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INTRODUCTION 

A familiar situation in category theory is given by a category, 

~, and two functors, ®, ~:~ X ~ >~, that within natural isomorphisms 

are associative, commutative and such that ® is distributive relative 

to ~. A coherence result for this situation is to characterize the 

diagrams whose commutativity is a consequence of the above structure 

and some suitable conditions on the natural isomorphisms. We are go- 

ing to give a more precise description of this situation. 

Let ~ be a category, ®, e:~ X ~ >~, two functors, U and N 

fixed objects of ~, called the unit and null objects. Suppose that we 

have natural isomorphisms, 

eA,B,c:A®(B®c) 

e' :Ae(BSC) 
A,B,C 

~A:U®A >A 

~:N~A >A 

~:N®A >N 

and natural monomorphisms, 

(A®B) ®C, YA,B :A®B >B@A, 

> (ASB) SC, y' B:AeB >BeA, A, 

, pA: A®U >A, 

, ~ A~N--+A, 

, ~:A®N >N, 

6A, B,C :A® (B~C) >(A®B) ~ (A@C) 

6#A,B,C : (A~B) ®C ----~(A®C) 8 (B®C) 

which are defined for any objects, A, B, C of C. 

(i) 

A coherence result for the structure given to C by the family 

of is°m°rphisms'~A,B,C:kA ' ~  ~A' y A,_~m] was given by S. Mac Lane (see 

(2) 
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[4] and [1]), and when we say that C is coherent for 

~A.B.C' kA' ~A' YA, or for ~' IA, @~, ¥' we want to refer A,B,C' A, 

to that result, although we are going to use the conditions in the 

form given by G. M. Kelly in [i]. 

We are going to give a coherence theorem for the above structure 

on C, answering a question proposed in [5]. An announcement of this 

paper was given in [3]. Roughly speaking we intend to characterize the 

commutative diagrams that can be obtained by taking for vertices the 

combinations by ® and 8 of objects of C and for arrows the combinations 

(also by ® and 8) of the natural morphisms (i) and (2) with identities; 

to obtain a reasonable result we have to impose some conditions on C 

that are called the coherence conditions which hold in some usual 

situations. 

The paper can be summarized in the following words: Let 

X = IXl, x2,.--,Xp, u, n} be a set and construct the "free" category 

on the set X with functors ® and • and with the natural morphisms (i) 

and (2); this is a category ~(X) such that for any map, m:X >Ob ~, 

such that m(u) = U, m(n) = N, there exists one and only one functor, 

~:~(X) > ~, extending the map m and preserving ®, S and the morphisms 

(I) and (2). The objects of ~(X) will be the elements of the free 

algebra with two operations, ~''+I' over X and the arrows will be all 

the elements generated by . and + over formal symbols of type (i), (2) 

and identities. The coherence result states that if C satisfies the 

coherence conditions detailed in 91 and is regular (in the definition 

given later) then the image by ~ of the set C(X) (a,b) has at most one 

element. 

We have to remark that the construction of the category C(X) 

will be given almost completely, but we are not going to use the con- 

cept of "free" category given above. 

From now on C will be a category with the structure given above, 
M 

whose objects will be denoted by capital letters. We shall use the 
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parenthesis with the usual conventions on sums and products and the 

symbols ® will be omitted as often as possible. 

The core of this work was done in the Department of Mathematics 

of the University of Chicago where the author spent one year as Post- 

doctoral Visitor and he wants to thank Professor S. Mac Lane for his 

illuminating direction and patient revision of the different versions 

of this paper. 

~l. The Coherence Conditions 

We will say that the category C is coherent when C is coherent 

in the sense of [i] separately for I~, y, ~,~} and {~', y', ~', ~'}and 

the following types of diagrams are commutative for any vertices: 

A (BeC) 6 > ABeAC 
• ! ! 

