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1. INTRODUCTION 

The purpose of this paper is twofold. Firstly, it gives a thorough introduction to the 
topological cyclic homology theory, which to a ring R associates a spectrum TC(R). We 
determine TC(k) and TC(k[ 1) E w h ere k is a perfect field of positive characteristic and kc&] 
its dual numbers, and set the stage for further calculations. Secondly, we show, as conjec- 
tured in [l], that the cyclotomic trace from Quillen’s K(R) to TC(R) becomes a homotopy 
equivalence after p-adic completion when R is a finite algebra over the Witt vectors W(k) of 
a perfect field of characteristic p > 0. This involves a recent relative result of McCarthy, 
stated in Theorem A below, the calculation of TC(k) and the Quillen’s theorem about K(k), 

and continuity results for TC(R) and K(R), the latter basically due to Suslin and coworkers. 
In particular, we obtain a calculation of the tangent space of K(k), i.e. the homotopy fiber of 
the map from K(k[e]) to K(k) given by E H 0. 

The functor TC(R), and more generally TC(L) where L is a “functor with smash 
product”, for short FSP, was initially introduced in [2], but its more formal properties were 
maybe not so well elucidated in that paper. The present account focuses upon the concept of 
cyclotomic spectra. These are a special class of equivariant S’-spectra for which the 
associated fixed point spectrum (suitably defined) with respect to finite subgroups of the 
circle are equivalent to the original spectrum. The defining extra property is analogous to 
the property shared by free loop spaces 3X, namely that the fixed set (3X)’ is homeomor- 
phic to 9X, for C finite. Indeed the S’-equivalent suspension spectrum of the free loop 
space is a cyclotomic spectrum. More generally, Biikstedt’s topological Hochschild homo- 
logy spectrum THH(L) is always a cyclotomic spectrum, so they are in rich supply. The 
construction TC ( - ), given in can be applied to any cyclotomic spectrum, and applied to 
THH(R), or more generally to THH(L), gives TC(R) or TC(L) . If R (or L) is commutative 
then TC(R) (or TC(L)) is a homotopy commutative ring spectrum. It is ( - 2)-connected in 
the sense that x,TC(R) = 0 for i < - 2; in general n-l TC(R) # 0. 

THEOREM A (McCarthy). Let R -+ R be a surjection of rings whose kernel is nilpotent. 
Then the square 

WC 
K(R) - TC(R) 

1 1 
K(R) = TC(@ 

becomes homotopy Cartesian after projinite completion. 

‘Supported in part by the Danish Natural Science Research Council. 

29 



30 Lars Hesselholt and Ib Madsen 

The proof of this result is unfortunately indirect. It is based upon Goodwillie’s calculus 

ofjiinctors and a reduction of his to the case where R is a split extension of R by a square 
zero ideal. 

Let k be a perfect field of characteristic p > 0 and let F : W(k) + W(k) be the Frobenius 
homomorphism of its (p-typical) Witt vectors. The kernel of F - 1 is the Witt vectors of 
IF, = kcF), i.e. ker(F - 1) = Z,. If k is finite then coker(F - 1) = Z,; it vanishes if k is 
algebraicly closed, but can be a large group in general. In Section 4.5 below we calculate 
TC(k) to be 

THEOREM B. Topological cyclic homology of a perfectfield k of positive characteristic is 

the generalized Eilenberg-MacLane spectrum 

TC(k) = HZ, V X’H(coker(F - 1)). 

It follows that the connective cover TC(k) [0, co) is H(Z,, 0); this is also the value of 
K(k); by [3,4], and the cyclotomic trace trc: K(k); + TC(k)[O, co) is an equivalence. For 

a &-algebra we define continuous versions of K(R) and TC(R) to be 

KtoP(R) = holim K(R/p’), TCtoP(R) = holim TC(R/p’), 
- - 

cf. [S]. 

THEOREM C. Suppose that A is a W(k)-algebra which is finitely generated as a W(k)- 
module. Then 

(i) KtoP(A$ 1: TCtoP(A)i [0, co) 

(ii) TCtoP(A$ N TC(A)i, 

(iii) KtoP(A$ 1: K(A$. 

The first part of this result follows from the two previous theorems. The second part is 
proved in Section 6 below. The final third part is a recast of results from [6]. This use quite 
different methods from the rest of the paper, and is proved in Appendix B. In conclusion we 
have 

THEOREM D. For the rings of Theorem C, K(A): = TC(A)k [0, co). 

It is fair to remark that TC(R); is of course not very easy to evaluate. It does however 
lend itself to analysis by the well-tried methods of algebraic topology more readily than 
K(R) does. This is demonstrated here for R = k[c] and in [7, S] when R is the Witt vectors 
of a finite field. One might hope in the future to get a through grasp of TC(A) for the rings of 
Theorem C, and maybe even a closed formula when A is a k-algebra. 

We next describe the tangent space of algebraic K-theory, 

K(k[c], (E)) = hofiber(K(k[e]) + K(k)), E H 0, 

when k is a perfect field of characteristic p > 0. We have K,(k[e], (E)) Q Q z 

HC,- I(~[E], (E)) ($3 Q = 0 by a theorem of Goodwillie [9] and on the other hand, by 
Theorem A, K(k[c], (E)) A N TC(k[s], (a)) * . Since the latter turns out to be rationally trivial 
we get in turn 

WC&l, (4) = TWC&l, (4). 
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We evaluate the right-hand side in Section 8. The result is best stated in terms of the big 
Witt vectors. Let W(R) denote the multiplicative group of the power series with constant 

term 1, and let W,(R) be the quotient of big Witt vectors of length n, i.e. 

W,(R) = (1 + XR[Xa)“/(l + X”+‘R[X-j)“. 

The second Verschiebung 1/2 : W,_ 1(k) + W2._ 1 (k) is induced from X H X2. If we write 
TC,(R) = n,TC(R) then we have from Section 2: 

THEOREM E. For the dual numbers k[e], TC(k[s], ( )) E is a generalized Eilenberg-Mac- 

Lane spectrum with 

the even dimensional homotopy groups being zero. 

We remark that for p = 2 the groups TC2._ l(k[e], ( E )) are k-vector spaces but that for 
p > 2 there is higher torsion in general. We also note that our results are in agreement with 

the Evens-Friedlander calculation of Ki(F,[E]) f or i 6 3 and p 2 5 [lo]. Indeed the above 

theorem gives TC,(IF,[a]) = Z/p 8 Z/p for p # 3 and TC,(F,[&]) = Z/9. 

Let us finally mention the following general result, proved in Section 2.3, 

THEOREM F. For any commutative ring A, 

no THH(A)Cp’ E W, + 1(A), 

the p-typical Witt vectors of length n + 1. 

The cyclotomic structure of THH(A) induces two maps 

R, F : THH(A)Cp” + THH(A)+. 

In earlier writings on topological cyclic homology, and in particular in [2], R was called 
Cp and F was called D. The reason for the change of notation is that x0(R) and no(F) under 
the identifications of theorem F become the restriction map and Frobenius homomor- 
phism, respectively, from W,, ,(A) to W,(A). Thus, the new notation is in agreement with 
the notation used for Witt vectors. 

We say that a spectrum T is connective of ni(T) = 0 when i c 0. A space will mean 
a compactly generated topological space which is weakly Hausdorff, i.e. the diagonal 
X c X x X is closed when the product is given the compactly generated topology. We shall 
use equivalence to mean a map which induces isomorphisms on homotopy groups, and 
a G-equivalence to be a G-equivariant map which induces an equivalence on H-fixed sets for 
all closed subgroups H c G. Unless otherwise stated, G will denote the circle group S’. 

We use T(L) to denote the G-equivariant spectrum associated with THH(L). For a ring 

A we let T(A) and TC(A) be the functors associated to the FSP defined by A. 

2. THE TOPOLOGICAL HOCHSCHILD SPECTRUM 

2.1. Throughout this paper G will denote the circle group, C, or just C the cyclic group of 
order r and J the quotient G/C. We recall briefly some notions from equivalent stable 
homotopy theory. The standard reference is [ 111. 
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A G-prespectrum indexed on a “complete G-universe” 9 is a collection of G-spaces t(V), 
one for each finite dimensional sub-inner product G-space V c 9, together with a transitive 
system of G-maps 

o:t(v)+nW-‘t(w). 

Here W - V denotes the orthogonal complement of V in W. It is a G-spectrum if the 
structure maps rr are all homeomorphisms. A map f: t + t’ of G-prespectra consists of 
G-maps f( V) : t(V) + t’(V) which commute strictly with the structure maps. The category 
of G-prespectra indexed on 9 is denoted G@?# and GY% denotes the full subcategory of 
G-spectra. The forgetful functor 1: GY9 --) G9V2 has an idempotent left adjoint L, spectrifi- 
cation. It is given by the colimit over the structure maps 

Lt(V) = lim QW-‘t(W) 
- 
WC@ 

provided that each u is an inclusion, i.e. induces a homeomorphism onto its image. This, for 
instance, is the case when t is good as discussed in Appendix A. We show in Lemma Al that 
any G-prespectrum can be replaced by an equivalent one which is good. Thus we shall 
tacitly assume that our G-spectra are of the form T = Lt for some good G-prespectrum t. 

Suppose that C is a closed subgroup in G with quotient J and let t E GBQ. There are two 
possible notions of an associated fixed point prespectrum in JP@, in [l l] denoted tC and 
act, respectively. For each Y t %’ we choose W c ‘42 such that WC = V and such that the 
union of the W as V runs through the f.d. sub-inner product spaces of 9’ is all of 9. Then 

the Vth spaces are 

tC( V) = t( V)C, (@“r)(V) = t( W)C 

respectively, and the structure maps are the evident ones. There is a natural map 

which on I’th spaces is given by the composite 

where the map on the right is induced from the inclusion of the C-fixed set 
0 = (W - V)’ c W - V. If T E GYQ is a G-spectrum then TCe JYQ, but to get 
aCT E JYQ we must spectrify; (PCT = LO’(lT). 

LEMMA 2.1. Suppose t is a good prespectrum and let T = Lt. Then there is a canonical 
homeomorphism 

(@T)(V) z lim f2”c-Yt(W)c 
- 
WC@ 

and the maps in the colimit on the right are closed inclusions. 
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Proof: We have 

T(W) = 3 nz-“t(2) 
zxw 

SO 

lim RWC-YT(W)C = lim sZwE-” lim a”-“t(Z) ’ kz lim 
- 
w3v 

z [_& ) z;;;:v*~c-“(*z-w~(~)c~ 

The colimit on the right runs over Ed. sub-inner product spaces W, Z c Q such that 
Z 3 W 3 I/. In this index category, the full subcategory of pairs Z 3 W with Z = W is 
cofinal, so 

lim RWc-vT(W)C g lim RZC-vt(Z)C. 
- - 
wzv ZCQ 

These spaces form a G-spectrum, which therefore is (DCT, compare [ 111. cl 

We recall that the smash product of a G-space X and a G-prespectrum t is the 
G-prespectrum whose Vth space is X A t(V) with the obvious structure maps. For a G- 
spectrum T we write X A T for the G-spectrum L(X A T). We note that if T = Lt, then 
X A T 2 L(X A t). 

Let j : 92’ + 42’ be the inclusion of the G-trivial universe and let D be a J-spectrum. We 
call j*D with its J-action forgotten the underlying non-equivariant spectrum of D. 

PROPOSITION 2.1. Suppose C is a cyclic p-group. For G-spectra T there is a cojbration 

sequence of non-equivariant spectra 

TAC r: TC E. (Qc,T)c/cp. 

Here T,, = EC+ Acj*T is the homotopy orbit spectrum. 

ProoJ Let i?G be the mapping cone, 

EG, 4 So : EG, 

where n maps EG to the non-basepoint in So. We can smash with T and obtain a cofibra- 
tion sequence of G-spectra which in turn induces a cofibration sequence of non-equivariant 
spectra 

[EG, A TIC-% TCA [EG A TIC. 

The map sc,: TCp + (DCpT factors as 
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where &, is the map which on Vth spaces is the map 

lim (Q 
- 
WC$l 

“-“(E”G A t(IV)))Cp --f $u RWc’-Yt(W)C~ 

c 

induced from the inclusion Wcp c W. Here we have used Lemma 2.1 to identify the 
right-hand term. We claim that is an equivalence. The maps in both limit systems are closed 
inclusions, so it is enough to prove that the map at step W in the limit is an equivalence, for 
all W. This, on the other hand, is a fibration with fiber the equivariant mapping space 

F(S I w-v pv”-v 
, i?G A t(W))% 

Regarded as C-spaces, W ‘p c W is the singular set, so the Sw-v/SwcP-v is a based free 
C-CW-complex. An induction over the C-cells shows that it is enough to consider 

F(Sk A C+, E”G A t(W))C z F(Sk, ,!?G A t(W)). 

Finally, this is contractible since ,!?G is non-equivariantly contractible. 
The identification of the first term goes in two steps. Let i : 42’ --f 92 be the inclusion. The 

forgetful functor i* : GY% + G9’4fc has a left adjoint i, given by 

i,D = L(W H Swewc A II(W 

Since the functors i* and F(X, - ), the pointed mapping space functor, commute the same 
hold for their left adjoints i, and X A - . Thus, the counit of the adjunction i,-i i* induces 

a map 

e: i,(EG+ A i*T) + EG+ A T. 

It follows from [ll, 11.2.8 and 11.2.123 that e is a G-equivalence. Finally, we have the transfer 
equivalence 

z:EG+ Aci*T N [i,(EG+ A i*T)IC 

of [ll, p. 971. Combined with e this identifies the first term. cl 

Example. It is illuminating to consider the case of a suspension G-spectrum x:X. We 
let EGH denote a universal H-free G-space, that is EGHK N * when HnK = 1 and 
EGHK = 8 when HnK # 1. Then on the one hand we have the tom Dieck-Segal splitting 

(Z’X)c = J v GWG,HWW+ A c,dH) 
H<C 

[12], and on the other hand, @‘(&‘$‘X) = Z:G”X’ by Lemma 2.1. Moreover, the map 
sc : @2X)’ --t @‘(QX) is simply the projection onto the summand H = C. 

2.2. Suppose C is finite of order r. Then the rth root pc : G -+ J is an isomorphism of groups, 
and a J-space X may be viewed as a G-space p:X through pc. We also use pc to view 
J-spectra as G-spectra. 
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When D is a J-spectrum indexed on %‘, then the G-spaces 

for V c pz!&‘, form a G-spectrum indexed on pE@. From now on we fix our universe. Let 
c(n) = @ with G acting through the nth power map, g-z = g”z. Then we set 

and note that 

Identifying Z and rZ in the usual way we get 9 = pz?@. Thus, a J-spectrum D indexed on 
Qc determines a G-spectrum indexed on Q and we denote this p:D. 

Definition 2.2. A cyclotomic spectrum is a G-spectrum T indexed on 92 together with 
a G-equivalence 

rc:p;(DCT + T 

for every finite C c G, such that for any pair of finite subgroups the diagram 

commutes. 

LEMMA 2.2. Let t be a good G-prespectrum and let T = Lt. Then T is a cyclotomic 

spectrum if for each index space V c % and each jinite subgroup C c G there is a G-map 

rc(V):pzt(V)c + t(pc*VC) 

subject to the following conditions 

(i) For each pair V c W c $YX the diagram 

SP”W - w A p;t(v)c I?!!.. s/m - V’ A t( pc* VC) 

P:kv= I I 6 

PmvC 
k(W) 

+ t(pZWC) 

commutes. 
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(ii) For each pair ofjnite subgroups the diagram 

commutes. 
(iii) For any V c % the induced map on colimits 

lim !2p~wc-vpljt(W)C + lim W~Rc-Yt(p~WC) 

WC; WC; 

is a G-equivalence. 

ProoJ The map in (iii) composed with the isomorphism of Lemma 2.1 gives a G- 
equivalence 

rc(V):(PzWT)(V) -+ T(V). 

Because of (i) the maps rc(V) form a map rc : pz(DCT + T and this is a G-equivalence. 
Finally, the diagrams in Definition 2.2 commutes by (ii). Cl 

We call a G-prespectrum t with the structure above a cyclotomic prespectrum. A map of 
cyclotomic (pre)spectra is a map of G-(pre)spectra which strictly commutes with the r-maps. 

Example. The free loopspace 9(X) is the space of unbased maps from S’ to X. 
Rotation of loops defines a G-action on Y(X). Suppose C is a subgroup of G of order r. 

Then there is an equivariant homeomorphism 

A,: Y(X) --f p&Y(X)c; A,(J)(z) = n(zr). 

We can use this to give the suspension prespectrum of U(X) the structure of a cyclotomic 
prespectrum. Indeed, we define 

rc(V):pc*(Sy A L?(X)+)c = Spzvc A pzY(X)C, 3 Spsvc A L?(X)+ 

and (i), (ii) and (iii) in the lemma/definition are readily verified. 
The map sc, from 2.1 and the cyclotomic structure map rc, give rise to a map of 

G-spectra 

and hence a map 

R,: TC- + TC* (1) 
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of the underlying non-equivariant spectra, which will play a fundamental role in the 
following. We call it the rth restriction map. 

Let 2 c !# be a representation. Then, slightly more general, we let TZ denote the smash 
product G-spectrum T A Sz. The cyclotomic structure maps give a G-equivalence 

rc,z : p:QcTZ + TpsZc. (2) 

Indeed, by Lemma 2.1 

pc#@(T A Sz) z pc”(@T) A p&S”. 

We note that TZ(V - 2) No T(V). Again we get a map of non-equivariant spectra 

R .T,C- 
r,Z* + Tp”_zc.. (3) 

We can restate Proposition 2.1 for cyclotomic spectra as 

THEOREM 2.2. For any cyclotomic spectrum T and anyfd. sub-inner product space Z c % 

there is a cofibration sequence of non-equivariant spectra 

where (TZ),,,--. is the homotopy orbit spectrum. 

2.3. Suppose T is a cyclotomic spectrum, then so is pf @‘T but in general pc TC is not. We 
proceed to explain the situation. First we recall the notion of a family of subgroups. 

