M [O](A,B) //M (A,B) //
//M (OA,B)

where one arrow M (A,B)→M (OA,B) is induced by the action map OA→ A and
the other arrow is induced by applying the functor O : M (A,B) → M (OA,OB)
and then using the action map OB → B. When M is enriched over a com-
plete symmetric monoidal category (for example, when the mapping sets of M are
topologized or simplicial), then M [O] becomes enriched exactly when O has the
structure of an enriched functor, defining the enrichment of M [O] by the equalizer
above. Clearly it is not always possible for O to be enriched: in the case when M
is the category of abelian groups and O = Ass or Com, then O is not an additive
functor so cannot be enriched over abelian groups; this corresponds to the fact that
the category of rings and the category of commutative rings are not enriched over
abelian groups. On the other hand, enrichments over spaces and simplicial sets are
usually inherited by algebra categories; the reason, as we now explain, derives from
the fact that spaces and simplicial sets are cartesian.

For convenience, consider the case when M is a closed symmetric monoidal
category, let E ,×, ∗ be a symmetric monoidal category (which we will eventually
assume to be cartesian), and let L : E → M be a strong symmetric monoidal
functor that is a left adjoint; let R denote its right adjoint. For formal reasons R
is then lax symmetric monoidal and in particular RF provides an E -enrichment of
M (where, as always, F denotes the mapping object in M ). These hypotheses are
not all necessary but avoid some review of enriched category theory and concisely
state a lot coherence data that more minimal hypotheses would force us to spell
out. The iterated symmetric monoidal product in M then gives a multivariable
enriched functor

RF (A1, B1)× · · · ×RF (Am, Bm) −→ RF (A1 � · · ·�Am, B1 � · · ·�Bm).

Now assume that × is a cartesian monoidal product, meaning that it is the categor-
ical product, the unit is the final object, and the symmetry and unit isomorphisms
are the universal ones. With this assumption, we have a natural diagonal map
E → E × E, which we can apply in particular to the object RF (A,B) to get a
natural map

(7.1) RF (A,B) −→ RF (A,B)× · · · ×RF (A,B) −→ RF (A(m), B(m)).



32 MICHAEL A. MANDELL

This makes the mth �-power into an E -enriched functor for m > 0. In the case
m = 0, we have the final map

RF (A,B) −→ ∗ −→ R1
∼=−→ RF (A(0), B(0)).

From here the rest is easy: the �, F adjunction gives a natural (and E -natural)
map

RF (A(m), B(m)) −→ RF (O(m)�A(m),O(m)�B(m))

and the composite to RF (O(m) � A(m),O(m) �Σm B(m)) admits a canonical fac-
torization

RF (A,B) −→ RF (O(m)�Σm A(m),O(m)�Σm B(m))

since the target is a limit (in E ) that exists by right adjoint considerations when
the quotient O(m)�Σm B

(m) = (O(m)�B(m))/Σm in M exists. When we assume
that M has countable coproducts, composing further into

RF (O(m)�Σm A(m),OB),

the countable categorical product over m exists, giving an E -natural map

RF (A,B) −→ RF (OA,OB)

which provides the E -enrichment of O. We state this as the following theorem.

Theorem 7.2. Let M be a closed symmetric monoidal category with countable
colimits, and let O be an operad in M . Let E be a cartesian monoidal category and
let E →M be a strong symmetric monoidal functor with a right adjoint. Regarding
M as E -enriched over the right adjoint, the category M [O] of O-algebras has a
canonical E -enrichment for which the forgetful functor M [O]→M is E -enriched.

We apply this now in the discussion of geometric realizations of (co)simplicial
objects. Let S denote either the category of spaces or of simplicial sets, and write
C(−,−) for the internal mapping objects in S . To avoid awkward circumlocutions,
we will refer to objects of S as spaces in either case for the rest of the section. We
now assume that M is closed symmetric monoidal and has countable coproducts
and that we have a left adjoint symmetric monoidal functor L from S to M , as
above, so that Theorem 7.2 applies. We write R for the right adjoint to L as
above, so that RF (−,−) provides mapping spaces for M . The category M then
has tensors X ⊗ T and cotensors T t Y , defined by the natural isomorphisms

RF (X ⊗ T,−) ∼= C(T,RF (X,−)) (tensor)

RF (−, T t Y )) ∼= C(T,RF (−, Y )) (cotensor)

for spaces T and objects X and Y of M , constructed as follows.

Proposition 7.3. In the context of Theorem 7.2, tensors and cotensors with spaces
exist and are given by X ⊗ T = X �LT and T t Y = F (LT, Y ) for a space T and
objects X,Y in M .

The proposition is an easy consequence of the formal isomorphism

(7.4) RF (LT,X) ∼= C(T,RX),

natural in spaces T and objects X of M ; the isomorphism in the forward direction
is adjoint to the map

RF (LT,X)× T −→ RF (LT,X)×RLT −→ R(F (LT,X)� LT ) −→ RX



OPERADS AND OPERADIC ALGEBRAS IN HOMOTOPY THEORY 33

and the isomorphism in the backwards direction is adjoint to the map LC(T,RX)→
F (LT,X) adjoint to the map

LC(T,RX)� LT ∼= L(C(T,RX)× T ) −→ LRX −→ X.

Let RFM [O](−,−) denote the mapping spaces constructed above for the cate-
gory of O-algebras; despite the suggestion of the notation, this is not typically a
composite functor. For an O-algebra A, F (−, A) does not typically carry a canon-
ical O-algebra structure, but for a space T , F (LT,A) = T t A does: the structure
map

O(n)� (T t A)(n) −→ T t A

is adjoint to the map

O(n)� (T t A)(n) � LT = O(n)� (F (LT,A))(n) � LT −→ A

constructed as the composite

O(n)� (F (LT,A))(n) � LT −→ O(n)� (F (LT,A))(n) � (LT )(n)

−→ O(n)�A(n) −→ A

using the diagonal map on the space T and the structure map on A. A check of uni-
versal properties then shows that T t A is the cotensor of A with T in the category
of O-algebras. Tensors in M [O] can be constructed as reflexive coequalizers

O(OA⊗ T ) //
// O(A⊗ T ) // A⊗M [O] T.

Writing ∆[n] for the standard n-simplex, we then have the standard definition of
geometric realization of simplicial objects in M and M [O] (without additional
assumptions) and geometric realization (often called “Tot”) of cosimplicial objects
in M and M [O] when certain limits exist. Given a simplicial object X• or a
cosimplicial object Y •, the degeneracy subobject sXn of Xn is defined as the colimit
of the denegeracy maps and the degeneracy quotient object sY n of Y n is defined as
the limit (if it exists) of the degeneracy maps. (In some literature, sXn is called the
“latching object” and sY n the “matching object”; see [24, §15.2].) The geometric
realization of X• in M or M [O] is then the sequential colimit of |X•|n, where
|X•|0 = X0 and |X•|n is defined inductively as the pushout

(sXn ⊗∆[n]) ∪(sXn⊗∂∆[n]) (Xn ⊗ ∂∆[n]) //

��

Xn ⊗∆[n]

��

|X•|n−1
// |X•|n

with both the tensor and the pushouts performed in M to define the geometric
realization in M or performed in M [O] to define the geometric realization in M [O].
The analogous, opposite construction defines the geometric realization of Y • when
all the limits exist. Because cotensors and limits (when they exist) coincide in
M and M [O], geometric realization of cosimplicial objects (when it exists) also
coincides in M and M [O]. Because pushouts generally look very different in M
than in M [O], one might expect that geometric realization of simplicial objects in
M and in M [O] would also look very different; this turns out not to be the case.

Theorem 7.5. Assume M satisfies the hypotheses of Theorem 7.2 for E either the
category of spaces or the category of simplicial sets.
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(i) Let A• be a cosimplicial object in M [O]. If the limits defining the geometric
realization (“Tot”) exist in M , then that geometric realization has the
canonical structure of an O-algebra and is isomorphic to the geometric
realization (“Tot”) in M [O].

(ii) Let A• be a simplicial object in M [O]. Then the geometric realization of
A• in M has the canonical structure of an O-algebra and is isomorphic to
the geometric realization of A• in M .

As discussed above, only (ii) requires additional argument. For clarity in the
argument for the theorem, we will write |·| for geometric realization in M and
|·|M [O] for geometric realization in M [O]. The key fact is the following lemma.

Lemma 7.6. For M as in the previous theorem, geometric realization in M is
strong symmetric monoidal.

Proof. Although we wrote a more constructive definition of geometric realization
above, it can also be described as a coend

|X•| =
∫ ∆op

X• ⊗∆[•],

where ∆ denotes the category of simplexes (the category with objects [n] = {0, . . . , n}
for n = 0, 1, 2, . . . , and maps the non-decreasing functions) and ∆[n] denotes the
standard n-simplex in spaces or simplicial sets. Because the symmetric monoidal
product � for M is assumed to commute with colimits in each variable, we can
identify the product of geometric realizations also as a coend

|X•|� |Y•| ∼=
∫ ∆op×∆op

(X• � Y•)⊗ (∆[•]×∆[•]).

On the other hand,

|X• � Y•| =
∫ ∆op

diag(X• � Y•)⊗∆[•].

Next, we need a purely formal observation, which is an adjoint form of the Yoneda
lemma: if coproducts of appropriate cardinality exist in C , then given a functor
F : C → D , functoriality of F induces a natural isomorphism∫ c∈C

F (c)× C (c,−)
∼=−→ F (−)

(where × denotes coproduct over the given set; the coend exists and the identifica-
tion holds with no further hypotheses on C or D). Applying this to

F ((•, •)) = X• � Y• : ∆op ×∆op −→M

and pre-composing with diag, we get an isomorphism

Xp � Yp ∼=
∫ (m,n)∈∆op×∆op

(Xm � Yn)× (∆op(m, p)×∆(n, p))

of functors p ∈∆op →M . Commuting coends, we can reorganize the double coend

|X•�Y•| ∼=
∫ p∈∆op(∫ (m,n)∈∆op×∆op

(Xm�Yn)× (∆op(m, p)×∆op(n, p))

)
⊗∆[p]
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as ∫ (m,n)∈∆op×∆op

(Xm � Yn)⊗
(∫ p∈∆op

(∆op(m, p)×∆op(n, p))×∆[p]

)
.

