
The algebraic K-theory of the K(1)-local sphere via TC

Ishan Levy∗

Abstract

We describe the algebraic K-theory of the K(1)-local sphere and the category of
type 2 finite spectra in terms of K-theory of discrete rings and topological cyclic ho-
mology. We find an infinite family of 2-torsion classes in the K0 of type 2 spectra at
the prime 2, and explain how to construct representatives of these K0 classes.
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1 Introduction

Fix a prime p and let Sp♦p be the category of dualizable p-complete spectra. One of the
fundamental results in stable homotopy theory is the thick subcategory theorem of Hopkins
and Smith [HS98], which says that every nonzero thick subcategory of Sp♦p is one of the
categories Spω≥n

2 of finite spectra of type at least n for some n ≥ 0. A modern interpretation

of this result is the statement that the Balmer spectrum of Sp♦p agrees with the Zariski
spectrum of Mfg,p, the moduli stack of p-typical formal groups.

In this paper, we study a subtle additional structure on the Balmer spectrum of Sp♦p ,
namely its sheaf of algebraic K-theory.3 To the open set corresponding to the height ≤ n
locus, this sheaf takes the value K(LfnSp), and on global sections, it is K(Sp). This sheaf was
first considered in [Wal84], where fundamental localization sequences relating K(LfnSp) to
the K-theory of the monochromatic layers K(SpωT (n)) were observed. Thomason in [Tho97]
showed that understanding the homotopy groups of the sheaf in low degrees would allow one
to refine the thick subcategory theorem, and classify stable subcategories4 of Sp♦p .

The only case in which K(LfnSp) is well understood is the case n = 0, where it is K(Qp).
5

For n ≥ 1, essentially the only thing previously known about K(LfnSp) was its chromatic
height, because of redshift [AR02, CMNN20, LMMT20, HW20, Yua21]. Further information
was previously out of reach: for example, no K group was previously known.

In contrast, K(Sp) is now well understood. The reason is that Sp is a connective ring,
and the Dundas–Goodwillie–McCarthy (or DGM) theorem [DGM12, Ras18] gives a pullback
square for any connective ring R of the form

2when n = 0, this denotes the category Sp♦p .
3It is not important that we work in a p-completed setting, it is just convenient, as the chromatic

localizations Lfn don’t affect the rationalization or `-adic completions.
4In contrast to thick subcategories, stable subcategories may not be closed under retracts
5see [Wei05] for a discussion of what is known.
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K(R) TC(R)

K(π0R) TC(π0R)

y

where the horizontal maps are the cyclotomic trace. This largely reduces the computation of
K-theory to understanding TC and the K-theory of discrete rings, both of which are usually
more tractable invariants. Finally one must analyse the cyclotomic trace and reconstruct
the K-theory of a connective ring from its constituent pieces in the pullback square. For the
sphere, this is carried out in [Rog03, BM19]6.

The rings LfnSp are not connective, so DGM cannot directly be applied to compute their

K-theory. Here we show nevertheless that K(Lf1Sp) can be described in terms of TC and
K-theory of discrete rings, answering Problem 2.6 of [Ant15]. To state our result, we need
to introduce the ring jζ below.

Definition 1.1. Let jζ be the E∞-ring `hZp for p > 2, and kohZ2 if p = 2. Here `p is
the p-completed Adams summand of connective topological K-theory and ko2 is 2-completed
connective real topological K-theory, and the Z action comes from the Adams operation Ψ1+p.

The underlying spectrum of jζ can be described as the −1-connective cover of the K(1)-
local sphere.

Theorem A. K(Lf1Sp) ∼= K(LK(1)S), there is a cofibre sequence split on π∗

K(jζ) K(LK(1)S) ΣK(Fp)

and a pullback square

K(jζ) TC(jζ)

K(Zp) TC(ZhZp )

y

Let F be the fibre of the map TC(jζ)→ TC(ZhZp ). Then F [1
p
] = 0. For p > 2, F is (2p− 2)-

connective and π2p−2(F/p) ∼=
⊕∞

0 Fp. For p = 2, F is 1-connective and π1F ∼=
⊕∞

0 F2.

In particular, even for the ring Lf1S, whose localizations at the primes other than p agree
with that of the sphere, its K-theory is not degree-wise finitely generated! This is in sharp
contrast to K(S) and K(Lf0S) = K(S[1

p
]), which are degree-wise finitely generated.

The proof of the cofibre sequence in Theorem A, which is carried out in section 2, comes
from analysing the localization sequence

6to understand the homotopy groups of the K-theory of the sphere from the pullback square, a finite
generation result of Dwyer as well as an analysis of the arithmetic fracture square are used in [BM19].
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Mod(jζ)
ω ⊗ Spω≥2 Mod(jζ)

ω Mod(Lf1jζ)
ω

and showing that on K-theory, it induces the desired cofibre sequence. Because Lf1jζ =
LK(1)S, the only substantial claim is that K(Fp) ∼= K(Mod(jζ)

ω ⊗ Spω≥2). To obtain this we
choose a particularly good generator of the category, namely jζ⊗Z, where for p > 2, Z is the
Smith–Toda complex S/(p, v1) constructed by Toda [Tod71], and for p = 2 it is S/(2, η, v1),
the type 2 spectrum constructed by Davis and Mahowald [DM81]. We then show that the
endomorphism ring of jζ ⊗ Z is coconnective with π0 = Fp, so that we can conclude by
applying the devissage result of [BL21] that K(Mod(jζ)

ω ⊗ Spω≥2) ' K(Fp).
The other main claim in Theorem A is the pullback square, which allows us to understand

K(jζ). This is almost an immediate consequence of Theorem B below, which extends the
DGM theorem to include the map `hZp → ZhZp . Recall that a truncating invariant E is a
localizing invariant for which the map E(R)→ E(π0R) is an equivalence for any connective
ring R. In this language, DGM says that the fibre of the cyclotomic trace is truncating.

Theorem B. Let f : R → S be a map of connective E1-rings with a Z-action such that f
is 1-connective. Then for any truncating invariant E, E(RhZ)→ E(ShZ) is an equivalence.
Moreover, if f is n-connective, then TC(RhZ)→ TC(ShZ) is too.

We also obtain the following variant:

Theorem C. Let R → S be a 1-connective map of −1-connective rings such that π−1R is
a finitely generated π0R-module. Then for any truncating invariant E, E(R)→ E(S) is an
equivalence.

The proof of Theorem B, which can be found in section 3 is an application of the work
of Land–Tamme on the K-theory of pullbacks. Namely, one has a pullback diagram

RhZ R

R R×R

Applying the main result of [LT19], one obtains a pullback square after applying any local-
izing invariant, where R×R is replaced by the ring R�R×R

RhZ
R. The latter ring is connective,

and comparing with the analogous construction for S and using the pullback square and the
fact that the invariant is truncating, one obtains the result.

In addition to Theorem A, we also obtain a similar formula for K(SpωT (1)) in Theorem 4.2,
which we use in section 7 to answer [HS99, Problem 16.4] at height 1. For K(Sp≥2) we obtain
the result below.

Theorem D. There is a fibre sequence X → K(Sp≥2)→ K(Fp) split on π∗, where X is the
total fibre of the square

4



TC(Sp) TC(Zp)

TC(jζ) TC(ZhZp )

• For p > 2, X is (2p− 3)-connective, so K0(Sp≥2) = Z with generator [S/(p, v1)].

• For p = 2, X is connective with π0X =
⊕∞

0 Z/2, and the torsion free quotient of
K0(Sp≥2) is generated by [S/(2, η, v1)].

In particular we find, contrary to our initial expectations that at the prime 2 there are
infinitely many 2-torsion classes in K0(Spω≥2)! As a corollary, we obtain a classification of
dense stable subcategories of type 2 spectra. A full stable subcategory C ′ ⊂ C is dense if
the inclusion is an equivalence on idempotent completions.

Corollary 1.2. (Corollary 5.2) The dense stable subcategories of Spω≥2 for p > 2 are in
bijection with subgroups of Z, and the dense stable subcategories of Spω≥2 at the prime 2 are
in bijection with subgroups of Z⊕

⊕∞
0 F2.

In section 6, we explain how to construct explicit spectra representing all of the 2-torsion
classes, but we briefly explain how to construct the first one here. We first choose a self map
v4

1 : Σ8S/2 → S/2. Because ησ is 2-torsion in π8S2, we can produce an extension of it to a
map Σ8S/2→ S. Let ησ be the composite

ησ : Σ8S/2→ S→ S/2

Then [S/(2, v4
1 + ησ)]− [S/(2, v4

1)] represents the first 2-torsion class in K0(Sp≥2).
We ask open questions throughout the paper related to this work. A particularly impor-

tant one is the following:

Question 1.3. What can be said about TC(jζ)? For example, can its homotopy groups be
computed, at least mod (p, v1) or (p, v1, v2)?