A YB,C YAB,AC 

6 
A(C®B) A,C,B ~ACeAB 

(I) 

6 # = 6 (AeB)C > CAeCB (YA,cOYB,c) A,B,C C,A,BYAOB,C : ( I I )  

, 6# = 6 # , YAC,BC A,B,C B,A,C(YA,BSI C) : (AeB)C >BCeAC ( I I I )  

[Ae(BeC)]D 6# >ADe(BeC)D 

I~ A,B~C,D 

A,B,C'ID 

6# 
[(ASB)~C]D AeB,C,D >(ASB)DeCD 

~# 
iAD~B,C,D 

6# 
A,B,DelcD 

>ADID (BDIgCD) 

AD, BD, CD 

> (AD~BD) ~CD 

(iv) 
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> ABeA (CeD) >ABe (ACeAD) 
A[B~(C~D)] ~A,B,C(DD IABe6A,C,D 

,D B,AC,AD 

6 6 
A[(BeC)eD] AtBeC'D~.A(BeC)eAD AtBtC~IAD)(AB~AC)~AD 

(v) 

A[B(C@D)] 1A.6 > A(BC@BD) ~ >A(BC)~A(BD) 
i B,C,D A,BC,BD i~ 

(~A, B, C~D A, B, C~eA, B, D 

(AB) (CeD) AB,C,D > (AB) Ce (AB) D 

(VI) 

{AOB) (CD) 

~A@B, C, D 

[ (ASB) C ] D 

n 

A,B,CD 

A'B'C'ID > (AC@BC]D 
6# 
AC,BC,D >(AC) De (BC) D 

A (CD) eB (CD) 

aA,C,DSaB,C,D 

(vii) 

A [ {B@C) D] > 
.6# 

IA B,C,D 

~A ,B~C D 

% 

[A (BSC) ] D 

A(BDeCD) 

. 

A,B~C D~ (ABeAC)D 

6 > A(BD) eA (CD) 
A, BD,CD 

I~A, B, D~A, C ,D 

AB ,AC, D > (AB) De (AC) D 

(viii) 
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A (CeD) ~)B (C~)D) 

#A, B,C~D 

(A~)B) (C~)D) 

6 
AeB,C,D 

(A~B)C~(A~B)D 

6A,C,De6B,C,D> 

6#A~B~Ce6~,B,D > 

(ACeAD) ~ (BC(gBD) 

AC~AD, BC, BD 

[ (ACeAD) eBC] eBD 

~l, -I 

~ AC,AD,BCelBD 
[ACe (ADeBC) ] eBD 

( IAC~YAD, BC } ~)]BD 

[ACe (BCeAD) ] eBD 

aAC , BC,ADelBD 

[ (ACeBC) eAD] eBD 

(AC~)BC) (I) (AD~gBD) , 

(Ix) 

>N , (X) 

N (A~B) 5 ~- NA~gNB 

k ~B ~k  

N < N NeN 

(xl) 
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! * , , 
A , B , N  -- eA®B" (A®B)~ >N®N (XII) 

e~ = x.-.,J >N (XIII) 

A N =P::UN >N (XIV) 

= IAYA, N:AN >N (xv) 

N[AB) - > (NA) B 
<~N,A,B 

k 
N < B NB 

(x-~'z) 

(AN) A(N8) > B 
(LA' N' B I~ 

A~XB A'IB 

AN . . NB , 

N 

OCVZZ) 

* = P A ( 1 A O P i ) : A ( B N )  > N  , ~AB~A,B,N 
(XVIII) 

A(N@B) 6 > AN@AB 

I A, N, B I~AelA B 
A°k ' B 

AB ~ A5 N@AB 

( x i x )  
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W 

I~A(IAelBA )6# = I~®IA:(NOB)A >BA N,B,A (xx) 

~B(1ABe~A) 6A,B, N : 1A®~:A(BON) )AB (xxi) 

e~B(1ABeIB )6# A,N,B = ~A@IB:(AeN)B >AB (XXli) 

U (AeB) 6 > UAeUB 
U,A,B / 

IA~I B 

AOB 

(xxiIi) 

(~AeSB)6A,B, U = ~AeB:(AOB)U. >AOB , (xxiv) 

The commutativity of some types of diagrams imply the commuta- 

tivity of others, and we are going to indicate some of those relations. 

