
The Cyclotomic Trace in Algebraic K-Theory 

Ib Madsen 

1. Introduction 

This paper reviews the relations between algebraic K-theory and topolog
ical cyclic homology given by cyclotomic trace. If one, very superficially, 
views algebraic K-theory as classifying invertible matrices, then the cyclo
tomic trace records the trace of all powers of matrices. In a more relevant 
formulation, the topological cyclic homology has the same relationship to 
B6kstedt's topological Hochschild homology as Connes' cyclic homology 
has to Hochschild homology, and the cyclotomic trace is a topological cyclic 
version of the Dennis trace map. 

The topological cyclic homology was initially defined in [BHM], and 
used there to show the K-theory analogue of Novikov's conjecture. It 
associates to every ring R and every prime p an infinite loop space (or 
spectrum) TC(R,p). The cyclotomic trace is a natural transformation in 
the category of finite loop spaces. 

'Irc : K(R) ...... TC(R,p). (1.1) 

(The construction uses edgewise subdivision, or subdivision of the circle; 
hence the name "cyclotomic"). 

The basic theme of this paper is to discuss when one may reasonably 
expect (1.1) to induce isomorphism on mod p or p-compZeted homotopy 
groups. Actually, it is better to consider a relative situation, and ask for a 
surjection of rings R ...... S, when one expects the diagram 

---+ TC(R,p)~ 

1 
---+ TC(S,p)~ 

(1.2) 

to be homotopy Cartesian. The decoration (-)~ indicates p-adic comple
tion in the sense of Bousfield~Kan. For rings which are finitely generated 
over Z, 

so one does not expect the cyclotomic trace to carry very much number 
theoretic information. For example, in the basic situation of R = Z, the 
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numerators of the Bernoulli numbers enter (at least conjecturally) into 
the structure of K*(Z). They do not enter the description of TC*(Z,p), 
and should also not enter into K*(Zp). The basic situation in which one 
might hope for (1.2) to be of help is when S = Rj I is a semi-simple finite 
dimensional F p-algebra and R = lim Rj In. This is discussed in Sections 3 

<-

and 4 below. The cyclotomic trace works equally well for Waldhausen's K-
theory of spaces (A-theory). In fact, for simply connected spaces, it gives 
an equivalence of the reduced theories. This, together with some other 
conjectures and speculations are discussed in Section 5. 

With the exception maybe of Section 4, this paper is expository. Details 
of many of the claims can be found in a series of preprints, [BM] , [BHM] , 
[BCCGHM], and [HM]. 

Added in March 1994. S. Tsalidis, in his 1994 Ph.D thesis from Brown 
University, seems to have removed the assumption (*) in Theorem 3.11 
below, or what amounts to the same thing, to have proved Assertion (*). 
R. McCarthy has recently proved that the diagram 

K(R); 

1 
K(RjI); 

~ TC(R,p); 

1. 
~ TC(RjI,p); 

is homotopy Cartesian for any ring R with a square zero ideal I. This im
plies the continuous version of Conjecture 3.1(i), and shows that K(A); ':::: 
TC(Zp,p); is given in Theorem 3.11. 

2. Topological cyclic homology 

Let F be a functor from pointed spaces to itself equipped with two extra 
pieces of structure, a product and a unit, 

J.Lx,Y : F (X) A F (Y) --+ F (X A Y), ~x : X --+ F (X) 

both natural transformations. The functor F is called a functor with smash 
product, for short FSP, cf. [Bl], if 

J.Lx,y(~x A ~y) = ~X/\Y 
J.Lx /\Y,Z(J.Lx,Y A idF(z)) = J.Lx,Y /\z(idF(x) A J.Ly,z) 

F (T) J.Lx,y(~x A idF(y)) = J.Ly /\x(idF(y) A ~x) 0 T 

where T switches factors. Such a functor has a stabilization map, a 
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I-t(~ 1\ id) 

ax : Sl 1\ F (X) --+ F(Sl 1\ X) 

which induces maps ni F(Si X) --+ ni+1 F(Si+1 X) with limit FS (X). We 

assume that F (X) is n-connected when X is n-connected, and that the 
limit system 

stabilizes for each n. We notice that the spaces F(Si) form a unitial asso
ciative ring spectrum. 

Given a ring R we can form the cyclic construction. It is a simplicial 
abelian group with n-simplices Zn (R) = RCi9(n+1) and face and degeneracy 
operators given by 

di(ro@ ... @rn ) =ro @ ... @riri+1@···@rn 
=rnro @···@rn-1 

si(ro @ ... @ rn) = ro @ ... @ ri @ I @ ... @ rn 

i < n 
i = n 

Its topological realization is denoted HH (R). It is an Eilenberg-MacLane 
space whose homotopy groups are the Hochshild homology groups HHi (R). 
In [BIJ the analogous construction is introduced for FSP's. The space of 
n-simplices is now 

With the limit running over all (n + I)-tuples of positive numbers, and 
with Map denoting the space of based maps. The resulting space THH(F) 
is called the topological Hochschild homology of F. It is an infinite loop 
space (alias the zeroth part of a connected spectrum (denoted tHH (F)) via 
the theory of f-spaces, cf. [BHM, Section 4J. The spectrum homology of 
tHH(F) is approximated by a spectral sequence, cf. [B2J, [BCCGHMJ 

(2.2) 

Here F S is the spectrum of the F (Si), and we have used field coefficients. 
The simplicial space Z;op (F) is a cyclic space in the sense of Connes, 

so its realization THH (F) has an action of the circle group Sl. We shall 
consider the fixed sets THH (F)c for the finite subgroups C ~ Sl. To this 
end it is convenient to use the concept of edgewise subdivision, cf. [BMM, 



216 Ib Madsen 

Section 1]. Let Z. be a cyclic space, and C a cyclic group. We form a new 
simplicial space, with a simplicial action of C, 

(sdcZ)n = Z(n+1)ICI-l 

df = di 0 di+(n+l) 0 ... 0 di+(ICI-l)(n+1), 
c_ 

Si - si+(ICI-l)(n+1) 0 ... 0 si+(n+1) 0 Si, 

O~i~n . 