As a first step to the above question, in forthcoming work joint with David Lee, we
compute THH(jζ) mod (p, v1) at odd primes.

Theorem 1.4 (Lee–Levy [LL23]). For p > 2, there is an isomorphism of graded rings

π∗THH(jζ)/(p, v1) ∼= π∗THH(`)/(p, v1)⊗ π∗HH(C∗(S1;Fp)/Fp)
We don’t know the extent to which the methods of this paper are capable of understanding

higher height phenomena. Despite this, in forthcoming work joint with Robert Burklund,
we completely compute the K-theory sheaf after inverting the prime p.

Theorem 1.5 (Burklund–Levy [BL23]). For n ≥ 1, there are isomorphisms

K(LnSp)[
1

p
] ∼= K(LfnSp)[

1

p
] ∼= K(Zp)[

1

p
]⊕ ΣK(Fp)[

1

p
]

Moreover K(Sp≥n)[1
p
] ∼= K(Fp)[1

p
], and a generator of K0(Sp≥n)[1

p
] is given by the class of a

generalized Moore spectrum [S/(p, vp
i1

1 , . . . , vp
in−1

n−1 )].

5



Conventions

We assume the reader is familiar with higher algebra and algebraic K-theory. Some conven-
tions we use are:

• The term category will refer to an ∞-category as developed by Joyal and Lurie.

• MapC(a, b) denotes the space of maps from a to b in a category C. C is omitted from
the notation when it is clear from context.

• Similarly, in a stable category C, mapC(a, b) denotes the mapping spectrum.

• For an E1-algebra R, Mod(R) refers to its category of left modules.

• For an E1-algebra R and a stable category C, R⊗C is shorthand for either Mod(R)⊗C
if C is presentable or Mod(R)ω ⊗ C if C is small.7

• We use K(−) for nonconnective K-theory. For a compactly generated stable category
C, K(C) will mean K(Cω).

• Uloc and Uadd denote the versions of the universal localizing and additive invariants of
[BGT13] that do not preserve any kind of filtered colimits.

• We use xn for a polynomial generator in degree n and εn for an exterior generator in
degree n. As an example, S[xn] is the free E1-algebra on a class in degree n.
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2 Localization sequences and devissage

The main goal of this section is to prove the parts of Theorem A that come from local-
ization sequences and devissage, namely Proposition 2.2, Proposition 2.3, and Lemma 2.4
below. These results allow us to reduce the study of objects such as K(Lf1S), K(Spω≥2), and
K(SpωK(1)) to the study of K(jζ). The key tool here is devissage in the form given in [BL21].

7there is no ambiguity because if C is stable, presentable, and small, it must be zero, in which case
Mod(R)⊗ C and Mod(R)ω ⊗ C are both the zero category.
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Theorem 2.1 ([BL21]). If R is a coconnective ring with π0 regular, and π−i has tor dimen-
sion < i over π0, then the connective cover map π0R→ R is an equivalence on K-theory.

To begin, recall that there is a localization sequence

Sp≥n+1 → Sp→ Lfn Sp (1)

Our propositions are obtained by tensoring this with the rings in question.

Proposition 2.2. The natural map K(Lf1Sp)→ K(LK(1)S) is an equivalence.

Proof. Tensoring the localization sequence (1) for n = 0 with the map Lf1Sp → LK(1)S, we
get a map of localization sequences

Mod(Lf1Sp)p−nil Mod(Lf1Sp) Mod(Lf0L
f
1Sp)

Mod(LK(1)S)p−nil Mod(LK(1)S) Mod(Lf0LK(1)S)

The category in the top left is the category of T (1)-local spectra, whereas the one in the
bottom left is the category of K(1)-local spectra. By the telescope conjecture at height 1
[Mil81, Mah81], these two categories agree, so the left vertical map is an equivalence.

Lf0 is just inverting p, and Lf0L
f
1Sp = Lf0Sp = Qp. L

f
0LK(1)S is the ring Qp[ε−1], (ε−1 is

usually called ζ). It follows that the right vertical map is a connective cover map, and so
applying Theorem 2.1, it is an equivalence on K-theory.

Since K-theory is a localizing invariant, the middle vertical map is also an equivalence
on K-theory.

The next proposition is somewhat more subtle, because the ring jζ is not regular in the
sense of [BL22, BL21]. Nevertheless, a formal neighborhood of its height ≥ 2 locus is regular,
which is all that is needed.

Proposition 2.3. There is a cofibre sequence K(Fp)→ K(jζ)→ K(LK(1)S).

Proof. Tensoring the localization sequence 1 for n = 1 (relative to Spω) with Mod(jζ)
ω, we

get a cofibre sequence

Mod(jζ)
ω ⊗ Spω≥2 Mod(jζ)

ω Mod(Lf1jζ)
ω

We claim that Lf1jζ = LK(1)S. Indeed, it is clear that LK(1)jζ = LK(1)S, and jζ and LK(1)S
are rationally both Qp[ε−1].

It remains to identifyK(Mod(jζ)
ω⊗Spω≥2) withK(Fp). By the thick subcategory theorem,

Sp≥2 is generated by any type 2 spectrum Z, so Mod(jζ)
ω ⊗ Spω≥2 is generated by jζ ⊗Z for

such Z.
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Let Z denote the type 2 spectrum which for p > 2 is the Smith-Toda complex S/(p, v1)
constructed in [Tod71] and for p = 2, is the type 2 complex S/(2, η, v1)8 constructed in
[DM81]. The key property of Z is that Z⊗ko = F2 at the prime 2 and Z⊗ ` = Fp for p > 2.
It follows that Z ⊗ jζ = FhZp , which is in particular coconnective with π0 = Fp.

Since Z has only one cell in dimension 0 and the rest in positive degrees, End(Z ⊗ jζ) ∼=
Z⊗Z∨⊗jζ is also coconnective with π0 = Fp. We learn from Morita theory and Theorem 2.1
that K(jζ ⊗ Sp≥2) ∼= K(Endjζ(jζ ⊗X)) ∼= K(Fp).

The following lemma is necessary to get that the cofibre sequences in Theorem A and
Theorem 4.2 are split on π∗.

Lemma 2.4. K(ZhZp ⊗ Spω≥1) ∼= K(Fp) and the composite

Mod(Fp)ω → jζ ⊗ Spω≥2 → jζ ⊗ Spω≥1 → ZhZp ⊗ Spω≥1

is null after applying Uadd.

Proof. cof p ∈ Mod(ZhZp )p−nil has a coconnective endomorphism ring with π0 = Fp, so
K(Mod(ZhZp )p−nil) = K(Fp) by Theorem 2.1. It remains to prove the second claim.

Let R be `p or ko2 depending on the prime so that RhZ = jζ . Then there are Z-equivariant
E∞-maps π : R → Fp and f : R → Zp, and Fp is perfect over R as it is R ⊗ Z, where Z is
as in the proof of Proposition 2.3. We use the same names to denote the induced maps on
Z-homotopy fixed points. There is also the connective cover map g : Fp → FhZp .

Taking Z-homotopy fixed points, we obtain a diagram

Mod(ZhZp )ω,p−nil Mod(jζ)
ω ⊗ Spω≥2 Mod(FhZp )ω

f∗

π∗

π∗

Here π∗ is the right adjoint of π∗, which exists since FhZp is perfect over jζ . We also
have the map g∗ : Mod(Fp)ω → Mod(FhZp )ω, and we can rephrase our lemma as saying that
f ∗ ◦ π∗ ◦ g∗ is null on Uadd.

We will in fact just show that f ∗ ◦ π∗ is null on Uadd. To do this, that composite is given
by tensoring with the ZhZp − FhZp -bimodule ZhZp ⊗jζ FhZp . We have a chain of equivalences

ZhZp ⊗jζ FhZp ∼= ZhZp ⊗ Z ∼= (Zp ⊗ Z)hZ ∼= (Zp ⊗R Fp)hZ

where at the second step, it is used that Z is a finite spectrum.
Thus the Postnikov filtration on the Zp−Fp-bimodule Zp⊗RFp gives a finite Z-equivariant

filtration with associated graded Fp[ε|v1|+1] for p > 2 and F2[ε|η|+1, ε|v1|+1] for p = 2. Taking

8There are actually 8 distinct v1 self maps on S/(2, η) and 4 nonisomorphic S/(2, η, v1)s, but this is
irrelevant here: for example all choices of S/(2, η, v1) become isomorphic after basechange to jζ . This follows
from the proof of this proposition, since they are in the heart of a bounded t-structure after basechange and
have only one cell in degree 0, so there is no obstruction to producing an isomorphism between the different
versions.
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the Z-fixed points of this filtration, we get a finite filtration of the bimodule ZhZp ⊗jζ FhZp
whose associated graded is FhZp [ε|v1|+1] for p > 2 and FhZ2 [ε|η|+1, ε|v1|+1] for p = 2. As a
ZhZp − FhZp -bimodule, FhZp corresponds to the functor Mod(FhZp )ω → Mod(ZhZp )ω that is right
adjoint to the base change from ZhZp to FhZp . Since ε|v1|+1 is in odd degree, Uadd splits finite
filtrations and sends suspension to −1, we learn that after applying Uadd, the f ∗ ◦π∗ becomes
null.