In the latter formula, the expression in parentheses is the coend formula for the
geometric realization (in spaces) of the product of standard simplices (in simplicial
sets) ∆[m]• × ∆[n]•, which is ∆[m] × ∆[n] by the “classic” version of the lemma
for geometric realization in spaces. This then constructs the natural isomorphism
|X•| � |Y•| ∼= |X• � Y•|, and a little more fiddling with coends shows that this
natural transformation is symmetric monoidal. �

As a consequence of the previous lemma, we have a natural isomorphism O|X•| ∼=
|OX•|, making the appropriate diagrams commute so that the geometric realization
(in M ) of a simplicial object A• in M [O] obtains the natural structure of an O-
algebra. Moreover, the canonical maps An⊗∆[n]→ |A•| induce maps of O-algebras
An ⊗M [O] ∆[n]→ |A•| that assemble into a natural map of O-algebras

|A•|M [O] −→ |A•|.
In the case when A• = OX•, under the identification of colimits |OX•|M [O] =
O|X•|, this map is the isomorphism O|X•| → |OX•| above. To see that it is an
isomorphism for arbitrary A•, write A• as a (reflexive) coequalizer

OOA• //
// OA• // A•,

apply the functors, and compare diagrams.

8. Model Structures for Operadic Algebras

The purpose of this section is to review the construction of model structures on
some of the categories of operadic algebras that are of interest in homotopy theory;
we use these in the next section in comparison theorems giving Quillen equivalences
between some of these categories. Constructing model structures for algebras over
operads is a special case of constructing model structures for algebras over monads;
chapter VII of EKMM [19] seems to be an early reference for this kind of result, but
it concentrates on the category of LMS-spectra and related categories. Schwede-
Shipley [51] studies the general case of monads in cofibrantly generated monoidal
model categories, which Spitzweck [54] specializes to the case of operads. Because
less sharp results hold in the general case than in the special cases of interest, we
state the results on model structures as a list of examples. This is an “example
theorem” both in the sense that it gives a list of examples, but also in the sense
that it fits into the general rubric of the kind of theorem that should hold very
generally under appropriate technical hypotheses with essentially the same proof
outline. Some terminology and notation is explained after the statement.

Example Theorem 8.1. Let M be a symmetric monoidal category with a cofi-
brantly generated model structure and let O be an operad in M from one of the
examples listed below. Then the category of O-algebras in M is a closed model
category with:

(i) Weak equivalences the underlying weak equivalences in M
(ii) Fibrations the underlying fibrations in M
(iii) Cofibrations the retracts of regular OI-cofibrations

This theorem holds in particular in the examples:
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(a) M is the category of symmetric spectra (of spaces or simplicial sets) with
its positive stable model structure or orthogonal spectra with its positive
stable model structure or the category of EKMM S-modules with its stan-
dard model structure (with � the smash product, 1 the sphere spectrum)
and O is any operad in M . [13, 8.1]

(b) M is the category of spaces or simplicial sets (with � = ×, 1 = ∗), or
simplicial R-modules for some simplicial commutative ring R (with � =
⊗R, 1 = R) and O is any operad.

(c) M is the category of (unbounded) chain complexes in R-modules for a
commutative ring R (with � = ⊗R, 1 = R) and either R ⊃ Q or O
admits a map of operads O → O ⊗ E which is a section for the map
O⊗ E → O⊗ Com ∼= O, where E is any E∞ operad that naturally acts on
the normalized cohains of simplicial sets. [3, 3.1.3]

(d) M is a monoidal model category in the sense of [51, 3.1] that satisfies the
Monoid Axiom of [51, 3.3] and O is a cofibrant operad in the sense of [54,
§3]. [54, §4, Theorem 4]

The category of EKMM L-spectra [19, I§4] also fits into example (a) if we allow
M to be a “weak” symmetric monoidal category in the sense of [19, II.7.1]; the
theorem then covers categories of operadic algebras in LMS spectra for operads
over the linear isometries operad that have the form O × L → L; see [13, 3.5].

In part (c), we note that for an operad that satisfies the section condition (or
when R ⊃ Q), the functor O(n) ×R[Σn] (−) preserves preserve exactness of (ho-
mologically) bounded-below exact sequences of R-free R[Σn]-modules (for all n).
For operads that satisfy this more general condition but not necessarily the section
condition, the algebra category still has a theory of cofibrant objects and a good
homotopy theory for those objects; see, for example, [33, §2].

It is beyond the scope of the present chapter to do a full review of closed model
category theory terminology, but we recall that a “cofibrantly generated model
category” has a set I of “generating cofibrations” and a set J of “generating acyclic
cofibrations” for which the Quillen small object argument can be done (perhaps
transfinitely, but in the examples of (a), (b), and (c), sequences suffice). Then

OI = {Of | f ∈ I}

is the set of maps of O-algebras obtained by applying O to each of the maps in
I. The point of OI is that a map of O-algebras has the left lifting property with
respect to OI in O-algebras exactly when the underlying map in M has the left
lifting property with respect to I. The same definition and observations apply
replacing I with J . The strategy for proving the previous theorem is to define the
fibrations and weak equivalences of O-algebras as in (i),(ii), and define cofibrations
in terms of the left lifting property (obtaining the characterization in (iii) as a
theorem). The advantage of this approach is that fibrations and acyclic fibrations
are also characterized by lifting properties: a map of O-algebras is a fibration if and
only if it has the right lifting property with respect to OJ and a map of O-algebras
is an acyclic fibration if and only if it has the right lifting property with respect to
OI. For these lifting properties, we can attempt the small object argument. We
now outline the remaining steps in this approach.

Recall that a regular OI-cofibration is a map formed as a (transfinite) composite
of pushouts along coproducts of maps in OI. This is the generalization of the
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notion of a relative OI-cell complex which is the colimit of a sequence of pushouts of
coproducts of maps in OI; in the case of examples (a), (b), and (c), in a regular OI-
cofibration the transfinite composite can always be replaced simply by a sequential
composite and so a regular OI-cofibration is a relative OI-cell complex. The small
object argument for I and J in M implies the small object argument for OI and OJ ,
which gives factorization in O-algebras of a map as either a regular OI-cofibration
followed by an acyclic fibration or a regular OJ-cofibration followed by a fibration.
(A small wrinkle comes up in going from the small object argument in M to the
small object argument in M [O] in the topological examples of (a) and (b): we need
to check that a regular OI-cofibrations are nice maps, for example, closed inclusions
on the constituent spaces; see the “Cofibration Hypothesis” of [19, VII§4] or [32,
5.3].)

This gets us most of the way to a model structure. Having defined a cofibration
of O-algebras as a map that has the left lifting property with respect to the acyclic
fibrations, the free-forgetful adjunction shows that regular OI-cofibrations are cofi-
brations; moreover, it follows formally that any cofibration is the retract of a regular
OI-cofibration: given a cofibration f : A → B, factor it as p ◦ i for i : A → B′ a
regular OI-cofibration and p : B′ → B an acyclic fibration, then solving the lifting
problem

A
i //

f
��

B′

p
��

B
g

>>

id
// B

to produce a map g : B → B′ exhibits f as a retract of i.

A
id //

f
��

A
id //

i ��

A
f
��

B
g
// B′

p
// B

We can try the same thing with regular OJ-cofibrations; they have the left lift-
ing property with respect to all fibrations so are in particular cofibrations, but are
they weak equivalences? This is the big question and what keeps us from having a
fully general result for Theorem 8.1 (especially in (c)). If regular OJ-cofibrations
are weak equivalences, then the trick in the previous argument shows that every
acyclic cofibration is a retract of a regular OJ-cofibration, and the lifting prop-
erty for acyclic cofibrations follows as does the other factorization, proving the
model structure. (Conversely, if the model structure exists, because regular OJ-
cofibrations have the left lifting property for all fibrations, it follows that they are
weak equivalences.)

In many examples, including examples (a) and (b) in the theorem above, the
homogeneous filtration on the pushout that we studied in Section 6 can be used to
prove that regular OJ-cofibrations are weak equivalences. Specifically, for X → Y

a map in J , taking A′ = A qM [O]
OX OY , the case m = 0 of the filtration on the

enveloping operad for A gives a filtration on A′ by objects of M starting from A.
Now from the inductive definition of Qkk−1(X → Y ) in (6.8), it can be checked

in examples (a) and (b) that the map Qkk−1(X → Y ) → Y (k) is an equivariant
Hurewicz cofibration of the underlying spaces or a monomorphism of the underlying
simplicial sets as well as being a weak equivalence. The pushout (6.9) then identifies
the maps in the filtration of A′ as weak equivalences as well. (This approach can
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also be used to prove versions of the “Cofibration Hypothesis” of [19, VII§4] or [32,
5.3] that regular OI-cofibrations are closed inclusions on the constituent spaces.)

Example (d) is similar, except that it uses a filtration argument on the construc-
tion of a cofibrant operad; see [54, §4].

Example (c) fits into the case of the general theorem of Schwede-Shipley [51, 2.3],
where every object is fibrant and has a path object. To complete the argument here,
we need to show that every map f : A→ B factors as a weak equivalence followed
by a fibration:

A
' // A′ // // B.

We then get the factorization of an acyclic cofibration followed by a fibration by
using the factorization already established:

A //
' // A′′

' // // A′ // // B.

In the case of (c) where we hypothesize a map of operads O → O⊗E , this map gives
a natural O-algebra structure on B ⊗ C∗(−); the hypothesis that the composite
map on O is the identity implies that the canonical isomorphism

B ∼= B ⊗ C∗(∆[0])

is an O-algebra map. Looking at the maps between ∆[0] and ∆[1], we get maps of
O-algebras

B −→ B ⊗ C∗(∆[1]) −→ B ×B
and the usual mapping path object construction

A
' // A×B (B ⊗ C∗(∆[1])) // // B

consists of maps of O-algebras and gives the factorization. In the case when R ⊃
Q, the polynomial de Rham functor A∗ reviewed in Section 12 is a functor from
simplicial sets to commutative differential graded Q-algebras, which can be used in
the same way to construct a factorization

A
' // A×B (B ⊗Q A

∗(∆[1])) // // B.

In the case of operadic algebras in spaces in example (b) and EKMM S-modules
in example (a), we have another argument taking advantage of the topological en-
richment. In these examples, the maps in J are deformation retractions, and so
the maps in OJ are deformation retractions in the category of O-algebras. It fol-
lows that regular OJ-cofibrations are also deformation retractions and in particular
homotopy equivalences. Since homotopy equivalences are weak equivalences, regu-
lar OJ-cofibrations are weak equivalences in examples where this argument can be
made. The specific examples again also fit into the case of [51, 2.3] where every
object is fibrant and has a path object.