O~i~n 

The topological realization of sdcZ. is homeomorphic to that of Z., and 
the cyclic structure of Z., that is, the endomorphism tn : Zn -t Zn of 
order n + 1, induces a simplicial C-action on sdcZ •. Moreover, there is a 
C-homeomorphism 

(I Z. I, C) = (I sdcZ• I, C) 

where on the left hand side the action is the restriction of Connes' Sl_ 
action. In particular the C-fixed sets are homeomorphic. 

For the construction Z!OP (F), the subdivision sdcZ!OP (F) has n

simplices 

sdcZ!°P (F) = hoUm Map (SkoR 1\ ... I\SknR,F(Sko)(c) 1\ ... I\F(Skn)(c»), 
(2.3) 

where c =1 C I, R = IR [C] is the regular representation, kR = REB ... EB R 
and where SkR is the one point compactification of kR with the induced 
action of C. In (2.3) we use the conjugation action, where the c smash 
factors in each F(Sk; )(c) = F(Ski) 1\ ... 1\ F(Ski) are being permuted by 
C. 

Given C-spaces X and Y and a subgroup r ~ C there is the map 

which restricts a C-map f to the r-fixed set. Applied to (2.3) we get a 
simplicial map 

This in turn induces a map <I> from THH(Ff to THH(F)c/r. When we 
restrict to cyclic p-groups we then have two sets of commuting maps 

The first one is the inclusion of fixed sets (using Cpn-l C Cpn), the second 
is the map above (using Cpn-l is also a quotient of Cpn). Since <I> and D 



The Cyclotomic Trace in Algebraic K - Theory 217 

commute one has self-maps 

<P: hoJim THH (F)Cpn -> hoJim THH (Ffpn 
D D 

D: hoJim THH (Ffpn -> hoJim THH (F)Cpn 
~ ~ 

and one can form the homotopy fixed sets, i.e., the homotopy fibers of <p-id, 
resp. D-id. (In order to get connected spectra we consider <p-id and D-id 
to be maps into the connected covers). 

The Cpn action on THH(F) lifts to an action of the spectrum, cf. 
[BHM, Section 4], and tHH(F) becomes an equivariant Cpn spectrum. In 
particular each fixed set THH (F) Cpn is an ordinary spectrum and the maps 
D and <P are stable. 

Definition 2.5. ([ BHM]) The topological cyclic homology at p of the 
FSP F is the functor 

TC (F,p) = [hoJim THH (Ffpnl M > ':::' [ hoJim THH (F)CpnlhD . 
D ~ 

Let me distill the relevant abstract properties of THH (F) by introducing 
the concept of a cyclotomic spectrum. First recall from [ LMS , p.12l that 
an Sl_prespectrum T associates to each Sl-representation (in a "complete 
universe") a space Tv, and that there are Sl-equivariant structure maps 

which satisfy the obvious conditions. 

Definition 2.6 A p-cyclotomic spectrum consists of an Sl_prespectrum 
together with Sl-equivariant maps 

for each prime order subgroup Cp of Sl such that 

(i) The adjoins if: Tv -> nVTwElw are equivariant homotopy equivalences 
for all finite subgroups of Sl 

(ii) The induced maps 

are equivariant homotopy equivalences for all finite subgroups of Sl. 
Here the limit runs over all representations of Sl. 



218 Ib Madsen 

In (2.6) we have identified Sl/Cp with Sl (via the obvious isomor

phism). This identifies the given Sl/Cp action on T~P with an Sl-action, 
and it is with respect to this action, 'Pv is assumed to be Sl-equivariant. In 
(2.6), (i) and (2.6), (ii) we only require equivariant homotopy equivalence 
with respect to finite cyclic subgroups. This might seem a little odd, but 
the explanation is that the Sl-fixed set of THH (F) is contractible. Let me 
finally remark that there is assumed in (2.6) some evident relation between 
the 'P and fj which I leave for the reader to explain. 

Proposition 2.7 ([ BM]) THH (F) is a p-cyclotomic spectrum. 

There are several possible concrete models for the deloops THH v (F). 
The simplest one is the topological realization of the cyclic space whose 
n-simplices are given by 

The Sl-action on THHv (F) is the composition of the Sl-action associated 
to the cyclic structure and the action on SV. For each finite subgroup C c 
Sl this turns out to be equivalent to the deloop of THH (F) associated to 
the C-equivariant f-space structure of THH (F) defined in [BHM, Section 
4]. The mapping 

'Pv : THH v (F)cp -> THH VCp (F) 

can be seen explicitly upon using the subdivided model with n-simplices 

with R = lRCp to be : 'Pv (J) = fix (J), the restriction to the Cp fixed 
set. The Sl-equivariance property follows from [BHM, Lemma 1.10]. 

Given any p-cyclotomic spectrum T we have a stable map 

whose homotopy fiber is the homotopy orbit spectrum ThCpn = lHI. (Cpn , T), 
cf. (4.1) below. Indeed <I> is the composition 

The first map has homotopy fiber 
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and the second map is a homotopy equivalence, so <J> has the stated homo
topy fiber, cf. [BM] for more details. 