3 Topological cyclic homology

In this section we prove Theorem 3.5 and Theorem 3.7, which are refinements of Theorem B
of Theorem C, and in particular extend the Dundas-Goodwillie-McCarthy theorem to certain
−1-connective rings. This allows us to understand K(jζ) in terms of the cyclotomic trace.

Given a ring R giving R a Z action is the same as giving an automorphism φ of R.
RhZ is then the pullback of the diagonal map ∆ : R → R × R along the twisted diagonal
(1, φ) : R → R × R. The idea for extending DGM to the nonconnective ring RhZ is to use
the work of Land–Tamme on the K theory of pullbacks to relate the K-theory and TC of
RhZ to that of connective rings.

Recall that for any E1-ring R, there is a standard t-structure on Mod(R), where a module
is connective iff it is generated under colimits and extensions by R, and coconnective iff its
underlying spectrum is.

Lemma 3.1. Let R be a −1-connective E1-ring. Then any R-module M which is connective
as a spectrum, M is connective in the standard t-structure on Mod(R). In particular, for
any right R-module N whose underlying spectrum is connective, M ⊗R N is connective.

Proof. Using the t-structure on R-modules, we obtain a cofibre sequence τ≥0M → M →
τ<0M . τ≥0M is −1-connective as an underlying spectrum since R is, and it is built from
R via colimits and extensions. τ<0M is coconnected as an underlying spectrum. Since M
is connective as a spectrum and τ≥0M is −1-connective as a spectrum, τ<0 is connective as
well, so must be 0. It follows that M = τ≥0M is connective in the t-structure. M ⊗R N
is connective since it is built from R ⊗R N = N out of colimits and extensions and N is
connective.

Lemma 3.2. Suppose that R → R′ is an i-connective map of −1-connective E1-rings for
i ≥ −1, M,N are right and left R′-modules that are connective in the standard t-structure.
Then the map M ⊗R N →M ⊗R′ N is (i+ 1)-connective.

Proof. M,N are built out of R′ under colimits and extensions, so it suffices to assume
M = N = R′. Then we are trying to show that R′⊗RR′ → R′ is i-connective. This map has
a section given by the left unit, so its fibre is the cofibre of the section. The cofibre of the unit
map, M ′, is (i + 1)-connective by assumption. M ′ ⊗R R′ is an extension of M ′ ⊗R R = M ′

by M ′ ⊗RM ′. M ′ ⊗RM ′ is (2i+ 2)-connective by Lemma 3.1, so the result follows.

9



The following proposition is due to Waldhausen [Wal84, Proposition 1.2]9, except he
stated it for Z-algebras, though the general proof is identical. We reproduce the proof below
for convenience and future reference. The proposition is a precursor to trace methods.

Proposition 3.3 (Waldhausen). Let f : R → S be an i-connective map of connective E1-
algebras for i ≥ 1. Then fib(K(f)) is (i+1)-connective, with πi+i fib(K(f)) = HH0(π0S; πi fib f).

Proof. Since i+ 1 ≥ 2, it suffices by the Hurewicz theorem to show that fib(K(f)) is (i+ 1)-
connective and that Hi+1 fib(K(f)) ∼= HH0(π0R; πi fib f). The nonpositive K-theory only
depends on π0R for a connective ring [BGT13, Theorem 9.53], so by the Hurewicz theorem,
it suffices to show the connectivity statement at the level of homology of BGL+.

Consider the map of homology Serre spectral sequences computing the homologies of
BGL(R) and BGL(R)+ via the vertical maps in the diagram below:

BGL(R) BGL(R)+

BGL(S) BGL(S)+

The signature of the E2-term of the Serre spectral sequence for the left vertical map is

Hp(BGL(S);Hq(fib BGL(f))) =⇒ Hp+q(BGL(R))

The first nonzero term in this spectral sequence is H0(BGL(S);Hi+1(fib BGL(f))). Because
GL and the infinite matrix ring M only disagree on π0 and f is i-connective for i ≥ 1, fib GL f
can be identified with fibMf . By the Hurewicz theorem, Hi+1(fib BGL f) then agrees with
πi fibMf = πiM fib f , where we view fib f as a nonunital ring in order to make sense of
Mf . Under this identification, the action of π0 GL(S) is identified with conjugation action of
π0 GL(R) on πiM fib f . The trace then gives an isomorphism tr : H0(BGL(S); πi(M fib f))→
HH0(π0S; πi fib f).

The E2-term of the Serre spectral sequence for the right vertical map on the other hand
is H∗(BGL(S)+;H∗(fibK(f))). Since H∗(BGL(R)) ∼= H∗(BGL(R))+, the map of Serre
spectral sequences yields an isomorphism on abutments. BGL(R)+ → BGL(S)+ comes
from a map of spectra (the 1-connective cover of K-theory), so the coefficient system for
homology is trivial, and in the lowest degree s in which fib(K(f)) is nonzero, its homology
is Hs(fibK(f)), which must survive to the E∞-page for degree reasons. Since in the left
vertical map Serre spectral sequence, there are no terms contributing to Hs for s ≤ i,
we must then have that Hs(fibK(f)) = 0 for s ≤ i, giving the connectivity statement.
By looking at the lowest nonvanishing terms in the spectral sequences and comparing the
two spectral sequences, we then learn that Hi+1(fibK(f))) ∼= H0(BGL(S);πi(M fib f)) ∼=
HH0(π0S; πi fib f), proving the proposition.

The following proposition is likely well known:

9see also [LT19, Lemma 2.4]
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Proposition 3.4. Let S be a set of primes, and R→ R′ a map of connective E1-rings that
is an isomorphism on π0. Then fib(TC(R)→ TC(R′))[S−1] ∼= fib(TC(R[S−1])→ R′[S−1]).

Proof. The fibre of TC is in this case equivalent to the fibre of K-theory by [DGM12]. Since
K-theory is a filtered colimit preserving localizing invariant, it is a sheaf with respect to
localizing at primes, with stalks the relative TC of the p-local rings. Thus it suffices to show
the result for R,R′ p-local rings. In this case, TC is already p-local, so we can assume that
S = {p}. The set of maps R → R′ clear satisfy the 2 out of 3 property, so by considering
the composite R→ R′ → π0R

′ = π0R, we can assume the map is R→ π0R.
Now since rationalization is t-exact, and because of the connectivity result in Proposi-

tion 3.3, it suffices to show the result for the map τ≤nR → τ≤n−1R. This is a square zero
extension, so now the result follows from [Ras18, Theorem 5.15.1].

By taking the cospan R→ R×R← R associated to RhZ as discussed above, we see that
the following result refines Theorem B:

Theorem 3.5. Suppose we are given a map of cospans of connective E1-rings that is levelwise
i-connective for i ≥ 1. Then for any truncating invariant E, the map on the pullbacks induces
an E-equivalance, and an i-connective map on TC.

Proof. Let

R0 R1 R2

S0 S1 S2

be the map of cospans in consideration, and let R3, S3 denote the pullbacks. Applying [LT19],
we obtain a pullback square:

Uloc(R3) Uloc(R0)

Uloc(R2) Uloc(R0 �R1
R3
R2)

y

where the underlying spectrum of R0 �R1
R3
R2 is R0 ⊗R3 R2, which is connective by

Lemma 3.1. Moreover one has a corresponding pullback square for the Si. The maps Ri → Si
are i-connective for i ≥ 1, so they induce an equivalence on E, and also the map on pullbacks
is (i−1)-connective. The map R0⊗R3R2 → S0⊗R3 S2 is i-connective by Lemma 3.1, and the
map S0⊗R3S2 → S0⊗S3S2 is i-connective by applying both Lemma 3.1 and Lemma 3.2 so the
composite, which on underlying spectra agrees with R0 �R1

R3
R2 → S0 �S1

S3
S2 is i-connective.

It thus induces an equivalence on E and a (i+ 1)-connective map on TC.
From the pullback square above, we then learn that E(R3) → E(S3) is also an equiva-

lence, and that TC(R3)→ TC(S3) is n-connective.