A detailed study of the minimal conditions assuring the coherence of 

~ for {~, ¥, 1,P 1 or Is', y', I', ~ is contained in [1]. 

We will prove the following set of relations, in which the 

number of the diagram denotes the condition of commutativity of all 

the diagrams of that type: 

i) (II) > ( (I)~---~(III) ) , 

2) (II)---~( (IV ,k=-~, (V) ), 

C for ~, y, k,~ /% (II) >( ), 3) Coherence of 

4) Coherence of C for {~, y, I,~ I /% (II) > ( ), 

5) Coherence of C for {~, y, I,~} A (XV)--~ ( ), 

6) (II)A (XV) ~ ( (XI)~--> (XII) ) , 

7) Coherence of C for ~' ' I' i} _ , ~ , , ~ ^(xv)--~ 

> Any two of ~(XVI), (XVII), (XVIII)~ imply the other l 2 

(VI) ~/----~z (VII) 

(VI) ---> (VIII) 

(XI II) ~/--~, (XIV) 
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8) (XV) A (I) A (If) ~ Each one of ~(XIX), (XX), (XXI), (XXII~implies 

the others, 

9) Coherence of ~ for ~, ¥, 1,8}A(II)---~/( (XXII I)~-~i (XXIV) ). 

The proof of all the above relations uses the same method: the 

construction of a diagram in which the commutativity of all the sub- 

diagrams with the exception of two follows from the hypothesis of the 

relation so that the commutativity of any of these two diagrams are 

equivalent conditions. We are going to indicate the construction of 

these diagrams and to identify by its number each of the subdiagrams 

involved. The symbols (cob) and (nat) in the inside of a subdiagram 

will indicate that the reason for the commutativity is the coherence 

~'~, ~} the of the elements involved in of [ for ¥, l, or naturality 

the construction of the subdiagram. 

Proof of i): It is given by the following diagram in which 

the outside is of type (I) 

A(BSC) 

(zz) 

(B~C)A 

(nat) i (ImI) 

(C~B)A 

<zl) 

/ 
A(CeB) ..... 

~ ~AC 

> BA@CA 

I (nat) 

> CA~BA 

k 
) ACOAB 
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Proof of 2): It is given by the following diagram in which the 

outside is (V) 

A [Be (CeD) ] > ABeA (CeD) 

i ~  (II)A (nat) 
(II) (nat) ABe (CeD) A 

(nat) 

[BS(CSD) ]A >BAe(CSD)A • 
! 

(nat) I (IV) 

[ (B(BC) eD] A----> (BeC) AeDA - 

" ~  (If) A (nat) 

(II) (nat) A (BeC) SDA 

(nat) 

A[ (BeC) eD] > A(BeC) SAD 

"9 ABe (ACeAD 

> ABe (CAeDA) 

> BAe (CAeDA) 

(nat) 

> (BA~CA) eDA 

> (a~eac) eDa 

> (ABeAC) eAD 

Proof of 3): It is given by the following diagram in which the 

outside is (VI) 

A [B (CeD) ] 

(II) A (nat) 

A [ (CeD) B] 

[ (CeD) B] A 

(coh) 

(CeD) (BA) 

(CeD) (AB), 

(AB) (CeD) 

(nat) 

> A(BCeBD) , 

~L (nat) 

> A (CBeDB) 

(II) 

> (CBeDB) A 

(vii) 

(nat) 

(if) 

A (BC) eA (BD) 

/ 
> A (CB) eA (DB) 

) -  (CB) A® (DB)A 

~ (coh) A 

/k (nat) 
> C (BA) OD (BA) 

> C (AB) eD (AB) 

> (AB) ce (AB) D 
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Proof of 4): It is given by the following diagram in which the 

outside is (VIII) 

A[ (BeC) D] 

\ 
A [D (BeC) ] 

(AD) (BOC) 

(coh) 

(DA) (BOC) 

D [A (BeC) ] 

[A (BOC) ] D 

> A (BDeCD) 
! 