9. Comparison and Rectification Theorems for Operadic Algebras

This section discusses Quillen equivalences and Quillen adjunctions between the
model categories in Example Theorem 8.1. In particular, when we change from
simplicial sets to spaces or when we change the underlying symmetric monoidal cat-
egory between the Quillen equivalent modern categories of spectra, we get Quillen
equivalences of categories of operadic algebras under only mild technical hypotheses
on the operad; this gives several comparison theorems. We also consider Quillen
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adjunctions and Quillen equivalences obtained by change of operads. In wide gen-
erality, the augmentation map A → Ass for an A∞ operad induces a Quillen equiv-
alence between categories of algebras. Likewise, in the case of modern categories
of spectra, the augmentation map E → Com for an E∞ operad induces a Quillen
equivalence between categories of algebras. These comparison theorems are recti-
fication theorems in that they show that a homotopical algebraic structure can be
replaced up to weak equivalence with a strict algebraic structure.

We begin by reviewing the change of operad adjunction. Let f : A → B be a
map of operads in a symmetric monoidal category M . Such a map certainly gives
a restriction functor Uf from B-algebras to A-algebras, and under mild hypothesis,
this functor has a left adjoint. As in the discussion of colimits in Section 6, if
we assume that M satisfies the hypotheses of Proposition 4.7 then we can define
Pf : M [A]→M [B] by the reflexive coequalizer

B(AA) //
// BA→ Pf (A)

where A and B denote the monads associated to A and B, one arrow is induced by
the A-algebra structure on A, and the other arrow is the composite BA→ BB→ B
induced by the map of operads f and the monadic product on B. As a side remark,
not related to the rest of this section, we note that in this situation the category
B-algebras can be identified as the category of algebras for the monad UfPf in
M [A] (for a general formal proof, see [19, II.6.6.1]).

Now suppose that M has a closed model structure and M [A] and M [B] are
closed model categories with fibrations and weak equivalences created in M . For
a map of operads f : A → B, we then get a Quillen adjunction

Pf : M [A] //
oo M [B] :Uf .

When can we expect it to be a Quillen equivalence? It is tempting to define an
equivalence of operads in M to be a map f such that derived adjunction induces
an equivalence of homotopy categories; then we have a tautological result that an
equivalence of operads induces a Quillen equivalence of model structures. Instead
we propose the following definition, which leads to a theorem with some substance
(Example Theorem 9.5). It is the condition used in practice in proving comparison
and rectification theorems.

Definition 9.1. Let M be a closed model category with countable coproducts
and with a symmetric monoidal product that preserves countable colimits in each
variable. We say that a map f : A → B of operads in M is a derived monad
equivalence if the induced map AZ → BZ is a weak equivalence for every cofibrant
object Z in M .

Though we have not put enough hypotheses on M to ensure it, in practice
countable coproducts of reasonable objects in M will preserve and reflect weak
equivalences and then f will be a derived monad equivalence if and only if each of
the maps

A(m)�Σm Z(m) −→ B(m)�Σm Z(m)

is a weak equivalence. In our examples of main interest, we have more intrinsic
sufficient conditions for a map of operads to be a derived monad equivalence.

Example 9.2. In the category of spaces (or more generally, any topological or sim-
plicial model category), a map of operads f : A → B that induces an equivariant
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homotopy equivalence A(m) → B(m) for all m is a derived monad equivalence.
Indeed, the map AZ → BZ is a homotopy equivalence for all Z (and a homotopy
equivalence in a topological or simplicial model category is a weak equivalence). As
a special case, when A is a non-symmetric operad with A(m) contractible for all
m, the map of operads A → Ass is a derived monad equivalence.

Example 9.3. In the category of symmetric spectra (of spaces or simplicial sets)
with its positive stable model structure or the category of orthogonal spectra with
its positive model structure, a map of operads f : A → B that induces a (non-
equivariant) weak equivalence A(n) → B(n) is a derived monad equivalence. This
can be proved by generalizing the argument of [32, 15.5] (see [13, 8.3.(i)] for slightly
more details). In the case of EKMM S-modules, if f : A → B is a map of operads
of spaces that is a (non-equivariant) homotopy equivalence A(n) → B(n) for all
n, then Σ∞+ f is a derived monad equivalence. This can be proved by generalizing
the argument of [19, III.5.1]. (See [13, 8.3.(ii)] for a more general statement.) In
particular, in these categories, the augmentation map E → Com for an E∞ operad
(assumed to come from spaces in the EKMM S-module case) is a derived monad
equivalence.

Example 9.4. In the context of chain complexes of R-modules, a map of operads
A → B that is an R[Σn]-module chain homotopy equivalence A(n) → B(n) for all
n is a derived monad equivalence. If the functors A(n)⊗R[Σn] (−) and B(n)⊗R[Σn]

(−) preserve exactness of (homologically) bounded-below exact sequences of R-free
R[Σn]-modules (for all n), then a weak equivalence A → B is a derived monad
equivalence. This occurs in particular for part (c) of Example Theorem 8.1 when
A and B both satisfy the stated operad hypotheses.

To go with these examples, we have the following example theorem.

Example Theorem 9.5. Let M be a symmetric monoidal category and f : A → B
a map of operads in M , where M , A, and B fall into one of the examples of
Example Theorem 8.1.(a)-(c). If f is a derived monad equivalence then the Quillen
adjunction Pf : M [A] //

oo M [B] :Uf is a Quillen equivalence.

Again, as in the previous section, this is an “example theorem” in that it gives
an example of the kind of theorem that holds much more generally with a proof
that can also be adapted to work much more generally. We outline the proof after
the change of categories theorem below, as the arguments for both are quite similar.

In terms of change of categories, one should expect comparison theorems of the
following form to hold quite generally:

Let
L : M //

oo M ′ :R

be a Quillen equivalence between monoidal model categories with
L strong symmetric monoidal, and let O be an operad in M . With
some technical hypotheses, the adjunction

L : M [O] //
oo M ′[LO] :R

on operadic algebra categories is also a Quillen equivalence

A minimal technical hypothesis is that LO be “the right thing” and an easy way to
ensure this is to put some kind of cofibrancy condition on the objects O(n). In our
cases of interest, we could certainly state such a theorem, but it would not cover
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the example in modern categories of spectra when O is the suspension spectrum
functor applied to an operad of spaces; for such an operad, the spectra O(n) will
not be cofibrant. On the other hand, in these examples the right adjoint preserves
all weak equivalences and not just weak equivalences between fibrant objects; in
this setup it seems more convenient to consider an operad O′ in M ′ and a map of
operads O → RO′ (or equivalently, LO → O′) that induces a weak equivalence

OZ −→ R(O′LZ)

for all cofibrant objects Z of M . We state such a theorem for our examples of
interest.

Example Theorem 9.6. Let L : M //
oo M ′ :R be one of the Quillen adjunctions

of symmetric monoidal categories listed below. Let A be an operad in M , let B be
an operad in M ′, and let f : A → RB be a map of operads that induces a weak
equivalence

AZ −→ R(BLZ)

for all cofibrant objects Z of M . Then the induced Quillen adjunction

PL,f : M [A] //
oo M ′[B] :UR,f

is a Quillen equivalence. This theorem holds in particular in the examples:

(a) M is the category of simplicial sets (with the usual model structure) or
the category of symmetric spectra of simplicial sets, M ′ is the category of
spaces or the category of symmetric spectra in spaces (resp.), and L,R is
the geometric realization, singular simplicial set adjunction.

(b) M is the category of symmetric spectra, M ′ is the category of orthogonal
spectra and L,R is the prolongation, restriction adjunction of [32, p. 442].

(c) M is the category of symmetric spectra or orthogonal spectra, M ′ is the
category of EKMM S-modules, and L,R is the adjunction of [49] or [31,
I.1.1].

As indicated in the paragraph above the statement, the statement takes advan-
tage of the fact that in the examples being considered in this section, the right
adjoint preserves all weak equivalences; a general statement for other examples
should use a fibrant replacement for BLZ in place of BLZ. The proof sketch below
also takes advantage of this property of the right adjoint. In generalizing the argu-
ment to the case when fibrant replacement is required in the statement, the fibrant
replacement of the filtration can be performed in M ′.

The proof of the theorems above uses the homogeneous filtration on a pushout

of the form A′ = A qM [O]
OX OY studied in Section 6. This is the m = 0 case of

the filtration on the enveloping operad UOA′ , and we will need to use the filtration
on the whole operad for an inductive argument even though we are only interested
in the m = 0 case in the end. We will use uniform notation in the sketch proof
that follows, taking M ′ = M with adjoint functors L and R to be the identity in
the case of Example Theorem 9.5. We use the notation I for the preferred set of
generators for the cofibrations of M (as in Section 8).

Because fibrations and weak equivalences in the algebra categories are created
in the underlying symmetric monoidal categories, the adjunction PL,f ,UR,f is au-
tomatically a Quillen adjunction (as indicated already in the statements), and we
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just have to prove that the unit of the adjunction

(9.7) A −→ UR,f (PL,fA)

is a weak equivalence for any cofibrant A-algebra A. Every cofibrant A-algebra is
the retract of an AI-cell A-algebra, and so it suffices to consider the case when A
is an AI-cell A-algebra; then A = colimAn where A0 = A(0) and each An+1 is
formed from An by cell attachment (of possibly an infinite coproduct of cells). As
mentioned parenthetically in Section 8 and as we shall see below, the underlying
maps An → An+1 are nice enough that A is the homotopy colimit (in M or M [A])
of the system of the finite stages An (and likewise for PL,fA, which is a cell BLI-
algebra with stages PL,fAn). Thus, it will be enough to see that (9.7) is a weak
equivalence for each An. By the hypothesis of the theorem, we know that this holds
for A0 (which is the free A-algebra on the initial object of M ); moreover, as the
enveloping operad of A0 is A and the enveloping operad of PL,fA0 is B, we can
assume as an inductive hypothesis that

UAAnZ −→ UBPL,fAnLZ

is a weak equivalence for all cofibrant Z; in other words, we can assume by induction
that the hypothesis of the theorem holds for the map of enveloping operads UAAn →
R(UBPL,fAn). It then suffices to prove that the hypothesis of the theorem holds

for the map of enveloping operads UAAn+1
→ R(UBPL,fAn+1

); this is because in the

categories M and M ′ of the examples, countable coproducts preserve and reflect
weak equivalences and the unit map An+1 → UR,f (PL,fAn+1) is the restriction
of the map of monads to the homogeneous degree zero summand (at least in the
homotopy category of M ).