We now apply Theorem B to jζ :

11



Corollary 3.6. Let R = ko2 for p = 2 and `p for p > 2. There are pullback squares

K(RhZ) TC(RhZ)

K(ZhZp ) TC(ZhZp )

y

K(kohZ2 ) TC(kohZ2 )

K(τ≤2ShZ2 ) TC(τ≤2ShZ2 )

y

where for R, the vertical maps are (2p− 2)-connective for p > 2 and 1-connective for p = 2,
and for the second pullback square for ko2, the vertical maps are 4-connective. The vertical
fibres are p-nil.

Proof. The pullback squares follow immediately from Theorem B and the fact that τ≤3ko2 =
τ≤2S2, τ≤2p−3`2 = Zp which implies that the actions on those truncations are trivial.

We now show that the vertical fibres are p-nil for the first square, as the proof for the
second square is identical. Consider the square

TC(RhZ)[1
p
] TC(RhZ[1

p
])

TC(ZhZp )[1
p
] TC(ZhZp [1

p
])

It will suffice to show this square is cartesian, since the map RhZ[1
p
] → Zp[1

p
] is an

equivalence. By the proof of Theorem 3.5, we have pullback squares

TC(RhZ)[1
p
] TC(R)[1

p
] TC(RhZ[1

p
]) TC(R[1

p
])

TC(R)[1
p
] TC(R�R×`p

`hZp
R)[1

p
] TC(R[1

p
]) TC(R[1

p
]�

R[ 1
p

]×R[ 1
p

]

R[ 1
p

]hZ
R[1

p
])

y y

and similarly with Zp replacing R. R[1
p
]�

R[ 1
p

]×R[ 1
p

]

R[ 1
p

]hZ
R[1

p
] agrees with (R�R×R

RhZ
R)[1

p
] because

the underlying spectrum is a tensor product, and tensor products commute with inverting
p. Thus we learn from these pullback squares that to show the pullback square we want is
cartesian, it suffices to prove this with the pair ZhZp , RhZ replaced by Zp, R and (Zp �Zp×Zp

ZhZp
Zp), (R �R×RRhZ

R). But these are pairs of connective rings with the same π0, so the result
follows now from Proposition 3.4.
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We now prove a variant of Theorem 3.5, where the ring R in question is −1-connective,
but doesn’t have to come from a pullback square. The idea is the same as before: to resolve
Mod(R) by module categories of connective rings, only this time instead of the resolution
coming to us from a pullback square, we construct one by hand. The result below is a
refinement of Theorem C.

Theorem 3.7. Let R → S be an 1-connective map of −1-connective rings such that π−1R
is a finitely generated π0R-module. Then for any truncating invariant E, E(R) → E(S) is
an equivalence. Moreover, if f is n-connective, then TC(R)→ TC(S) is (n− 1)-connective.

Proof. Choose generators x1, . . . , xn ∈ π−1R as a π0R-module. We will build an R-module X
whose cells correspond to the free monoid on the set {x1, . . . , xn} such that its endomorphism
ring is connective. We will then embed Mod(R) fully faithfully into Mod(End(X)), and show
that the cofibre is also the module category of a connective ring. Doing the same for S, and
comparing, we will obtain the result.

To construct X, set X0 = R, and choose a free module of rank n in degree −1 to hit the
generators xi of X in degree −1, and let X1 be the cofibre. π−1X1 is canonically identified
with n copies of π−1X0 indexed on the xis. We can then repeat this process, constructing
Xi as the cofibre of a free module of rank ni hitting the generators of Xi−1, which are
indexed on words of length i in the xi. Let X = colimiXi. Note that X is connective
because the map Xi → Xi+1 is zero on negative homotopy groups by construction. We
claim that End(X) = limi(map(Xi, X)) is connective. More generally, we will show that
map(X, Y ) = limi map(Xi, Y ) is connective for any Y that is connective as a spectrum.
The individual terms map(Xi, Y ) are connective because Y is connective as a spectrum and
Xi are built out of finitely many cells of degree 0. Thus it suffices to show that any map
Xi → Y can be extended to Xi+1, so that the lim1-term that could potentially contribute
to π−1(map(X, Y )) vanishes. But this follows since the obstructions to making an extension
lives in π−1Y , which vanishes.

We now show that the thick subcategory generated by X contains R. The Xi filtration
makes X into a filtered R-module, with associated graded a free module on the free monoid
generated by the xi. We will construct a filtered self map σxi : X → X such that on the
associated graded, xi is left multiplication by xi

10. The obstruction to extending a filtered
map defined until Xk−1 to Xk at the kth step in the filtration is the map θ in the diagram
below:

10As pointed out to me by Robert Burklund, there is a universal example, the trivial square zero extension
S ⊕

⊕n
1 Σ−1S, which one can show by obstruction theory admits an E1-map to R for any −1-connective

R sending the classes in degree −1 to the classes x1, . . . , xn. This gives an alternate way to construct the
module X and self maps σxi via basechange from the universal example.

13



Σ−1Rnk

· · · Xk−1 Xk · · ·

· · · Xk Xk+1 · · ·

Rnk+1

θ

θ has to be null since the map Xk → Xk+1 is 0 on π−1 by construction. Thus we can produce
the dashed arrow in the diagram. Since π0 of the space of nulhomotopies for an individual
component Σ−1R is exactly π0R

nk+1
, we can choose the nulhomotopy so that the map on

the associated graded is as desired.
Now note that the cofibre of X by all of the σxis is just R, so that R is in the thick

subcategory generated by X. Let 〈X〉 be the thick subcategory of Mod(R) generated by X,
and let 〈X〉/〈R〉 denote the localization of 〈X〉 away from the thick subcategory generated
by R. Morita theory gives an equivalence 〈X〉 = Mod(End(X))ω, and we thus have a
localization sequence

Mod(R)ω → Mod(End(X))ω → Mod(End〈X〉/〈R〉(X))ω

We claim that End〈X〉/〈R〉X is also connective. To understand this endomorphism ring,
we observe that the Xi are cofinal among perfect R-modules mapping to X. This means that
End〈X〉/〈R〉(X) is computed as colimi map(X,X/Xi), so it suffices to show map(X,X/Xi) is
connective. But X/Xi is connective as a spectrum, and as we have shown, map(X, Y ) is
connective whenever Y is connective as a spectrum.

Finally, we note that X ⊗R S has exactly the same properties as an S-module, and in
fact X → X ⊗R S is i-connective by Lemma 3.1. However due to the possibility of lim1,
this only guarantees that End(X)→ End(X⊗R S) as well as the maps of endomorphisms in
the cofibres are (i − 1)-connective. Nevertheless, the contribution of the lim1-term to π0 is
square zero, so since truncating invariants are nil-invariant [LT19, Theorem B], we learn that
E(End(X))→ E(End(X⊗RS)) is an equivalence, and similarly for the localized ring. By the
localization sequence, the E(R)→ E(S) is also an equivalence. Since End(X)→ End(X⊗R
S) is (i−1)-connective, it induces an i-connective map on TC, so via the localization sequence,
the original map R→ S induces an (i− 1)-connective map on TC.

Remark 3.8. The connectivity bound for TC may not be optimal in the above theorem,
and the finiteness hypothesis might not be necessary. Also, if one of the xi is chosen to be
zero, End(X) vanishes on every additive invariant by the Eilenberg swindle. This means
that we have really proven that the suspension of Uloc(R) is Uloc of a connective ring.

Question 3.9. To what extent do Theorem 3.5 and Theorem 3.7 generalize?
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For instance, can Theorem 3.5 be generalized to other finite limits of sufficiently connec-
tive ring maps? The results proven here are certainly not the most general: for example the
methods of this section are capable of proving that for a sufficiently connective map of rings
R→ S with a Zn-action that is trivial in low degrees, E(RhZn)→ E(ShZ

n
) is an equivalence

for any truncating invariant E.

4 The main theorems

We now put together the results so far to prove the main theorems A and D, as well as
Theorem 4.2, which are stated where they are proven for convenience.

Theorem A. K(Lf1Sp) ∼= K(LK(1)S), there is a cofibre sequence split on π∗

K(jζ) K(LK(1)S) ΣK(Fp)

and a pullback square

K(jζ) TC(jζ)

K(Zp) TC(ZhZp )

y

Let F be the fibre of the map TC(jζ)→ TC(ZhZp ). Then F [1
p
] = 0. For p > 2, F is (2p− 2)-

connective and π2p−2(F/p) ∼=
⊕∞

0 Fp. For p = 2, F is 1-connective and π1F ∼=
⊕∞

0 F2.

Proof. The first statement is just Proposition 2.2, and the cofibre sequence is Proposition 2.3.
We now show that the cofibre sequence is split on π∗. After inverting p, K(jζ) → K(ZhZp )
is an equivalence by Corollary 3.6, so the map is null by Lemma 2.4. Thus the cofibre
sequence splits on π∗ after inverting p. Because K∗(Fp) = K∗(Fp)[1

p
] in positive degrees and

is torsion, we obtain the desired result in degrees 6= 1. On π1, one observes that jζ/(p, v1)
and jζ/(2, η, v1) are zero in K0(jζ), so that the cofibre sequence is a short exact sequence on
π1, so it splits since K0(Fp) = Z is projective.