A collection 9 of subgroups of G is called a family if it is closed under passage to 
subgroups. A map f: X + Y of G-spaces (G-spectra) is called an F-equivalence if the 

induced map f H on H-fixed points is an equivalence for all HER, or equivalently, if 
f A E9+ is a G-equivalence. Here E9 is the join of the free contractible G/Z-I-spaces E(G/H) 

for H ~9. It is the terminal object among G-spaces with orbit types G/H, H ~9, and G- 
homotopy classes of maps; cf. [ 131. We let 9p denote the family of finite p-subgroups of G. 

Definition 2.3. (Madsen [l]) A p-cyclotomic spectrum is a G-spectrum T indexed on 
@ together with an 5$-equivalence rP: &@‘pT + T. 

Of course a cyclotomic spectrum is p-cyclotomic for every prime p. Also note that for 
a p-cyclotomic spectrum, Theorem 2.2 holds for the prime p. 

PROPOSITION 2.3. Let T be a cyclotomic spectrum. Then pzTC is a p-cyclotomic 

spectrum for every prime p which does not divide the order of C. 

Proof: For point set topological reasons we consider instead the spectrum 
S = pz L((T’)‘); compare Appendix A. We want to define a G-map 
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that is, a G-map 

We have a G-map 

p2i~(p~T’((pc’)*I/)C)Cp = Pc*(P~,T’((pcl)*V)Cq)C p~k)c - Pc*T’(p~~((Pc’)*V)C~)C. 

Now the representations pzP(( pc ‘)* V)‘p and (pc ‘)* ( pzp V ‘p) agree when p does not divide 

the order of C. El 

2.4. In this section we define the topological Hochschild spectrum. It is a cyclotomic 
spectrum whose zeroth space is naturally C-equivalent to Bokstedt’s topological Hoch- 
schild space THH(L). 

We briefly recall the definition of THH(L) and refer to [14,2,15] for details. Let I be the 

category whose objects are the finite cardinals n = { 1,2, . . . , n} (0 = 0) and whose mor- 
phisms are the injective maps, and let L be a functor with smash product. Then THH(L). is 

the cyclic space with k-simplices equal to the homotopy colimit 

holim F(S’o A *.. A S’~,L(S’O) A *.* A L(S’t)) 
- ,‘i’ 

and with Hochschild-type structure maps. The realization THH(L) is a G-space. More 
generally, we let THH(L; X). be the cyclic space with k-simplices 

holim F(SiO A ... A Sik, L(Sio) A a.. A L(Sik) A X) 

where X acts as a dummy for the cyclic structure maps. If X has a G-action then THH(L; X) 
becomes a G x G-space, and hence a G-space via the diagonal A: G + G x G. 

We define a G-prespectrum t(L) whose 0th space is THH(L). Let V be a f.d. sub-inner 
product space of some G-universe %!, and let Sy be the one-point compactification. Then 

and the obvious maps 

t(L)(V) = THH(L; S”) 

0: t(L)(V) + n”-“t(L)(W) 

are G-equivariant and form a transitive system. Finally, we let T(L) be the associated 
G-spectrum of the thickened G-prespectrum t’(L), that is 

T(L)(V) = lim QW-“P(L)(W). 

WCL 

In order to define the cyclotomic structure maps we need the edgewise subdivision of 
[2, Section 11. 
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The realization of a cyclic space becomes a G-space upon identifying G with R/Z, and 
hence C = C, may be identified with Y - ‘H/Z Edgewise subdivision associates with a cyclic . 

space Z. a simplicial C-space sdcZ. with k-simplices sdcZk = Zlu+ i)_ 1; the generator 
r-l + E of C acts as rkfl. The diagonal Ak + A’* ... *A’ (I factors) induces a natural 

(non-simplicial) homeomorphism 

D : Is&Z. I + I z. I 

of the realizations. Finally, there is a natural [W/rZ-action on I sdcZ.1 which extends the 
simplicial C-action, and the map D is G-equivariant when [W/rZ is identified with Iw/Z 
through division by Y. 

We consider the case of THH(L; X). . Let us write Gf(i,, . . . , ik) for the pointed mapping 
space 

F(S’o A ... A S4, L(SiO) A ... A L(S”) A X). 

Then the k-simplices of the edgewise subdivision are the homotopy colimit 

sdc THH(L; X)k = holim G:k+ 1)_ 1. 
- 
,““I’ 

We are interested in the subspace of C-fixed points. If X, is a diagram of C-spaces, then the 
homotopy colimit is again a C-space and its C-fixed set is the homotopy colimit of the 
C-fixed sets Xf. However, the C-action on sd=THH(L, X)k does not arise in this way. We 
consider instead the composite functor G,1,+ 1)_ 1 0 A, where A, : I’+ ’ + (Ik+ ‘)’ is the diag- 
onal functor. This is indeed a diagram of C-spaces and the canonical map of homotopy 
colimits 

bk:holim G~k+l)_lOAr+ holim Gzk+i,_, 
- - 
I”+, I’“+” 

is a C-equivariant inclusion which induces a homeomorphism of C-fixed sets. Let R be the 
regular representation IWC and let iR denote the i-fold direct sum. Then we get 

sdcTHH(L; X)f g holim F(SioR A . . . A SikR, ,!,(S’o) A r A . . . A ,(,ik)Ar A x)C (4) 
- 
p+, 

with C acting by cyclic permutation on L(S’) A ’ and by conjugation on the mapping space. 
Indeed, S iR = (Si) A ’ as a C-space. This ends our discussion of edgewise subdivision. 

LEMMA 2.4. Let H be a compact Lie group and let Y. be a simplicial H-space such that Yf 

is n(K)-connectedfor all k, n(K) 2 0. Suppose X is a based H-CW-complex withJinitely many 
orbit types, and such that dim X“ < n(K)for all K d H. Zf Y? is proper in the sense of [ 161 
for the occurring orbit types then the natural map 

1I:lwc Y.)I+W,lY.I) 

is an H-equivalence, 
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Proof We prove that yH is an equivalence by induction over the H-cells in X. Let X, be 
obtained from X, by adjoining an H-cell H/K+ A S”. Then we have a simplicial Hurewicz 

fibration 

F(S”, Y?) + F(X,, Y.)” + F(X,, YJH 

and the condition that dim Xx 6 n(K) ensure that its realization is quasi-fibration. We 
consider the diagram 

IF(S”, Y.K)I - IFW,, YYI - I WL y.F I 

r” I Y” I YE I 
W”, I Y.Kl) - IW,,I Y.lY - IWm I Y.V. 

The map y” is an equivalence by [16, 12.41 and we are done by induction. 
Since an H-CW-complex is also a K-CW-complex for K < H, the same argument shows 

that yK is an equivalence. This concludes the proof. 0 

PROPOSITION 2.4. The canonical map t(L)(V) + T(L)(V) is an F-equivalence, where $7 is 
the family ofjnite subgroups of G. 

Proof: We must prove that the prespectrum structure map (r : t(V) + Cl”-‘t(W) is 

a C-equivalence for any C E 9. We use edgewise subdivision to get a simplicial C-action and 
factor cr as 

The right-hand map is a C-equivalence by the lemma above. It follows from [17] that the 
simplicial spaces involved are “good” in the sense of [18] or “strictly proper” in the sense of 
[16]. Therefore, it is enough to show that the map on homotopy colimits 

hk : holim F(SoR A . . . A Si,R, L(S’o) A’ A . . . A QS’*) Al A S”) 
- 
,‘+I 

-+ holim F(SioR A ... A SW A SW-“, L(S’o) Ar A . . . A L(S’t)“’ A SW) 
- 
p+ I 

induced by the adjoints of the evaluation maps, is a C-equivalence. Furthermore, we may 
assume that W - V = 1R. We consider the map 

rk : holim F(SioR A 1.. A SW A SIR, L(S’o) hr A . . . A ,(Sit)“l A SIR A S”) 
- 
pi, 

+holirn F(SbR A . . . A SL+OR,L(Sio) hr A . . . A L(Sikfz)Ar) 
- 
,.+I 

given by the identification SIR E (S’) *’ and the stabilization L(Sik) A S’ + L(Sik+‘). It is 
a C-equivalence by [2, 3.11 and 3.121 and the approximation theorem [19, 1.61. The 
composition rk 0 2, is a map in the limit system and induces therefore a C-equivalence on 
homotopy colimits. It follows that Bk is a C-equivalence. Cl 
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2.5. In this section we define the cyclotomic structure on t(L) and T(L). For any pointed 

C-spaces X, Y, we have the obvious map 

F(X, Y)” + F(XC, YC) 

induced from the inclusion Xc c X of the fixed set. In the case at hand, this gives 
a simplicial map 

r; : sdc THH(L; X)? + THH(L; Xc), 

and we define 

to be the composite 

The maps rc(V) induce similar maps in the thickened prespectrum t’(L). In order to show 
that these makes t’(L) a cyclotomic prespectrum we need 

LEMMA 2.5. Let j be a G-prespectrum and let J be the G-spectrum associated with j’. Zf 
Jr 1: *for any Jinite subgroup r c G and j(V)G 2! *for any V c 4 then J zo *. 

Proof Let 9 be the family of finite subgroups of the circle, then J is 9-contractible. 
Since J A EP+ + J is an s-equivalence, J A ET+ is also 9-contractible. However, 
J A EF+ is G-equivalent to an 9-CW-spectrum and therefore it is an fact G-contractible 
by the St-Whitehead theorem [ll, p. 631. Now 

(J A EF+)(V) E lim a”( j’(V + W) A EP+) 
- 

W 

and jT( V) A E9t, + j’(V) is an G-equivalence since j(V)G N * . Therefore, J NGJ A EF+ 

and we have already seen that the latter is G-contractible. 0 

PROPOSITION 2.5. t’(L) is a cyclotomic prespectrum and T(L) is a cyclotomic spectrum. 

Proof: By Lemma 2.2 it is enough to show that t’(L) is a cyclotomic prespectrum. The 
map rc(V) in (5) is G-equivariant by construction so we have left to check the three 
conditions in Lemma 2.2. We leave (i) and (ii) to the reader and prove (iii). 

We first show that the maps rc(W) induce a weak equivalence 

lim (nP:“c-YpZIt’(L)(W)C)r + lim (WzWc-“tT(L)(p,* WC))= 

WCC WC& 
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when I c G is finite. Since the maps in both limit systems are closed inclusions it is enough 
to show that the connectivity of 

(nP:“c-‘p~t’(L)(W)c)r + (nP:r+“t’(L)(pc* Wc))r 

or equivalently, 

P p’cWc-Y( (sdcTHH(L; S”).)‘I)‘+ (R@‘C-Y 1 THH(L; S~~wc).l)r 

tends to infinity as W runs through the f.d. sub-inner product spaces of %. Let rrc : G + G/C 

be the projection and let H = rc; ‘(p&r)) such that I HI = 1 r 1.1 C I. Then it is proved in [2] 

that sdH = sdrsdc and that the diagram 

p: I sdnTHH(L; S”)‘I L 

D ” 

I 

p: I sdc THH(L; SW)‘1 ‘I, 

I sdr THH(L; S”zwc) I 

D ” 

I 

I THH(L; S~“wc)l 

commutes. In the top row the I-action is simplicial, and by Lemma 2.4 it is enough to prove 
that the connectivity of the map 

(RpzWC-“(sdnTHH(L; Sw),)c)r + (R@‘-“sdrTHH(L; SP~Wc)k)r 

induced from r;(W), tends to infinity with W. We can use (4) to identify the homotopy fiber 
with the homotopy colimit 

(*) holim F(SWc A SiR/SiRC ) L(S’0) Ar A . . . A jqsik)Ar A sW)H 

where we have written i = i. + ... + ik. In general, the connectivity of an equivariant 
mapping space 

AH = F(X, Y)H 

where X is an H-CW-complex, is given by 

conn(AH) 2 min(conn(YK) - dim(XK):K c H}. 

Here corm(Z) denotes the greatest integer such that xi(Z) = 0 whenever i < corm(Z), cf. 
[20]. In the case at hand, 

dim(SW” ,J siR/siRc)R) = dim(WK) ifK3C 

dim(WCK) + i dim(RK) if K $ C 

whereas, assuming that L is connective, 

conn((L(S’O) ” A ... A L(Sia)“” A SW)K) = dim(WK) + iIH:KI - 1 

= dim(WK) + i dim(P) - 1. 



K-THEORY OF FINITE ALGEBRAS 43 

In the case, K 2 C the difference tends to infinity as (iO, . . . , ik) runs through Zk+ ’ so ( * ) is 
(weakly) contractible for all W c Q. When K + C, the difference tends to infinity as W runs 

through the f.d. sub-inner product spaces of Q. 
We define an auxiliary functor a ‘: G89 + G9’% as follows. For each Z c Qc choose 

V(Z) c % such that V(Z)c = 2 and such that the union of all V(Z) is equal to 9, then define 

a’ by 

a”tMZ) = Pc*t(Uz))C 

with the obvious prespectrum structure maps. The maps rc(V) from (5) defines a map of 
G-prespectra 

rC:act+t 

the requirement in Lemma 2.2(iii) becomes that the induced map of the associated G- 
spectra be a G-equivalence. We now use Lemma 2.5 withj equal to the homotopy fiber of rc. 

We have already shown that Jr is equivalent to a point, so it remains to show that 
j(V)G N *. For any cyclic space Z., the G-fixed set 12.1 G of the realization may be identified 

with the subspace in Z,-, consisting of those 0-simplices z for which sOz = z1 soz. In the case of 
THH(L; S”) this is S”‘, and j( V)’ is the homotopy fiber of the identity. cl 

2.6. In [2] C-equivariant deloops of THH(L) were defined using the r-space machine of 
Segal and Shimakawa. We show in this section that the equivariant deloops obtained in this 
fashion are C-equivalent to the deloops t(L)(V) defined in 2.4, but first we give a brief 
discussion of I-c-spaces. 

Let Tc be the category of the finite based C-sets S, whose underlying set is of the form 
n = (0, 1, . . . , n}, based at 0. A I-c-space is a functor A from Tc to C-spaces. It is special if 
A (0) N c * and if the canonical map is a C-equivalence 

A(S v T) + A(S) x A(T) 

for any S, T E Tc. A C-spectrum A defines a special I-c-space, A(S) = S A A. 

Suppose X. : Aop + Tc is a finite simplicial C-set, then A(X.) is a simplicial C-space, 
which we want to realize. To get the correct homotopy type, however, we need that 
A(S) + A(T) be a closed C-cofibration whenever S H T is an inclusion. In [21] Segal 
obtains this by replacing A by a thickened version zA given by 

zA(S) = holim ((I-, 1 S)z Tc 1 Top,) 

where (I-, J S) is the category over S. It has ids as terminal object, so zA(S) + A(S) is 
a C-homotopy equivalence. Furthermore, an injection f: S H T induces an inclusion of 
overcategories and therefore a closed C-cofibration zA(S) + z A( T). 

Alternatively, one may consider the two-sided bar construction B(A, Tc, X). It is the 
realization of a simplicial space &(A, Tc, X) with k-simplices 

s u, A(so)xWo,S~) x .” x F(&- 1, Sk) x F(&, x) 
0, rk 
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with the coproduct taken over tuples of finite C-sets in Tc. We have 

LEMMA 2.6. B(A, Tc, 1X.1) zC IzA(X.)l,for any X.:A”‘+ Tc. 

Pro05 A bisimplicial space Y., . may be realized as (k H I Yk, .I/ or as I I H I Y., 1 11, the 
two realizations are homeomorphic. Hence, B(A, Tc, I X. I ) sc 1 B(A, Tc, X.)1. Now by [22, 
Lemma 1.33 the “evaluation map” 

w4 rc, x,) + wd 

is a C-equivalence for all k 2 0. We want the map on realizations to be a C-equivalence. 
This requires that the simplicial spaces are “good” in the sense of [18]. The space on the left 
is good, but the one on the right is not necessarily so. Therefore, we must replace it by its 
thickening zA(X.). 0 

Following [23] we define a C-prespectrum BA whose Vth space is the quotient 

BVA = B(A, rc, ~V)/B(A, rc, 00). 

Finally, recall that A(1) is a C-homotopy commutative, C-homotopy associative H-space, 
with product A(1) x A(1) -,A(1 V 1) + A(1). 

PROPOSITION 2.6.1 (Shimakawa [23]). If A(1) h as a C-homotopy inverse, then BA is an 

R-C-spectrum, that is the structure maps induce C-equivalences BvA zC RW-‘BWA. 

We have two n-C-spectra with zeroth space THH(L). The first is BTHH(L), arising 
from a special l-c-structure on THH(L), and the other is t(L), defined in 2.4. We know that 
t(L) is an R-C-spectrum by Proposition 2.4. To show that they are equivalent we construct 
a R-C-bispectrum, which contains both. 

The r,-space on THH(L) constructed in [Z] works equally well for the space 
t(L)(V) = THH(L, S’); specifically, in the notation of [2, Section 43 

W)(k s) = v I &(W, k)+ A THW,, S’1.J I. 
~:Poll~Mo 

Here II is the underlying set of the finite C-set S. In view of [2, 4.201 these r,-spaces are 
special, and we obtain R-C-spectra Bt(L)(V) for each V. Hence, the equivalence follows 
from the 

PROPOSITION 2.6.2. B W-?(L)(V) Nc t(L)(W). 

ProoJ It suffices to treat the case where W - V is the regular representation R = IWC. 
We choose a simplicial model S.’ for the circle, e.g. S.’ = A [l]/aA[l] or S.’ = A[O]. Then 
S.’ A ... A S.’ (r times) with C acting by cyclic permutation is a simplicial model SF for SR. 
From Lemma 2.4 and the Lemma above we get 

RRBRt(L)(V @ R) -cIflR@)(V@ R, S?)I -clzt(L)(V, S.R)I -cBR@)(J’). 

Since RRBR is C-homotopic to the identity functor the proposition follows. 0 
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2.7. We conclude this section with a list of some additional properties of topological 

Hochschild homology. We shall need the following extension of Bokstedt’s notion of 

a functor with smash product. 
Let L be a functor with smash product. The definition of THH(L; X) does not require 

the full functoriality of L. In effect, we only need a collection of spaces L(Y), n 2 0, with 
a x,-action together with unit and multiplication maps 

1, : S” --t L(S”) pm,n: L(P) A L(T) + L(Y+“) (6) 

where are &equivariant and E,,, x C,-equivariant, respectively, and satisfies the relations 

up to canonical homeomorphism 

0) CL~,~~(L A 1,) = L+,, 
(ii) cm,” 0 pm,” ~(l,,, A id) = p_o(id A lm)otw, 

(iii) PI+~,~ o(~~,m A 3 = ~l,m+nO(id A P,,,), 

(iv) ~~,~o(l~ A id) = id = ~,,~O(id A lo). 