To prove this, let X → Y be the coproduct of maps in I such that An+1 =

An qM [A]
AX AY and consider the filtration on UAAn+1

(m) and UBPL,fAn+1
(m) studied

in Section 6. We note that the induction hypothesis on An also implies that the
map

UAAn(m)�Σm1×···×Σmi
(Z

(m1)
1 � · · ·� Z(mi)

i )

−→ R(UBPL,fAn(m)�Σm1
×···×Σmi

(LZ
(m1)
1 � · · ·� LZ(mi)

i ))

is a weak equivalence for all cofibrant objects Z1, . . . , Zi (where m = m1 + · · ·+mi)
as this is a summand of the map

UAAn(m)�Σm (Z1 q · · · q Zi)(m) −→ R(UBPL,fAn(m)�Σm L(Z1 q · · · q Zi)(m)).

Looking at the pushout square (6.8) that inductively defines Qki (X → Y ), a bit
of analysis shows that in our example categories the maps Qki−1 → Qki are Σk-
equivariant Hurewicz cofibrations (or in the simplicial categories, maps that geo-
metrically realize to such). It follows that for any cofibrant object Z, the maps

UAAn(k +m)�Σk×Σm (Qki−1(X → Y )� Z(m))

−→ UAAn(k +m)�Σk×Σm (Qki (X → Y )� Z(m))
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are (or geometrically realize to) Hurewicz cofibrations (likewise in M ′) and that
the maps

UAAn(k +m)�Σk×Σm (Qki (X → Y )� Z(m))

−→ R(UBPL,fAn(k +m)�Σk×Σm (Qki (LX → LY )� LZ(m)))

are weak equivalences. Now the pushout square (6.9) shows that for any cofibrant
object Z, at each filtration level k, the map

F k−1UAAn+1
(m)�Σm Z(m) −→ F kUAAn+1

(m)�Σm Z(m)

is (or geometrically realizes to) a Hurewicz cofibration (likewise in M ′) and that
the maps

F kUAAn+1
(m)�Σm Z(m) −→ R(F kUBPL,fAn+1

(m)�Σm LZ(m))

are weak equivalences. The colimit is then weakly equivalent to the homotopy
colimit and we get a weak equivalence

UAAn+1
(m)�Σm Z(m) −→ R(UBPL,fAn+1

(m)�Σm LZ(m)),

completing the induction and the sketch proof of Example Theorems 9.5 and 9.6.
The argument above proved the comparison theorems by proving equivalences of

enveloping operads. Since the unary part of the enveloping operad is the enveloping
algebra, we also get module category comparison results. We state this as the
following corollary, which says that as long as the algebras are cofibrant, changing
categories by Quillen equivalences and the algebras by derived monad equivalences
results in Quillen equivalent categories of modules.

Corollary 9.8. Let L : M //
oo M ′ :R be one of the Quillen adjunctions of sym-

metric monoidal categories in Example Theorem 9.6 or the identity functor adjunc-
tion on one of the categories in Example Theorem 9.5. Let f : A → RB be a map
of operads that induces a weak equivalence AZ → R(BLZ) for all cofibrant objects
Z, and let g : A → RB be a weak equivalence of A-algebras for an A-algebra A
and a B-algebra B. If A and B are cofibrant (in M [A] and M ′[B], respectively),
then f and g induce a Quillen equivalence of the category of (A, A)-modules and
the category of (B, B)-modules.

Sketch proof. The argument above shows that under the given hypotheses, the map
of �-monoids UAA → R(UBB) is a weak equivalence. The left and right adjoint

functors in the Quillen adjunction on module categories are given by UBB�L(UAA)

L(−) and R, respectively. These both preserve coproducts, homotopy cofiber se-
quences, and sequential homotopy colimits up to weak equivalence. It follows that

the unit of the adjunction X → R(UBB �L(UAA) LX) is a weak equivalence for

every cofibrant A-module X. �

The analogous result also holds for modules over algebras on non-symmetric op-
erads, proved by essentially the same filtration argument: we have a non-symmetric

version UOA(m) of Construction 6.5. In this case, the resulting objects do not assem-

ble into an operad; nevertheless, UOA(1) still has the structure of a �-monoid and

coincides with the (non-symmetric) enveloping algebra UOA. The non-symmetric
analogue of (6.9) holds, and the filtration argument (under the hypotheses of the

previous corollary) proves that the map UAA→ R(UBB) is a weak equivalence of
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�-monoids. We conclude that the unit map X → R(UBB �
LUAA

LX) is a weak

equivalence for every cofibrant A-module X.

10. Enveloping Algebras, Moore Algebras, and Rectification

In the special case of Example 9.2, Example Theorem 9.5 gives an equivalence of
the homotopy category of A∞ algebras (over a given A∞ operad) with the homotopy
category of associative algebras, in particular constructing an associative algebra
rectification of an A∞ algebra. We know another way to construct an associative
algebra from an A∞ algebra, namely the (non-symmetric) enveloping algebra. In
the case when the A∞ operad is the operad of little 1-cubes C1, there is also a
classical rectification called the Moore algebra. The purpose of this section is to
compare these constructions.

We first consider the rectification of Example Theorem 9.5 and the non-symmetric
enveloping algebra. Let O be a non-symmetric operad and ε : O → Ass a weak
equivalence. Under the hypotheses of Example Theorem 9.5, the rectification
(change of operads) functor Pε associated to ε gives a �-monoid PεA and a map of
O-algebras A→ PεA that is a weak equivalence when A is cofibrant. As part of the
proof of Example Theorem 9.5, we get a weak equivalence of enveloping operads

UOA −→ UAss
PεA.

As mentioned at the end of the previous section, the non-symmetric version of this
argument also works to give a weak equivalence of �-monoids

UOA −→ UAss(PεA).

Moreover, in the case of the associative algebra operad Ass, we have a natural iso-

morphism of �-monoids UAssM →M for any �-monoid M . Putting this together,
we get the following theorem.

Theorem 10.1. Let M be a symmetric monoidal category and O an A∞ operad
that fall into one of the examples of Theorem 8.1.(a)-(c). Write ε : O → Ass for
the weak equivalence identifying O as an A∞ operad. If A is a cofibrant O-algebra
then the natural maps

A −→ PεA ∼= UAssPεA←− UOA

are weak equivalences of O-algebras.

We now focus on A∞ algebras for the little 1-cubes operad C1, where we can
describe results both more concretely and in much greater generality. For the rest of
the section we work in the context of a symmetric monoidal category enriched over
topological spaces as in Section 7: let M be a closed symmetric monoidal category
with countable colimits, and let L : S → M be strong symmetric monoidal left
adjoint functor (whose right adjoint we denote as R). Then as per Theorem 7.2, M
becomes enriched over topological spaces and we have a notion of homotopies and
homotopy equivalences in M , defined in terms of mapping spaces or equivalently in
terms of tensor with the unit interval. We also have LC1 as a non-symmetric operad
in M ; for an LC1-algebra A, we give a concrete construction of the enveloping

algebra UA, mostly following [37, §2]. We first write the formulas and then explain
where they come from.
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Construction 10.2. [37, §2] Let D̄ be the space of subintervals of [0, 1] and let D
be the subspace of D̄ of those intervals that do not start at 0. We have a canonical
isomorphism D̄ ∼= C1(1) (sending a subinterval to the 1-tuple containing it) that
we elide notation for. Under this isomorphism, the composition law Γ1

1 defines a
pairing γ : D̄ × D̄ → D̄ that satisfies the formula

γ([x, y], [x′, y′]) = [x+ (y − x)x′, x+ (y − x)y′].

We note that γ restricts to a pairing D × D → D and for formal reasons γ is
associative

γ(γ([x, y], [x′, y′]), [x′′, y′′]) =

[x+ (y − x)x′ + (y − x)(y′ − x′)x′′, x+ (y − x)x′ + (y − x)(y′ − x′)y′′]
= γ([x, y], γ([x′, y′], [x′′, y′′]))

and unital

γ([0, 1], [x, y]) = [x, y] = γ([x, y], [0, 1]),

making D̄ a topological monoid and D a sub-semi-group. Define α : D×D → C1(2)
by

α([x, y], [x′, y′]) = ([0, x
x+(y−x)x′ ], [

x
x+(y−x)x′ , 1]).

Let DA be the object of M defined by the following pushout diagram

LD � 1

��

// LD �A

��

LD̄ � 1 // DA

where the top map is induced by the composite of the isomorphism 1 ∼= LC1(0)
(from the strong symmetric monoidal structure on L) and the LC1-action map
LC1(0)→ A. We use γ and α to define a multiplication on DA as follows. We use
the map

(LD �A)� (LD �A) −→ LD �A −→ DA

coming from the map

(LD �A)� (LD �A) ∼= L(D ×D)� (A�A) −→
L(D × C1(2))� (A�A) ∼= LD � (LC1(2)� (A�A)) −→ LD �A

induced by the map (γ, α) : D×D → D×C1(2) and the LC1-action map on A. We
note that both associations

(LD �A)� (LD �A)� (LD �A) −→ LD �A

coincide: both factor through the map

(LD�A)� (LD�A)� (LD�A) ∼= L(D×D×D)�A(3) −→ L(D×C1(3))�A(3)

induced by the map D×D×D → D×C1(3) given on the D factor as γ ◦ (γ× id) =
γ ◦ (1× γ) and on the C1(3) factor by the formula

[x, y], [x′, y′], [x′′, y′′] 7→ ([0, a], [a, b], [b, 1])

where

a =
x

x+ (y − x)(x′ + (y′ − x′)x′′)
, b =

x+ (y − x)x′

x+ (y − x)(x′ + (y′ − x′)x′′)
.
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When restricted to maps

(LD � 1)� (LD �A), (LD �A)� (LD � 1) −→ DA,

this map coincides with the map induced by just γ and the unit isomorphism of M
and so extends to compatible maps

(LD̄ � 1)� (LD̄ � 1) −→ DA

(LD̄ � 1)� (LD �A) −→ DA

(LD �A)� (LD̄ � 1) −→ DA

and defines an associative multiplication on DA. The map 1 → DA induced by
the inclusion of the element [0, 1] of D̄ is a unit for this multiplication.

To understand the construction, it is useful to think of D as a subspace of C1(2)
rather than a subspace of C1(1) via the embedding

[x, y] 7→ ([0, x], [x, y]).

Then we have a map DA → UA sending LD̄ � 1 and LD � A to the 0 and 1
summands

LD̄ � 1 ∼= LC1 �A
(0) and LD �A −→ LC1(2)�A

in the coequalizer (5.7) for UA. We also have a map back that sends the summand
LC1(n+1)�A(n) (for n ≥ 1) to LD�A by remembering just the last interval and us-
ing the rest to do the multiplication on A; specifically, for [x1, y1], . . . , [xn+1, yn+1],
we use the element of C1(n) corresponding to

[ x1

xn+1
, y1

xn+1
], . . . , [ xn

xn+1
, yn
xn+1

]

for the map A(n) → A. It is straightforward to check that these give inverse
isomorphisms of objects of M ; see [37, 2.5].