Example 2.8 For the identity FSP, the topological Hochschild homology 
can be identified with the spheres pectrum. The identification is Cpn
equivariant for every n, so that ( THH (Id) ,Cpn) ~ (Qcpn (SO), Cpn) with 
QCpn (SO) = lim nV SV over all representations ofCpn. It follows from ltD] 
that 

n 

THH (Id)Cpn ~ II Q+(BCpi) ,Q+ (B) = nOOSOO(BU{+}) 
i=o 

The maps D and <J> are correspondingly given by 

D(xo, ... ,xn) = (xo + t (xd, t (X2), ... , t (xn)) 

<J>(xo, ... ,xn) = (xo,' .. ,xn-d 

where t : Q + (BCpi) --+ Q + (BCpi-l) is the transfer mapping associated to 
the cover BCpi-l --+ BCpi. In this case one can evaluate the p-completion 
of TC (Id,p) to be 

with i being the Sl-transfer, cf. [BHM, Section 5]. 
Let L KIF p ( -) denote the localization functor in the sense of Bousfield 

w.r.t. mod p topological K-theory. It follows from the above formula for 
TC (Id,p); that LKIFp( TC (Id,p)) surjects onto (J x BJ x SU);, but 

there is a large kernel. Here SU is the infinite special unitary group, J is 
the homotopy fiber of the stable Adams operation \jig - id : K; --+ K; and 
K represents periodic topological K -theory. The (-1) -connected cover of 
J is K(JFg ); by [Q], where g is a prime which generates (7l../p2)X. 

Given an FSP F we can form the corresponding matrix FSP 

Mm (F) (X) = Map ([m], [m]A F (X)) 

where [m] = {D, ... ,m} with D as base point. Let GLm (F) be the invertible 
components of limnk Mm(F)(Sk). It is a group-like topological monoid, 
and one can construct its K-theory: 

K (F) = nB(li BGLm (F)) ~ BGL (F)+ 
m 
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There are two cases of special interest. First, if F (X) = X A r + with r 
a group-like topological monoid (7ror is a group) then K (F) = A (Br), 
Waldhausen's A-theory of Br (in the version where Ao = Z). Since X ~ 
BOX for every connected X this defines A(X) in general. Second, for a ring 
R consider FR(X) =1 RD.. (X)/RD.. (*) 1 where D.. (X) = Map (D.., X) 
is the singular simplicial set, and the bars indicate topological realization. 
This FR (X) is a generalized Eilenberg-MacLane complex with 7riFR (X) = 

Hi (X, R) and K (FR) ~ K (R), the Quillen K-theory of R. Indeed, eval
uating on homology gives a homotopy equivalence GLm (FR) -+ GLm (R), 
and in turn an equivalence from BGLm (FR) to BGLm (R), etc. 

The topological Dennis trace is a map (of spectra) 

Tr : K (F) -+ THH (F) (2.9) 

We sketch the construction and refer to [BHM] for details. First let us 
recall the constructions N. (r) and N;Y (r) for a monoid r. These are 
simplicial spaces with 

and face operators 

~Y('"V '"V) = { ("(0, .. , 'Yi'Yi+b .. , 'Yn) 
Ui ,O,··,rn ( ) 'Yn'YO, .. , 'Yn-l 

,i = ° 
,0 < i < n 
,i = n 

,O::;i<n 
,i =n 

and degeneracy operators by inserting an extra 1 E r. The topological 
realizations are Br =1 N. (r) 1 and Bey (r) =1 N;Y (r) I. If r is a group 
then we have the inclusion 

Its realization I is homotopic to the inclusion of Br into the free loop 
space ABr as the constant loops. One can also define I. for group-like 
monoids; again it corresponds to the inclusion Br ~ ABr. Consider now 
for r = GLm (F) the composition 

N.(GLm(F)) ~ N;Y(GLm (F)) ~ THH.(Mm (F)) (2.10) 
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Lemma 2.11 (Morita invariance) For each FSP 

nB(li THH (Mm (F))) ~ THH (F) x Z. 
m 

The realization of the composition (2.10) together with (2.11) produces 
the Dennis trace map (2.9). The cyclotomic trace 

'Irc : K (F) -> TC (F,p) (2.12) 

is a variant of the above construction. As mentioned before, I is homotopic 
to the inclusion of BGLm (F) into its free loop space. In order to get into 
the fixed set, one can consider the composition 

with .0.pn (A) (z) = A (zpn) for a free loop A. On the simplicial level this 
corresponds to 

with .0.pn,k (:1') = (J>""])' pn repetitions. We can now insert .0.pn,. be
tween S. and I. in (2.10) to get a mapping 

There is an equivariant version of Morita invariance (2.9) so we obtain by 
the above procedure a map from K(F) to THH (Ffpn for each n. A 
closer look at the situation, cf. [BHM, Section 2], produces a canonical 
homotopy between the two ways around in the diagram 

K(F) -> 

\. 
THH (Ffpn 

lD 
THH (F)Cpn-l 

and in turn a well-defined mapping 'Irc, into the homotopy fiber of <I>-id. 
We point out that also TC (-,p) is a Morita invariant: 

TC (Mm (F) ,p) ~ TC (F,p) . (2.13) 

There is a version of the TC-functor, and of the cyclotomic trace, where one 
does not in advance single out a specific prime. Instead of forming limits 
over prime power cyclic groups one forms limits over all cyclic groups. 
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However, this functor, TC (R), is no stronger than the set of functors 
TC (R, p) ; this is analogous to the fact that the finite completion of the 

integers is just the product of the p-adic integers, cf. [HM]. 