In the commutative case we require, in addition, that 

w ~nl,nObn,. = /-&otw, 

where G,,,EL+,,, p rmutes the first m and last n elements and tw permutes the two smash 

factores. We call such a set of data an FSP defined on spheres. These are the monoids in 
the symmetric monoidal category of spectra which has recently been constructed by 
Smith [24]. 

We let L be an FSP defined on spheres and consider a version of topological Hochschild 
homology where we replace the index category Z by the n-fold product I”. By the approxi- 
mation theorem [19, Theorem 1.61, this will not change the homotopy type 

THH(L(“); X) N THH(L; X) for n > 0. (7) 

In more detail, for n > 0 we let THH(L’“); X). be the cyclic space with k-simplices 

holim F((Silo A . . . A Sk) A . . . A (Silk A . . . A Si*), L(Silo A . . . A Simo) A . . . A 

(I”+ 

L(S’l’ A ... A S’*) A X) 

and with Hochschild-type cyclic structure maps. For n = 0 we let 

THH(L”‘; So) = 1 N”,(L(S’))I 

the cyclic bar construction of the pointed monoid L(S’), see (39) of Section 7.1. In both cases 
the realization THH(L(“); X) is a G x &space, where the &action is induced from the 
permutation action on I”. When X = S” we get another x,-action induced from the 
&action on S”. Hence, THH(L(“); S”) becomes a G x x.x &-space which we consider 
a G x &space via the diagonal in the second factor. 
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PROPOSITION 2.7.1. Let L be a commutative FSP dejined on spheres. Then the spaces 
THH(L(“); S”), n 2 0, againform a commutative FSP dejined on spheres and the multiplication 

maps 

,u~,,:THH(L(~); S”‘) A THH(L’“‘; S”) + THH(L’“+“‘; Sm+“) 

are G-equivariant when the domain is given the diagonal G-action. Moreover, the restriction 

and Frobenius maps 

R . F . THH(L’“‘* S”)‘- + THH(L’“‘; ,Sn)c, I’ I’ > 

are C,-equivariant, multiplicative and preserve units. 

ProoJ: Let Gf be as in 2.4 and let pL, : I” + Z be the iterated multiplication functor, i.e. 
concatenation of sets and maps. Then we have 

THH(L’“); X), = holim GfopLf:+l. 

(I”)‘+’ 

We first recall that the canonical map 

can: holim Gfo&+l A holim G:O&+l+ holim Gto&,+l A Glo~i+~ 
- - - 
(I”)‘+’ (Iqk+’ (I-)&+’ x(@+ 

is a homeomorphism, when the spaces are given the compactly generated topology. Next, 
we note that there are natural transformations 

Indeed, I is concatenation of maps and if tw:(Zm)k+l x (Zn)k+l -+(Zm+n)k+l denotes the 
isomorphism of categories given by 

twtth , -.. 9imO)y . . . ?tilk? . . . ~imk)~tj107 . . . ,jnO)9 . . . ~tjlk~ . . . &k)) 

=((i ’ ’ 10, ... ,l,o~J~o~ . . . ,.h), . . . p(ilky . . . ~irnk~_hk, . . . hk)) 

then CJ is the obvious shuffle permutation covering tw followed by multiplication in L. We 
may now compose can with the map on homotopy colimits induced from 1 and u to get 
a map 

THH(L’“‘; X), A THH(L’“‘; Y)k + THH(L’“+“‘; X A Y),. 

These maps are C, x &equivariant and form, for varying k, a cyclic map. Accordingly, we 
get a G x C, x &-equivariant map 

,u,,,,: THH(L’“‘; X) A THH(L(“‘; Y) --, THH(L’“+“‘; X A Y) 
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upon realization. If we let X = S” and Y = S” we obtain the required product map. The 
unit map is given as the composition 

l,:S”+F(P A ... A so, L(SO A . . . A So) A S”) + THH(L’“‘; Sn) + THH(L’“‘; S”) 

where the first map is given by smashing with the unit map in L, the second is the canonical 
inclusion in the homotopy colimit and the last is the inclusion of the zero skeleton. We leave 
it to the reader to verify that the maps 1, and p,,, in fact make the spaces THH(L(“); S”) 
a commutative FSP defined on spheres. 

The spaces THH(L’“); S”) again form a commutative FSP defined on spheres and the 
Frobenius maps F, are multiplicative. Indeed, the multiplication maps pm,” are G- 
equivariant and the unit maps 1, factor through the inclusion of the G-fixed set. Finally, we 

consider the restriction map which, we remember, is defined as the composite 

R . THH(L’“‘- S”) lc, I. 9 * % 1 sdc N THH(L’“‘- Sn)c,~ 1 3 - 

2 (sd,THH(L’“); S”)++ ITHH(L’“‘; S”). I’.. 

The subdivision sdcpL,,, defines a product on the second and third term and the naturality 
of the homeomorphism D makes it multiplicative. Moreover, sdc,,p,,,, restricts to sdc-n,n 
under rb, and hence I;, is multiplicative. Cl 

Next, let L be an FSP, then the associated n x n-matrix FSP is defined by 

M,(L)(X) = F(n, n A L(X)) 

wheren = {O,l, . . . , n} with 0 as basepoint. In view of Proposition 2.6 above we may restate 
[2, 3.9 and 4.241 as 

PROPOSITION 2.7.2 (Morita invariance). T(L) NG T&f,(L)). 

For an FSP L and V c %‘, we define the underlying spectrum Ls of L by 

L’(V) = holim F(S’, L(S’) A S”). 

I 

LEMMA 2.7. Suppose f: L1 + L2 is a natural transformation such that fs is an equivalence 

ofspectra. Then T(f): T(L,) + T(L,) is a G-equivalence. 

3.WlTTVECTORS 

3.1. Let A be a commutative ring and let p be a fixed prime. The associated ring W(A) of 
(p-typical) Witt vectors will play an important role in the sequel, and we briefly recall its 
definition, refering to [25,26] and Bergman’s lecture in [27] for details. The underlying set 
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W(A) = ANo; the infinite product. The ring structure is specified by the requirement that the 

ghost map 

w : W(A) + AN0 

given by the Witt polynomials, 

WI-J = a0 

w1 = a”o + pa1 

w2 = as2 + pa4 + p2a2 

(8) 

be a natural transformation of functors from rings to rings. More concretely, 

a + b = (so@, b), sl(a, b), . . . ) 

a-b =(pda,b),pl(a,b), . ..) 

for certain integral polynomials si and pi which depend only on (co, . . . , ai). The integrality 
follows from the Kummer congruences 

XP" E ./' (mod p”), x E Z. 

Hence, W(A) is well-defined for any ring. The ai are called the Witt coordinates of the Witt 

vectora = (ao, al, . . . ) and the wi are called the ghost or phantom coordinates. The element 

1 = (LO, . . . )rz W(A) is the unit. 
_ There are operators 

F: W(A) + W(A) (Frobenius homomorphism) 

V:W(A)+W(A) (Verschiebung map) 

w:A+ W(A) (Teichmiiller character) 

characterized by the formulas 

(9) 

wo, WI, *-. ) = (WI, w2, ... ) 

J+0,4, . . . ) = (0, 00, al, . . . ) 

w(x)=(x,O,O, . ..). 

Any relation which holds true in ghost coordinates also holds in W(A). This is obvious for 
a Z [l/p]-algebra since the ghost map is a bijection. In general, it follows from the 
functoriality W: every algebra in the quotient of a p-torsion free algebra which embeds in 
a h[l/p]-algebra. It follows that F is a ring homomorphisms, that ‘v is additive, that w is 
multiplicative, and that we have the relations 

X’ V(Y) = ww-J9, FV=p, VF = multYC1). (10) 



K-THEORY OF FINITE ALGEBRAS 49 

Moreover, when 4 is an [F,-algebra, Y(1) = p and F = W(q) where cp is the Frobenius 

endomorphism of 4, F(aO, al, . . . ) = (&a~, . . . ). For any UE w(A), 

U = f V'(CO(Ui)) (11) 
i=O 

where the ai are the Witt coordinates of a. 
The additive subgroups V”W(4) of W(4) is an ideal by (10) whose quotient 

W”(4) = W(A)/V”W(A) 

is the ring of Witt vectors of length n in 4. The elements in W,(A) are in l-l correspondence 
with tuples (uo, . . . , a, _ 1) with addition and multiplication given by the polynomials si and 
pi. Hence, W(4) is the inverse limit of the W,(A) over the restriction maps 

R : Wn(4 -, Wn - I (-4, R(uo, . . . ,u,-I) = (uo, ... ,u.-2). 

It follows that W(4) is complete and separated in the topology defined by the ideals 
VW(A), n > 1. 

THEOREM 3.1 (Witt). If k is a perfect Jield of positive characteristic p then W(k) is 

a complete discrete valuation ring with residue$eld k and uniformizing element p. In particular, 

W(F,) = 27,. 

Proof. We have already seen that the ideals VW(k) define a complete and separated 
topology on W(k) and that W(k)/VW(k) = k. Therefore, it suffices to show that I/” W(k) is 
generated by p”. Now by (10) 

p”. W(k) = I’(l)“* W(k) = V”(F”(W(k))) 

and since F = W(q) is invertible the statement follows. 0 

We shall also need the ring of big Witt vectors W(4). Its underlying set is AN but its nth 
ghost coordinate is w, = Ia,. da;ld and again one requires that w : W(4) + AN be a natural 
transformation of rings. As an abelian group, W(4) may be identified with the multiplicative 
group of power series with constant term 1. The isomorphism is given by 

1(1:W(4) 5~ (1 + XA[X])“, $(al, a2, a3, . . . )(X) = fi (1 - 8iX’). (12) 
i=l 

We call the ai (resp. the wi) the Witt coordinates (resp. the ghost coordinates) of a Witt 
vector. Again there are Frobenius and Verschiebung operators, one for each n 2 1, defined 

by 

~nhn) = W”tn 

Uad = 
amln if n 1 m 
o otherwise. 

(13) 
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We note that under the isomorphism (12), 

Fn(P(X)) = fi p(5i)9 ~“vYm = P(X”), 
i=l 

where tr, . . . ,<. are the formal nth roots of X. The formulas 

(14) 
F,V, = r, V,F, = 1/,(l) 

F,I/, = VJ, if (I, s) = 1 

are easily verified in ghost coordinates. 
We call a subset S c N a truncation set if it is stable under division. Since w, only 

involves the ad where d 1 n, we may replace N above by any truncation set S to obtain a ring 
W&4) with underlying set AS. If S c S’ are two truncation sets then the obvious projection 
W,,(A) + W,(A) is a ring homomorphism. One can use (13) to define 

F, : W,(A) + Ws,n(A), vn : Ws,nW) + Ws(4. 

We note that W(A) = Wil,p,p~, . ..)(A) such that F = F, and I/ = V,. Moreover, if 
(n) = {d 1 d divides n> then W,+,(A) = W{,,.,(A). 

3.2. In Section 3.3 below we relate Witt vectors to x,-,T(A)~* but first we recall some notions 
from abstract induction theory, cf. [28,13]. We shall only need this when G is the circle 

group, but in this section G may be any compact Lie group. 
We let Or(G : 96) denote the category of canonical orbits G/H with H finite, and all 

G-maps. Let M be an abelian group valued bifunctor on Or(G: F), i.e. M = (M*, M,) is 
a pair of functors from Or(G; 9) to abelian groups with M* contravariant and 
M, covariant, and M*(G/H) = M,(G/H) for all H. M is called a Mackey functor if 
i,i* = id for any isomorphism i: G/H + G/H and if the double coset formula holds: if 
H, H’ c K and K = IJi HXiH’ then 

where I$ : G/H + G/K is the projection and I, : G/xHx- ’ + G/H is right multiplication 
by x. 

A Green functor is a Mackey functor M for which M(G/H) is a ring, and such that for all 
f: G/H -+ G/K, f * is a ring homomorphism and f, is a map of M(G/K)-bimodules when 
M(G/H) is considered an M(G/K)-bimodule viaf*, i.e. 

f*w*(YN =f*(x)Y, f*(f*(Y)x) = YfJX) 

for any x E M(G/H) and y E M(G/K). 
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Now, suppose T is a G-spectrum indexed on a complete G-universe 4%. For H c G the 
fixed point spectrum is given by 

TH N F(G/H+, T)‘. 

A G-map f: G/H + G/K induces a map f * : T K + TH. If H and K are finite, one has the 
equivariant transfer f ! : E$‘G/K + + C$G/H + . The map f ! depends on choosing a G-embed- 
ding of G/H into some V c U; one gets f! : Sv A G/K, + Sv A G/H+ and defines f, to be 
the composite 

TH z F(Sv A G/K+, YvT)Go: F(Sv A G/K+, C’T) g TK. 

The homotopy class off, is independent of the choice of embedding. Now the statements of 
[ll, IV 6.3, 5.6 and 5.81 easily translate to the following. 

PROPOSITION 3.2. Let G be a compact Lie group and let T be a G-spectrum indexed on 
a complete G-universe. Thefunctor which to G/H assigns n*(TH) and to f: G/H + G/K assigns 

the homomorphisms f * and f, is a Mackey functor on Or(G; 9). If T is a G-ring spectrum 

then this becomes a Green functor. Zf H c K and 72:: : G/H + G/K is the canonical projection 

then the composite (n& o(n$* is multiplication by (z;),(l). q 

Let H c G be a finite subgroup. In Section 2.1 we used the norm map N : ThH + Tn. We 
can include H in EH as an orbit to get a map 

ln:T = T AHH+ + T AHEH+ = ThH. 

Later in the paper we need the following. 

LEMMA 3.2. Let T be as above and let rcH : G + G/H be the projection. Then the diagram 

1 I/ b 

N 

ThH - TH 

is homotopy commutative. 

Proof We consider the diagram 

T AHH, 5 (TAH+)H f, T* 

I I II 
T A&H+ 5 (T A EH+)H A TH 

where the equivalences on the left are as in the proof of Proposition 2.1 and where the maps 
c collapses H (rep. EH) to a point. The left-hand square homotopy commutes and the 
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right-hand square is strictly commutative. We claim that the following diagram homotopy 
commutes: 

F(G+, T)’ -% F(G/H+, T)’ 

II II 
F(H+, T)” -2 F(H/H+, T)H 

I 2 I I 
(T A H+)H .A (T A H/H+)? 

For the lower square this follows from [l 1, V, 9.71. For the upper square note that we have 
a pullback 

G “II, G/H 

T incl T incl 

H -% HIH. 

Therefore, the corresponding square of transfers, and hence the upper square homotopy 
commutes. 0 

3.3. We apply the general theory discussed above to the topological Hochschild spectrum 
T(A), cf. Section 5.1. Let a: : G/C, + G/C,, be the projection, s > 1. We have the maps, with 
V, only well-defined up to homotopy: 

F, = ($)* : T(A)” + T(A)c 

(16) 
V, = (7q)* : T(A)G + T(A)% 

They are called the rth Frobenius and rth Verschiebung, respectively. We shall write F (resp. 
V) instead of F, (resp. V,) when the subgroups considered are p-groups. We note that F, is 
just the obvious inclusion map T(A)‘- -+ T(A) ‘I. Recall from (1) the restriction maps 
R,: T(A)c- -P T(A)‘I. On homotopy groups we have 

LEMMA 3.3. For any commutative ring A the following relations hold on z*(T(A)~‘): 

(1) F,&Y) = Fr(Wr(~h 

(2) Vr',(F,(x)y) = xv,(y), 

(3) F,P, = r, PJ, = VT(l), 
(4) FrVs = VsF,, iffr, s) = 1, 
(5) R,F, = F,R,, R,I/, = VsR,. 

Proof: Relations (l)-(4) follow from Proposition 3.2 since T(A) is a G-ring spectrum 
when A is commutative. For example, the double coset formula (9) shows that 

F,Vr = 1 + t + t2 + . . . + f-’ 
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where t E C,, is any generator. But the &-action extends to the circle G and is therefore 

trivial on homotopy groups, so F,Vr = r. Finally, (5) is an immediate consequence of the fact 

that R, : pf,, T(A)‘- + p),T(A)‘a is G-equivariant. 0 

PROPOSITION 3.3. For any commutative ring A the sequence 

is exact. 

Proof: The fundamental cofibration sequence of Theorem 2.2 gives a long exact se- 

quence of homotopy groups 

. . . - x1 T(A)cpm-’ 2 K,,T(A)&+ QT(A)~~- “, ~07’(A)C---+ 0. 

We claim that the map rc,.: T(A) -+ T(A)hcp. induces an isomorphism on no(-). Indeed, the 

skeleton filtration of EC,. gives rise to a first quadrant spectral sequence 

EZ = H,(C,G GJYA)) =E- ‘&%%c,. 

whose edge homomorphism is induced by I,-,.. Since T(A) is a connective spectrum the 

claim follows. Moreover, Lemma 3.2 shows that V” = N 0 rc,_. 
It remains to show that I/“: n,,T(A) -+ QT(A)‘*’ is injective. Since F”V” = p” by Lemma 

3.2(3), we are done if A has no p-torsion. To treat the general case suppose that A + A is 
a surjection of rings and that A has no p-torsion. We consider the diagram 

in which the rows are exact. We prove by induction on n that the vertical maps are 
surjective. Since A is commutative 

ni7’(A) z HHi(A), i = 0, 1. 

Therefore, the spectral sequence of the skeleton filtration gives an exact sequence 

HH1(A) 1, aJ(A),,c,. + A/p”A -+ 0. (17) 

But HH,(-) preserves surjections so the proof is complete by induction. 0 

The proposition shows that there is a set bijection QT(A)~P- g A”+l. We proceed to 
define a preferred bijection. Consider for any finite subgroup C, c G the diagonal map 
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A, : THH(A)e 5 (sdc, THH(A),+ ) (sdc, THH(A).)‘r I-% I THH(A)? ) . 

The first map is given by f~ f A ... Af (r factors), the second is the inclusion of the 
zero-skeleton and D is the homeomorphism from 2.4. 

LEMMA 3.3. The compositions R, 0 Ar and F, 0 A, are equal to the inclusion of the zero- 

skeleton, i : THH(A),, + THH(A) and the rth power endomorphism of the topological monoid 

THH(& followed by i, respectively. 