The isomorphism of the previous paragraph then forces the formula for the mul-
tiplication. Intuitively speaking, the first box in D (viewed as a subset of C1(2))
holds the algebra (from the tensor) and the second box is a placeholder to plug
in the module variable; the complement D̄ \D corresponds to the first box having
length zero and then only the unit of the algebra can go there. For the composition,
the right copy gets plugged into the second box of the left copy to give an element
of C1(3) (i.e., the operadic composition ` ◦2 r = Γ2

1,2(`; 1, r) where ` is the element
of the left copy of D and r is the element of the right copy of D); the first and
second boxes are on the one hand rescaled to an element of C1(2) that does the
multiplication on the copies of A and on the other hand joined to give with the
third box the new element of D (viewed as a subspace of C1(2)). The associativity
is straightforward to visualize in terms of plugging in boxes when written down on
paper. (See Section 2 of [37].) In the case when one of the elements comes from
D̄ \D, the corresponding copy of A is restricted to the unit 1 and the first box of
zero length also works like a unit.

Using the isomorphism of �-monoids UA ∼= DA, we now have the following

comparison theorem for the underlying objects of UA and A.

Proposition 10.3. [37, 1.1] The map of UA-modules UA ∼= 1�UA→ A induced
by the map 1 ∼= LC1(0)→ A is a homotopy equivalence of objects of M .
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Proof. In concrete terms, the map in the statement is induced by the map

LD �A −→ LC1(1)�A −→ A

for the map D → C1(1) that sends [x, y] to ([0, x]), which is compatible with the
map

LD̄ � 1 −→ 1 −→ A.

We can use any element of D to produce a map (in M ) from A to UA; a path to
the operad identity element 1 in C1(1) (which corresponds to [0, 1] ⊆ [0, 1]) then
induces a homotopy of the composite map A→ A to the identity map of A. We can

construct a homotopy from the composite to the identity on UA using a homotopy
of self-maps of C1(1) from the identity to the constant map on 1 (combined with
the C1(1) action map on A) and a homotopy of self-maps of the pair (D̄,D) from
the constant map (on the chosen element of D) to the identity map. For example,
if the chosen element of D corresponds to the subinterval [a, b] (with a 6= 0) then
the linear homotopy

[x, y], t 7→ [xt+ a(1− t), yt+ b(1− t)]
is such a homotopy of self-maps of the pair. �

In the context of spaces, J. C. Moore invented an associative version of the
based loop space by parametrizing loops with arbitrary length intervals. This idea
extends to the current context to give another even simpler construction of a �-
monoid equivalent (in M ) to an LC1-algebra A.

Construction 10.4. Define MA to be the object of M defined by the pushout
diagram

LR>0 � 1

��

// LR>0 �A

��

LR≥0 � 1 // MA

(where R>0 ⊂ R≥0 are the usual subspaces of positive and non-negative real num-
bers, respectively). We give this the structure of a �-monoid with the unit 1→MA
induced by the inclusion of 0 in R≥0 and multiplication MA�MA→MA induced
by the map

(LR>0 �A)� (LR>0 �A) ∼= L(R>0 × R>0)� (A�A)

−→ L(R>0 × C1(2))� (A�A) ∼= LR>0 � (LC1(2)� (A�A)) −→ LR>0 �A

induced by the C1-action on A and the map

c : (r, s) ∈ R>0 × R>0 7→ (r + s, ([0, r
r+s ], [ r

r+s , 1])) ∈ R>0 × C1(2).

The idea is that the element of R>0 specifies a length (with the zero length only
available for the unit) and the multiplication uses the proportionality of the two
lengths to choose an element of C1(2) for the multiplication on A; the two lengths
add to give the length in the result. In the case when M is the category of spaces
and A = ΩX is the based loop space of a space X, MA is the Moore loop space.
An element is specified by an element r of R≥0 together with an element of ΩX
(which must be the basepoint when r = 0) but can be visualized as a based loop
parametrized by [0, r] (or for r = 0 the constant length zero loop at the basepoint).
The multiplication concatenates loops by concatenating the parametrizations, an
operation that is strictly associative and unital.
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We can compare the �-monoids MA and UA through a third �-monoid NA
constructed as follows. Let N = R>0×R>0×R≥0, let N̄ = R≥0×R>0×R≥0, and
define NA by the pushout diagram

LN � 1

��

// LN �A

��

LN̄ � 1 // NA.

We have maps N̄ × N̄ → N̄ and N ×N → C1(2) defined by

((r, s, t), (r′, s′, t′)) ∈ N̄ × N̄ 7→ (r + sr′, ss′, st′ + t) ∈ N̄
((r, s, t), (r′, s′, t′)) ∈ N ×N 7→ c(t, st′) = ([0, r

r+sr′ ], [
r

r+sr′ , 1]) ∈ C1(2),

which we use to construct the multiplication on NA by the same scheme as above

(LN�A)�(LN�A) ∼= L(N×N)�(A�A) −→ L(N×C1(2))�(A�A) −→ LN�A.

The unit is the map 1→ NA induced by the inclusion of (0, 1, 0) in N̄ .
The parametrizing space N = {(r, s, t)} generalizes D by allowing [r, s] to be a

subinterval of [0, r+ s+ t] instead of [0, 1], or from another perspective, generalizes
lengths in the definition on the Moore algebra by incorporating a scaling factor s
and padding of length t. In other words, we have maps

[x, y] ∈ D̄ 7→ (x, y − x, 1− y) ∈ N̄
r ∈ R≥0 7→ (r, 1, 0) ∈ N̄ .

These maps induce maps of �-monoids UA ∼= DA→ NA and MA→ NA, respec-
tively, and the argument of Proposition 10.3 shows that these maps are homotopy
equivalences in M . We state this as the following theorem, repeating the conven-
tions of this part of the section for easy reference.

Theorem 10.5. Let M be a closed symmetric monoidal category admitting count-
able colimits and enriched over spaces via a strong symmetric monoidal left adjoint
functor L. Then for algebras over the little 1-cubes operad (LC1-algebras) the non-

symmetric enveloping algebra UA and the Moore algebra MA fit in a natural zigzag
of �-monoids

UA −→ NA←−MA

where the maps are homotopy equivalences in M . Moreover, the canonical maps

UA→ A and MA→ A are homotopy equivalences in M .

To compare MA and A as A∞ algebras, we use a new A∞ operad C` defined as
follows.

Construction 10.6. Let C`(0) = R≥0 and for m > 0, let C`(m) be the set of
ordered pairs (S, r) with r a positive real number and S a list of m almost non-
overlapping closed subintervals of [0, r] in their natural order, topologized anal-
ogously as in the definition of C1 (as a semilinear submanifold of R2m+1). The
operadic composition is defined by scaling and replacement of the subintervals: the
basic composition

Γ1
j ((([x, y]), r), (([x′1, y

′
1], . . . , [x′j , y

′
j ]), r

′)) =

(([x+ ax′1, x+ ay′1], . . . , [x+ ax′j , x+ ay′j ]), r + a(r′ − 1))
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(with a := y − x) scales the interval [0, r′] to length ar′ and inserts that in place
of [x, y] ⊂ [0, r]; the resulting final interval then has size r − a + ar′. The general
composition Γmj1,...,jm does this operation on each of the m subintervals:

Γmj1,...,jm : (([x0
1, y

0
1 ], . . . , [x0

m, y
0
m]), r1),

(([x1
1, y

1
1 ], . . . , [x1

j1 , y
1
j1 ]), r1), . . . , (([xm1 , y

m
1 ], . . . , [xmjm , y

m
jm ]), rm),

7→
(([x0

1 + a1x
1
1, x

0
1 + a1y

1
1 ], . . . , [sm−1 +x0

m + amx
m
jm , sm−1 +x0

m + amy
m
jm ]), r0 + sm)

where ai := y0
i −x0

i and si = a1(r1−1)+ · · ·+ai(ri−1). In the case when one of the
ji is zero, that ji contributes no subintervals but still scales the original subinterval
[x0
i , y

0
i ] to length airi (or removes it when ri = 0). The operad identity element is

the element (([0, 1]), 1) ∈ C`(1).

The maps C1(m)→ C`(m) that include C1(m) as the length 1 subspace assemble
to a map of operads i : C1 → C`. We also have a map of operads j : Ass → C`
induced by sending the unique element of Ass(m) to the element

(([0, 1], [1, 2], . . . , [m− 1,m]),m)

of C`(m). Using the map j, an LC`-algebra has the underlying structure of a
�-monoid. A straightforward check of universal properties proves the following
proposition.

Proposition 10.7. The functor that takes a C1-algebra A to its Moore algebra MA
is naturally isomorphic to the functor that takes A to the underlying �-monoid of
the pushforward PLiA for the map of operads Li : LC1 → LC`.

The C`-action map LC`(m)� (MA)(m) →MA is induced by the map

C`(m)× (R>0)n −→ C`(m)× C`(1)n
Γm1,...,1−−−−−→ C`(m) ∼= R>0 × C1(m)

that includes R>0 in C`(1) by r 7→ (([0, r]), r), where the isomorphism is the
map that takes an element (([x1, y1], . . . , [xm, ym]), r) of C`(m) to the element
(r, ([x1/r, y1/r], . . . , [xm/r, ym/r])) of R>0 × C1(m).

The map of C1-algebras that is the unit of the change of operads adjunction
A → PLiA is induced by the inclusion of 1 in R>0 and is a homotopy equivalence
by a (simpler) version of the homotopy argument of Proposition 10.3. We do not
see how to do a similar argument for the pushforward PLj from �-monoids to

C`-algebras, so we do not have a direct comparison of C1-algebras between A (or
PLiA) and MA with the C1-algebra structure inherited from its �-monoid structure
without some kind of rectification result (such as Example Theorem 9.5) comparing
the category of LC`-algebras with the category of Ass-algebras.

The argument in [37, 2.5] that identifies UC1A as DA generalizes to identify

UC
`

PLiA as NA; the maps in Theorem 10.5 can then be viewed as the natural
maps on enveloping algebras induced by maps of operads and maps of algebras.

11. En spaces and Iterated Loop Space Theory

The recognition principle for iterated loop spaces provided the first application
for operads. Although the summary here has been spiced up with model category
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notions and terminology (in the adjoint functor formulation of [40, §8]), the math-
ematics has not changed significantly from the original treatment by May in [38],
except for the improvements noted in the appendix to [15], which extend the results
from connected to grouplike En spaces. (En spaces = En algebras in spaces.)