Corollary 3.6 gives a pullback square

K(jζ) TC(jζ)

K(ZhZp ) TC(ZhZp )

y

and gives the connectivity claims for F . By applying Theorem 2.1 to ZhZp , we learn that

K(Zp) ∼= K(ZhZpp ), so that this pullback square agrees with the one in the theorem statement.
It remains to prove the claims about the first nonvanishing homotopy group of F .
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To compute π1 of the vertical fibre for p = 2, we first observe from the second pullback
square in Corollary 3.6 that it s the same as π1 of the fibre of K(τ≤2ShZ)→ K(ZhZ2 ), where
the action on τ≤2S is (necessarily) trivial. From Land–Tamme (see the proof of Theorem 3.5),
we get a pullback square

Uloc(τ≤2ShZ2 ) Uloc(τ≤2S2)

Uloc(τ≤2S2) Uloc(τ≤2S2 �
τ≤2S2×τ≤2S2
τ≤2ShZ2

τ≤2S2)

y

We claim that there is an equivalence of E1-algebras τ≤2S2 �
τ≤2S2×τ≤2S2
τ≤2ShZ2

τ≤2S2
∼= τ≤2S2[z].

To see this, we first apply the formula in [LT22] (see [BL21, Example 4.9]), which gives an

equivalence of E1-algebras τ≤2S2 �
τ≤2S2[ε0]

τ≤2S2[ε−1] τ≤2S2
∼= τ≤2S2[z]. It suffices then to show that

τ≤2S2 �
τ≤2S2[ε0]

τ≤2S2[ε−1] τ≤2S2
∼= τ≤2S2 �

τ≤2S2×τ≤2S2
τ≤2ShZ2

τ≤2S2

To do this, we use the observation in [LT22] (see also [BL21, Section 4]) that R1 �R4
R2
R3

just depends on the span R1, R3 and the unital R1 − R3-bimodule R4. Thus it suffices to
show that τ≤2S[ε0] and τ≤2S × τ≤2S define isomorphic unital τ≤2S − τ≤2S-bimodules. But
indeed, they are both symmetric bimodules, and τ≤2S[ε0] is a free E0-τ≤2S-algebra on ε0, so
by sending ε0 to (1, 0) ∈ π0(τ≤2S× τ≤2S) we get an isomorphism.

The same argument for Z2 instead of τ≤2S2 shows that Z2 �Z2×Z2

ZhZ2
Z2 = Z2[z]. From

Proposition 3.3, we then learn that K2(τ≤2S2[z],Z2[z]) ∼= HH0(Z2[z];Z/2[z]) ∼= Z/2[z]. By
comparing the Land–Tamme pullback squares for τ≤2ShZ and ZhZ2 , sinceK2(τ≤2S2,Z2) = Z/2,
this shows that K1(τ≤2ShZ2 ,ZhZ2 ) is infinitely many copies of Z/2.

At odd primes, as before, it suffices to show that π2p−1K(`p�`p×`p`hZp
`p,Zp[z])/p is countably

generated. To do this, we will first study it’s underlying spectrum, which is a tensor product.
We claim that the natural map jζ ⊗jhZζ `hZ → `p is a p-completion, where we consider jζ → `

as a Z-equivariant map with a trivial action on jζ . To see this, we consider the commutative
diagram below, where the horizontal arrows are given by 1 minus the action of 1 ∈ Z.

jζ jζ jζ · · ·

`p `p `p · · ·

The horizontal maps are jζ
hZ and `hZp module maps respectively. Since the action of 1 ∈ Z

on π∗`p is 1 mod p, the horizontal maps are zero on π∗ mod p, so the colimit along the
horizontal maps are zero p-adically. Moreover the fibres of each horizontal map is jζ

hZ and
`hZp respectively. Thus we have produced a filtration of jζ as a jζ

hZ-module that basechanges
p-adically to a filtration of `p as a `hZp module, proving the claim.

As a consequence, we obtain that the map `p⊗jζhZ jζ → `p⊗`hZp `p is an equivalence after

p-completion. We now filter jζ via the homotopy fixed point filtration. Namely, (τ≥∗`p)
hZp
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gives a filtration on jζ . The map jζ → `p is also a filtered map, where `p is given the
Postnikov filtration.

In what follows, C∗(Zp;R) = colimi(C
∗(Z/pi;R)) for R an E∞-algebra denotes the alge-

bra of continuous cochains on Zp with coefficients in R. Up to p-completion, it is also given
by the tensor product R⊗RhZR, where R has the trivial Z-action. Taking the tensor product
jζ/p ⊗jζhZ jζ in filtered rings gives a spectral sequence converging to the homotopy of the
tensor product. We know that the tensor product is (jζ ⊗jζhZ jζ)/p ∼= C∗(Zp; jζ/p). The
associated graded of jζ is a Z-algebra since it is the homotopy fixed points of the associated
graded of `p, which has the Postnikov filtration. We thus have isomorphisms

gr jζ/p⊗gr jζ
hZ gr jζ ∼= gr jζ/p⊗gr jζ/p

hZ gr jζ/p ∼= C∗(Zp; gr jζ/p)

Thus we learn that the spectral sequence for (jζ⊗jζhZ jζ)/p degenerates. π∗ gr jζ/p = Fp[ζ, v1]
since the Adams operations act trivially on π∗`p mod p, so the associated graded of the
homotopy ring of this tensor product is Fp[ζ, v1]⊗ C∗(Zp;Fp).

The spectral sequence for jζ/p⊗jζhZ jζ maps to the one coming from the tensor product
of filtered rings `p/p ⊗jζhZ jζ . The E1-page of the spectral sequence for `p/p ⊗jζhZ jζ is the
homotopy ring of gr `p/p ⊗gr jζ

hZ gr jζ ∼= gr `p/p ⊗gr `p/p
hZ gr `p/p ∼= gr `p/p ⊗Fp C

∗(Zp;Fp).
Thus the E1-page is Fp[v1]⊗Fp C

∗(Zp;Fp), so the map of spectral sequences is surjective and
thus both spectral sequences degenerate. We also learn that jζ/p ⊗jζhZ jζ → `p/p ⊗jhZζ jζ
is an isomorphism on π∗ in even degrees because at the level of E1-pages it is the map
Fp[ζ, v1]⊗Fp C

∗(Zp;Fp)→ Fp[v1]⊗Fp C
∗(Zp;Fp)

Using the formula for � in the case the action is trivial as we did for p = 2, we obtain
an equivalence of E1-rings jζ �

jζ×jζ
jhZζ

jζ ∼= jζ [z]. Thus we have an E1-algebra map

jζ [z] ∼= jζ �
jζ×jζ
jhZζ

jζ → `p �`p×`p`hZp
`p

Since � is the tensor product on underlying spectra, we learn that mod p, this map is an
isomorphism in even degrees, so we learn that π∗(`p �`p×`p`hZp

`p/p) = Fp[v1, z] as a ring. It

follows that HH0(Zp[z]; π2p−2`p �`p×`p`hZp
`p/p) = Fp[z] so using Proposition 3.3, we learn that

π2p−1K(`p �`p×`p`hZp
`p,Zp[z])/p is Fp[z], which indeed is countably generated.

Using the formula for � in the case the action is trivial as we did for p = 2, we obtain
an equivalence of E1-rings jζ �

jζ×jζ
jhZζ

jζ ∼= jζ [z]. Thus we have an E1-algebra map

jζ [z] ∼= jζ �
jζ×jζ
jhZζ

jζ → `p �`p×`p`hZp
`p

Since � is the tensor product on underlying spectra, we learn that mod p, this map is an
isomorphism in even degrees, so we learn that π∗(`p �`p×`p`hZp

`p/p) = Fp[v1, z] as a ring. It

follows that HH0(Zp[z]; π2p−2`p �`p×`p`hZp
`p/p) = Fp[z] so using Proposition 3.3, we learn that

π2p−1K(`p �`p×`p`hZp
`p,Zp[z])/p is Fp[z], which indeed is countably generated.
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Question 4.1. Is the boundary map K(Fp)→ K(jζ) in Theorem A null?

We saw in the above proof that the map is null after inverting p, so that Question 4.1 is
essentially a p-adic question.