Proof The claim for R, 0 A, is obvious from the definitions, cf. 2.5. To prove the claim for 

F, 0 A, recall that for any simplicial space Z. the homeomorphism D : Isdc,Z. I--) I Z. I is 
homotopic to the realization of the simplicial map which in degree k is 

d~k+l”‘-“:Z~k+l~,-l +& 

This follows from the proof of [2, Proposition 2.51. But the composite 

THH(& L sdc,THH(&, = THH(A),_ 1 5 THH(A),, 

is precisely the rth power endomorphism. Cl 

THEOREM 3.3. Let A be a commutative ring. Then there is natural isomorphism of rings 

such that RI = ZR, FZ = IF and VI = IV. 

Proof. The inclusion of the zero-skeleton no THH(A)o r no THH(A) is an isomorphism 
because A is commutative and both groups are copies of A. Hence, by the lemma, 

R, 0 A, = id, F,oA, = r. (18) 

Now an easy induction argument based on Proposition 3.3 shows that the sequence 

0 + 7t0T(A)‘p”-’ 4; no(A)‘p”z x,T(A) + 0 

is exact, and since Ap” gives a natural splitting of R” (as a set map), we may define a bijection 

I: W,+,(A)+aoT(A)C~-, Z(ao, . . . ,a,) = i$o v’(&(ai)). (19) 
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As an immediate consequence of (18) we have that RI = IR, FI = IF and YI = IV. In 

particular, if we define 

W: aoT(A)Cp’ + fi A 
i=O 

by Wi = R’F”-‘, then W 0 Z = w. It remains to be seen that I is a ring homomorphism. If 
A has no p-torsion this is obvious because w is injective. In the general case, suppose A + A 

is a surjection of rings where A is without p-torsion and consider the diagram 

W,+,(A) r, x~T(A)~P” 

I I 

W,+,(A) i, 710T(A)cT 

The vertical maps are both surjective and the upper horizontal map is a ring homomor- 
phism. Hence, so is the lower horizontal map. Cl 

Recall from Proposition 2.3 that pz,T(A)‘p is p-cyclotomic if p does not divide r. In 
analogy with Proposition 3.3 we have short exact sequences 

and induction on the prime divisors of n gives us a natural bijection 

I : W,,,(A) + x,,T(A)‘“, I(ad ) d divides n) = 1 V,&&,J). 
din 

We can argue as above to get 

ADDENDUM 3.3. Let A be a commutative ring. Then 

I: W,>(A) + ~c~T(A)“~ 

is natural isomorphism of rings such that R,I = IR,, F,I = IF, and V,Z = IV,, where (n) 

denotes the truncation set of natural numbers which divides n. 

4. TOPOLOGICAL CYCLIC HOMOLOGY 

4.1. This section is strongly inspired by Goodwillie’s paper [29]. 
Let 0 be the category where objects are the natural numbers, ob 0 = { 1,2,3, . . . }, and 

with two morphisms R,, F,: n + m, whenever n = rm, subject to the relations 

RI = F1 = id,, 

RJs = R,,, F,F, = F,s 

R,F, = F,R,. 
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For a prime p, we let 0, be the full subcategory with ob 0, = { 1, p, p2, . . . }. A cyclotomic 
spectrum T defines a functor from 0 to the category of non-equivariant spectra. Indeed 
when n = rm we have two maps of non-equivariant spectra 

R,, F,: TCn + TC-. 

The map R, was defined in (1) of Section 2.2 and F, is the inclusion of fixed points spectra. 
The relations above are a consequence of the compatibility condition in Definition 2.2. 

Topological cyclic homology at p, denoted TC(T; p), was defined in [2]. In the present 
formulation it is the homotopy limit of the restriction of the functor defined above to 0,. 

DeJinition 4.1. If T is a cyclotomic spectrum, then 

TC(T; p) = holim TCp*, TC(T) = holim TCn. 
- - 

4 0 

For a functor with smash product L, TC(L) = TC(T(L)) and similarly for TC(L; p). 

Remark. (i) The homotopy limit which defines TC(T; p) may be formed in two steps. 
First we can take the homotopy limit over F, (resp. Rp). Since R, and F, commute, R, (resp. 
FP) induces a self-map of this homotopy limit, and we may take the homotopy fixed points. 
More precisely, let 

TR( T; p) = holim T ‘pa, 
- 

4 

TF(T; p) = holim TCp* 
- 

F, 

(20) 

then F, induces an endomorphism of TR( T; p) and R, an endomorphism of TF( T; p) and 

TC( T; p) r TR( T; P)‘(~,) z TF( T; P)~<~P). 

Here <F,) is the free monoid on F, and X h(Fp) denotes the (F,)-homotopy fixed points of 

X. It is naturally equivalent to homotopy fiber the of id - F,, which was the definition used 
for TC(T; p) in [2]. 

There is a similar description of TC(T). Let 

then 

TR(T) = holim TCm, TF(T) = holim TCn 
- - 

R F 

TC(T) = TR(T)hF = TF(T)hR 

(21) 

where the decoration hF denotes the homotopy fixed set of the multiplicative monoid of 
natural numbers acting on TR(T) through the maps F,, s 2 1. 

(ii) The inclusion I, c 0 induces a map TC(T) --, TC(T; p) which is a (spacewise) 
fibration. Similarly, the inclusions {l} t I, induce fibrations TC(T; p) --) T. In Section 4.5 
below we prove the following result of Goodwillie. 

THEOREM 4.1. The projections TC(T) + TC(T; p) induce an equivalence of TC(T) with 
the fiber product of the TC(T; p) over T. Moreover, the finctors agree after p-completion, 
TC(T),” N TC(T; p),^ . 
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4.2. We evaluate the realizations of the index categories 0, and I: 

where n’ denotes the weak product over the prime numbers. Indeed, the full subcategory 
!I P. 1 c 0, whose objects are (1, p> has realization ) Op,1 ( z S’, and by theorem A of [4] the 
inclusion functor K : ll,, 1 + 0, is a homotopy equivalence provided that the under-catego- 

ries (p”JK) are contractible for all p”~ob0,. If we write R’F” for the object 
(p”, R’F”: p” + p”) in (p”lK), then (p”JK) is the category 

R”tR”-‘+R”-‘F+R”-2F+ . . . ,_F”-1_,F”. 

Its realization is I (p”JK)( zz [0,2n] which is contractible. 
Let S = {pl, . . . , ps} be a finite set of primes and let Us be the full subcategory of 0 whose 

objects are the numbers ~1’ . . . p,“; ni 2 0. Then as categories 0 E kOs and 
0s r I,, x ... x I,. Since realization commutes with colimits and finite products we 
obtain (22). 

4.3. Let C-‘&p/Z be a Moore spectrum with integral homology Q/Z concentrated in degree 
- 1, and let T be any spectrum. Then the profinite completion of T is the function 

spectrum 

T * = F(E--‘Q/Z, T). 

We may replace Q/Z by its p-part Cl&,, to obtain the p-completion TpA . Since Q/i2 is the 
direct sum over the primes p of its p-parts, the profinite completion T * is the product of the 
p-completions T,^ . One proves immediately that the homotopy groups of T A are given by 
the exact sequence 

0 --t Ext(Q/Z, n,T) + xJT *) + Hom(Q/Z, rr,-lT’) + 0. 

Let T be G-spectrum indexed on a trivial G-universe and consider the homotopy orbit 
spectrum T,,c,. = T A c,_ECp.+. There are transfer maps 

t.” : The,. + The,,, n>m 

associated with the projections TLC,, + TLC,_, cf. [ 11, p. 1861 and we have the following key 
lemma. 

LEMMA 4.3. Suppose T is a bounded below G-spectrum. Then the homotopyjiber oft,” is 

a p-complete spectrum; in particular, it is projnite complete. 

Proof: We can assume that m = 0, and we will write t, = tf . Let 8, denote the Serre 
class of abelian p-groups A which are annihilated by some NA > 0. If we can prove that 

t,* : ‘5, The,. + n*T is an isomorphism modulo BP, then the homotopy fiber of t, will have 
homotopy groups in BP, and therefore it will be p-complete by [30, p. 1661. 
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The composition rr,T 2% ~*T,,~,.--.flf-+ n*T is multiplication p” and therefore an 
isomorphism modulo 2$,. Hence, we may as well show that pr, is an isomorphism modulo 
b,. We have the right halfplane homology type spectral sequence (see Section 5.2 below) 

Since the C,.-action on T is the restriction of the G-action, qT is a trivial C,.-module and 

therefore 

J%& = ntT, E~,dB,, s > 0. 

Furthermore, the edge homomorphism Et,, + E,$ is the surjection by pr, of n,T onto its 
image in ~,TLC,.. It follows that the edge homomorphism is an isomorphism modulo 23, and 

that .E,~“,E b, when s > 0. Since T is bounded below, pr, is an isomorphism modulo 

2%. 0 

4.4. Let K : I + J be a functor and @ a category which have all limits; then the forgetful 
functor K* : CJ + @’ has a leftadjoint R. If T : I -+ @ is a functor, then the right Kan 

extension of T along K is the functor 

RT(j) = 1% ((jJK)= I : C) 

cf. [31]. We apply this to the inclusion K: O1 + 0 of the full subcategory on {l}. The 

under-category @Jr<) is the discrete category on the set of morphism 0 (n, 1) and a functor 
from 0 1 to spectra is just a spectrum T. Thus, the right Kan extension is simply a product of 

copies of T, 

RT(n) = F(O(n, I)+, T) 

where 0 (n, 1) = {R,@, 1 d divides n>. 
If n =p1’ . . . p:’ then # O(n, 1) = (ni + 1) + ... + (ns + 1). 

LEMMA 4.4. hokm RT z F(I(OJl)l+, T) N T. 

Proof: Let S denote the category of spectra. We recall from [30] that holim is right 

adjoint to the functor 
- 

0 

- A I(Ol- )I+:S-& 

which takes a spectrum T to the diagram n H T A I (UJn) I + . We have the commutative 
diagram of functors 

s - A IW)l+ 
-S 

All the functors in the square have right adjoints and accordingly these also commute; this 



K-THEORY OF FINITE ALGEBRAS 59 

proves the first claim. Finally, (1, id: 1 -+ 1) is terminal object in (Oil), which therefore has 
contractible realization I( 0 11) I. 0 

4.5. From now on T will be a cyclotomic spectrum, e.g. T = T(L). The counit of the 
adjunction above supplies a map of O-diagrams E: TC + RT( - ) such that 

E,: T”+ F(U(n, l),, T) 

is the adjoint of the “evaluation” map O(n, l), A TC* + T. 

LEMMA 4.5. The homotopy fiber of 8, is a profinitely complete spectrum. 

Proof: Suppose first that n = p” is a prime power. By induction it is enough to show that 
the iterated homotopy fiber, i.e. the homotopy fiber of the induced map on homotopy fibers, 
of the square 

is profinitely complete. We call from Theorem 2.2 the cofibration sequence 

It determines the horizontal homotopy fibers in the sequence above. Furthermore, the map 
induced by the vertical arrows FP precisely correspond to the transfer map ti-‘, and so 
Lemma 4.3 shows that the iterated homotopy fiber is a p-complete spectrum. 

Next we consider the general case and write n = p”k with (k, p) = 1. Then TCk is 
a p-cyclotomic spectrum by Proposition 2.3 and the lemma follows by induction over the 
prime divisors in n. 0 

We let O(T) denote the fiber of the fibration TC(T) -+ T; similarly, for O(T; p). 

COROLLARY 4.5. a(T) is profinitely complete, and (D(T; p) is p-complete. 

ProoJ Homotopy limits commute with profinite completion, so by the lemma the 
homotopy fiber of 

E* : holim TC* + holim RT 
- - 

0 I 

is a profinitely complete spectrum. Finally, under the equivalence of Lemma 4.4 we can 
identify E.+ with the projection TC(T) -+ T. cl 
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Proof of Theorem 4.1. We first show that TC(T),” N TC(T; p),^ via the projection. To 
this end we define a new full subcategory I,, of 0. It has as objects the set {k ( (k, p) = l> of 
positive integers prime to p. Then 0 s 0, x II,, so 

TC( T ) = holim TC* g holim 
- 

0 

We may proceed as in Lemma 4.5 and show that the fiber spectrum of the projection 

holim T cpmk -+ TCpa 

vanishes after p-completion. This proves the last claim in Proposition 4.1. We have left to 
show that the map from TC(T) to the fiber product over T of TC(T; p), indexed by the 
primes p, is an equivalence. This is the same as to show that O(T) + n,@(T; p) is 
a homotopy equivalence. Now a profinitely complete spectrum <P(T) is equivalent to the 
product of its p-completions, with p varying over the primes. Since (D(T): N @(T; p): by 
the above and @(T; p): N @(T; p) by Corollary 4.5, we are done. 0 

4.6. We recall from 2.7 that if L is a commutative FSP defined on spheres, then the 
&spaces THH(L(“‘; S”) again from a commutative FSP defined on spheres. The same holds 
for the C-fixed sets THH(L’“‘; S”)’ and the restriction and Frobenius maps are C,- 
equivariant and multiplicative. In particular, the homotopy limit 

TC(L(“)* S”) = holim THH(L(“); S’)‘, , 

carries a X,-action. 

PROPOSITION 4.6. Let L be a commutative FSP dejned on spheres. Then the spaces 
TC(L’“‘; S”) again form a commutative FSP defined on spheres. The associated spectrum is 

equivalent to TC(L). 

Proof: In view of Proposition 2.7 it is enough to prove that a homotopy limit of 
commutative FSPs defined on spheres is again a commutative FSP defined on spheres. So 
let Li be a J-diagram of FSPs defined on spheres. We define the product on the homotopy 
limit by 

pm,.: holim Lj,(S”) A holim Lj,(S”) 5 holim Lj,(Sm) A Lj2(S”) 
- - - 

J J JxJ 

zholim Lj(Sm) A Lj(S”) --t holim Lj(S’“+“) 
- - 

J J 

where the second map is induced from the diagonal A : J + J x J and the last map is induced 
from the multiplication in Lj. The first map is the canonical map, defined as follows: We 
have the counits 

sj: 1 (Jlj) I+ A holim Lj(S”) + Lj(S”) 
- 

J 
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and since (J x .JJ(j,, j,)) z ( JJj,) x (Jlj,) we get 

aj, A sj, : I (J X Jl( j,, j,) I+ A holim Lj,(S”) A holim LjI(S”) + Lj,(Sm) A Lj,(S”). - - 
J J 

The canonical map is the adjoint, cf. [30]. Similarly, the unit is the adjoint of the 
composition 

I( JU)I + A Sn~ S”1.- Lj(S”). 

We prove that the product is commutative and leave the remaining verifications to the 
reader. We have the commutative diagram 

holim Lj,(S”) A holim Lj,(S”) -? holim Lj,(Sm) A Lj,(S”) 
- - - 

J J JxJ 

I 
Tw, 

TW holim Lj,(S”) A Lj,(S”) 
- 
JxJ 

” 
I 

ttV* 

holim Lj,(S”) A holim Lj,(S”) -Z holim Lj,(S”) A Lj,(S”) 
- - - 

J J JxJ 

(23) 

where Tw permutes the smash factors and where tw is the functor which permutes the two 
factors in J x J. Indeed, the adjoints of the two compositions tw* 0 Tw, 0 can and can 0 Tw 
are equal. Now consider the diagram 

holim Lj,(S”) A holim Lj,(S”) A= holim Lj(Sm) A Lj(S”) -% he Lj(Sm+“) 
- - - 

J 

I 

J J J 

TW 

1 
Tw* 

I 

G”,: 

holim Lj,(S”) A holim Lj2(Sm) ‘2 holim Lj(S”) A Lj(S’“) 2 he Lj(S”+,) 
- - - 

J J J J 

The commutativity of the square on the left follows from (23) and the fact that A = A 0 tw as 
functors from J to J x J. Finally, the commutativity of Lj implies that the right-hand square 
is commutative. This completes the proof. cl 

Given any commutative FSP L we have from Proposition 4.6 a sequence of spectra 

TC(L), TC’(L), TC3(L), . . . 

upon iterating the construction. In view of Theorem B of the introduction and the 
calculation of TC(Z,) in [7] it would seem a very interesting question in homotopy theory 
to determine the iterates TC”(F,). In particular, one may wonder about the so-called 
chromatic filtration of TC2(Z,) or TC3(F,). 
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5. TOPOLOGICAL CYCLIC HOMOLOGY OF PERFECT FIELDS 

5.1. To each ring R there is associated a functor with smash product, which we denote R”. It 
takes a based space X to the configuration space of particles in X with labels in R, i.e. the 
space of formal linear combinations 1 lixi modulo the relation I * * = 0. x = *. It is a 
generalized Eilenberg-MacLane space with 

x$(X) z I&(X; R) 

the reduced singular homology groups of X with R-coefficients. 
In this section we evaluate TC(R) in the case where R = k is a perfect field of 

characteristic p > 0. We note that TC(g) N TC(E; p) by 4.5. For T(@ and its fixed sets are 
p-complete by Theorem 2.2. In the sequel, we write T(R) and TC(R) instead of T(R) and 
TC(R). 

We begin with the basic calculation when k = IF, is the prime field. The general case 
follows by a descent argument given in Section 5.5 below. The strategy for obtaining 
information about TC(5,) is to compare the fixed sets which defines it with the correspond- 

ing homotopy fixed sets. 
For any C-spectrum T E C9’%, with C finite, there is a norm cofibration sequence of 

spectra, which we now recall. Following [32] one defines 

The =j*T A,EC, (homotopy orbit) 

ThC = F(EC+, T)’ (homotopy fixed points) 

A(C; T) = [I% A F(EC+, T)]’ (Tate spectrum). 

Here j: ec + 9, EC is the unreduced suspension of EC (as in Section 2) and the smash 
product in the definition of fl takes place in CY%, i.e. 

fi(C T)(V) = lim F(SwY-“, E”C A F(EC+, TW)))‘. 
wJ* 

One has 

[f’(EC+, T) A EC+lC = CT A =+I= = ThC 

cf. the proof of Proposition 2.1. Thus, one can smash the cofibration sequence of C-spaces 

EC+-+S”+Ec (24) 

with F(EC+, T)E CY% and take C-fixed points to get the “norm cofibration sequence” 

of c321, 

ThCz ThCztil(c; T). 