The original idea for the little n-cubes operads Cn and the start of the relationship
between En spaces and n-fold loop spaces is the Boardman-Vogt observation that
every n-fold loop spaces comes with the natural structure of a Cn-algebra. The
action map

Cn(m)× ΩnX × · · · × ΩnX −→ ΩnX

is defined as follows. We view Sn as [0, 1]n/∂. Given an element c ∈ Cn(m), and
elements f1, . . . , fm : Sn → X of ΩnX, let fc;f1,...,fn : Sn → X be the function that
sends a point x in Sn to the base point if x is not in one of the embedded cubes;
the ith embedded cube gets sent to X using the inverse of the embedding and the
quotient map [0, 1]n → Sn followed by the map fi : S

n → X. This is a continuous
based map Sn → X since the boundary of each embedded cube gets sent to the
base point. Phrased another way, c defines a based map

Sn −→ Sn ∨ · · · ∨ Sn

with the ith embedded cube mapping to the ith wedge summand of Sn by collapsing
all points not in an open cube to the base point and rescaling; we then apply
fi : S

n → X to the ith summand to get a composite map Sn → X.
The construction of the previous paragraph factors Ωn as a functor from based

spaces to Cn-spaces (= Cn-algebras in spaces). It is clear that not every Cn-space
arises as ΩnX because π0ΩnX is a group (for its canonical multiplication), whereas
for the free Cn-space CnX, π0CnX is not a group unless X is the empty set; for
example, π0CnX ∼= N when X is path connected. We say that a Cn-space A is
grouplike when π0A is a group (for its canonical multiplication). The following is
the fundamental theorem of iterated loop space theory; it gives an equivalence of
homotopy theories between n-fold loop spaces and grouplike Cn-spaces.

Theorem 11.1 (May [38], Boardman-Vogt [8, §6]). The functor Ωn from based
spaces to Cn-spaces is a Quillen right adjoint. The unit of the derived adjunction

A −→ ΩnBnA

is an isomorphism in the homotopy category of Cn-spaces if (and only if) A is
grouplike. The counit of the derived adjunction

BnΩnX −→ X

is an isomorphism in the homotopy category of spaces if (and only if) X is (n−1)-
connected; in general it is an (n− 1)-connected cover.

We have written the derived functor of the left adjoint in Theorem 11.1 as Bn,
suggesting an iterated bar construction. Although neither the point-set adjoint
functor nor the model for its derived functor used in the argument of Theorem 11.1
is constructed iteratively, Dunn [17] shows that the derived functor is naturally
equivalent to an iterated bar construction.

As a consequence of the statement of the theorem, the unit of the derived ad-
junction A → ΩnBnA is the initial map in the homotopy category of Cn-spaces
from A to a grouplike Cn-space and so deserves to be called “group completion”.
Group completion has various characterizations and for the purposes of sketching
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the ideas behind the proof of the theorem, it works best to choose one of them
as the definition and state the property of the unit map as a theorem. One such
characterization uses the classifying space construction, which we understand as the
Eilenberg-Mac Lane bar construction (after converting the underlying C1-spaces to
topological monoids) or the Stasheff bar construction (choosing compatible maps
from the Stasheff associahedra into the spaces Cn(m)).

Definition 11.2. A map f : A → G of Cn-spaces is a group completion if G is
grouplike and f induces a weak equivalence of classifying spaces.

In the case n > 1 (and under some hypotheses if n = 1), Quillen [48] gives a
homological criterion for a map to be group completion: if G is grouplike, then a
map A→ G of Cn-spaces is group completion if and only if

H∗(A)[(π0A)−1] −→ H∗(G)

is an isomorphism. Counterexamples exist in the case n = 1 (indeed, McDuff [46]
gives a counterexample for every loop space homotopy type), but recent work of
Braun, Chuang, and Lazarev [11] give an analogous derived category criterion in
terms of derived localization at the multiplicative set π0A. Using Definition 11.2
or any equivalent independent characterization of group completion, we have the
following addendum to Theorem 11.1.

Addendum 11.3. The unit of the derived adjunction in Theorem 11.1 is group
completion.

The homotopical heart of the proof of Theorem 11.1 is the May-Cohen-Segal
Approximation (Theorem [38, §6–7], [14], [52]), which we now review. This theorem

studies a version of the free Cn-algebra functor C̃n whose domain is the category of
based spaces, where the base point becomes the identity element in the Cn-algebra
structure. This version of the free functor has the advantage that for a connected
space X, C̃X is also a connected space; May’s Approximation Theorem identifies
C̃X in this case as a model for ΩnΣnX. Cohen (following conjectures of May) and
Segal (working independently) then extended this to non-connected spaces: the

group completion of C̃X is a model for ΩnΣnX.
For a based space X, C̃nX is formed as a quotient of

CX =
∐
Cn(m)×Σm Xm

by the equivalence relation that identifies (c, (x1, . . . , xi, ∗, . . . , ∗)) ∈ Cn(m) × Xm

with (c′, (x1, . . . , xi)) ∈ Cn(i) × Xi for c′ = Γ(c; 1, . . . , 1, 0, . . . , 0) where 1 denotes
the identity element in Cn(1) and 0 denotes the unique element in Cn(0). This
is actually an instance of the operad pushforward construction: let Idbp be the
operad with Idbp(0) = Idbp(1) = ∗ and Idbp(m) = ∅ for m > 1. The functor
associated to Idbp is the functor (−)+ that adds a disjoint base point with the
monad structure ((−)+)+ → (−)+ that identifies the two disjoint base points; the
category of algebras for this monad is the category of based spaces. The functor
C̃n from based spaces to Cn-algebras is the pushforward Pf for f the unique map
of operads Idbp → Cn: formally Pf is the coequalizer described in Section 9, that
in this case takes the form

Cn(X+) //
// CnX // C̃nX.
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As mentioned in an aside in that section (or as can be seen concretely here using

the operad multiplication on Cn directly), the endofunctor C̃n on based spaces (i.e.,
UfPf ) has the structure of a monad, and we can identify the category of Cn-spaces

as the category of algebras over the monad C̃n.
The factorization of the functor Ωn through Cn-spaces has the formal consequence

of producing a map of monads (in based spaces)

C̃n −→ ΩnΣn.

Formally the map is induced by the composite

C̃nX
C̃nη−−−→ C̃nΩnΣnX

ξ−→ ΩnΣnX,

where η is the unit of the Σn,Ωn-adjunction and ξ is the Cn-action map. This map
has the following concrete description: an element (c, (x1, . . . , xm)) ∈ Cn(m)×Xm

maps to the element γ : Sn → ΣnX of ΩnΣnX given by the composite of the map

Sn −→ Sn ∨ · · · ∨ Sn

associated to c (as described above) and the map

Sn ∼= Σn{xi}+ ⊂ ΣnX

on the ith factor of Sn. Either using this concrete description, or following diagrams
in a formal categorical argument, it is straightforward to check that this defines a
map of monads. We can now state the May-Cohen-Segal Approximation Theorem.

Theorem 11.4 (May-Cohen-Segal Approximation Theorem [38, 6.1], [14, 3.3], [52,
Theorem 2]).

For any non-degenerately based space X, the map of Cn-spaces C̃nX → ΩnΣnX is
group completion.

(“Non-degenerately based” means that the inclusion of the base point is a cofi-

bration. Both C̃n and ΩnΣn preserve weak equivalences in non-degenerately based
spaces, but for other spaces, either or both may have the wrong weak homotopy
type.)

From here a sketch of the proof of Theorem 11.1 goes as follows. Since Ωn as a
functor from based spaces to based spaces has left adjoint Σn, a check of universal
properties shows that the functor from Cn-spaces to based spaces defined by the
coequalizer

ΣnC̃nA //
// ΣnA // Σn ⊗Cn A

is the left adjoint to Ωn viewed as a functor from based spaces to Cn-spaces. (In
the coequalizer, one map is induced by the Cn-action map on A and the other is
adjoint to the map of monads C̃ → ΩnΣn.) Because Ωn preserves fibrations and
weak equivalences, this is a Quillen adjunction.

The main tool to study the Σn⊗Cn (−),Ωn-adjunction is the two-sided monadic
bar construction, invented in [38, §9] for this purpose. Given a monad T and a
right action of T on a functor F (say, to based spaces), the two-sided monadic
bar construction is the functor on T-algebras B(F,T,−) defined as the geometric
realization of the simplicial object

Bm(F,T, A) = F T · · ·T︸ ︷︷ ︸
m

A



OPERADS AND OPERADIC ALGEBRAS IN HOMOTOPY THEORY 53

with face maps induced by the action map FT→ F , the multiplication map TT→ T
and the action map TA → A, and degeneracy maps induced by the unit map
Id → T. In the case when F = T, the simplicial object B•(T,T, A) has an extra
degeneracy and the map from B•(T,T, A) to the constant simplicial object on A
is a simplicial homotopy equivalence (in the underlying category for T, though not
generally in the category of T-algebras).

Because geometric realization commutes with colimits and finite cartesian prod-
ucts, we have a canonical isomorphism

C̃nB(C̃n, C̃n, A) −→ B(C̃nC̃n, C̃n, A)

and the multiplication map C̃nC̃n → C̃n then gives B(C̃n, C̃n, A) the natural struc-
ture of a Cn-algebra. (See Section 7 for a more general discussion.) For the same
reason, the canonical map

Σn ⊗Cn B(C̃n, C̃n, A) −→ B(Σn ⊗Cn C̃n, C̃n, A) = B(Σn, C̃n, A)

is an isomorphism. The latter functor clearly3 preserves weak equivalences of Cn-
spaces A whose underlying based spaces are non-degenerately based. (In addition to
being a hypothesis of May-Cohen-Segal Approximation Theorem, non-degenerately
based here also ensures that the inclusion of the degenerate subspace (or latching
object) is a cofibration.) As a consequence of Theorem 7.5 it follows that when
the underlying based space of A is cofibrant (which is the case in particular when

A is cofibrant as a Cn-space), then B(C̃n, C̃n, A) is a cofibrant Cn-space. Because
Σn⊗Cn (−) is a Quillen left adjoint, it preserves weak equivalences between cofibrant

objects, and looking at a cofibrant approximation A′
∼−→ A, we see from the weak

equivalences

B(Σn, C̃n, A)
∼←− B(Σn, C̃n, A′) ∼= Σn ⊗Cn B(C̃n, C̃n, A′)

∼−→ Σn ⊗Cn A
′

that B(Σn, C̃n, A) models the derived functor BnA of Σn ⊗Cn (−) whenever A is
non-degenerately based.