(nat) A (II) .I. (nat) 

> A(DB®DC) 

(vi) 

(nat) 

(vl) 

> D (ABeAC) 

(nat) ~ (II) 

> (AB®AC) D 

> A (BD~CD) 

> A(DB) ®A(DC) 

(AD) Be (AD) C 

~ (coh) 

(DA) Be (DA) C 

> D (AB) OD (AC) 

> (AB) De (ac) D. 

Proof of 5): It is given by the following diagram in which the 

outside diagram commutes by the coherence of C for {~, y, ~, PI 

UN 

Proof of 6): It is given by the following diagram in which the 

outside is of type (II) 

N (AOB) > NASNB 

( N >N@N (XV) 

(XII) 

(A~B) N > ANSBN 
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Proof of 7): It is given by the following diagram in which the 

outside is commutative by the coherence of C for ~, k,~, y 

(NA)B 

5 (xvl) 
NB 
Z 

/ /  
( A N ) g  - 

(XVII) 

> N(AB) ,,> !~)N 

(XVIII) 

AN 

> A (NBI > {BN) 

Proof of 8): It is given by the following diagrams in which 

the outside are of type (I), (II), and (II) respectively 

A NOB) 

k (xix) 

\ 
(nat)A AB 

Alcoh' )~ 

AB~N 

(XXI) 

A (BON) 

> ANeAB 

(nat) 

> ABeAN 
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A (N~B) 

(nat) 

AB 

i 
BA< 

(N~B) A 

(X!×) 

(nat) 

(XX) 

~ B 

--N~AB 

~ ( n a t )  A [ X V )  

N~BA 

. . ,  
> N A e B A  

A (BEN) , 

(xxz) 

~< 

(nat) 

sA 

. /  
(BEN) A 

(nat) 

(XXII) 

~ 

/~AB~AN 

ABSN 

(nat)~ (XV) 

BAeN 

> BA®~a 

Proof of 9): It is given by the following diagram in which the 

outside is (II) 

uiA xxii u r 
(coh) ~ASB (nat)m (cob) 

(AeB) U > AUeBU 

An immediate consequence of the above relations is that for C 

to be coherent it is sufficient to check that C satisfies the follow- 

ing conditions: 

l~ c is coherent ~or {~ y ~] and ~or {~ y ~ ~} 
2) All the diagrams of type (II),( IX), (X) and (XV) are commutative. 
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3) For one type contained in each one of the sets, ~(I), (III)~, 

~XIX), (XX), (XXI), (XXII)}, ~(XXIII), (XXlV)~, all the diagrams 

are commutative. 

3) For two of the types contained in ~(XVI), (XVII), (XVIII~ all the 

diagrams are commutative. 

~2. Definition and evaluation of the paths: Formulation of .the 

coherence problem 

Let X be the set IXl,X2,''',Xp,n,u~, A the free ~+,.~-algebra 

over X and G the graph consisting of all the following formal symbols, 

for x, y, z ¢ A, 

:x(yz) • (xy) z , ~' :x + (y + z) % (x + y) + z, 
x,y,z x,y,z 

:ux~x , A':n + x ~x , 
x x 

~x:XU ~x , ~:x + n ~x , 

7x,y:Xy ~yx , 7x,y' :x + y ~y + x 

:nx % n , 
X 

_6) x : xn ~ n 

their formal inverses, indicated by the upper index -i, and 

6 :x(y + Z) • xy + XZ , 
x,y,z 

6 # :(X + y) z ~XZ + yz , 
x,y,z 

1 :X ~X • 
X 

Note that we use the symbol ~ to indicate the edges of the graph to 

distinguish them from the arrows of the category denoted by >. 