Next, we give a formula for K(SpωT (1)):

Theorem 4.2. There is a cofibre sequence split on π∗

K(jζ ⊗ Spω≥1) K(SpωT (1)) ΣK(Fp)

and a pullback square

K(jζ ⊗ Spω≥1) TC(jζ)

K(Fp) TC(ZhZp )

y

Proof. First note that

K(jζ ⊗Q) K(LK(1)S⊗Q) 0

is a cofibre sequence since jζ ⊗Q ∼= LK(1)S⊗Q. Thus combining this with cofibre sequence
from Theorem A via the localization sequences for rationalization, we get the claimed cofibre
sequence.

To obtain the pullback square, we again consider what happens when we rationalize.
Then jζ ⊗Q ∼= QhZ

p , so

K(jζ ⊗Q) TC(jζ ⊗Q)

K(Qp) TC(QhZ
p )

y

is not only a pullback square, but the vertical fibres vanish. By combining this pullback
square with the one for jζ in Theorem A, we obtain the claimed pullback square.

Finally, the splitting of the cofibre sequence at the level of π∗ follows exactly as in the
proof of Theorem A. Namely, after inverting p, the cofibre sequence becomes a split cofibre
sequence by Lemma 2.4, which shows that the cofibre sequence is split on π∗ in degrees 6= 1
since K(Fp) is p′-torsion in degrees 6= 0. In degree 1, one gets a short exact sequence on
homotopy groups since K0(Fp)→ K0(jζ ⊗ Spω≥1) is null, and this short exact sequence splits
since K0(Fp) ∼= Z is projective.

Theorem D. There is a fibre sequence X → K(Sp≥2)→ K(Fp) split on π∗, where X is the
total fibre of the square
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TC(Sp) TC(Zp)

TC(jζ) TC(ZhZp )

• For p > 2, X is (2p− 3)-connective, so K0(Sp≥2) = Z with generator [S/(p, v1)].

• For p = 2, X is connective with π0X =
⊕∞

0 Z/2, and the torsion free quotient of
K0(Sp≥2) is generated by [S/(2, η, v1)].

Proof. Consider the diagram of cofibre sequences given by tensoring the first localization
sequence of rings with jζ and applying K-theory. We use Proposition 2.3 to identify the
lower sequence.

K(Sp≥2) K(Sp) K(Lf1Sp)

K(Fp) K(jζ) K(LK(1)S)

y

The right vertical map is an equivalence by Theorem A, so the left square is a pullback
square. Thus the fibre K(Sp≥2) → K(Fp) is the fibre K(S) → K(jζ) which by comparing
the DGM squares for S with the pullback square in Theorem A yields the pullback square.
The claims about X come from the claims about the vertical fibres in the pullback square
of Theorem A. Namely, fib(TC(Sp)→ TC(Zp)) is (2p− 2)-connective by Proposition 3.3, so
combining this with the connectivity bound in Theorem A gives the claim.

The splitting on π∗ of the cofibre sequence follows from a similar argument as in the
proof of Theorem A. Namely, the map K(S2)[1

p
] → K(Fp)[1

p
] is an equivalence, because

fib(TC(Sp) → TC(Zp))[1
p
] ∼= fib(TC(Sp[1

p
]) → TC(Zp[1

p
])) = 0 by Proposition 3.4, and

fib(TC(jζ) → TC(ZhZ
p ))[1

p
] = 0 by Corollary 3.6. In particular, the cofibre sequence is split

after inverting p, and since πiK(Fp) = πiK(Fp)[1
p
] in nonzero degrees, the cofibre sequence

is split on homotopy in nonzero degrees. In degree 0, it is a short exact sequence homotopy
groups since the map K0(Fp)→ K0(jζ) is null, and must be split since K0(Fp) is projective.

The remaining thing to justify is that S/(p, v1) for p > 2 and S/(2, η, v1) for p = 2 are
generators of the torsion free quotient of K0. The map K(Sp≥2)→ K(Fp) is on K0 exactly
this torsion free quotient, and the generator of K0 was seen to be as claimed in the proof of
Proposition 2.3.

5 The K-theory sheaf

In this section we define the K-theory sheaf K∆, and explain how it classifies stable tensor
ideals, refining the classification of thick tensor ideals of the Balmer spectrum. After doing
so, we extract some consequences of our main theorems.
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Recall that if C is a small rigid symmetric monoidal stable category11, the Balmer spec-
trum of C, Spec∆(C), allows one to classify thick tensor ideals of C [Bal05]. To each open set
O of the Balmer spectrum, there is a finite localization LO(C) given by localizing away from
objects whose support doesn’t intersect O. By associating to each O the algebraic K-theory
of LO(C), we obtain the K-theory sheaf K∆(C) on Spec∆(C), which is a sheaf of E∞-rings.

Knowing K∆(C) allows one to in particular refine the classification of thick tensor ideals
to a classification of stable tensor ideals. This is due to the following elementary result of
Thomason:

Proposition 5.1 (Thomason [Tho97]). Given a small stable category C, there is a bijection
between dense stable subcategories C ′ ⊂ C and subgroups of K0(C), given by the assignment
C ′ 7→ K0(C ′) ⊂ K0(C).

Here, a dense subcategory of a stable category is one such that the inclusion induces an
equivalence on idempotent completions. It follows from Proposition 5.1 that every stable
tensor ideal is given by a thick subcategory C ′ ⊂ C and a submodule of K0(C ′) as a K0(C)-
module. K0(C ′) can be extracted from K∆(C) as follows: since K-theory commutes with
filtered colimits, we can assume that C ′ is a compact stable tensor ideal. Its support is then
a closed set ZC′ of the Balmer spectrum, and we let OC′ denote the open complement. We
have a cofibre sequence K(C ′)→ K(C)→ K(LOC′ (C)), allowing us to extract K0(C ′).

We essentially ran the above process of extracting K(C ′) in the proof of Theorem D
to obtain a description of K(Sp≥2) as the fibre of K(Sp) → K(Lf1Sp). The following is a
consequence of Theorem D.

Corollary 5.2. The dense stable subcategories of Spω≥2 for p > 2 are in bijection with
subgroups of Z, and the dense stable subcategories of Spω≥2 at the prime 2 are in bijection
with subgroups of Z⊕

⊕∞
0 F2.

The following corollary is a consequence of the fact that the map K0(Sp≥1)→ K0(SpωK(1))
is surjective (in fact it is an isomorphism).

Corollary 5.3. Any compact K(1)-local spectrum is the K(1)-localization of a type 1 spec-
trum.

Proof. One observes that the K(1)-local spectra which are K(1)-localizations of type 1 spec-
tra are a stable subcategory of SpωK(1) corresponding to the subgroup of K0 that is the image
of K0(Sp≥1).

Note that apriori all that is clear is that a compact K(1)-local spectrum is a retract of
the K(1)-localization of a finite type 1 spectrum.

Question 5.4. Given a compact K(1)-local spectrum, is there a way of finding a lift of it
to Sp≥1?

11it is sufficient for C to be monoidal, in which case K∆(C) is a sheaf of E1-rings
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Next we interpret Theorem 1.5 in the corollary below. We can say that a stable subcat-
egory C ′ ⊂ C is p-saturated if ⊕p1X ∈ C ′ =⇒ X ∈ C ′.

Corollary 5.5 (Burklund–Levy). The nonzero p-saturated stable subcategories of Spp are
specified by a type n and a Z[1

p
]-submodule of Z[1

p
].

6 Constructing type 2 spectra

In Theorem D, it was shown thatK0(Sp≥2) ' Z⊕
⊕∞

0 F2 at the prime 2. Here we explain how
to construct type 2 spectra representing the 2-torsion classes. The key point is understanding
the boundary maps in the K-theory of a localization sequence, which is the purpose of the
Lemma 6.2 below.

Construction 6.1. Let C
i−→ D

π−→ E be a localization sequence, and let f : d→ d for d ∈ D
be a map. Suppose f has the property that its cofibre is in C. Then if Map(d, d)f denotes
the connected component containing f , taking the cofibre gives a map cof : Map(d, d)f →
B Aut(cof f).

On the other hand, since cof f vanishes in E, composing with π gives a map π :
Map(d, d)f → Aut(πd).

Recall also that given an object c ∈ C, there is a canonical map B Aut(c) → C' →
Ω∞K(C)

Lemma 6.2. In the situation of Construction 6.1, the diagram below commutes up to a sign,
where δ is the boundary map associated to the localization sequence.

Map(d, d)f Aut(πd) Ω∞+1K(E)

B Aut(cof f) Ω∞K(C)

π

cof
δ

Proof. Recall (eg see [HLS22, Definition 3.4]) that Ω∞K(C) can be modeled via the Q-
construction Ω| Span(C)|, where Span(C) is the category of spans of objects in C, with
composition given by pulling back. The natural map C' → Ω∞K(C) sends x to the span
0← x→ 0.