To complete the argument, we need the theorem of [38, §12] that Ωn commutes
up to weak equivalence with geometric realization of (proper) simplicial spaces that
are (n − 1)-connected in each level. Then for A non-degenerately based, we have
that the vertical maps are weak equivalences of Cn-spaces

B(C̃n, C̃n, A) //

��

B(ΩnΣn, C̃n, A)

��

A ΩnB(Σn, C̃n, A)

while by the May-Cohen-Segal Approximation Theorem, the horizontal map is
group completion. This proves that the unit of the derived adjunction is group
completion.

For the counit of the derived adjunction, we have from the model above that Bn

is always (n− 1)-connected and the unit

ΩnX −→ ΩnBnΩnX

3At the time when May wrote the argument, this was far from clear: some of the first observa-
tions about when geometric realization of simplicial spaces preserves levelwise weak equivalences

were developed in [38, §11] precisely for this argument.
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on ΩnX is a weak equivalence. Looking at Ωn of the counit,

ΩnBnΩnX −→ ΩnX,

the composite with the unit is the identity on ΩnX, and so it follows that Ωn of
the counit is a weak equivalence. Thus, the counit of the derived adjunction is an
(n− 1)-connected cover map.

12. E∞ Algebras in Rational and p-Adic Homotopy Theory

In the 1960’s and 1970’s, Quillen [47] and Sullivan [56, 57] showed that the
rational homotopy theory of simply connected spaces (or simplicial sets) has an
algebraic model in terms of rational differential graded commutative algebras or
coalgebras. In the 1990’s, the author proved a mostly analogous theorem relating
E∞ differential graded algebras and p-adic homotopy theory and a bit later some
results for using E∞ differential graded algebras or E∞ ring spectra to identify
integral homotopy types. In this section, we summarize this theory following mostly
the memoir of Bousfield-Gugenheim [10], and the papers [33]4 and [36]. In what
follows k denotes a commutative ring, which is often further restricted to be a field.

In both the rational commutative differential graded algebra case and the E∞ k-
algebra case, the theory simplifies by working with simplicial sets instead of spaces,
and the functor is some variant of the cochain complex. Sullivan’s approach to
rational homotopy theory uses a rational version of the de Rham complex, originally
due to Thom (unpublished), consisting of forms that are polynomial on simplices
and piecewise matched on faces:

Definition 12.1. The algebra ∇∗[n] of polynomial forms on the standard simplex
∆[n] is the rational commutative differential graded algebra free on generators
t0, . . . , tn (of degree zero), dt0, . . . , dtn (of degree one) subject to the relations t0 +
· · ·+ tn = 1 and dt0 + · · ·+ dtn = 0 (as well as the differential relation implicit in
the notation).

Viewing t0, . . . , tn as the barycentric coordinate functions on ∆[n] determines
their behavior under face and degeneracy maps, making ∇∗[•] a simplicial rational
commutative differential graded algebra.

Definition 12.2. For a simplicial set X, the rational de Rham complex A∗(X)
is the rational graded commutative algebra of maps of simplicial sets from X to
∇∗[•], or equivalently, the end over the simplex category

A∗(X) := ∆opSet(X,∇∗[•]) =

∫
∆op

Set(Xn,∇∗[n]) =

∫
∆op

∏
Xn

∇∗[n]

(the last formula indicating how to regard A∗(X) as a rational commutative differ-
ential graded algebra).

More concretely, A∗(X) is the rational commutative differential graded algebra
where an element of degree q consists of a choice of element of ∇q[n] for each
non-degenerate n-simplex of X (for all n) which agree under restriction by face
maps, with multiplication and differential done on each simplex. (When X is a

4In the published version, in addition to several other unauthorized changes, the copy editors

changed the typefaces with the result that the same symbols are used for multiple different objects
or concepts; the preprint version available at the author’s home page https://pages.iu.edu/

~mmandell/papers/einffinal.pdf does not have these changes and should be much more readable.

https://pages.iu.edu/~mmandell/papers/einffinal.pdf
https://pages.iu.edu/~mmandell/papers/einffinal.pdf
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finite simplicial complex A∗(X) also has a Stanley-Reisner ring style description;
see [56, G.i)].) The simplicial differential graded Q-module ∇q[n] is a contractible
Kan complex for each fixed q (“the extension lemma” [10, 1.1]) and is acylic in the
sense that the inclusion of the unit Q → ∇∗[n] is a chain homotopy equivalence
for each fixed n (“the Poincaré lemma” [10, 1.3]). These formal properties imply
that the cohomology of A∗(X) is canonically naturally isomorphic to H∗(X;Q),
the rational cohomology of X (even uniquely naturally isomorphic, relative to the
canonical isomorphism Q ∼= A∗(∆[0])). The canonical isomorphism can be realized
as a chain map to the normalized cochain complex C∗(X;Q) defined in terms of
integrating differential forms; see [10, 1.4,2.1,2.2].

In the p-adic case, we can use the normalized cochain complex C∗(X; k) di-
rectly as it is naturally an E∞ k-algebra. In the discussion below, we use the E∞
k-algebra structure constructed by Berger-Fresse [3, §2.2] for the Barratt-Eccles op-
erad E (the normalized chains of the Barratt-Eccles operad of categories or simpli-
cial sets described in Example 3.3). Hinich-Schechtmann [23] and (independently)
Smirnov [53] appear to be the first to explicitly describe a natural operadic algebra
structure on cochains; McClure-Smith [43] describes a natural E∞ structure that
generalizes classical ∪i product and bracket operations. The “cochain theory” the-
ory of [34] shows that all these structures are equivalent in the sense that they give
naturally quasi-isomorphic functors into a common category of E∞ k-algebras, as
does the polynomial de Rham complex functor A∗ when k = Q.

Both A∗(X) and C∗(X; k) fit into adjunctions of the contravariant type that
send colimits to limits. Concretely, for a rational commutative differential graded
algebra A and an E∞ k-algebra E, define simplicial sets by the formulas

T (A) := CQ(A,∇∗[•]), U(E) := Ek(E,C∗(∆[•])),

where CQ denotes the category of rational commutative differential graded algebras
and Ek denotes the category of E∞ k-algebras (over the Barratt-Eccles operad).
An easy formal argument shows that

A∗ : ∆opSet //
oo C op

Q :T, C∗ : ∆opSet //
oo E op

k :U,

are adjunctions. As discussed in Section 8, both CQ and Ek have closed model struc-
tures with weak equivalences the quasi-isomorphisms and fibrations the surjections.
Because both A∗ and C∗ preserve homology isomorphisms and convert injections to
surjections, these are Quillen adjunctions. The main theorems of [10] and [33] then
identify subcategories of the homotopy categories on which the adjunction restricts
to an equivalence.

Before stating the theorems, first recall the H∗(−; k)-local model structure on
simplicial sets: this has cofibrations the inclusions and weak equivalences the
H∗(−; k) homology isomorphisms. When k is a field, the weak equivalences de-
pend only on the characteristic, and we also call this the rational model structure
(in the case of characteristic zero) or the p-adic model structure (in the case of char-
acteristic p > 0); we call the associated homotopy categories, the rational homotopy
category and p-adic homotopy category, respectively. As with any localization, the
local homotopy category is the homotopy category of local objects (that is to say,
the fibrant objects): in the case of rational homotopy theory, the local objects
are the Kan complexes of the homotopy type of rational spaces. In p-adic homo-
topy theory, the local objects are the Kan complexes that satisfy a p-completeness
property described explicitly in [9, §5,7–8].
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We say that a simplicial set X is finite H∗(−; k)-type (or finite rational type when
k is a field of characteristic zero or finite p-type when k is a field of characteristic
p > 0) when H∗(X; k) is finitely generated over k in each degree (or, equivalently
if k is a field, when H∗(X; k) is finite dimensional in each degree). Similarly a
rational commutative differential graded algebra or E∞ k-algebra A is finite type
when its homology is finitely generated over k in each degree. It is simply connected
when the inclusion of the unit induces an isomorphism k → H0(A), H1(A) ∼=
0, and Hn(A) ∼= 0 for n < 0 (with the usual cohomological grading convention
that Hn(A) := H−n(A)). With this terminology, the main theorem of [10] is the
following:

Theorem 12.3 ([10, Section 8, Theorem 9.4]). The polynomial de Rham complex
functor, A∗ : ∆opSet→ C op

Q , is a left Quillen adjoint for the rational model struc-
ture on simplicial sets. The left derived functor restricts to an equivalence of the
full subcategory of the rational homotopy category consisting of the simply connected
simplicial sets of finite rational type and the full subcategory of the homotopy cat-
egory of rational commutative differential graded algebras consisting of the simply
connected rational commutative differential graded algebras of finite type.

For the p-adic version below, we need to take into account Steenrod operations.
For k = Fp, the Steenrod operations arise from the coherent homotopy commuta-
tivity of the p-fold multiplication, which is precisely encoded in the action of the
E∞ operad. Specifically, the pth complex E(p) of the operad is a k[Σp]-free resolu-
tion of k, and by neglect of structure, we can regard it as a k[Cp]-free resolution of
k where Cp denotes the cyclic group of order p. The operad action induces a map

E(p)⊗k[Cp] (C∗(X; k))(p) −→ E(p)⊗k[Σp] (C∗(X; k))(p) −→ C∗(X; k).

The homology of E(p)⊗k[Cp] (C∗(X; k))(p) is a functor of the homology of C∗(X; k)
and the Steenrod operations P s are precisely the image of certain classes under this
map; see, for example, [41, 2.2]. This process works for any E∞ k-algebra, not just
the cochains on spaces, to give natural operations on the homology of E-algebras,
usually called Dyer-Lashoff operations. The numbering conventions for the Dyer-
Lashoff operations are the opposite of those of the Steenrod operations: on the
cohomology of C∗(X;Fp), the Dyer-Lashoff operation Qs performs the Steenrod
operation P−s. If k is characteristic p but not Fp, the operations constructed this
way are Fp-linear but satisfy Qs(ax) = φ(a)Qs(x) for a ∈ k, where φ denotes the
Frobenius automorphism of k.