3. On the K-theory of complete local rings - a conjecture 

In this section we consider rings A with an ideal I such that 
(i) A = lim AlIn 
(ii) AI I is a finite semi-simple IF p-algebra (3.0) 
(iii) A finitely generated as Zp-module 

This class of p-complete semi local rings includes the ring of integers in 
local fields with positive residue characteristic but also p-adic group rings 
of finite groups. A celebrated result of Gabber and Suslin, cf. [G], [SI] 
implies that the projection K (A) --+ K (AI1) induces an equivalence of 
f!-adic completions when f! f- p. We are interested in completions at p. 

Define 

This is the continuous K-theory of A. Let us write TC (A,p) for the 
topological cyclic homology of the FSP 

We can define the continuous cyclic homology by 

TCe (A,p) = hogm TC (AlIn,p) , 

but this is probably not a new functor for the rings in (3.0). At least for 
discrete valuation rings with finite residue fields of characteristic p one has 
from [HM]: 

Before I state the main conjecture, it is in order to remark that working 
with homotopy groups with coefficients and ordinary homotopy groups of 
completions amount to the same thing. There is an exact sequence, valid 
for any spectrum K, 

cf. [BK]. Moreover, if K has finite type then 1(n+l(K; Zlpn) is finite, hence 
compact, and the lim {lLterm vanishes. 
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Conjecture 3.1 (i) The cyclotomic trace induces a homotopy equivalence 

Trc : K (A); ~ TC (A,p); 

for the rings in (3.0) 

(ii) The natural map K (A); ~ KC (A); is ahomotopy equivalence for the 
rings in (3.0). 

We note from [P] that Conjecture 3.1 (ii) is true when A is the ring of 
integers in a local number field. In this case then, 3.1 (i) follows from its 
continuous version which might be easier to prove, since it (via Theorem 3.8 
below) reduces it to the relative situation (1.2) with S = R/1 and 12 = o. 

The topological cyclic homology is not easy to calculate and there is at 
the time of writing only limited information available about the right hand 
side of (3.1) (i). But something is known, and it would appear at any rate 
that TC(A,p) lends itself to analysis by algebraic topological methods more 
readily than does K(A). We give examples of this later in this section. 

The steps involved in the calculation of TC (F,p) are first the evalua
tion ofTHH(F), second the fixed sets THH (Ffpn and third the homotopy 
fiber of <I>-id. In the linear case at hand, F = FR , so far the only way to 
get at the fixed sets THH (R)Cpn is through the homotopy fixed sets: 

Here one has a spectral sequence to facilitate the calculation of homotopy 
groups, namely the spectral sequence associated to skeleton filtration of 
the free contractible Cpn-space ECpn. We have the inclusion of spectra 

The homotopy fixed sets usually have non-zero homotopy groups in neg
ative degrees whereas the actual fixed set does not; THH (Ffpn is (-1)
connected by definition. Thus it is too much to ask for r to be a homotopy 
equivalence in general, but we can reasonably pose 

Problem 3.2 For which FSPs does r : THH (F)Cpn ~ THH (F)hCpn 
induce a p-adic homotopy equivalence onto the (-1) -connected cover of the 

target? 

One would hope that (3.2) has a positive answer for the rings which 
appear in (3.1). For the identity FSP, THH(Id) is equal to the (equivariant) 
sphere spectrum, and (3.2) is satisfied according to the affirmed Sullivan 
conjecture (the homotopy fixed set is even (-1 )-connected in this case). 
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Remark 3.3 It would be tempting to initially bypass (3.2) by replacing 
THH (Ffpn by THH (F)hCpn in the definition of TC (F,p). The prob
lem with this is that no one so far has been able to extend the map 
if> : THH (F)Cpn -> THH (F)Cpn-l to a corresponding map between ho

motopy fixed sets. 

Let me next recall the basic calculational results which have been 
proved for the functors THH (R) and TC (R,p). 

Theorem 3.4 ([B2]) THH(Fp) and THH(Zp) are generalized Eilenberg
MacLane spectra with homotopy groups 

(a) THH2i (Fp) = Z/pjor i 2: 0 and THH2i- 1 (Fp) = 0 

(b) THH2i- 1 (Zp) = Z/i 0 Zp, THHo(Zp) = Z and THH 2i (Zp) = 0 

for i > 0 

The proof of (3.4) given in [B2] uses the spectral sequence (2.2). Quite 
recently Pirashvili and Waldhausen have shown that for discrete rings the 
topological Hochschild homology is equal to MacLane homology as defined 
in [ML], i.e. 

(3.5) 

This result might help to calculate THHi (R) for the rings in (3.1). For 
any discrete monoid G , 

THH (R[G]) ~ THH (R) 1\ I N~Y (G) I + (3.6) 

When G is a group, I N;Y(G) I~ ABG by a theorem of Goodwillie. The 
equivalence in (3.6) is valid in the category of Cpn-equivariant spectra (for 
each n). In particular THHi (R [G]) is the i'th THH (R)-homology group 
of I N;Y (G) I, i.e. 

THH (R [G]fpn ~ holimMapcpn (Sv, THHv (R) 1\ I N~Y (G) I +). (3.7) 

In the next section we prove: 

Theorem 3.8 Let HA denote the Eilenberg-Maclane spectrum associated 
to the ring A. Then we have TC(Fp,p)~ ~ HZp. 

Let us note that this result is in agreement with (3.1) since K(Fp)~ = 
HZp by [Q]. 
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Theorem 3.9 ([HI]) After p-completion, there are homotopy equivalences 

(i) TC (IF p[v, V-I), p) c:::'. H7l,p V 2:,H7l,p 

(ii) TCe (lFp[[v]),p) c:::'. H7l,p V 2:,H(lFp[[vW) 

It follows from (3.8) and (3.9), (i) that the topological cyclic homology 
satisfies the "fundamental theorem" for the ring lFp. This is somewhat 
atypical, see the discussion following Theorem 5.1 below. The quotient 
field of lFp [[v]] is a local field, so (3.1) and (3.9) (ii) together predict that 

Kf(lFp [[v]]); = 0 for i 2: 2 . 