Consider the diagram below in | Span(C)| where an arrow with a perpendicular line
indicates the direction of a span as a map in Span(C). All of the 2-cells are the obvious
ones, except for the one labeled πf−1, where πf−1 is the difference between the 2-cell and
the obvious one.
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0

0 Σπd 0

0 0 Σπd 0 0

πd 0 πd

0

0

p

p p

pp
p p

p

p

πf−1

Because the boundary is sent to 0, this diagram represents a map S2 → | Span(C)|.
Since it is given by conjugating πf−1 by the triangles in the diagram above, it represents
the image of f in Ω∞+1K(E). To compute δ of this, consider the lift of the diagram below
to | Span(D)|:

0

cof f Σd cof f

cof f cof f Σd cof f 0

d 0 d

0

0

p

p p

pp
p p

p

p

f−1

Here f−1 is the map of spans identifying d with the fibre of d → cof f . Note there is a
subtlety about making the diagram lift the previous one: the maps Σd→ Σπd are given by
multiplication by f , and the maps d → πd are the canonical ones. This lift is a diagram
in the shape of D2 and has the property that its boundary S1 lives in | Span(C)|. Thus
the boundary S1 represents δ applied to the map S2 → | Span(E)|. But by composing the
composable maps in the boundary, we find that the boundary is canonically homotopic to
(up to a sign) {cof f} → C' → Ω∞K(C). By the naturality of this construction in f , we
have shown the diagram commutes as claimed.
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Given the lemma, we now find explicit generators for K1(ShZ). There is an equivalence
ShZ ' S[ε−1], and a localization sequence

Mod(S[ε−1]) Mod(S[x]) Mod(S[x±1])

where we identify S[ε−1] = EndS[x](S[x]/x). From Proposition 3.3, and examining the long
exact sequence on homotopy groups, we learn that K1(S[ε−1]) = K1(S) ⊕ coker(Z/2[x] →
Z/2[x±1]) where Z/2[x] and Z/2[x±1] are HH0(π0R; π1R), where R = S[x],S[x±]. In the proof
of Proposition 3.3, the Hochschild homology term is coming fromH0(BGL(π0R);π2(BGL(R)),
which is isomorphic to H0(BGL1(π0R);π2(BGL1(R)) since the bimodule is symmetric. Thus
those K2 classes come from the classes ηxi ∈ π2B Aut(R). Thus to find representatives of the
K1 classes, we need to compute the boundary map K2(S[x±1])→ K1(S[ε−1]) on these classes,
but this exactly what Lemma 6.2 is made to do. Namely, note that ηx−i ∈ π1 Aut(S[x±1])
lifts to π1 of the component of MapS[x](S[x],S[x]) containing the map xi, by composing with
the automorphism η on the target.

Taking the cofibre, we get a nontrivial element, which we call gi of π1(B Aut(cof f)) =
π0(Aut(cof f)). gi is the map obtained as the horizontal cofibre of the diagram

S[x] S[x]

S[x] S[x]

η

xi

xi

Since gi is nontrivial, for i = 1 the only possibility is that g1 = 1 + βxη. In general, we
can use the fact that ηx−i is in the image of the analogous localization sequence for S[xi] to
learn that gi = 1 + βxiη.

We can describe these maps in terms of ShZ. Let Xi be the module corresponding to
S[x]/xi. It has a cellular filtration by the other Xj, defined inductively by observing that
Xi can be constructed as the cofibre of the map ζi−1 : Σ−1ShZ → Xi−1 given by hitting the
generator in π−1.

ζi extends to a self map of ζi : Σ−1Xi → Xi corresponding to βxi
12, which we give the

same name. Thus we have proven:

Lemma 6.3. K1(ShZ,S) is generated by [gn], where gn is the automorphisms gn = 1 + ηζi :
Xi → Xi.

The map K1(ShZ,S)→ K1(jζ
hZ,ZhZ2 ) is an isomorphism (see Corollary 3.6), so the latter

is generated by automorphisms of the same name. By Theorem D, the image of these class
along the map K1(jζ

hZ) → K1(LK(1)S2) ' K1(Lf1S2) → K0(Spω≥2) are the generators of
2-torsion classes in K0.

12Explicitly, this map is the composite Xi → ΣX2i → ΣXi, where we view Xi as the first and last i cells
of X2i.
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To actually compute the representatives in K0, we first observe that these 2-torsion classes
are in the kernel of the map K1(LK(1)S) → K1(LK(1)S ⊗ Q), because η is. It follows from
the localization sequence that these classes lift to K1(SpωT (1)). To actually produce lifts, we
observe that the diagram below (thought of in Mod(LK(1)Sω)) commutes up to homotopy:

Xi Xi

Xi Xi

1

2 2

gi

Let ḡi denote an automorphism of Xi/2 obtained by taking vertical cofibres. Since 1
represents the trivial element of K1 and the class is 2-torsion, ḡi represents the same K1-
class as ḡi by additivity of K-theory, but constitutes a lift to K1(SpωT (1)). Note that ḡi is not
gi ⊗ cof 2, as the latter has trivial K1 class, as cof 2 is 0 in K0(LK(1)S).

The desired K0 classes are then obtained as the image via the map K1(SpωT (1)) →
K0(Sp≥2) from the localization sequence Sp≥2 → Sp≥1 → SpωT (1). This can be again com-
puted by Lemma 6.2, but we need to use a trick to account for the fact that the self map
we need to cofibre by is no longer in degree 0. This trick is an instantiation of the rotation
invariance phenomenon studied in [Lur15].

Lemma 6.4. Let C be a stable category. Then the map Uloc(C)→ Uloc(C[x±1
2 ]) is naturally

a split inclusion.

Proof. There is a localization sequence C[x2]x2−nil → C[x2]→ C[x±1
2 ]. Because C is canoni-

cally a retract of C[x2], it will suffice to show that the map F : C[x2]x2−nil → C[x2] → C is
naturally null on Uloc. There is a cofibre sequence of functors in Fun(C[x2]x2−nil)

Σ2U U F
x2

where U is the underlying functor, and x2 is the natural transformation given by multiplica-
tion by x2. Since Uloc is additive and Σ2U and U induce the same map after applying Uloc,
it follows that F is null upon applying Uloc.

Out next goal is to lift Xi ⊗ cof 2 to Sp≥1. Recall that Xi was constructed as the cofibre
of a map ζi−1 : Σ−1LK(1)S → Xi−1. Let us fix a v1-self map on cof 2, so that a power of v1

will indicate a power of that particular self map. After tensoring with cof 2, we can lift maps
from SpωT (1) to Sp≥1 after sufficient composition with v1. Thus we can inductively construct

finite type 1 spectra X̃i such that its T (1)-localization is Xi ⊗ cof 2 and it has a lift of v?
1ζi

so that the cofibre is X̃i+1.
Choose a v1 self map on X̃i+1, and note that ḡiv

ji
1 lifts to a self map g̃i of X̃i+1 for ji

sufficiently large.

Proposition 6.5. The boundary map K1(SpωT (1))→ K0(Sp≥2) sends ḡi to [cof g̃i]− [cof vji1 ],

where the cofibres are taken as self maps of X̃i. Thus these are a basis of the 2-torsion of
K0(Sp≥2), and these along with cof(2, η, v1) generate K0(Sp≥2).
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Proof. The later statements follow from the claim about the boundary map by applying
Theorem D, so we will just prove the claim about the boundary map. By Lemma 6.4, it
suffices to do so after tensoring the localization sequence with S[x±1

2 ]. Let u1 denote the
v1-self map of Xi ⊗ cof 2, except shifted into degree 0. It is an automorphism so we have
[ḡi] = [ḡiu

ji
1 ]− [uji1 ]. But ḡiu

ji
1 and uji1 lift to self maps of X̃, so by applying Lemma 6.2 and

observing that x2 is an automorphism so can be ignored when taking cofibres, we learn that
the boundary is [cof g̃i]− [cof vji1 ].

We now run this consruction explicitly for g1. Here cof 2 has a v4
1-self map, g1 is 1 + ηζ,

and σ is a lift of ζv4
1. since ησ is 2-torsion, so we can form the map ησ : Σ8S/2→ S→ S/2,

where the first map in the composite is given by a nulhomotopy of 2ησ. g̃1 is then given by
the automorphism of cof 2 named v4

1 + ησ, so the first 2-torsion K0 class is [S/(2, v4
1 + ησ)]−

[S/(2, v4
1)].