The Fp cochain algebra of a space has the special property that the Steenrod
operation P 0 = Q0 is the identity operation on its cohomology; this is not true of
the zeroth Dyer-Lashof operation in general. Indeed for a commutative Fp-algebra
regarded as E∞ Fp-algebra, Q0 is the Frobenius. (The fact that Q0 is the identity
for the Fp-cochain algebra of a space is related to the fact that it comes from
a cosimplicial Fp-algebra where the Frobenius in each degree is the identity.) So
when X is finite p-type, C∗(X; k) in each degree has a basis that is fixed by Q0. We
say that a finite type E∞ k-algebra is spacelike when in each degree its homology
has a basis that is fixed by Q0. The main theorem of [33] is the following:

Theorem 12.4 ([33, Main Theorem, Theorem A.1]). The cochain complex with co-
efficients in k, C∗(−; k) : ∆opSet→ E op

k , is a left Quillen adjoint for the H∗(−; k)-
local model structure on simplicial sets. If k = Q or k is characteristic p and 1− φ
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is surjective on k, then the left derived functor restricts to an equivalence of the
full subcategory of the H∗(−; k)-local homotopy category consisting of the simply
connected simplicial sets of finite H∗(−; k)-type and the full subcategory of the ho-
motopy category of E∞ k-algebras consisting of the spacelike simply connected E∞
k-algebras of finite type.

Given the Quillen equivalence between rational commutative differential graded
algebras and E∞ Q-algebras (Theorem 9.5) and the natural quasi-isomorphism
(zigzag) between A∗(−) and C∗(−;Q) [34, p. 549], the rational statement in Theo-
rem 12.4 is equivalent to Theorem 12.3. The Sullivan theory in Theorem 12.3 often
includes observations on minimal models. A simply connected finite type rational
commutative differential graded algebra A has a cofibrant approximation A′ → A
whose underlying graded commutative algebra is free and such that the differential
of every element is decomposable (i.e., is a sum of terms, all of which are word
length greater than 1 in the generators); A′ is called a minimal model and is unique
up to isomorphism. As a consequence, simply connected simplicial sets of finite
rational type are rationally equivalent if and only if their minimal models are iso-
morphic. The corresponding theory also works in the context of E∞ Q-algebras
with the analogous definitions and proofs. The corresponding theory does not work
in the context of E∞ algebras in characteristic p for reasons closely related to the
fact that unlike the rational homotopy groups, the p-adic homotopy groups of a
simplicial set are not vector spaces.

The equivalences in Theorems 12.3 and 12.4 also extend to the nilpotent sim-
plicial sets of finite type, but the corresponding category of E∞ k-algebras does
not have a known intrinsic description in the p-adic homotopy case; in the rational
case, the corresponding algebraic category consists of the finite type algebras whose
homology is zero in negative cohomological degrees and whose H0 is isomorphic as
a Q-algebra to the cartesian product of copies of Q (cf. [35, §3]).

For other fields not addressed in the second part of Theorem 12.4, the adjunction
does not necessarily restrict to the indicated subcategories and even when it does,
it is never an equivalence. To be an equivalence, the unit of the derived adjunction
would have to be an H∗(−; k)-isomorphism for simply connected simplicial sets of
finite type. If k 6= Q is characteristic zero, then the right derived functor of U takes
C∗(S2; k) to a simplicial set with π2 isomorphic to k; if k is characteristic p, then
the right derived functor of U takes C∗(S2; k) to a simplicial set with π1 isomorphic
to the cokernel of 1 − φ. See [33, App. A] for more precise results. Because the
algebraic closure of a field k of characteristic p does have 1 − φ surjective, even
when C∗(−; k) is not an equivalence, it can be used to detect p-adic equivalences.
The paper [36] extends this kind of observation to the case k = Z:

Theorem 12.5 ([36, Main Theorem]). Finite type nilpotent spaces or simplicial
sets X and Y are weakly equivalent if and only if C∗(X;Z) and C∗(Y ;Z) are quasi-
isomorphic as E∞ Z-algebras.

Using the spectral version of Theorem 12.4 in [33, App. C], the proof of the
previous theorem in [36] extends to show that when X and Y are finite nilpotent
simplicial sets then X and Y are weakly equivalent if and only if their Spanier-
Whitehead dual spectra are weakly equivalent as E∞ ring spectra. (This was the
subject of a talk by the author at the Newton Institute in December 2002.)
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We use the rest of the section to outline the argument for Theorems 12.3 and 12.4,
using the notation of the latter. We fix a field k, which is either Q or is characteristic
p > 0 and has 1 − φ surjective. We write C∗ for C∗(−; k) or when k = Q and we
are working in the context of Theorem 12.3, we understand C∗ as A∗. We also use
C∗ to denote the derived functor and write U for the derived functor of its adjoint.
The idea of the proof, going back to Sullivan, is to work with Postnikov towers, and
so the first step is to find cofibrant approximations for C∗(K(π, n)). For k = Q, this
is easy since H∗(K(Q, n);Q) is the free graded commutative algebra on a generator
in degree n.

Proposition 12.6. If k = Q then C∗(K(Q, n)) is quasi-isomorphic to the free
(E∞ or commutative differential graded) Q-algebra on a generator in cohomological
degree n.

We use the notation Ek[n] to denote the free E∞ k-algebra on a generator in co-
homological degree n. When k is characteristic p, there is a unique map in the homo-
topy category from Ek[n]→ C∗(K(Z/p, n)) that sends the generator xn to a class
in representing the image of the tautological element of Hn(K(Z/p, n);Z/p). Un-
like the characteristic zero case, this is not a quasi-isomorphism since Q0[in] = [in]
in H∗(C∗(K(Z/p, n))), but Q0[xn] 6= [xn] in H∗(Ek[n]). Let Bn be the homotopy
pushout of a map Ek[n] → Ek[n] sending the generator to a class representing
[xn] − Q0[xn] and the map Ek[n] → k sending the generator to 0. Then the map
Ek[n]→ C∗(K(Z/p, n)) factors through a map Bn → C∗(K(Z/p, n)). (The map in
the homotopy category turns out to be independent of the choices.) The following
is a key result of [33], whose proof derives from a calculation of the relationship
between the Dyer-Lashof algebra and the Steenrod algebra.

Theorem 12.7 ([33, 6.2]). Let k be a field of characteristic p > 0; then Bn →
C∗(K(Z/p, n)) is cofibrant approximation.

(As suggested by the hypothesis, we do not need 1 − φ to be surjective in the
previous theorem; indeed, the easiest way to proceed is to prove it in the case
k = Fp and it then follows easily for all fields of characteristic p by extension of
scalars.)

The two previous results can be used to calculate U(C∗(K(Q, n))) and
U(C∗(K(Z/p, n))). In the rational case,

U(C∗(K(Q, n))) ' U(EQ[n]) = Z(Cn(∆[•])),
the simplicial set of n-cocycles of C∗(∆[•];Q); this is the original model for K(Q, n),
and a straightforward argument shows that the unit map K(Q, n) → K(Q, n) is
a weak equivalence (the identity map with this model). In the context of Theo-
rem 12.3, the same kind of argument is made in [10, 10.2]. In the p-adic case, we
likewise have that U(Ek[n]) is the original model for K(k, n), and so we get a fiber
sequence

ΩK(k, n) −→ U(K(Z/p, n)) −→ K(k, n) −→ K(k, n).

The map K(k, n) → K(k, n) is calculated in [33, 6.3] to be the map that on
πn induces 1 − φ. The kernel of 1 − φ is Fp and the unit map K(Z/p, n) →
U(C∗(K,Z/p, n)) is an isomorphism on πn. As a consequence, when 1 − φ is sur-
jective (as we are assuming), the unit map is a weak equivalence for K(Z/p, n).

The game now is to show that for all finite type simply connected (or nilpo-
tent) simplicial sets, the derived unit map X → UC∗(X) is a rational or p-adic
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equivalence. The next result tells how to construct a cofibrant approximation for
a homotopy pullback; it is not a formal consequence of the Quillen adjunction, but
rather a version of the Eilenberg-Moore theorem.

Proposition 12.8 ([10, §3], [33, §3]). Let

W //

��

Y

��

Z // X

be a homotopy fiber square of simplicial sets. If X,Y, Z are finite H∗(−; k)-type and
X is simply connected, then

C∗(X) //

��

C∗(Y )

��

C∗(Z) // C∗(W )

is a homotopy pushout square of E∞ k-algebras or rational commutative differential
graded algebras.

Since we can write K(Z/pm, n) as the homotopy fiber of a map

K(Z/pm−1, n) −→ K(Z/p, n+ 1),

we see that the unit of the derived adjunction is a weak equivalence also for
K(Z/pm, n) (when k is characteristic p). Likewise, since products are homotopy
pullbacks, we also get that the unit of the derived adjunction is a weak equivalence
for K(A,n) when A is a Q vector space (when k = Q) or when A is a finite p-group
(when k is characteristic p). Although also not a formal consequence of the ad-
junction, it is elementary to see that when a simplicial set X is the homotopy limit
of a sequence Xj and the map colimH∗(Xj ; k) → H∗(X; k) is an isomorphism,
then C∗(X) is the homotopy colimit of C∗(Xj) and UC∗(X) is the homotopy limit
of UC∗(Xj). It follows that for K(Z∧p , n), the unit of the derived adjunction is a
weak equivalence (when k is characteristic p). For any finitely generated abelian
group, the map K(A,n) → K(A ⊗ Q, n) is a rational equivalence and the map
K(A,n) → K(A∧p , n) is a p-adic equivalence. Putting these results and tools all
together, we see that the unit of the derived equivalence is an H∗(−; k) equivalence
for any X that can be built as a sequential homotopy limit holimXj where X0 = ∗,
the connectivity of the map X → Xj goes to infinity, and each Xj+1 is the homo-
topy fiber of a map Xj → K(πj+1, n) for πj+1 a finitely generated abelian group,
or the rationalization (when k = Q) or p-completion (when k is characteristic p) of
a finitely generated abelian group. In particular, for a simply connected simplicial
set, applying this to the Postnikov tower, we get the following result.

Theorem 12.9. Assume k = Q or k is characteristic p > 0 and 1−φ is surjective.
If X is a simply connected simplicial set of finite H∗(−; k)-type, then the unit of
the derived adjunction X → UC∗(X) is an H∗(−; k)-equivalence.

The previous theorem formally implies that C∗ induces an equivalence of the
H∗(−; k)-local homotopy category of simply connected simplicial sets of finiteH∗(−; k)-
type with the full subcategory of the homotopy category E∞ k-algebras or rational
commutative differential graded algebras of objects in its image. The remainder of
Theorems 12.3 and 12.4 is identifying this image subcategory. In the case when
k = Q, it is straightforward to see that a finite type simply connected algebra has
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a cofibrant approximation that U turns into a simply connected principal rational
finite type Postnikov tower. The argument for k of characteristic p is analogous,
but more complicated; see [33, §7].
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