This is indeed known to be the case for i = 2 by [82), Theorem 1.10, where 
it was even proved that Ki (lFp [[v]]); = 0 for i = 2. 

Let lFp[c] denote the ring of dual numbers over lFp or in other words 
the exterior algebra in one generator. The algebraic K-groups oflFp[c] were 
examined in [EF] where Ki(lFp[c]) was calculated for i S 4 and p 2: 5. In 
order to describe TC (lFp[c),p) let us introduce the following notation. If k 
is prime to p , let s (k, n) be the number determined by the inequalities 

kps(k,n)-I S n < kps(k,n) . 

If we write TC n (R,p) = 1fn (TC (R,p);) then we have: 

Theorem 3.10. ([HM]) For the dual numbers lFp [E] the only non-zero 
homotopy groups of TC (IF P [E] ,p) are 

(i) p> 2 : TC2n- 1 (lFp [E]) = E9 {7l,jpS(k,n) I (k,2p) = 1, 1 S k S n} 

(ii) p = 2 : TC2n-dlF2 [ED = lF~n 

together with TCo (IF p [ED = 7l,p in both cases. 

M. B6kstedt has pointed out the following attractive formulation of 
(3.10). Let Wn (lFp) denote the big Witt vectors in lFp of length n , i.e. 

and let a be the endomorphism of Wn(lFp) induced from the ring endomor
phism of lFp[[xll which sends x to -x. The subgroup generated by 1 - xk 
in Wn{lFp) is cyclic of order ps(k,n) , and thus 
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the (-1) -eigenspace of 0: : Wn(lFp) -t Wn(lFp). 
Since TC(lFp[e],p) is a module spectrum over TC(lFp,p) and the lat

ter is an Eilenberg-MacLane spectrum, so is TC(lFp[e],p). The groups 
TCn(Il"p[e],p) listed in (3.10) agree with the Evens-Friedlander calculations 
of Kn(lFp[e]; Zp) for n :S 4, supporting Conjecture 3.1. They evaluated in 
[EF] the spectral sequence of the fibration (in low dimensions) 

with E2 -term 

and converging to H* (K(lFp [e]); lFp). Here GLk(lFp) acts on Mk(lFp) by con
jugation. In low dimensions the homology determines the homotopy, but 
in general the connection between homology and homotopy might be less 
tight. In this connection it is interesting to observe that 

Hn(GL (R); M (R)) ~ EB Hi(GL (R); 7rj K S (R)) 
i+j=n 

where KS (R) is the stable K-theory of R and the action of GL (R) on 
7r*Ks (R) is trivial, cf. [K]. It was conjectured by Waldhausen and proved 
in [DMc] that KS (R) ~ THH (R). This is in agreement with the fact from 
[H] that TCs (R,p) ~ THH (R), and implies for example that 

Let us turn to the simplest characteristic zero case of (3.1). The calculation 
of TC (Zp,p) is far more complicated than that of (3.8) or (3.9). For p odd, 
the homotopy type of TC (Zp,p); is determined in [BM], modulo (for the 
time being at least) a certain (standard) assertion. 

Let us recall that the sphere spectrum QSo fibers over the connected 
image of J spectrum ImJ with fiber Coker J. The completion 1m J; is 
equivalent to K(lFp); when C is a prime which generates (Zjp2) x . Let 

be the unit. One knows from [Mi] that the restriction of ~ to CokerJ is 
null-homotopy as a map of spaces, but not that this is the case at the 
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spectrum level, although it is strongly expected. Consider the diagram: 

QSO Trc 0 £ TC ('77 ) 
-t ILJp,P 

where L is the composition 

r 
f-

! proj 

induced from the linearization L : THH (Id) -t THH (Zp). 

Assertion (*) The restriction of L to CokerJ is null-homotopic as a map 
of spectra. 

Theorem 3.11 ([BM]) Assuming assertion (*), 

for odd primes p. 

The role of the assertion in the proof of (3.11) is to supply the diagonal 
arrow in the diagram 

! 

The spectral sequence 

can be completely worked out because of our extensive knowledge of K
theory, and the dotted arrow is then used to give the basic differentials in 
the corresponding spectral sequence for 1l"*(THH (Zp)hCpn ; lFp ). Of course, 
there might be other ways of getting at these differentials. For example, 
for small n (n ::; 3) it suffices to use the horizontal arrow in (**). In 
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general however, not enough seems to be known about the interaction of 
11"* Coker J and 11"* 1m J in the spectral sequence H*(BCpn; 11"* (QSo; lFp) * 
1I"*((Qso)hCp n ,lFp) to allow the conclusions we want, cf. [ BMJ. Let me 
finally note that since K (Coker J) = 0 , (3.11) does in turn imply assertion 
(*). 

It is natural to compare (3.11) with the etale K-theory of [DFJ. In the 
case at hand, 

where EC is the separable closure of E and G (EC / E) denotes the Galois 
group. Since the actual fixed set of K (EC) is K(E) there is a natural 
inclusion 

r : K (E) -+ K et (E) . 

For E = Qp , Dwyer and Friedlander are in the process of determin
ing K et (E); ; the answer which evolves is the same as the above for 
TC (Zp, p);. The Lichtenbaum-Quillen conjecture (in one formulation) 
asserts that r; is a homotopy equivalence. So for E = Qp , Conjecture 3.1 
is equivalent to the LQ conjecture. 