We now assume that T E GY%! (where, we remember G = S ‘), and let C be a cyclic 
p-subgroup. In Proposition 2.1 we identified [EC A TIC with (@c~T)c’c~. Therefore, we may 
smash the obvious inclusion 

y:T+F(EG+, T) 
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with EC to obtain a C/C,-equivariant map 7 : aCDT + @I(&; T) and taking fixed sets and 

using that A(C,; T) WP = fi(C; T) we obtain from (24) a cofibration diagram 

T ,,-“- TC - (@I~,T)=/~~ 

(25) 

For a cyclotomic spectrum @@pT !zG T and (25) reduces to 

PROPOSITION 5.1 (Bokstedt-Madsen [7]). For a p-cyclotomic spectrum T there is a com- 

mutative diagram 

T N 
R 

,,C,, - TCp” __f TCp_-’ 

1 

F” 

T 2 A(&.; T). 

in which the rows are cojibration sequences of non-equivariant spectra. 

The point of this is that there are spectral sequences 

_i?&(C; T) = I?-‘(C; R,T) =~,+$l(c; T) 

E,&(ThC) = H-‘(C; n,T) * x,+,ThC (26) 

&(Thc) = %(C; G) * %+sThc 

which in favorable cases can be used to calculate completely the homotopy exact sequence 
of the norm fibration sequence, cf. [7, Section 21. The spectral sequences are associated with 
the skeleton filtration, and for fir a filtration due to Greenlees. One may then attempt 
a calculation of the actual fixed points, and hence TC(T; p), starting with a calculation of 

This was the strategy used in [7] for T = T(&,) and will below be used for T = T(F,). 

The spectral sequences in (26) are strongly interrelated. For any C-spectrum T there is 
a map of spectral sequences 

Rh?E:,,(ThC) -&(C; T) (27) 

which is an isomorphism for r = 2 and s < 0 and an epimorphism for r > 2 and s < 0. 
Similarly, there is a map of degree - 1 

a’:&(C T) + E:- ~,t(Td (28) 
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which is an isomorphism for I = 2 and s 2 2 and a monomorphism for I > 2 and s 2 2. The 

situation for I = 2 and s = 0, 1 is described by the exact sequence 

N 

0 + @, ,(C; T)z E&(T&+ E&(7-)5 I?:,&; T)-+ 0 

where N is the norm map N: Ho(C, n,T) + HO(C; rc*T). For I > 2 the relationship is 
explained in [7, Section 21. 

5.2. We now recall Bokstedt’s and Breen’s basic result on rr*T(lF,) and sketch briefly the 
proof, in Bokstedt’s formulation. 

Since T(R) is the realization of a simplicial space it has a skeleton filtration, and there is 
a first quadrant spectral sequence 

E’(R) = HH,Wrt) =a H,G’-(R); 5,) 

where .J.$‘~ = H,(HR, [F,) and H,(-) is spectrum homology. When R = IF,, ~4~ is the dual 
Steenrod algebra, i.e. drP = d where 

Here deg 5i = 2(p’ - 1) (or 2’ - 1 if p = 2), deg rr = 2p’ - 1 and SF, resp. ArP denotes the 
symmetric resp. the exterior algebra over [F,. Since d is a connected Hopf algebra one has 
with d’ = d @ d 

HH,(&) = Tor”‘(d, &) z d @ ToP(FP, F,) 

see [33, p. 1941, and 

Tor”/([Fp’ IF’) Z 
&,{@L d2, ... >P p=2 

Ar,{& ac2, . . . } 8 I-B,{ero, crrl, . . . }, p odd 

where rr.1 - } is the divided power algebra, i.e. 

rFP(azi} z @ s,,{ypJ(azi)}/(rp,(023P). 
j > 0 

The (bi-)degrees of the generators are 

deg(a<J = (1,2(p’ - 1)) (resp. (1,2’ - 1) for p = 2) 

deg(y,l(ori)) = (pj, p’(2p’ - 1)). 

Let H5, + T(ff,) be the inclusion of the O-skeleton and consider the composition 

u: s: A H5, + s: A T(ff,) 1: T(5,). (29) 
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Then a{i and cri are the images under e* of [S’] @ <i and [S’] @ ri* There are homology 
operations in H,(T(IF,)), which commute with rr. The homology operations in H,(H[FJ 

were examined by Steinberger in [34, Chp. III, Theorem 2.31, and 20 years before by L. 
Kristensen (unpublished). The result we need is that 

Here ri and <i are not the usual Milnor generators, but the images of these under the 

canonical anti-automorphism (antipode) of d. 
For degree reasons there are no differentials in the spectral sequence when p = 2. In the 

case of odd primes the first possible non-zero differential is dP- ‘. Bokstedt proves in [14] 

that 

dPel(yp,(cZi)) = (rp,-l(ozi) **. yp(OZi))‘-’ . ati+ 1. 

This can be viewed as a “Kudo principle” since c<i + 1 = fiQ”‘(aTi) by the above. In any case 
one gets for odd p 

EP = d @ S~l{OTi 1 i > O}/((azi)P 1 i > 0) 

and for degree reasons EP = E”. Finally, the homology operations solve the extension 
problems 

so that 

and hence r*T([F,) z SF,{crrO}. 
Let [S’] E $(S$) be the image of the generator in r&S’) under the boundary map 

8 : ni(S2) -+ ~$3:) of the cofibration St + So + S2. Let r?~n~(T(ff,); lF,) be the image of 

[S’] A r. under the map in (29), and let Q E 7c2T([Fp) be the preimage of 5 under the 
reduction to ff,-coefficients, which is an isomorphism. We have proved 

THEOREM 5.2 (Breen [35] and Bokstedt [14]). x,T(ff,) = S,P{o}. 

The above calculation shows that T(IF,) is a wedge of Eilenberg-MacLane spectra. But 
this is also clear from the beginning because the composition 

T(R) N So A T(R) -+ HR A T(R) -, T(R) A T(R) 1: T(R) 

is homotopic to the identity, so that T(R) is a retract of HR A T(R) which is always a wedge 
of Eilenberg-MacLane spectra. 

5.3. We return to the spectral sequences of 5.1 for ~n*(~(Cp~; T(E,); IF,): 

g2 = 8*(C,.; n,(T(F,); F,)) = &,{u,} @I &,{t, t-‘} C3 &,(el> 63 &,{e} (30) 
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where deg u, = (- 1, 0), deg t = (- 2,0), deg el = (0,l) and deg 8 = (0,2). Indeed, the 
Bockstein exact sequence which relates integral and modulo p homotopy groups gives 

Q(T(IF,); IF,) z AF,(el} @ SFP(a>. The Bockstein on el is 1, so that the odd degree 
homotopy groups map isomorphically onto the even dimensional ones. We also consider 
the spectral sequence for n*A(C,.; T(lF,)) (integral homotopy groups) 

fi:’ = 8*(c,.; 7c*T(5,)) = hF,{U,} 63 &{t, t-l} @ SFp{O}. (31) 

There is a map of spectral sequences res : er + J!? which is injective for I = 2. Both spectral 
sequences are homology type and lie in the second quadrant, fi” is multiplicative and & is 

a module over fP. 

LEMMA 5.3. The non-zero differentials in i? are generatedfrom d2el = to in the module 

structure over tir. In particular, 

Proof: For degree reasons there are no d 2-differentials in fir. Therefore, if d 2eI = t8 we 

get 

E” = AF,{&J @SF,@, t-l> 

and there can be no further differentials. The idea of the proof is to compare with the 
spectral sequence which calculates n,(U?l(G; T(F,)); IF,). It has E2-term 

and there is a map from this spectral sequence to fir which injects the E2-term. The 
differential d2 : E,f, 1 + Ei, 2 in this spectral sequence is the composite 

cf. [7, Section 51. The first map is exterior multiplication by [S’] E zf(S:) and the second 
map is induced by the S’-action on T(IF,). Hence, d2el = t5 as claimed. 0 

COROLLARY 5.3. The integral homotopy groups q$l(C,,.; T(F,)) are cyclic &-modules. 

Proof We may compare the spectral sequence (31) with the spectral sequence for 
n,fi(G; T(lF,)) to see that t and (T are permanent cycles. Hence, there is a differential 

(32) 

for some r 2 1, or there are no differentials at all. (We prove in Lemma 5.4 that r = n.) On 
the other hand, the mod p spectral sequence shows that the extensions in the passage from 
em to the actual homotopy groups are maximally non-trivial. Hence, the claim. iJ 
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We use that f,: T(F,) + A(C,; T(F,)) is a map of ring spectra to determine the 

differential (32). Since l? preserves the unit, and as rceT(lF& = 5, and Q~!((C~; T(5,)) is 

cyclic, 

f, : 7cgT((Fp) + 7&cp; T(lF,)) 

is an isomorphism. This can only happen if r = 1 in (32), that is, if 

d3u1 = t20 

in (31). It is then easy to solve the spectral sequence to get 

7c*A(C,; z-(5,)) = &{a, a-‘} (33) 

where 8 is a generator of degree 2. 

PROPOSITION 5.3. The map f, : T([F,) + A (C,; T(ff,)) ’ d in uces an equivalence of connect- 

ive covers. 

Proof Since f is multiplicative Theorem 5.2 and (33) show that it is enough to prove 

that 

is an isomorphism. 
of G&,-spectra: 

i;, : 7r2T(IFp) + 7c2fl(Cp; T(5,)) 

We have T(5,) =o p~POC~T(5,) and the following commutative square 

@‘T(5,) --L EV5,)K, 

I 
7% 

II 
A(&; T(5,)) “1, X:T(5,)KI, 

cf. (25). Thus, we may instead prove that 

is an isomorphic. One has (by the spectral sequence) niT([Fp)hc, E 5, for i = 0, 1, see 
Section 3.3. 

Theorem 5.2 translates under the equivalence T(5,) z~~~~~T([F,) to the statement 

that 

iI*: nf(G/C,+) 63 nl(QCpT(~,); 5,) --, Q(@~T(~,); 5,) 

is surjective, and the generator of the right-hand group is the mod p reduction of the 
generator of the integral group ?r20cpT(5,). Since 8 is a G/C,-equivariant map it is therefore 
enough if we prove that the two maps 

(a) J* : 7r1(QCV5,); 5,) -+ ~4T(5~)hc,; 5,), 
(b) F* : ~%Wp+) C3 MVphc, -+ 0(5p)~, 
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are epimorphisms. Claim (a) follows from the diagram 

because ~~Z’(ff,)~~ zz Z/p” and x1 (&T([F,); lF,) = Z/p by Theorems 3.3 and 5.2. To prove 
(b) we note that the map 

T(F,) A&+ + TW,) Ac.EGt 

given by the inclusion G c EG induces an isomorphism on rri( - ) for i = 0, 1, and use the 

G-homeomorphism 

where the bars on the right indicate T(lF,) with trivial G-action. 0 

ADDENDUM 5.3. The maps 

r, : T(QCP” --f T(Qh% f, : T(F,)+ + 6&n; TF,)) 

induce equivalences of connective covers. 

Proof: Since the spectra are all p-complete it is enough to show that the maps induce 
isomorphism on rr*( - ; IF,) in non-negative degrees. For n = 1, this follows from the lemma 
and from a 5-lemma argument based on Proposition 5.1. In the general case we have A(&.; 
T(F,)) = pcPfi(C,; T(F,))Cp--’ and p”_i = p”-r, where jj is the G-equivariant map 

We can now compare with the homotopy fixed point situation via the diagram 

T(QCr’ ‘II: T(F,)“+ 

pcx,h'(C,; T(F,))c-+’ “, p:$(C,; T(!J,))hCP”-’ 

Since 7 = I?r is a non-equivariant equivalence on connective covers by the lemma, so is 

Y a hc+,. Inductively, r.- 1 may be assumed to be an equivalence on connective covers, so it 
remains to show that G is. There is a commutative diagram 
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and we claim 

(i) n*(A(C,.; T(lF,)); IF,) Z ?t*pZpli9((c,; T(F,))hCp”-‘; F,), 
(ii) A(C,._i; pcX,Q(C,; T(5,))) = 0. 

Given these claims, (ii) and the norm cofibration sequence for the +-spectrum 
&U?Q(C,; T(F,)) show that Nh is an equivalence, and hence that x*(G; lF,) is a surjection of 

abstractly isomorphic finite groups, thus an isomorphism. 
It remains to prove (i) and (ii). This uses the spectral sequences of (26), 

We have already proved that 

with deg &i = 1, deg & = 2. The two E2-terms are consequently 

Combining Lemma 5.3 and Proposition 5.3 one has that d2(zl) = t6 in both cases. This 
differential and its multiplicative consequences are the only ones. Hence, 

E3 = AF,{u._ 1} @ SF.{&, ci- ‘} 

and E3 = E”, so TC*(A(C,; T(F,)) hCp*-l; IF,) has a copy of [F, in each degree. Now compare 
with Corollary 5.3 to prove (i). For (ii), note that 

d2(&-‘6-l) = 1 

so that fi3 = 0. 0 

Remark 5.4. Tsalidis [36] has given a quite different and more general proof of 
Addendum 5.3, assuming Lemma 5.3. 

5.4. We can now give a complete description of the fixed point structure of T(lF,). We begin 
by solving the spectral sequences in (31). 

LEMMA 5.4. In the spectral sequence e’ which conoerges to n$l(CPn; T(ff,)) the difiren- 
tials are multiplicatively generated from d2”+‘u, = t”+‘# and the fact that t and CT are 

permanent cycles. In particular, 

n*ol(cpn; z-(5,)) = S,,,“{B, CT’}, 
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where deg b = 2. 

ProoJ We may combine Addendum 5.3 and Theorem 3.3 to get 

Now the claim for the differentials follows from Corollary 4.3 and its proof. We get 

f32n+2 = SF,{4 t-l, u}/(t”+‘cry 

and since all elements are in even total degree there are no further differentials. 0 

PROPOSITION 5.4. The integral homotopy groups of the fixed point spectra T(F,)‘p” is 

a copy of Z/p’+ ’ in each positive even degree, 

x*T(ffJC~- = S,,,--x{oJ 

where deg o, = 2. Moreover, F(o,) = (T,- 1, I’@,_ J = po, and R(a,) = p&a,_ 1 where 

I, E Z/pn + 1 is a unit. 

Proof. The claim for the homotopy groups is immediate from Addendum 5.3 and the 
lemma. We have the following commutative square: 

A(c,.; T([F,)) “1, fi(C,n-l; TV,)) 

where the vertical maps are the equivalences of Addendum 5.3 and Fh is the obvious 
inclusion of fixed sets. It induces the restriction map in Tate cohomology, 

res: 8*(Cpn; n,T(IF,)) + a*(+; x,T(IF,)) 

on the E2-term of the spectral sequences er. Since this is an isomorphism in even degrees it 

follows that we can choose the generators a, such that Fa, = gn_ 1. Next, 
V(a,_ 1) = VF(oJ = pa,. Finally, the calculation of R follows from the exact sequence 

since x~T((F$~,. z IF,, and qT(F,JCp” = 0. 0 

5.5. In this section we extend Proposition 5.4 to any perfect field k of positive characteristic. 

LEMMA 5.5. If k is a perfect field of positive characteristic then HH,(k) = k. 
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Proof: We choose a transcendence basis {Xi 1 i E Z} of k over IF,. Since k is perfect it 

contains as a subfield the field 

1 = lim IFJXP- 1 i E I). 

Moreover, k is a separable algebraic extension of 1. For 1 is perfect by construction, and any 
algebraic extension of a perfect field is separable. We may write k = lim k, where the 

colimit runs over the finite extensions I c k, c k. Each kJ is a finite separable extension 
and hence Ctale. Therefore, HH,(k,) 1 k, ~20~ HH,(I), [37], and since Hochschild homology 
commutes with filtered colimits, 

HH,(k) E k @ HH,(Z). 

Now HH,(Z) = 1. Indeed, by [38] 

and both sides commute with filtered colimits and localization, so HH,(I) g Q$,. Now 
since 1 is perfect Q,FB = 0, as dx = d(yP) = pypmldy = 0. cl 

We thank Chuck Weibel for help with the argument above. 

COROLLARY 5.5. n,T(k) z k @ n*T(F,). 

Proof: We consider the spectral sequence E’(R) of 5.2 with R = k. The inclusion ff p + k 

defines d + dk, and since the target is a k-algebra we get a ring homomorphism 

This is in fact an isomorphism. For as an abelian group k is just a direct sum of copies of [F, 
and taking homology commutes with direct sums. We get 

HH,(dk) = HH,(k @ 4 = HH,(k) @ HH,(d) r k @ IN-I,(&), 

where the last equality is the lemma above. Thus, E2(k) r k @ E2(Fp) and since E’(k) is 
a spectral sequence of k-modules 

E”(k) z k @ Ed”. 

The statement follows. cl 

Suppose that T is any C-ring spectrum and that X is any C-space. Then (T A X)’ is 
a T ‘-module spectrum. The action map is the composition 

TCA(TAX)C+(TATAX)C~(TAX)C. (34) 
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When T is T(A) and X is any of the C-spaces in (24) this shows that 

is a cofibration sequence of T(A)Cp--module spectra. In particular, the associated long exact 
sequence of homotopy groups 

is a sequence of W,+ 1 (A)-modules. Moreover, (26) is a spectral sequence of W,+ 1(A)- 

modules, 

E2 = H,(C,.; (f’“)*~+zT(4) * n,T(A)hc,., (35) 

where F” : W, + I (A) + A is the iterated Frobenius. Indeed, the identification of the E ‘-term 
uses the transfer equivalence (T A X’C+)’ N C’T, and under this equivalence (34) becomes 

TC ,, E’T i”c’h ‘, T A C’T If, Z’T, 

which gives (35). 

THEOREM 5.5. For any perfect field k of positive characteristic p, 

and F(o,) = cqml, V(o,_J = po, and R(a,) = p&a._, where ,I,E W,,+,(F,) = Z/p”+’ is 

a unit. 

Proof: We argue by induction on n starting from the case n = 1 which was established in 
Corollary 5.5 above. Let W = W,+,(k) and consider the diagram 

I I I . . . -, RT(khcpm “_, KiT(k)‘P” “, XiT(k)Cpm-’ ----) . . . 