Let H be the free [+,l>-algebra over the edges of G and take on 

H the unique extension of the graph structure of G in which the 
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projections are ~+,.~-morphisms. An element of H is an instantiation 

if, with at most one exception, only elements of G of type 1 are in- 
- x 

volved in its expression: the elements involving only elements of G 

of type I x are called instantiations of identities or simply identi- 

ties. We will denote by ~ the graph consisting of all the instantia- 

tions of ~. We can define now the ~aths as the sequences, 

~i~ .. 
Yl Y2 N2•" Nm-l~ Ym ' 

cT. We can speak of the existence of diagrams involving ele- where ~i -- 

ments of T, but not yet of the commutativity of such diagrams because 

the product of edges of T is not (and will not be) defined. 

Fix now p objects, 01, 02, °°" , 0p in C and let g:T >~ be 

the morphism of graphs defined on the vertices by the conditions, 

i) gu = U, gn = N, gx i = 0i, for i = i, 2,''', p, ii) g(x + y) = 

gx • gy, g(xy) = gx @ gy, for x,y ¢ A; on G by taking each formal 

symbol onto the arrow of C determined replacing each subscript by its 

image by g and such that for x, y ¢ ~, g(x + y) = gx • gy, g(xy) = 

gx ® gy. This definition depends upon the 0. and allows us to define 
1 

the value of a path as the product of the value of the steps and to 

define that a diagram with elements in ~ is commutative if any two 

paths contained in the diagram and with the same origin and end have 

the same value. 

An ideal coherence result would state that if C is coherent in 

the sense of ~i, then for any choice of the 0 i any diagram of elements 

of T is commutative, that is, for any choice of the 0. the value of 
- 1 

any path only depends upon the origin and the end of the path. But 

this is not true in some simple cases; for instance if C is the cate- 

gory of unitary modules over a commutative ring, ® the tensor product, 

• the direct sum and if 01 is not the null module, then the value of 

ixl+x l:x I + x I •x I + x I is the identity map of 01 • 01 and the value 

of 7' :x I + Xl'-X 1 + x I is the map defined by <a,b> ><b,a> that 
Xl,X 1 
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is not the identiry. In this sense the coherence problem has a nega- 

tive answer but we are going to prove that it is sufficient to impose 

a reasonable restriction on the vertices of the diagrams to get a 

coherence result that holds for any choice of the 0 i. 

Note that the free category generated by the graph G would be 

the free category C(X) referred to in the Introduction. 

We shall use the symbol ~ > to indicate paths with steps in T. 

The expression a 0>b will denote the existence of a path from a to b. 

3. Re@ularit[ and some preliminary concepts 

IN] 
We shall indicate by N the set of natural numbers and by S 

the set of all finite sequences of elements of S. In general, we 

shall represent the elements of S [N] by putting into parenthesis the 

sequence of the elements, identifying the elements of S with the se- 

quences of S [N] with only one element. 

All the definitions included in this part, with the exception 

of the concept of regularity, are auxiliary tools to be used in the 

proof of the propositions. 

The rank of the elements of A is defined by means of the map, 

rank:~ > N, uniquely determined by the following conditions, 

i) For x c X, rank x = 2 , 

ii) For a, b ¢ A, rank (a + b) = rank(ab) = rank a + rank b. 

The size, siz:A > N, is defined by the conditions, 

i) For x ¢ X, siz x = 2, 

ii) For a,b c A, siz(a + b) = siz a + siz b, siz(ab) = (siz a)(siz b). 

It is very easy to prove that for any element, y, of A, 

< 
rank y = siz y, 

and that rank y = siz y, if and only if y is the sum of elements of 

that are products of elements of S. 