In this connection it would be of considerable interest to evaluate 
TC (Z2,2); many of the arguments in [BMJ break down for p = 2, and 
one does not expect precisely the answer above. One reason that p = 2 is 
more difficult than the case of odd primes p is that the Adams periodicity 
map at 2 is a more elaborate construction in homotopy theory than it is 
at p. It would of course also be very interesting to evaluate TC (A,p); 
for integers in general local number fields. One might conjecture that it is 
always the connected cover of its localization with respect to topological 
K-theory, when A is torsion free. 

Let us finally point out that (3.8) allows us to formulate (3.1) at least 
for A = Zp as a conjectural homotopy Cartesian diagram 

! ! (3.12) 

There is a similar formulation in general since TC (k,p); c::: HZp for general 
finite fields of characteristic p, cf. [HM]. 



The Cyclotomic Trace in Algebmic K- Theory 229 

4. Topological cyclic homology of IF p 

This section outlines as an example the calculation of TC (IFp,p). The 
general procedure is the same as the one used in [BM] for determining 
TC (Zp,p), but the details are simpler. The reader is referred to [HI] and 
[HM] for the proofs of Theorem (3.9) and (3.10) and for a more detailed 
account of the present outline. First we recall some definitions. 

Let T be a G-equivariant spectrum with G a finite group. Following 
[GM] one defines spectra 

lHI. (G, T) = (ResT) AG EG+ 

lHI. (G,T) = MapG(EG+,ResT) 

Jfu (G, T) = [EG A Map (EG+, T)] (4.1) 

Here Res T denotes the weak G-spectrum associated to T, i.e. Res T = 
{BnT}nEN' with the given action of G. The space EO is the (unreduced) 
suspension of EG, and 

[EG A Map (EG, T)]G = hoUm MaPG(Sv, EG A Map (EG+, B V T) 

with the limit over all IRG-modules. The functor lHI. (G, T) is called the 
homotopy orbit and often denoted ThG; the functor JH[. (C, T) is the ho
motopy fixed set ThG. In the rest of the paper we use the notation ThG 
and ThG. The basic tool in our calculations is the following diagram of 
cofibrations: 

THH (F)hCpn 
N h THH (F)hCpn \f! 

Jfu(Cpn, THH (F)) -+ -+ 

j id jr jf' (4.2) 

THH (F)hCpn 
N THH (F)Cpn ~ THH (F)Cpn -+ -+ 

(cf. [BM], Theorem 1.10). There are spectral sequences 

A2 A A 
Er,s(Cpn, THH (F)) = H-r(BCpn; 7rs THH (F)) => 7rr+slHI(Cpn, THH (F)) 

E~,s(Cpn, THH (F)) = H-r(BCpn;7rsTHH (F)) => 7rr+sTHH (F)hCpn 

(4.3) 

Here 7r s can be replaced by homotopy groups with coefficients. We first 
determine the spectral sequence Er,s for THH (IF p) and homotopy groups 
with IF p coefficient. 
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Recall that the FSP F determines the spectrum FS, and that there is 
a "suspension" mapping 

a : 5~ 1\ F S -+ THH (F) 

When F is the FSP associated to the ring, lFp then FS = HlFp, and we 
have the distinguished element 

The proof from [B2J of (3.4) shows that a is an integral homotopy class and 
that 7[* THH (lFp) = lFp raj. In particular we have for the second spectral 
sequence in (4.3), 

(4.4) 

with deg (un) = (-1,0), deg (t) = (-2,0) and deg (a) = (0,2). If we 
instead use homotopy groups with IF p coefficients we get 

Lemma 4.6 In (4.5), d2 (ed = ta and d2 maps the other generators to 
zero. 

Proof. We first prove the corresponding differential in the spectral se
quence 

There is a cofibration of spectra 

induced from s.~ -+ 5! -+ 5~ 1\ 52. It continues to the right by the map 

which is adjoint to the 5 1-action, A : 5~ 1\ THH (lFp) -+ THH (lFp). 
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Let el E 7rl(THH (lFp) ;lFp) be the image under 0'* of 1 Q9 el. The 
commutative diagram 

1 m 1\ id lA 

shows that A*(iQgel) = a or equivalently that .... t(el) = E-lO'. This in turn 
shows that el does not lift to 7rl(Mapsl(St, THH (lFp));lFp) and thus that 
there is a non-trivial d2 on el in the spectral sequence (*). The restriction 

induces a map of spectral sequences which preserves el, t and a on the 
E 2-level, and the claim follows. 0 

Given (4.6) one easily calculates the EOO-terms of the spectral se
quences (4.3) for THH (lFp). The result is 

7r *(lfJr( Cpn, THH (lFp) ; lFp) = E{ un} Q9 lFp [t, C l ] 

7r * (THH (IF p)hCpn ; IF p) = E{ Un} Q9 IF p [t, a] / (to') (4.7) 

Lemma 4.8 The map r : THH (lFp) -+ lfJr(Cp, THH (lFp)) from (4.2) with 
n = 1 induces a homotopy equivalence onto the (-I)-connected cover of the 
target. 

Proof. The lemma follows from [BM], Lemma 6.4 where the corresponding 
statement is proved for THH (Zp). Indeed, the reduction Zp -+ lFp induces 
an isomorphism 

In the diagram 

R. 
-+ 

lr* lr* 

7r2P(lfJr(CP; THH (Zp)); lFp) ~ 7r2p (lfJr (Cp, THH (lFp)); lFp) 
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R.r. is non-zero by the cited result from [BM], so r. (aP ) = r p and 
hence r. (a) = rl. Since ela is mapped to a by the Bockstein operator, 
r. (ela) f:. 0 and thus r. (el) = Ulrl. 0 

Proposition 4.9 The maps rand r in (4.2) for THH (lFp) induce homo
topy equivalences onto the (-I)-connected cover of their targets. 