Even though we can explicitly construct representing K0 classes, the computation of
K0(Sp≥2) remains somewhat inexplicit. For example, given a type 2 spectrum X, where
p > 2, it does not obviously give a way of building X out of S/(p, v1) via cofibre sequences.
On the other hand, any type 1 spectrum has an explicit way of being built out of S/p: namely
its cell decomposition naturally decomposes into Moore spectra. Thus we ask:

Question 6.6. Is there an explicit way, given a type 2 spectrum, to build it out of repre-
sentatives of the generating K0 classes via cofibre sequences?

Question 6.7. At the prime 2, given a type 2 spectrum, is there a way of computing its K0

class?

One possible approach to Question 6.7 would be to try to understand the isomorphisms
K0(Sp≥2) ∼= im(K1(SpωK(1)))

∼= K1(SpωK(1))/K1(Sp≥1).

7 Euler characteristics

We turn to studying the torsion free part of K0(Sp≥n), and use Theorem 4.2 an answer to
[HS99, Problem 16.4] at height 1. We study natural homomorphisms out of this torsion free
part called Euler characteristics. We explain how the image of the Euler characteristic χBP〈n〉
is an obstruction to small type n+ 1 spectra such as Smith–Toda complexes existing. Using
the existence of spectra such as ko and tmf, we compute the image of χBP〈n〉 at heights ≤ 2,
and conjecture what the answer is in general.

Recall from [MR99] that a spectrum X is said to be fp of type at most n if it is bounded
below, p-complete, and X ⊗ Y is π-finite for any Y ∈ Sp≥n+1. Let fpn denote the full
subcategory of Sp consisting of fp spectra of type at most n. Note that fp−1 is the category
of p-torsion π-finite spectra.

Lemma 7.1. K(fp−1) ' K(Fp) and K(fp0) ' K(Zp).
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Proof. The t-structure on spectra is bounded on fp0 and fp−1 with hearts finitely generated
discrete Zp-modules and p-nil discrete Zp-modules respectively. The result then follows from
the nonconnective theorem of the heart [AGH19] (which is a refinement of [Bar15]), and
Quillen’s devissage [Qui73].

Remark 7.2. We could alternatively have used Theorem 2.1 to prove Lemma 7.1, but the
method above seems more direct.

Tensoring sets up a pairing χ : K(fpn)⊗K(Sp≥n+1)→ K(fp−1) ' K(Fp), which we call
the Euler characteristic. If we fix a class [X] ∈ K0(fpn), we obtain a map χX : K(Sp≥n+1)→
K(Fp). On π0, identifying K0(Fp) ' Z, this map takes Y to Σi(−1)i logp |πi(X ⊗ Y )|.

Euler characteristics are in general nontrivial homomorphisms. For example, if BP〈n〉 is
the (p-completed) truncated Brown–Peterson spectrum, then it is easy to see that on the
generalized Moore spectrum S/(pi0 , vi11 , . . . vinn ), χBP〈n〉 takes the value Πij. In fact χBP〈n〉 is
shown in [BL23] to give an equivalence K(Sp≥n+1)[1

p
]→ K(Fp)[1

p
]. In particular, the image

of the map on π0 integrally is generated by some power of p.
Euler characteristics can be used to obstruct the existence of small type n spectra. For

example, because ko2 /η ∼= ku2 and ko2 and ku2 are in fp1, the image of χku2 is a multiple
of 2 (in fact it is exactly 2). It follows that the Smith–Toda complex S/(2, v1) cannot
exist, because χku2(S/(2, v1)) would be 1. This example shows the image of χBP〈n〉 is an
obstruction to Smith–Toda complexes and other small type n + 1 spectra from existing.
Below we compute the image of χBP〈n〉 at low heights.

Proposition 7.3. The table below lists the image of χBP〈n〉 : K0(Sp≥n+1)→ Z at some low
heights. In all these cases, there exists X ∈ fpn such that χX has image Z.

prime
n 2 3 5 > 5

0,−1 Z Z Z Z
1 2Z Z Z Z
2 8Z 3Z Z Z
3 ? ? ? Z

Proof. In all the cases in the table where the answer is Z, there exists a Smith–Toda complex
V (n) [Tod71], which has the property that V (n)⊗BP 〈n〉 = Fp, so 1 is indeed in the image.

For n = 1, p = 2, we observe that ko2 is a type 1 fp spectrum such that ko2/η = BP 〈1〉
and ko2 ⊗ S/(2, η, v1) = F2. It follows that 2[ko2] = [BP 〈1〉] in K0(fp1) and that the image
of χko2 is 1. Thus the image of χBP〈1〉 = 2χko2 is 2.

For n = 2, p = 2, we use [LN12], which shows that 2-adically there is an E∞-map
tmf → tmf1(3) = BP 〈2〉 realizing at the level of mod 2 cohomology the quotient A�E(2)→
A � A(2). It follows that tmf1(3) ⊗tmf F2 is the dual of A(2) � E(2), which is an exterior
algebra on three generators in even degrees. Since tmf is connective with π0(tmf) = Z2, the
map K0(tmf) → K0(F2) = Z is an isomorphism, and we learn that tmf1(3) is perfect over
tmf and [tmf1(3)] is the class 8 ∈ K0(tmf). tmf is fp of type 2: in [BE20], a type 2 spectrum
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Z was constructed with a v1
2-self map with the property that Z/v2 ⊗ tmf ' F2. It follows

that χtmf has image Z, and that χBP〈2〉 = 8χtmf .
For n = 2, p = 3, [BP04] constructed a v1

2 self map on the spectrum Y (2) ⊗ V (1),
where Y (2) is the 8-skeleton of S � α1. Moreover, there is an equivalence Y (2) ⊗ tmf '
BP〈2〉 ⊕ Σ8 BP〈2〉 (see Remark 2.3 of ibid.). It follows that (Y (2) ⊗ V (1))/v2 has χtmf

equal to 2, and 3[tmf] = 2[BP〈2〉]. Thus the image of χBP〈2〉 must be 3Z, and the image of
χBP〈2〉⊕Σ tmf is Z.

Question 7.4. What is the generator of the image of χBP〈n〉 : K0(Sp≥n+1) → Z? Is it the
size of the maximal finite p-subgroup of the height n Morava stabilizer group?

Indeed, in the cases studied in Proposition 7.3, the result agrees with the size of the
maximal p-subgroup of the Morava stabilizer group at that height (see [Hew95]).

Question 7.5. Does there always exist an X fp of type n such that χX : K0(Sp≥n+1)→ Z
is surjective?

The truth of Question 7.5 would suggest that fp spectra and finite spectra are dual in the
sense that the extent of the failure of small type n + 1-spectra to exist corresponds exactly
to that of the failure of BP〈n〉 to be a regular fp type n ring closest to the sphere.

Now we turn to answer a question of Hovey–Strickland [HS99]. They considered two
homomorphisms, χ, ξ out of K0(SpωK(n)). At height n, prime p, suppose that M∗ is a

graded p-torsion graded abelian group of periodicity |vn|pi. Then lenM∗ is defined to be
1
pi

∑|vn|pi−1
0 logp |M∗|. χ : K0(SpK(n)) → Z is defined as [X] 7→ lenπeven(E(n)∗ ⊗ X) −

lenπodd(E(n)∗⊗X) and ξ : K0(SpK(n))→ Z[1
p
] is defined as [X] 7→ len πeven(X)−lenπodd(X).

They then ask:

Problem 7.6 ([HS99, Problem 16.4]). What is the relationship between χ and ξ? Is χ an
isomorphism? If not, is Q ⊗ χ an isomorphism? Can one say anything about the higher
K-theory of SpωK(n)?

In Theorem 4.2, we described K(SpωK(1)) as a spectrum. We now answer the rest of
Problem 7.6 for n = 1.

Proposition 7.7. For n = 1, ξ = 0, and χ is an isomorphism.

Proof. The generator of K0(SpωK(1)) ' Z is LK(1)S/p, so we need merely check the result on
the generator. π∗LK(1)/p is an exterior algebra on π∗K(1) on ζ, which is an odd degree class,
so we see that ξ evaluates to 0. E(1)/p is K(1), so χ(S/p) = 1.

In [BL23], we answer most of Problem 7.6 at all heights.

Proposition 7.8 ([BL23]). χ is an isomorphism after inverting p and ξ is 0.

Remark 7.9. In fact χ is closely related to χBP〈n−1〉: there is a commutative diagram
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K0(Sp≥n) Z

K0(SpK(n)) Z

χBP〈n−1〉

χ

Indeed, it suffices to check this rationally, where it can be easily checked on a generalized
Moore spectrum by the results of [BL23].

Question 7.10. Is the map K0(Sp≥n) → K0(SpωK(n)) an isomorphism after quotienting by
p-torsion?13

Because of Remark 7.9, a positive answer to Question 7.10 would imply that the remaining
part of Problem 7.6, determining the image of χ, is equivalent to Question 7.4.
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