The norm, II:A ~N, is uniquely defined by the conditions, 
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i) For x c X, IXI = I, 

ii) For a, b ¢ A, la + b~ = ~ab~ = ~a I + ~b~. 

The additive decomposition, Adec: A___>A[N] , is defined by the 

conditions, 

i) For x ¢ X, Adec x = x, 

ii) For y, z ¢ ~, Adec(yz) = yz, 

"'" dr), Adec b =(b I "'',bs), then iii) If Adec a = (a I, , 

m 

"'',ar,b I "'',b s) Adec(a + b) = (a I, , . 

In a similar way, the multi~licative de compositi0n, 

Mdec:~ >~[N], is defined by the conditions, 

i) For x e X, Mdec x = x, 

ii) For y, z ¢ A, Mdec(y + z) = y + z, 

• '',dr) , Mdec b = (b I "'',bs), then iii) If Mdec a = (a I, 

(b) ( "'" a r b I "'" b s) Mdec a = a I , , , , , . 

The additive pattern of the top, Apt:A >A, is defined by the 

conditions, 

i) For x, y ¢ A, Apt(x + y) = Apt x + Apt y, 

ii) For x ¢ A, if Adec x = x, then, Apt x = x I. 

In a similar way, the multip!icative pattern of the top, 

Mpt:~ >A, is defined by the conditions, 

i) For x,y ¢ A, Mpt(xy) = (Mpt x) (Mpt y), 

ii) For x e A, if Mdec x = x, then, Mpt x = x I. 

Proposition 1 

For any elements a and b of A we have the following relations: 

i) Apt a = Apt bAAdec a = Adec b--->a = b. 

ii) Mpt a = Mpt bAMdec a = Mdec b~a = b. 

Proof: 

It will be sufficient to prove one of the relations, say i). 

If Apt a = Apt b = x I, then, a = Adec a = Adec b = b, and the relation 

is proved. Suppose now that, 
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Apt a = Apt b = x + y , 

Adec a = Adec b = (Cl,''',ct). 

Then it is immediate that if Ixl = r, then, a = a' + a", b = b' + b" 

w i t h  

Apt a' = Apt b' = x, Apt a" = Apt b" = y, 

Adec a' = Adec b' = (Cl,''',c r) 

Adec a" = Adec b" = (Cr+l,''',ct). 

From these facts, the proof of the proposition by induction on 

IApt a I is immediate. 

Let A be the free +,. -algebra over X, with associativity and 

commutativity for and +, distributivity of . relatively to +, null 

element n, identity element u, and the additional condition, 

na = an = n for a ¢ A . A is a strict algebra and the identity map 

of X defines a [+,.~-morphism, called the support, Supp:A----~A* 

That means that the support is defined by the following conditions: 

i) If x c X, Supp x = x c A , 

ii) If x,y c A, Supp(x + y) = Supp x + Supp y, 

iii) If x,y ¢ A, Supp(xy) -- (Supp x)(Supp y). 

An element a of A is defined to be regular if Supp a can be 
* 

expressed as a sum of different elements of A each of which is a 

product of different elements of X. In any concrete case this defini- 

tion can be easily checked, but we shall present later (Proposition 3) 

another simple case ~n which the regularity of an element can immedi- 

ately be asserted. 

Proposition 2. 

Suppose a 0 >b, that is, assume the existence of a path from a 

to b. Then, a is regular if and only if b is regular. 

Proof: 

It is easy to prove that, a %b >Supp a = Supp b, and hence, 
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a 0 >b--~Supp a = Supp b, and this relation immediately proves the 

proposition. 

Define the elemental components, Ecomp:A > ~(X), the power set 

of X, by the conditions: 

i) If x ¢ X, Ecomp x ={x}, 

ii) For a, b ¢ ~, Ecomp(x + y) = Ecomp(xy) = Ecomp x UEcomp y. 