Proof. It suffices to examine the induced maps on modulo p homotopy 
groups in non-negative degrees. The argument is inductive starting with 
(4.8). In the model 

we have an action of Cpn-l = Cpn/Cp and 

Moreover, the mapping from (4.8) (which we now write with non-capitals) 

becomes Cpn-l-equivariant. The induced mapping of fixed sets is the map 
from (4.2): i,cpn-l ~ r. Consider now the following diagram with n ~ 2 

T (lFp)Cpn-l r n- 1 T (lFp)hCpn-l -+ 

1 i,cpn-l ! -yhCpn-l (.) 

Jfu(Cp, THH (lFp))Cpn-l G Jfu (Cp , THH (lFp))hCpn- 1 -+ 

and with r n-l and G inclusions of fixed sets into homotopy fixed sets. 
The map -yhCpn - 1 is a homotopy equivalence (in positive degrees) since 

-y is, and since this property is preserved under taking homotopy fixed sets. 
Also, the source and the target of G have (abstractly) isomorphic homotopy 
groups by a calculation quite similar to the one giving (4.7). In fact G is a 
homotopy equivalence. This follows from the diagram 

N/ 
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which exists for any Cpn-l-equivariant spectrum, and from the calculational 
fact that 

(4.10) 

To check (4.10) one uses the spectral sequence with E2-term 

d2 (ed = ta, and converging to the modulo p homotopy groups of the left
hand side in (4.10). Since d2(elr1a-1) = 1, the E 3-term vanishes, and 
(4.10) follows. 

We have shown that 11". (G, lFp) and 11". eyhCpn-l , lFp) are isomorphisms 
in the diagram (*). Assuming in (*) that 1I"*(fn- 1 ,lFp) is an isomorphism 
for * ~ 0 we get 1I".eyGpn-l; lFp) is an isomorphism for * ~ 0 and can then 
use the exact homotopy sequence of (4.2) to show that 1I".(fn;lFp) is an 
isomorphism. Starting with (4.8) we therefore inductively prove (4.9). 0 

Lemma 4.11 For i > 0 
1I"i(THH (IF p)Cpn-l ; lFp). 

Proof. In the spectral sequence 

the differentials which cross over the axis r = 0 correspond to norm map 
N!:, cf. [BM], Lemma 1.15. Now, in the spectral sequence we have 

and hence (cf. 4.7) that 

is surjective for * > o. It follows from (4.2) and (4.9) that ~* = 0 in 
positive degrees. 0 

By definition, TC (lFp,p) is connected, and 
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Since 1l"o(THH (lFp); lFp) = lFp, the integral1l"o is cyclic. The bottom cofibra
tion in (4.2) then shows inductively that 1l"oTHH (lFpfpn = Z/pn+l. As a 
consequence we see that 

It follows from (4.11) that (CP-id). is the identity on liW 1l"i(THH (lFp)Cpn ; lFp) 
for i > 0, and hence that 1l"i(TC(lFp,p);lFp) = 0 for i > O. But then 
1l"iTC (lFp,p) = 0 as well. This completes the proof of Theorem 3.8: 

TC (lFp,p); ~ HZp-

Remark 4.12 In the integral spectral sequence 

the only non-trivial differentials are generated multiplicatively from 

Indeed, by the structure of the modulo p spectral sequence it follows that 
the extensions going from Eoo to the actual homotopy groups are max
imally non-trivial. Now, if Un and hence unrl were permanent cycles, 
then 1l"olHr(Cpn, THH (lFp)) would be equal to Zp, but it cannot be tor
sion free. Hence for some k, d2k+l(unt-l) = tkak. That k = n fol
lows from the Bockstein relation J3n(unrl) = 1. We have shown that 
1l"2iTHH (lFp)Cpn = Z/pn+1 and 1l"2i-lTHH (lFpfpn = O. 

When one attempts to calculate topological cyclic homology of other 
simple rings, e.g. R = lFpC, R = lFp [t] / (tn) then one generally runs 
into the problem of calculating the homotopy groups of the spectrum 
(THH (R) 1\ x)Cpn for certain Cpn-spaces X. This requires, except in 
some very special cases, some basic understanding of the Cpn-l-equivariant 

homology theory THH (R) ;;-pn, which we do not possess at the time of writ
ing, except for R = lFp, cf. [HM]. Concretely, let me pose the problem of 
evaluating THH (R)Cpn (SW) for all representations W when R = Zp (SW 
= unit sphere of W). 

5. The cyclotomic trace in A-theory 

This section describes some (partially unpublished) results about TC (F,p) 
when F is an FSP of the form F (U) = U 1\ r +. We adopt the notation 
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TC (Br, p) for TC (F, p), so that the cyclotomic trace becomes 

Trc : A (X) -+ TC (X,p). 

Let QY denote the suspension spectrum of Y and Qc (Y) the C-equivariant 
suspension spectrum. We write E+ (Y) = YU{ +}, AX for the free loop 
space and ~p : AX -+ AX for the p fold power map (~p (>.) (z) = >. (zP)). 

Theorem 5.1 ([BHM]) (i) THH (X) ~ cQc (AX+) for each finite cyclic 
group. 
(ii) There is a homotopy Cartesian diagram 

TC (X,p); ------t 

! 
Q (AX+) id-~p 

Q(E+(E81 XSl AX)); 

! 8 1 - transfer 

Q(AX+) 

Remark 5.2 It follows from 5.1 (ii) that one cannot have a homotopy equiv
alence 

Indeed in the range less than 2p - 3 there is no difference between 
the p-completed sphere spectrum and H7l,p and therefore also no dif
ference between TC (*,p); and TC(7l"p); or between TC(81,p); and 
TC (7l,[v, v- 1],p);, and one can easily evaluate (5.1), (ii) for X = 8 1 to get 
a counter example. 