By induction the right-hand vertical map is an isomorphism. Indeed, 

W,+,(k) 03 z*T(IF,)~~--~ z W,(k) @ x*T(k)+ r x,T(k)C+, 

Therefore, we are done by induction if we prove that the left-hand vertical map is an 
isomorphism. We let (Pk denote the Frobenius automorphism on k and consider the 
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diagram 
w,+l(IF,) -J=% W,+,([F,) 5 5, 

I 
W,+,(k) 3 

1 I 
W,+l(k) --% k. 

The left-hand square is cocartesian because the horizontal maps are isomorphisms and the 

right-hand square is cocartesian because p generates the maximal ideal of IV,+ ,(k). 

Moreover, the compositions of the horizontal maps are equal to F” and therefore we have 

W,+,(k) @I (F”)*n,T(IF,) z (F”)*k @I n,T(IF,) s (F”)*T(k). 

Now the spectral sequence discussed above supplies the conclusion. 0 

Proofof Theorem B. Theorem 5.5 shows that TR(k) = HW(k), with the notation of (20). 
Moreover, F : TR(k) + TR(k) corresponds to the Frobenius on Witt vectors, and hence we 
obtain an exact sequence 

1-F 

O- T&(k)- W(k)- W(k)- TC1(k)-+O. 

When k = IF, we have 1 - F = 0, proving TC(lF,) z HZ, V IS-‘HZ,. In particular, TC(F,) 
is an Eilenberg-MacLane spectrum. For general k, TC(k) is a module spectrum over TC(5,) 
and hence an Eilenberg-MacLane spectrum. q 

Remark 5.5. We may also extend Addendum 5.3 and Lemma 5.4 to general perfect 
fields. The map f, in Proposition 5.1 shows that x,A (C,“; T(k)) is a W,(k)-module, and we 
claim that 

n$I(C,.; T(k)) z W,(k) @I qfl(C,.; T(IF,)). (36) 

Indeed, the spectral sequence of (26) is a spectral sequence of W, + 1 (k)-modules, 

fi2 = fi*(C,.; (F”)*n,T(k)) =E- n*@C,.; 7’(k)) 

where F” : W,, ,(k) + k is the iterated Frobenius. This follows from the discussion preced- 
ing Theorem 5.5. Therefore, we can repeat the proof of Theorem 5.5 and get that 

W,+,(k) @ @%Cp”; TF,)) s ~*fi(C,.; T(k)). 

Since the W,+l(k)-module structure on n.&l(C,.; 7’(k)) comes from the W,(k)-module 
structure via the restriction map R : W, + 1 (k) + W,(k) we get the claimed isomorphism. 

Quite similarly, the proof of Addendum 5.3 generalizes to show that 

l-. : T(k)cp- -, T(k)“+, f,_ I : T(k)‘+ + I&,,; T(k)) (37) 

induce equivalences of connective covers. 
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6. TOPOLOGICAL CYCLIC HOMOLOGY OF FINITE W(k)-ALGEBRAS 

6.1. If the ring R is given as an inverse limit of rings R,, R = lim R,, then one can define 
continuous versions of K(R) and TC(R) by setting 

- 

I?(R) = holim K(R,), TCtoP(R) = holim TC(R,), 
- - 

cf. [S]. One may then ask when the natural maps from K(R) to KtoP(R) and TC(R) to 
TCtoP(R) are equivalences. 

The cyclotomic trace from K(R) to TC(R) defines by naturality a corresponding map 
between the continuous versions, so we have a diagram 

trc 
K(R) - TC(R) 

I I trc 
KtoP(R) - TCtoP(R). 

Let k be a perfect field of positive characteristic p and let W(k) be its ring of Witt vectors. 
We have the following result about the above diagram. 

THEOREM 6.1. Let A be a W(k)-algebra which is finitely generated as a W(k)-module. 

(i) The cyclotomic trace induces an equivalence KtoP(A$ N TCtoP(A)i [0, co). 

(ii) The natural map TC(A),” + TC”‘P(A$ is an equiualence. 

In both statements the superscript top refers to the p-adic topology on A. 

We note that since W(k) is a P.I.D. the structure theorem for finitely generated modules 

shows that A is p-adically complete: A = 1% A,, where A, = A/p”A. 

Proof of 6.1 (i). By McCarthy’s Theorem A of the introduction it suffices to prove that 

trc: K(A,)i -+ TC(A,$ [0, co) 

is an equivalence. As a finite-dimensional k-algebra, AI is artinian, and hence its radical 
J = rad(Ar ) is nilpotent. Therefore, by one more application of Theorem A we are reduced 
to prove that K(A,/J)t N TC(A,/J)i [O, 00). Now AI/J is semi-simple, and since both 
functors preserve product it suffices to prove that 

trc: K(A); + TC(A)i [0, co) 

is an equivalence for a central simple k-algebra. If the class of A in the Brauer group Br(k) is 
trivial, i.e. if A z M,(k), then we are done by theorem B since both K( - ) and TC( - ) are 
Morita invariant, cf. 2.7. 

However, Br(k) might not vanish for perfect fields in general; one knows only that the 
p-primary part of Br(k) vanishes, 125, Ch. X, Section 41. Let K be a Galois splitting field for 
A and G the Galois group of K/k, and let L = KG’ where G, is a Sylow p-subgroup of G. 
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Then we have a commutative diagram 

0 - H2(G, K”) - Br(k) - Br(K) 

I 
res 

1 II 
0 - H2(G,;K”) - Br(L) - Br(K). 

Since PBr(k) = 0, [A] is $-torsion in H’(G; K”) and since H2(G,; K”) has vanishing 
p’-torsion one must have [A &L] = 0 in Br(L). Thus, 

On the other hand, L is perfect (being an algebraic extension of k), so by the previous 
remarks the middle vertical map in the diagram below is an isomorphisms: 

K(A); fi, K(B); : K(A); 

1 1 1 
(38) 

TC(A); A TC(B),” if, TC(A); . 

Both the horizontal compositions are isomorphisms since B is a free A-algebra of rank 
1 L : k 1, prime to p. This is well-known for K-theory and for TC we may argue as follows. 
First, the composition 

HH,(A) i, HH,(B): HH,(A) 

is an isomorphism. The spectral sequence of 5.2 then implies that the composition 

T(A) A T(B): T(A) 

is an equivalence. The obvious inductive argument, using 
Theorem 2.2 shows that 

T(A)& i, T(@CP’ : T(A)cP* 

the cofibration sequence of 

is an equivalence. The same will then be the case for the lower horizontal composition in 
(38). It follows now from (38) that K(A): 21 TC(A): [0, cc). 

The proof of Theorem 6.l(ii) occupies the rest of this paragraph. It is based on the 

corresponding statement for Eilenberg-MacLane spectra, 

HA N holim HA,. 
- 

Indeed, n,holim HA, = lima,HA, by [30, XI. 71, and Eilenberg-MacLane spectra are 
characterizedby their ho’;;otopy groups. Let us write HA”’ for the r-fold smash product 
of HA. 
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LEMMA 6.1. Let A be as in Theorem 6.1. Then the natural map 

HA”) + holim HA,?, 
- 

becomes an equivalence upon p-completion. 

Proof: We begin with the special case where A = W(k) and A, = W,(k). Completion of 

a spectrum at a prime p is the same as localization with respect to the Moore spectrum So/p, 

and hence the thing to show is that 

z*(HA(‘); F,) 9 lim a*((HA,)(‘); IF,), 
- 

see [39]. We have 

HA A So/p N HAI, HA, A So/p N HA1 V CHA1, 

and moreover the map HA,, 1 + HA, induced from the reduction when smashed with So/p 

becomes the self-map of HA1 V EHA1 which is the identity of the first factor and trivial on 
the suspension factor. These remarks follows easily from the cofibration diagram 

HA, 5 HA, - HA, V So/p 

T T T 
HA 2 HA -+ HAI 

T P” T P” T 0 

HA 2 HA - HAI. 

Thus, we have 

n*((HA,)“‘; F,) z H,((HA,)“- “; k) @ H, _ ,((HA,)“- “; k) 

and the maps in the inverse limit system are trivial on the second summand. This gives 

lim x*((HA,)(‘); F,) E lim H,((HA,)(‘-‘); k). 
- - 

Let d = H,(HA; k). Then 

H,(HA,; k) = d &&{E,}, deg a, = 1 

and the map induced from the reduction map Z/p”+ 1 --* Z/p” sends E, + 1 to zero. Indeed, the 
cofiber HA, A Hk of p” A id: HA A Hk + HA A Hk is HA A C,, where 

C, = cofiber(p”: Hk -+ Hk) = Hk V CHk 
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and C, + C,_ 1 maps the first wedge summand by the identity and the second trivially. It 
follows that 

lim x.&HA,)(‘); IF,) 2 &@(‘- l) Z rc*(HA(‘); 5,) 
- 

where the tensor product if over k. 

If A is a free W(k)-module of finite rank we can use that 

HA E HW(k) V .-. V HW(k), HA, N HW,(k) V ... V HW,(k) 

to get the conclusion. Finally, for general A, let T(A) be the submodule of torsion elements, 
and let F(A) be the free quotient. Since W(k) is a local P.I.D. and since T(A) is finitely 
generated pT(A) = 0 for a suitable exponent e. Hence, 

HA, = HT(A) A HF(A), 

and the map HA, + HAme is the identity on HT(A) for n > e. Since 

holim HF(A),? N HF(A)(‘) 

for all r by the above, the same follows for HA, upon decomposing HA:‘. 0 

6.2. We next consider the continuity of THH(R). This is the realization of the simplicial 

space with k-simplices 

THH,(R) = holim F(Sio A ... A Sit, R(Sio) A e.1 A &SC). 
- *,+I 

The k-simplices is a spectrum with nth space THHk(R, S”), cf. 2.4, and in fact it is one way to 

make sense of the smash product HR (k+ ‘) Thus, we can restate Lemma 6.1 as . 

TI-I&(A)~ N holim THHk(An)~ . 
- 

We want to prove the similar statement for the geometric realization THH(A) of the 
simplicial spectrum THH.(A). 

In general, it is a sticky point to commute realizations with inverse limits. For example 

realization does not in general commute with infinite products. A counterexample is 
provided by n S.‘, where S.’ is the simplicial circle with one non-degenerate l-simplex. 
However, for Kan complexes there are no problems, and we can take advantage of the fact 
that THH,(R) is equivalent to fi THHk(R; S’). 

More precisely, we consider the trisimplicial set 

x,,,(R) = Gk THHl(R; s ‘) 

where G.Y denotes the Kan loop group of the singular set Sin. Y, and write X(R) for the 
realization of the diagonal complex, X(R) = 16X(R). 1 N THH(R). 
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LEMMA 6.2. Suppose that HR (k) = holim HRP’for all k > 1. Then _ 

THH(R): N holim THH(R,$ . 
- 

Proof: We may rephrase the assumption to give that 

IX.,,(R)Ii N holim I &AR,) 1:. 

Since simplicial groups are Kan we have 

holim 1 X.,,(R,) I N I holim X.,,(R,)I 
- - 

holim I i!X.,.(R,) I 1~ I holim dX.,.(R,)I. 
- - 

Indeed, the homotopy groups of the realization of a Kan complex can be combinatorially 
defined, the homotopy limit of Kan complexes is again Kan, and one has a spectral 
sequence 

E& = lim(-“)rr,6X.,.(R,) => x,+,holim dX.,.(R,) 
- - 

see [30, p. 3091. There is also a spectral sequence 

E& = lim ‘-“)n,I6X.,.(R,)I * z,+,holim IdX.,.(R,)I 
- - 

and it maps to the former by a map which is an isomorphism on E’; the claim follows. Thus, 

we have 

THH(R) N I [lj H I holim X.,,(R,) I I s I holim dX.,.(R,)I 
- - 

z 1 holim dX.,.(R,) I N holim I dX.,.(R,) I 
- - 

N holim THH(R,). Cl 

The above lemma works equally well for THH(R; S”), so with the notation of Section 2, 
the underlying non equivariant spectrum of T(R): is equivalent to that of ho&m T(R,)t . 

Proof of Theorem 6.1. We first note that after p-completion 

T(@- N holim T(A,)‘p- 
- 

for each m. This follows inductively from Theorem 2.2 since for bounded below spectra 
taking homotopy orbits commutes with homotopy inverse limits, 

holim CWACJ = (holim T(4hc,l. - - 
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Second, we have a cofibration sequence of spectra 

TC(& -+ ho2m [T(A)c~-]p^~ho~m CWP’I,^ 
m m 

since TC(A): N TC(A; p),^ by Proposition 3.1, and we have a similar cofibration sequence 
for each A,. Finally, homotopy inverse limits commute. 0 

ADDENDUM 6.2. Suppose R is a ring which is jinitely generated as a Z-module and let 

R, = R @ Z,. Then the natural map from TC(R$ to TC(R$ is a homotopy equivalence. 

We leave the argument which is very similar to the proof of Theorem 6.1 to the reader, 
and note that this property clearly distinguishes K(R) * from TC(R) A for non-complete 
rings. For in the commutative square 

K(R); 2 W(R); 

I I 
K(R,); --% TC(R,); 

the left-hand vertical map is not in general an equivalence. For example, a result of Soult 
[40] shows that for R = Z and p = 691, K,,(Z) does not map injectively into K22(Zp). In 
general, the Lichtenbaum-Quillen conjecture asserts that the numerators of the Bernoulli 
numbers enter into the torsion subgroup of Ki(Z) but they do not enter into the structure of 

TC(Z,); N K(Z,); . 

Remark 6.2. Suppose A is a complete discrete valuation rings with perfect residue fields 
of positive characteristic. One may ask if TC(A)i N TCY(A)~ when the topology is given 
by powers of the maximal ideal, i.e. A, = A/m”. In the unequal characteristic case this 
follows from Theorem 6.1 since the m-adic topology agrees with the p-adic topology. 
However, in the equal characteristic case, where A = k[X], Lemma 6.1 fails, and it seems 
unlikely that the theorem should hold. The problem is that 

7. POINTED MONOIDS 

7.1. By a pointed monoid we mean a monoid in the monoidal category of based spaces and 
smash product, that is, a based space II equipped with a multiplication and unit 

pV-IAIl+II, l”:SO+rI 

satisfying associativity and unit laws up to coherent isomorphism. The cyclic bar construc- 
tion of II is the cyclic space N”,Y(II) whose k-simplices are the (k + 1)-fold smash product 
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with the Hochschild-like structure maps 

= nkno A n1 A 1’. Ankel (i = k) (39) 

si(no A ... A\llk) = ~0 A *** Aai A 1 Ani+ A ... AXE (0 < i 6 k) 

~k@O A ... A7tk) = 7TkA noA ... A&,. 

Since it is a cyclic space the Cth edgewise subdivision sdc NY (II) has a simplicial action by 
the cyclic group C and completely analogous to [2, Section 21 we have an isomorphism of 
cyclic spaces 

Ac: N”,y(I-I) + (sdc N~(I-I)“. 

If I is an ordinary monoid then I+ is a pointed monoid and N 7 (I+) = Ncy(lJ+. 
Conversely, a pointed monoid, for which ,P(x A y) = * implies that x A y = *, is of this 
form. We define for each n 2 1 a pointed monoid 

l-l, = (0, 1, u, 02, . . . ,?Pj 

with 0 as basepoint and the multiplication determined by the rule V” = 0. These are not of 
the form r+. In the pointed situation we have no analog of the (usual) bar construction 
since in general we lack the projections pri: II A II + Il. 

Suppose A is a ring and II is a discrete pointed monoid. Then we can give the quotient 
A[II] = A(II)/A( * ) the structure of a ring with multiplication and unit 

p:A[I-I]@A[I-I]-+A[Il Al&%[Il], q:E+AIS”]~A[l-I]. 

If II = I+ for a discrete group I and A is commutative, then A[ll] is the usual group 
algebra A[IJ Note also that A[&] is the truncated polynomial algebra A[u]/(u”). 
Moreover, A[NY(II)] z HH(A[II]), provided that the multiplication map A @ A + A is 
an isomorphism, so in this case 

fl,(lN;y(W; A) r HH,(A[H]). (40) 

We want to replace the coefficient ring by an FSP. 

Definition 7.1. Let L be an FSP and II a pointed monoid. We define a new FSP denoted 

N-U by 
L[l-I](X) = L(X) A II 

with the structure maps &,‘F’ = (pi,r A $‘)O(id A tw A id) and li’“] = li A 1”. 

Let us write A for the FSP associated with the ring A, cf. Section 5.1. 
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PROPOSITION 7.1. Let A be a ring and II a discrete pointed monoid. There is a natural 

transformation b: A”[lI] + A[ ?i ] which induces an equivalence of cyclotomic spectra 

T(aCI-Il) =o T(A31). 

Proof. Let R be any ring. The multiplicative monoid (R, *) acts on the functor r?. Indeed, 
R = &So) and the action is given by the composition 

R A R(X) = &So) A I?(X)2 &So A X) = R”(X). 

Hence, II c A[I’I] acts on AZ]. N ow b(X) is the adjoint of the map 

II -+ F(A”(x), A-l), 71 H 7c.q(X). 

Note that b(X) is the inclusion of a wedge of copies of A”(X) indexed by II - * in the 

corresponding weak product. The proof that T(b) is a G-equivalence, is completely analog- 
ous to the proof of the theorem below. 0 

If t is a cyclotomic prespectrum, the smash product G-prespectrum t A 1 N 7 (II)( may be 
given the structure of a cyclotomic prespectrum. Indeed, the composition 

p:t(QC A p; 1 N’,Y(l-I)~cl”D;‘p~t(V)c A ,I$ Is~~N~(II)I”~=~ t(p;VC) A (N”,Y(II)I 

is G-equivariant, and conditions (i)-(iii) in Lemma 2.2 are trivially satisfied. The spectrifica- 
tion T A ( N”,Y (ll) I is a cyclotomic spectrum by the remark following Theorem 2.2. 

THEOREM 7.1. Let L be an FSP and II a pointed monoid. Then there is a natural 
equivalence of cyclotomic spectra 

WCnl) ‘CT(L) A IN”,Y(Wl 

Here the smash product on the right has 5 Q”(t’(L)(V) A 

VC4 

1 N y (II) I) as its 0th space. 

Proof We define a map f (i, k, V) as the composition 

F(Sio A ... A Sik, Sv A L(S’0) A ..- A L(S’“)) A N:,JYI) 

+ F(SiO A ... A S”, Sv A L(S’0) A ... A L(S”) A N7,Jl-I)) 

-+ F(S’o A 1.. A Sit, Sv A L[l-I](SiO) A ... A L[l-I](S”)). 