Let G be a p-group. Then 

6.p : ABG / BG ------t ABG / BG 

is nilpotent, and there is a homotopy Cartesian diagram 

Q(ABG) id~p Q(ABG) 

! ev 

Q(BG) 
o 

-+ 

! ev 

Q(BG) 

where ev is the map which evaluates a loop at 1. It follows that 
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Since the map from QSo to HZ is 2p - 3-connected at p, 

when p is odd. Moreover, 

so the exact sequence 

••• ---> 7r2(TC (ZpG,p))j H2(G; Zp) ---> HC1(ZpG) ---> H2(G; Zp) ---> .•• 

(5.3) 
In the notation from [0] we have that 

and (5.3) is precisely Conjecture 0.1 from [0], proved for G abelian in [0], 
Theorem 3.9. 

The result listed in (5.1), (ii) is closely related to the S1-fixed set or 
homotopy fixed set of THH (X) when AX has finite type. For example 

00 

THH (*)S1 ~ THH (*)hS1 ~ II Q(E+BS1) X QSO 
1 

(after completion). 

Theorem 5.4 ([BCCGHM]) For simply connected spaces, Trc : A (X); .=. 
TC (X,p); is a homotopy equivalence. 

Here A and TC denote the reduced theories A (X) = A (X) x A (*) 
etc. The proof of (5.4) is not very difficult, but it is very indirect. It is 
an application of the "Calculus of Functors" from [G1]. The point is that 
A (X); and TC (X,p); have the same Goodwillie derivatives. In [G2] it is 
conjectured for any I-connected map r.p : F1 ---> F2 of FSP's that 

---> TC (F1,p); 
1 

---> TC (F2 ,p); 

is homotopy Cartesian. In particular one has 
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Conjecture 5.6 The diagrams 

A (X); ---+ TC (X,p); 

1 1 (i) 

A (B7r1X); ---+ TC (B7r1X,p); 

1 1 (ii) 

are homotopy Cartesian. 

The first conjecture is almost certainly true; one just needs to prove 
that Trc induces a homotopy equivalence between the two abstractly equiv
alent derivatives, cf. Remark 2.5 of [BCCGHM]. Moreover, Goodwillie has 
a convincing outline of a proof that 5.6 (i) implies 5.6 (ii), but some nasty 
details are involved. In any case it is very generally believed that (5.6) is 
true. 

Let A (X; Zp) be the A-theory based on completed spheres, or more 
precisely 

When X = Br for a discrete group r we have a linearization map 
A(Br; Zp); ---+ K(Zpr);, and one can formulate the analogue of Con
jecture 5.4 (ii) in this situation. Since one easily shows that 

at least when R is a ring which is finitely generated over Z one expects a 
homotopy Cartesian diagram 

1 1 

and this appears reasonable enough. Note that K (Z); ---+ K(Zp); is far 
from being a homotopy equivalence. 
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Let us finally briefly consider assembly maps. There is a homotopy 
commutative diagram of spectra 

A(X) 

! id 1\ Trc ! Trc 

X+ 1\ TC (*,p) --+ TC (X,p) 

where the horizontal arrows are assembly maps. The cofiber of the upper 
one is Waldhausen's functor Wh Top. By celebrated theorems of Igusa [I] 
and Waldhausen [W2], there is a (dimM - 7) /3 connected map. 

n2Wh Top (M) --+ Top (M x I, M x 0) 

at least if M is smoothable. Here Top denotes the space of homeomor
phisms. 

For closed Riemannian manifolds with negative sectional curvature, 
Farrell and Jones [FJ] proves that 

where II denotes the product over conjugacy classes in 'TrIM. If (5.6), (ii) 
were true for r = Z then using that s~ 1\ K (Z) ~ K (Z[v, v-I]) we would 
get a cofibration of spectra 

where TC (, p) denotes the cofiber of the TC-assembly map. In any case 
we have the important 

Problem 5.7 Evaluate A(SI). 

A theorem of Weiss and Williams gives a (dimM -7)/3-connected map 

Top (M)/Top (M) --+ nWh Top (M)hZ/2 

for a certain involution on nWh Top (M). The space Top (M) of block 
homeomorphisms is contractible by the celebrated rigidity theorem of Far
rell and Jones, [F J] when M is a closed manifold of negative sectional 
curvature. Thus one needs to examine the Z/2-equivariance properties of 
the cyclotomic trace. The fixed point set of the relevant involution will 
be the topological dihedral homology. In terms of (5.1), (ii) my guess is 
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that the relevant involution on TC (X, p) (compatible with the involution 
A f-+ (A*)-l on linear K-theory) can be described as follows: 

Consider the o (2)-action on AX which extends the Sl-action by adding 
the obvious reflection. One gets an induced Z/2-action on EO (2) XSI AX, 
and then replaces the upper right-hand corner in (5.1), (ii) by the Z/2-
spectrum 

The two other corners would be QZ/2(AX+) with the reflection Z/2-action 
on AX. In the smooth category a main theorem of Waldhausen asserts 
that 

Again by [WW] there is a (dimM - 7) /3-connected map 

Diff (M) /Diff (M) --+ nWhDiff (M)hZ/2 

but there is no rigidity result for Diff (M). One has a homotopy fibration 
('surgery theory') 

~JL(7rlM) --+ F (M) /Diff (M) --+ Map (M, F/O) 

but it is hard to make definite calculations, except rationally where there 
is no distinction between Top and Diff. 
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