The first map is the adjoint of ev A id while the second map is a “twist” map. 
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The mapsfu, k, V) for different j’s in the indexing category I’+’ are compatible so we 
obtain mapsf(k, V) on the homotopy colimits. It is straightforward to check that these 
commute with the face and degeneracy maps such that we get maps of the geometric 
realizations. The maps f(V) which result form a map of cyclotomic prespectra and we 

obtain a map of the associated cyclotomic spectra 

f: T(L) A 1 N”,(ll)I + T(L(rI)). 

In order to prove thatfis a G-equivalence, we apply Lemma 2.5 withj(V) the homotopy 
fiber of f(V). We claim that f induces an equivalence on C-fixed points for any finite 
subgroup C c S’. Indeed let R = IWC be the regular representation of C. It follows from (the 
proof of) [2, 6.101 that sdcf(i, k, lR)C is 21- 1 connected. By the approximation lemma 
[14,1.6], the same holds for sdcf(k, IR). Now since the C-action is simplicial the C-fixed 
points of the realization is the realization of the C-fixed points. Therefore, the spectral 

sequence of [18] shows that f(lR)’ is homology 21- 1 connected. But when 12 1 the 
domain and codomain for f(lR)’ are both simply connected and consequently f(lR)C is 
21- 1 connected. Hence, Jc N c * To see thatj(V)G !?c * note that the G-fixed set oft(L)(V) 

is S”‘. Indeed, it is those 0-simplices x E t(L)( V), for which sax = tlsox. Cl 

Remark. (i) We can write the theorem as a statement for RO(G)-graded homology 

theories, 

wCm*w) = W)*(X A I WYmo 

for any G-space X. 
(ii) The theorem shows in particular that the underlying non-equivariant spectra are 

equivalent. Combined with Bokstedt’s calculation of T([F,) and T(Z), cf. 5.2 and [14], we 
obtain (Z-graded) 

Results of this form has also been proved by T. Pirashvili and A. Lindenstrauss by different 
methods. 

7.2. We evaluate the cyclic bar construction of the pointed monoid II,, which in view of the 
above corresponds to dual numbers. First we need a description of the cyclic n-simplex A”. 

Recall from [41,42] the isomorphism A r S’ x A’ of cocyclic spaces. It is chosen such 
that on the right the cosimplicial structure is simply the product of that on A and the 
identity map on S’. As a consequence the action of r, is complicated; let R/i? be our model 
of S’ and identify A” with the convex hull of the standard basis in lR”+r, then 

z,(x; 110, . . . ,u.)=(=---0;u1, ***,u.,uo). 

We want, however, to choose the isomorphism I\’ g S’ x K differently so that the action by 
r, becomes diagonal 

7,(x; uo, . . . ) 24,) = (x - l/(n + 1); Ur, . . . ,U”, ug). 
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Let us write A” for S’ x A” with the C,+ i-action which is given by Jones’ isomorphism and 

let S ’ x A” have the diagonal C, + i- action. Then we want a G x C,+ ,-equivariant homeo- 

morphism F, : A ” + S1 x A”, which covers the identity on A”. We introduce an auxiliary 
function fn : A” + R and write 

F,(x; uo, . . . ,u,) = (x -f.(uo, *.- ,u,); uo, *.. ,%I). 

We obtain the following equation for f.: 

fnb 1, ..f > WI, uo) -.mo, *-* ,%I = lh + 1) - uo* 

For each choice off& 0, . . . ,O), the equation has a unique affine solutionf,; we choose the 

affine functionf, whose value on (1, 0, . . . ,O) is 0. This gives us the desired isomorphism 
K z S’ x A. Of course, in this description the cosimplicial structure on the right is no 
longer a product. 

We say that a k-simplex uio A .*a A vi* in N”,Y(II,) has degree i. + ... + ik and that the 
basepoint 0 has all degrees. The cyclic structure maps preserve degree, so the simplices of 
degree s form a cyclic subset N’,Y(II,; s) and we get a splitting 

N”,(I-I,) = v N”,Y(I-L,; s) (41) 
S>O 

as cyclic sets. 

LEMMA 7.2. As G-spaces 1 Ny(II,; s) 1 z S: A cSS(RC,), with G acting by multiplication in 

the first variable. 

Proof Let us write II, = (0, 1, E}, with .s2 = 0, and N(s) instead NX(II,; s). The degree 
counts the number of E’S in a simplex, so the k-simplices in N(s) different from 0 has exactly 
s E’S. Thus, when k Q s - 2 there is only one k-simplex 0, whereas for k = s - 1 there is also 
the simplex E A . . . AE (s times) and this generates N(s) as a cyclic set. It follows that the 
realization of N(s) is a quotient of A\“- ’ and in fact that 

1 N(s) ( z (A”- ‘/aAS- ‘)/C, E (A”- ‘/C,)/(aAS- l/C,). 

In view of the above description of A”- ’ the claimed homeomorphism is evident. 0 

For s = 2r even we define an equivariant version of RP2 to be the mapping cone 

s’/c,+ 2 P/c,+ + lRP2(s). (42) 

The regular representation UK, splits as lR 0 W, if s is odd and R Q3 R_ 8 W, if s is even, 
where W, is the maximal complex subrepresentation. We have the 

COROLLARY 7.2. There are G-equivariant homeomorphisms 

IN7’(l-12;s)I E 
S’/C,+ A Sw~ ifs is odd 

IwP’(s) A SW- if s is euen 

with G acting diagonally on the spaces on the right. 
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Proof: When s is odd, S(RC,) = S(R 8 IV,) = SK and since W, is a complex representa- 
tion we have the usual G-homeomorphism 

where G acts diagonally on the target. When s = 2r is even, we get similarly 

and C, acts on R_ through the quotient C, + CJC,, so 

S: A &- E (S'/C,)+ ACJC,SR-. 

Finally, the right-hand side is the Thorn space 

Th(S’/C, x ,,R _ + 9/C,) = (9/C,) U&S l/c, = RP2(s). cl 

7.3. We end this section with a partial description of the (realization of the) cyclic sets 

NX(II.; s) for n > 2. In particular, we calculate their singular homology. 
Let R be a commutative ring and suppose A = R [u]/(f(o)), where f(x) is manic. We 

write x = u @ 1, y = 1 @ u and A = (f(x) -f(y))& - y). Then there is the following free 
resolution of A as an A-A-bimodule: 

see e.g. [43]. The Hochschild homology of A is now immediately calculated from the 
complex 

0 /‘w 0 O-A-A-A-AZ... 

Combined with (40) we get 

R Cul Au”) if i=O 

Ri(lN”,Y(IIn)l; R) Z nR(I)@ R(u, . . . ,U”-‘) if i > 0 is even 

R(l, u, . . . ,une2) $ R/nR(u”-‘) if i odd. 

Recall from 7.2 the splitting of N”,Y(II,) as a cyclic set. It induces a splitting of the 
realization and we want to calculate the homology of the individual wedge summands 
1 NY (II,; s) I. We compare the resolution above for A = R [u]/(u”) with the bar-resolution 
and choose a chain equivalencef,, 

. ..-A@AAA@A=A@A".A-O 

I 
fl 

I 
fl 

I 
fo 

b II 
. . . - AB4 "1 A'=3 b' AB2 ", A-O 
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We will not need explicit formulas forfi. The degree defined on N”, (II,) extends such that 
A, and therefore also A @’ become graded rings. Moreover, , 

deg(x - y) = 1, degb = n - 1, deg b’ = 0 

and we immediately get 

deg fij = jn, deg f&+1 = jn + 1. 

Next we form the tensor product with the A-A-bimodule A. Since the multiplication 
p : A @ A -+ A has degree 0 the induced chain map?, has deg x = deg fi. We compare with 
the homology calculation above and get 

LEMMA 7.3. (i) Zf (j - 1) n < s < jn then 

(ii) ifs = jn then there is an exact sequence 

O-E?,j(JN’,(II,;s)I;R)+ RA R-E?,j_,((NC,Y(nn;s)I;R)-O 

and these are the only non-zero reduced homology groups. 

8. A FORMULA FOR TC(L[.s]) 

8.1. In Section 7 we evaluated T&[&l), the topological Hochschild spectrum. We now 
determine its fix point structure and give a formula for TC(L[s]). In the first section we 
recall some equivariant duality theory, and here G may be any compact Lie group. 

For any finite subgroup H c G and any G-spectrum T indexed on a complete 
G-universe %! we have the following duality, natural in T: 

ZAd(“F(G/H+, T) NGT A G/H+. (43) 

Here Ad(G) denotes the adjoint representation of G on its Lie algebra and the smash 
product on the right takes place in GY%. 

To define the duality map we choose an embedding of G/H in an orthogonal G- 
representation V and consider the normal bundle v. As an H-representation V = L 0 L’, 
where L = T,(G/H) is the tangent space. Indeed, H acts by left translation on G/H and 
hence on L and the embedding identifies L as a sub-H-representation of I/. Therefore, the 
normal bundle is G xH L’ + G/H. In general, this is non-trivial. 

When H is finite we may identify L with Ad(G). Indeed, left translation by h on G/H 
coincides with conjugation by h and the projection G + G/H is a local diffeomorphism. 
Now G/H embeds in V 0 L with normal bundle G x,(L* 0 L) z G xH V. The action by 
G on I’ gives a trivialization of the normal bundle. Thus, the Thorn-Pontryagin construc- 
tion yields a G-map 

(7&g SL@” -+GJH, A Sv (44) 
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and the duality map in (43) is then given by the composite 

F(G/H+, T) A SLev- “‘ F(G/H+, T) A G/H+ A Sv (ev’l). T A G/H+ A S”. 

We refer [ll, p, 891 for the proof that this is a G-equivalence. We shall need the 

LEMMA 8.1. Let H c K be Jinite subgroups of G, let xi: G/H -+ G/K be the projec- 

tion and let (x5>! : Zz G/K+ + C$ G/H+ be the associated equivariant transfer. Then the 

diagram 

XAd(G)F(G/H+, T)- T A G/H+ 

I 
(x”,Y 

1 
l/In”, 

CAdfG’F(G/K+, T)- T A G/K, 

is G-homotopy commutative. 

ProoJ: We may write (43) as the composite 

ZAdCG)Z; G/G+ A F(C,“G/H+, T)- (n’yh’ C;G/H+ AF(C,“G/H+, T)=Z,“G/H+ A T 

where (a;)! is the map of equivariant suspension spectra induced from (44). The transitivity 
triangle 

is G-homotopy commutative and reduces us to prove the following kind of Frobenius 

reciprocity: The diagram 

Z,“G/H+ 

T 
A F(Z,” G/H+, T) (cv. EG” G/H, A T 

(I$)’ A 1 
EG” G/K, A F(Xc,m G/H,, T) <Al 

1 1 /f ((Q,* 1 

ZG” G/K+ A FCC,” GfK,, T) (ev, XG” G/K, A T 
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is G-homotopy commutative. This in turn a straightforward consequence of the standard 

fact that the square 

C,m GIH, (nB, XG” (G/K+ A G/H+) 

T 
@E)! 

T 
1 A(nR,)! 

C,m W. b, EG” (G/K+ A G/K+) 

is G-homotopy commutative. 0 

8.2. We return to the calculation of TC(L[s]). Again G will be the circle group. Let F(L[.s]) 
be the reduced topological Hochschild homology of L[e], i.e. the homotopy fiber 

T((L[s]) = hofiber(T(L[s]) + T(L)), E H 0. 

Recall that for any representation W c Q we write Tw for the smash product G-spectrum 
T A S”. Then from Section 7 we have the cofibration sequence of G-spectra 

where the first maps takes the summand I to the summand s = 2r by the map induced from 

the projection S : S’/C, -P S’/C,. If we take &fixed points we still get a cofibration 
sequence. Moreover, we may replace the wedge sums by the corresponding products and 

get 

,II, (T(%vz, A S ‘/C,+)’ *-,II, (T(L),, A S%+)‘“-+ ~VMcn. (45) 
, / 

This is because T(L),, A S’/C,+ is (s - 2)connected and hence by Theorem 2.2 so is its 
C,-fixed sets. 

LEMMA 8.2. For any G-spectrum T indexed on % the inclusion of the G-jiixed set induces 

a natural map 

(T A S’/C,+)’ + holim (T A S’IC,+)‘* 
- 

F 

which becomes an equivalence after profinite completion. Here the limit on the right runs over 

the inclusion maps and the smash products are taken in GY%!. 

Proof: The adjoint representation of G is trivial so the duality of (43) becomes 

(T A S’/C,+)ca = XF(S’/C,+, T)‘#. 

For C, 1 C, we have a cofibration sequence of &spaces 

CJC,. -, S’/C,+ --+ IS’KA A GIJC,. 
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where the bars on the right indicate S/C, with trivial G-action. This implies a cofibration 
sequence of function spectra 

F((S’/C,( A c,/c,+, Tp --f F(S’/C,+, 2-F -+ F(GIG+, w 

or equivalently the cofibration sequence 

F(S’/C,, T’s) + F(S’/C,+, T)c.-% TC* 

and one readily verifies commutativity in the diagram 

F(S’/C,,, TCs) - F(S’/C,+, T)Cv % TG 

I ((7, 1 F, II 
F(S’/C,, TC*) - F(S’/C,+, T)‘” * TC‘. 

(46) 

The homotopy limit of the left-hand term is 

hplimF(S’/C,,, TC*) = F(h%S’/C., T’s) = F(S’Q, T’s) 

n n 

where S’Q is a Moore space with integral homology Q, concentrated in degree one. It 
vanishes after profinite completion: 

F(S’Q,T)” = F(S-‘Q/Z, F(S’Q T)) = F(S-‘Q/Z A S’Q, T) = *. 

Finally, the evaluation maps in (46) are split by the inclusion of the G-fixed set, 

TCs = F(S’/C,+, T)’ + F(S’/C,+, T)C* 

and the lemma follows by one more application of (43). 0 

PROPOSITION 8.2. After projinite completion there is a cojbration sequence of spectra _ 

Cholim T(L)22 holim T(L)z# + ?(L[e]) 
- , - 

R R 

where the homotopy limits runs over the natural numbers ordered by division and where 

T(L)$; is a point when s is odd. 

Proof. The lemma gives us a cofibration sequence for 

Indeed, from Lemma 8.1 we have the commutative square 

CTCa “, (T A S’/C,+)’ 

I 
V2 

I 
($I* 

CTC2~~+ (T A S’/C2,+)’ 

E(L[&]) = he ?(L[E])~~. 

F 
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where, we remember, Vz = ((#)*. Therefore, upon taking homotopy limits over the 

inclusion maps in (45), we get the cofibration sequence 

I-I CT(L)$$+ fl CT(L):, + E(L[E]) 
r>l SZl 

where the first map takes the factor r to the factor s = 2r by the map 
The restriction maps 

R, : f(L[E])cs + f(L[&]p” 

induce self-maps of %$_&]), again denoted R,, and 

Z(L[e]) = E(L[E])hR 

(47) 

V 2. 

the homotopy fixed points of the multiplicative monoid of natural numbers acting through 
the maps R,, n > 1. When n divides s, 

PC. : P2i. ws+ WG,“, PZ” w: = WS,” 

and R, maps a factor s (resp. r) in (45) to the factor s/n (resp. r/n). The factors with s not 
divisible by n are annihilated by R,. In fact, we have 

where R,,, are the restriction maps of (3) associated with T(L). This is direct from the 

discussion of NC{ (II,) in 7.1. Hence the claim. 0 

ADDENDUM 8.2. After p-completion there are equivalences of spectra 

(i) For p odd 

?&[e]) N fl C ho&n T(L)&,. 
(4%) = 1 R 

(ii) For p = 2 

E(L[e]) 1: fl C cofiber(Vz : holim T(L)$i-’ --f hohm T(L)$& 
(d,2) = 1 - - 

R R 

Here W, c IWC, is the maximal complex subrepresentation. Moreover, the projection map 

holim T(L)&:, + T(L)zr, 
- 

R 

is (pm+’ d - l)-connected for p odd and (2,’ ‘d - 2)-connected for p = 2. 
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Proof: For every k prime to p the map 

becomes an equivalence after p-completion. This follows from the proof of Lemma 4.3. Note 
that (48) induces an equivalence after p-completion 

holim T(L)~,~ n 
- 

holim T(L) 2jII. 

R 
Cd, P) = 1 ‘R 

We evaluate the cofiber of the map 

under the equivalence of (48). 
First, suppose that p is an odd prime. The composition 

induces multiplication by 2 on homotopy groups. Hence, the map from the cofiber of Vz to 
the homotopy fiber of Fz becomes an equivalence after p-completion. We write s = p”2k 
with (k, p) = 1 and consider the commutative square 

F2 W)“w’r’:, - T(L)%; 

I 
nbc,,Fd 

I 
n &t,dFd 

n T(L)$“_ pr.,.. 
dlZk d,2krJ,ven T(L)Cw”,” 

It shows that after p-completion 

cofiberT(L$; + T(L):,) N n T(J%&. 
dlZk, d odd 

Taking homotopy limits over the restriction maps as s runs through the natural numbers we 

get (i). 
For p = 2 we have a commutative square 

T(L)$;,nb vz T(L)$tk 

I 
n Rk,dFd 

I 
l-I Rk,dFd 

-i-p%;, A g w2;y 

from which (ii) follows by taking homotopy limits over the restriction maps. Finally, the 
claimed connectivity of the projection map follows from Theorem 2.2 since taking 
homotopy orbits preserves connectivity. 0 
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9. TOPOLOGICAL CYCLIC HOMOLOGY OF k[.s] 

9.1. We use the scheme set up in Section 5 to evaluate the fixed point spectra T(k)% for any 

complex representation W c 42. We first consider the case k = IF,, where we use that (25) 
gives a diagram of cofibration sequences 

Indeed, Lemma 2.1 

We start with the following 

LEMMA 9.1. Let T be a C-spectrum and let X be a jnite C-CW-complex. Then the 

inclusion of the C-singular set Xsing c X induces an equivalence 

fil(c; T A X) 1: @C; T A Xsing). 

Proof: Recall from 5.1 that A(C; T) is the C-fixed point spectrum of the C-equivariant 
spectrum 

IQ(T) = i?C A F(EC+, T). 

We prove by induction over the C-cells that Q(T A (X/XSing)) is C-contractible. Since 
X/Xsk is a free C-CW-complex in the based sense, it is enough to show that rcc( T A C+) is 
C-contractible. Now by (43) 

F(EC+, T A C,) =cF(EC+,F(C+, T)) % F(EC+ A C+, T) 

and EC+ A C + is C-contractible. Hence, xc(T A C+ ) is C-contractible. 0 

COROLLARY 9.1. The map f l,w induces isomorphisms on homotopy groups in dimensions 
greater than or equal co dim W ‘p. 

ProoJ We consider the following commutative diagram: 

The right-hand horizontal maps are equivalences by Lemmas 2.1 and 9.1, respectively, and 
the left-hand horizontal maps are equivalences because SW” is a C,-trivial finite C,,-CW- 
complex. Now proposition 5.3 shows that the left-hand vertical map induces an isomor- 
phism on 71i( - ) when i > dim Wcp, and the corollary follows. Cl 
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We next consider the spectral sequence of 5.1 for rc.+(611(CPn; T(IF,),); IF,). It has E2-term 

where the decoration [IV] indicates that the bidegrees are shifted (0, dim IV). The spectral 
sequence is a module over the spectral sequence fir of (31), and one may repeat the proof of 
Lemma 5.3 and show that the differentials are generated from d2el [W] = tt?[IV] in the 
module structure over E’. It follows that 

where again [IV] indicates that the degrees are shifted up by dim W. Note also that the 
proof of Corollary 5.3 shows that the integral homotopy groups of 6I(C,,; T(ff,),) are 
cyclic &,-modules. 

ADDENDUM 9.1. The maps r,,, and r,,, of (49) induces isomorphisms on homotopy 

groups in dimensions greater than or equal to dim W ‘p. 

Proof: We prove the claim by induction over n starting from the case n = 1, which was 
proved in Corollary 9.1. The induction step uses the diagram 

By induction the left-hand vertical map induces isomorphism on rti( - ) for i > dim W ‘fl. 

Moreover, since taking homotopy fixed sets preserves connectivity, it follows from Corol- 
lary 9.1 that the lower horizontal map induces isomorphism on Xi( - ) for i 2 dim W’p. 

Finally, G,, w is an equivalence. Indeed, when W = 0 this was proved in 5.3, and given (50), 
the argument of 5.3 extends verbatim to the case of a general W. This proves the induction 
step, and hence the addendum. 0 

We can now repeat the proof of Lemma 5.4 and solve the spectral sequence 

it& = &{U,} 0 SF,{4 t-l} 63 &){~)WI -7-c*wP”; T(~hvh 

It is a module over the spectral sequence i?’ of (31) and the differentials are generated from 
d2”-1u,[W] = t”+l n c [W]. The extensions in the passage from e$ to the actual homotopy 
groups are maximally non-trivial so we obtain 

d%Cf; T(F,),) E &,-{8, a-‘}[w]. (51) 

We can now evaluate the promised homotopy groups. 

PROPOSITION 9.1. Let k be a perfect field of positive characteristic and let W c @ be 
a complex representation. The non-zero integral homotopy groups of T(k)> are concentrated 
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in even degrees greater than or equal to dim W’p. They are given by 

712iT(k)~ = 
W,(k), dim Wcpa-u--) < 2i < dim W’P-~, s = 1, . . . , n 

Wn+l(k), 2i 2 dim W. 

Moreover, the maps 

are the Frobenius F: W,(k) + W,_,(k) and the Verschiebung V: W,_,(k) + W,(k), respec- 

tively. 

Proof. First, suppose k = [F,. We let w denote the representation of &.+I on W through 

the reduction map C,+, + C,. Then W = p,$ @‘p and Addendum 9.1 and (51) shows that 

niT(IF$g = XiA(Cp”+l; T(IF,)w) = Z/p”+‘, 

when i 3 dim W and even. By Theorem 2.2 the restriction map 

is (dim W - l)-connected, and hence a downward induction on n gives the claimed 
homotopy groups. One may repeat the proof of Proposition 5.4 to see that F and V are as 
claimed. 

Next, let k be any perfect field with char k = p. The proof of Theorem 5.5 shows that 

Indeed T(k@” is a T(k)cp”-module spectrum, so in particular, the homotopy groups are 
W,+i(k)-modules. Since W,+,(k) @I W&J,) z W,(k) we see that the homotopy groups of 
T(k)%” are as stated. Finally, the diagram 

W,+,(k) @ n* T(IF,)>- 5 n* T(k)> 

I 
F@F 

I 
F 

W,(k) ($3 z, T(E,)c,-’ 5 x* T(k)%-’ 

commutes, and the proposition follows. 0 

9.2. In this section k is a perfect field of characteristic p > 0. Let n = n(i, d) be the unique 
positive integer with p”- ’ d < i < p”d. 

THEOREM 9.2. The homotopy groups of %(k[E]) are concentrated in odd positive degrees. 
If char k is odd, then 

X(kC&l) g @ wn,i,,,(k)s i odd 
‘;“:t ; f . 
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and if char k = 2, then 
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Ei(k[.z]) g k@(‘+ lM2, i odd. 

Proof: Since k is an If,-algebra TC(k[s]) N TC(k[s])i N TC(k[s]; p),^ and we use 
Addendum 8.2 with L = I? for p odd, 

@k[E]) N n holim T(k)$rI 
Cd, 2~) = 1 ‘R 

(52) 

and by Theorem 2.2, 

rtiC holim T(k)$r_d z Ai-1 T(k)21w, for i < dim Wfl+‘d + 1. 
- 

R 

On the other hand, if further i - 1 2 dim W>+,, = p”d - 1 then by Proposition 9.1 

when i is odd, and the groups vanish when i is even. Thus, for p”d < i < p”+ ‘d and i odd, the 
dth factor in (52) contributes one copy of W,(k). For i < d - 1 the dth factor does not 
contribute. This finishes the proof when char k is odd. 

Assume now that chark = 2, where by Addendum 8.2(ii), 

%!(k[E]) N I-j Ecofiber 
(d, 2) = 1 

+ holim T(k)$;_d . (53) 
- 

R 

This time dim W2-d = 2”d - 2, and the projections 

are isomorphisms when i < dim W2”+ld - 1. We have left to evaluate the Verschiebung map 

By Proposition 9.1 



K-THEORY OF FINITE ALGEBRAS 95 

for i > dim W2”* + 1 and i odd, and they vanish for i even. Moreover, the Verschiebung map 

on the left corresponds to the Verschiebung map on Witt vectors, cf. 3.1. This in an injection 

with cokernel k g W,, ,(k)/W,(k). H ence, for n 2 1 and an odd i with 2”d - 1 < i < 
2”+‘d - 1, the dth factor in (53) contributes one copy of k to %(k[c]). Ford < i < 2d - 1 

nix holim T(k)::_, 2 ni- 1 T(k)wl z k 
- 

R 

Xix holim T(k)$r;’ = 0 
- 
R 

which gives one copy of k in the dth factor of (53) when i is odd. Finally, for i < d there is no 
contribution from the dth factor. This proves the case char k = 2. q 

We are now ready to prove Theorem E of the introduction. 

Proof of Theorem E. In view of Theorem 9.2 above it suffices to show for char k = p, an 
odd prime, that 

W,j- l(k)/V,Wj- l(k) z @ Wn(zj- l,d)(k)- (54) 
(6 2~) = 1 

l<d<2j-1 

For any Z(,,-algebra R, and in particular for R = k, we have the Artin-Hasse exponential 

where p is the Mobius function given by p(d) = 0 if d is divisible by a prime square, 

IdPI ... p,) = (- 1)’ if pl, . . . , p, are distinct primes, and p(1) = 1. It gives rise to an 
injective map of sets 

J?: fi R+W(R); &o, a1 , . . . )(X) = fi E(usXP) 
n=O s=o 

whose image is a (non-unital) subring of W(R), isomorphic to the ring of p-typical Witt 
vectors W(R) (in the induced ring structure). 

For any d > 1 with (d, p) = 1 we consider the following slight modification of 8: 

fid(aO, al , . . . )(X) = fj E(u,X~“~)“~ 
s=o 

which again is a (non-unital) ring homomorphism &: W(R) -+ W(R). Is is not hard to see 
that any p(X) E W(R) can be written uniquely as 

P(X) = fi E(aJ”) 
n=l 
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so using all & we get a decomposition of the ring W(R) as a product of rings 

W(R) E n W(R). 
C&p)= 1 

(55) 

The ith Verschiebung map I/: W(R) + W(R) is the map given by Vi(f(X)) =f(X’). The 

quotient W,(R) = W(R)/ViW(R) is again a ring, the ring of big Witt vectors of length i. The 
V-filtration of W(R) can be compared to the I/-filtration on W(R), through Ed. One finds 
that 

&(V”W(R)) c ViW(R) e i < p”d. 

When p is odd the image of F/2 can be compared with the splitting (55). Indeed, one finds 
that V,W(R) corresponds to the factors W(R) with d even. When R = k this gives us (54) 
and hence Theorem E. cl 

We owe to M. Biikstedt the formula (54). 

APPENDIX A: SPECTRA AND PRESPECTRA 

A.l. This appendix concerns the passage from G-prespectra to G-spectra. We introduce 
a class of good G-prespectra and a functor which replaces a G-prespectrum by one which is 
good. 

The forgetful functor 1: GY% + GB% has a left adjoint L: GS9 + GYQ, which to 
a G-prespectrum t associates a G-spectrum Lt, see [ 111. The need for such a functor comes 
from the fact that many spacewise constructions leave the subcategory of G-spectra. As an 
example let T be a G-spectrum and X a G-space, then the obvious map 

X A T(V) --4-f+-“(X A T(W)) 

is not in general a homeomorphism. Similarly, a spacewise (homotopy) colimit of G-spectra 
is not in general a G-spectrum. However, for general G-prespectra the functor L is rather 
badly behaved; for example, one might very well have 

n&(V) # lim n,CP-“t(w). 
- 
WC% 

We call a G-prespectrum t good if the structure maps 

5:C “-‘t(v) + t(W) 

are all closed inclusions. Goodness is preserved by smash products and homotopy colimits, 
and since the adjoints (T : t(V) --) R “-“t(W) are inclusions, the spectrification functor takes 
the simple form 

Lt(V) = lim f2”-‘t(iV). 
- 
WCU 

In particular, the homotopy groups are what one expects. 
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Now let t be any G-prespectrum indexed on % and let V c Q be a f.d. sub-inner product 

space. The sub-inner product spaces Z c V form a poset and hence a category, and for 

Z1 c Z2 c V we have a map of G-spaces 

These data specify a functor and we define 

Definition Al. The thickening tr of a G-prespectrum t, 
space the homotopy colimit 

t’(V) = holimEv-Zt(Z) 
- 
zcv 

and the structure maps the compositions 

is the G-prespectrum with Vth 

CW-Vholim~v-Zt(Z) E holimCW-Zt(Z) + holimEV-Zt(Z) 
- - - 
zcv zcv zcw 

where the last map is induced by the inclusion of the category of sub inner product spaces of 
I/ in that of W. 

LEMMA A.l. t’ is good and comes with a map IZ : t’ + t of G-prespectra, which is a spacewise 

G-equivalence. 

Proof: The map on homotopy colimits induced by the inclusion of a subcategory is 
always a closed G-cofibration, hence iY* : C Iy-” t’( V) + t(W) is a cofibration. Since the 
category of sub-inner product spaces of V has V as terminal object, there is a natural G-map 
rc(V): t’(V) + t(V), with r(V): t(V) --t t’(V) as G-homotopy inverse. Finally, the maps n(V) 
form a map of G-prespectra. 0 

LEMMA A.2. If T is a cyclotomic spectrum, then T’ is a cyclotomic prespectrum. 

Note that the functor ( - )’ produces extremely large spaces, because we use all sub inner 
product spaces of I/. A smaller version is considered in [ 11, p. 371. Alternatively, one could 
topologize the index category. 

We call a G-spectrum good if it is the spectrification of a good G-prespectrum, i.e. 

T(V) = holimRwY-“t*(W). 

WC; 

Let us note that a good G-spectrum is not good regarded as a G-prespectrum. We claim that 
smashing with a G-space X and taking homotopy colimits preserve good G-spectra. To see 
this we recall that if a: GB% + G942 is a functor, then the associated functor 
A: GY% + G9% is the composite Lal. If a has a right adjoint b, then B is the right adjoint 
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of A, and if moreover b preserves G-spectra, i.e. b(lT) E lB(T) for any T E GY42, then 

A&t) z La(t). 

Smash products and homotopy colimits are examples of such functors a. Moreover, they 
both preserve good G-prespectra, and the claim follows. 

APPENDIX B: CONTINUITY PROPERTIES OF K-THEORY 

In this appendix we prove Theorem C(iii) of the introduction. The proof amounts to 
a recollection of facts due primarily to Suslin and coworkers [44,45] 

Let k be a perfect field of positive characteristic p, and W(k) its Witt-vectors. We 
consider finite W(k)-algebras, i.e. W(k)-algebras whose underlying W(k)-module is finitely 
generated. 

THEOREM B.l. For a$nite W(k)-algebra A, 

K(A); N TC(A),” 

where p = char(k). 

In view of Theorem C(i), (ii) the statement is equivalent to the continuity statement that 

K(A); 3: zP(A),^ W) 

where the right-hand side is the homotopy limit of K(A/p”A),” . We begin by reducing to 
a special case. Let F denote the fraction field of the local ring W(k), and let E = A @W(k) F. 

LEMMA B.2. Zf Theorem B.l is true when E is semisimple then it is true in general. 

Proof: Let J(E) be the radical of E. It is nilpotent since E is finite dimensional over F, 
hence artinian. Then J = J(E)nA, so by Theorem A of the introduction the diagram 

K(A) tTC TC(A) 

1 1 
K(A/J) ‘9 TC(A/J) 

is homotopy Cartesian after p-completion. But A/J is finite over W(k) and 

A/J @W(k) F = E/J(E) 

is semisimple. 

So from now on we assume that E = A BWckj F is semisimple, and hence 
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for certain division algebras whose centers Fi are finite extensions of F. If Ai c Di is the 

maximal order of Di, cf. [46, Ch. 53 then 

13 = fI M,,(b) 
i=l 

is the maximal order in E, and A c B. As F comes from W(k) by inverting p and A OWckj 
F = B @W(k) F, p”B c A for some integers. We give E the topology whose neighborhoods of 
0 has {pi A} or equivalently { p’B) as a basis. Let GL,(A, pi A) be the kernel of the reduction 

map 

GL,(A) + GL,(A/piA). 

Then {GL,(A, pi A)} IS a basis of the neighborhoods of 1 in GL,(E). 
Suppose now first that A is commutative, and consider the variety 

Xi, j(E) = G&(E) x ... x GL,(E), i factors. 

Let O,, i(E) and Of,, i(E) denote the germs at 1 of rational and continuous E-valued functions 

on X,,i(E), and let A,, i(E) and cM~,i(E) be the maximal ideals of functions which vanish at 
1. To prove (Bl) it suffices to show that the natural map 

H,(GL(A); F,) -i E&(GL(A/p’ A); F,) (B3) 

is an isomorphism (Here G&4) is considered as a discrete group.) Indeed, if this is true with 
ff, coefficients then it is true for p-adic coefficients, and the pro-Hurewicz theorem of [47] 
supplies the corresponding theorem for p-completed K-theory. 

In Section 3 of [44], (B3) is derived from the following two statements: 

(0 fl,(GL(Ca,i(E), J’.,dE)); IF,) = 0, 
(ii) W%WP"); hJ -, KWWP~); E,) are isomorphisms for n $ k and 1 < Q < 00 

(A/pm/l = A). 

A few words of explanation are in order. Write G = GL(OC,,i(E), At:,,(E)). An element g E G 
lies in GL,(O’,,i(E). A’,,i(E)) for some I > n, say, and g amounts to a continuous germ from 
(GL,(E)‘, 1) to (GL,(E), 1). Thus, for each 0 > 0 there exists a z > B so that the germ 
g induces a map 

g# : GL,(A, p’ A) + GL,(A, f-4). 

A (finite) chain c E Ci+1(G; [F,) = F,[G’+‘] in the bar construction then induces 

a homomorphism 

Using (i) above [44, Proposition 2.21 exhibits chains c.,i E Ci+ 1 (G; F,) such that (c,, i)# 
becomes a contracting chain homotopy of the natural inclusion of Ci(GL,(A, p' A); ff,) in 

C,(GL,(A, p” A); E,). Hence, for given n, (r, i, there exists r 2 (r such that the natural 
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inclusion induces the zero homomorphism 

Hi(G&(A P’ A); IF,) + Hi(GL(A, P' A); EJ (B4) 

Finally, in Theorem 3.6 and Corollary 3.7 of [44] it is shown, via a study of the Hoch- 

schild-Serre spectral sequence of 

BGL,(A, p”A) --) BGL,(A) -+ BGL,(A/p" A), 

that (ii) above and (B4) implies (B3). 
It remains to discuss statements (i) and (ii). The first part of the statement follows from 

[47]. Indeed, as A was assumed commutative, E is a product of fields Fj, and O:,i(E) is 
a product of C!&(Fj), the germs of Fj-valued functions on X,.,(E). Then 

GL(Qi,i(E), di,i(E)) = h GL(OZ,i(Fj), A:i(Fj))* 
j=l 

Since (Oz,i(E), ~:,i(E)) is a henselian pair [48, Theorem l] implies that the reduced 
homology of each of the t factors above is trivial. Then use the Kunneth theorem. 

Statement (ii) follows from van der Kallens work on stability, and does not use the fact 

that A is commutative, cf. [49, (2.2) and Theorem 4.111. 
The general case where A is not commutative is quite similar, only the argument for 

producing the contracting homotopy (c,,&+ is different. 
Let U5,i(Fj) denote the henselization of O,,i(Fj). It is proved in [6], that 

has vanishing homology, and universal chains ct,i are exhibited. But (Oi,i(Fj), dZi,i(Fj)) 

maps into (CJJFJ, &,JFj)) by the universal properties of henselizations, and the images 

of the chains c.“,i give the required chains c,,i, hence the contracting chain homotopy. 
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