PROPOSITION 3 

Suppose that a is an element of A such that any element of X 

appears at most once in the expression of a. Then, a is regular. 

Proof. 

The first thing to prove is that if x and y are regular ele- 

ments of A such that, Ecomp x~Ecomp y = @, then xy and x + y are 

also regular elements and this is routine~his fact allows us to prove 

immediately the proposition by induction on lal, because if a = xy or 

a = x + y, then, the proposition hypothesis implies, Ecomp x 

Ecomp y = ~. 

Observe that if a is not a regular element, it is possible to 

find a path, a 0 >b, where b involves a situation of type x + x or 

xx: as it has been noted in the counterexample included in ~2, this 

type of element originates an "incoherent" diagram in some usual cases. 

~4. The concept of reduction 

Let a be an element of A. A reduction of a is a path a--8-~a' 
N 

such that, 

i) Every step in the path is an instantiation of ~*, ~*, ~', p' or an 

identity. 

ii) a' = n or there is no occurrence of n in the expression of a'. 

Note that the condition ii) is equivalent to say that a' is not 
* * 

the origin of an instantiation of k , ~ , ~', or p'. Intuitively 

speaking a reduction of a is any path obtained by elimination of n in 

a by means of I , P , k' and ~'. 



- 47 - 

PROPOSITION 4 

Let a be an element of A. Then, there exists a reduction 

a n_ fa- ' of a, a' is uniquely determined by a and if _C is coherent the 

value of the reduction is unique. 

Proof: 

The proof of the existence of a reduction of a can be done 

immediately by induction on rank a. 

For the proof of the uniqueness of a' we have to state some 

preliminary relations: 

i) Supp a = n~--~a' = n. 

It is clear that Supp a = Supp a'; hence if Supp a = n, then, 

a' = n because otherwise the expression of a' and also of Supp a' 

would involve no occurrence of n. 

2) If a = a I + a 2 and a I C >a~, a2--8-~a ~ are reductions we have, 

a~ ~ n Aa~ ~ n >a' = a{ + a~ , 

! 

a~ = n Aa~ ~ n----~a' = a 2 , 

a{ ~ nAal = n ~a' = a{ 

The proof of the above assertion can be done very easily by 

induction on rank a. 

3) If a = ala 2 and al---8-~a ~, a2--8-ya ~ are reductions we have, 

a{ ~ n^a~ ~ n---~a' = a~a~ 

The proof is similar to the proof of 2). 

The above three assertions allow us to prove immediately the 

uniqueness of a' by induction on lal. 

Suppose that a • b and a ~ c are instantiations of k 2 ~ , 

I' or ~' and that C is coherent; as a preliminary step to end the 
m 

proof of the proposition we need to prove the existence of a commuta- 

tive diagram of type 
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b 

a 

c 

d 

such that any step in b ~ >d and c ~ > d is an identity or an instan- 

tiation of k , , k' ~' , or . The proof is a routine induction on 

~a~ outlined by the following diagrams (and other analogous diagrams). 

/ 

//a{ + a~ 

a = a I + a 2 a{ + a~ 

i 

a [  ÷ a 2 

a = a I + a 2 d I + a 2 

c I + a 2 
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a 1 

a = n + a I a i 

n + a~ 

Now we can prove the uniqueness of the value of reduction of 

a by induction on lal: if a----~b 0 ~a' and a ~ c ~ >a' are two re- 

ductions of a we can construct a commutative diagram 

h 

where b 0 >a', d---8-~a' and c 0 >a' are reductions, (i) has been 

taken commutative following the above result and (2) and (3) are com- 

mutative by the induction hypothesis. If a reduction a 0 >a' is a 

sequence of identities, the above argument does not apply, but in this 

case any reduction is a sequence of identities and the last part of the 

proposition is trivial. 

PROPOSITION 5 

Let a and b be elements of A, a ~b an edge of T and suppose 

is coherent. Then, there exists a commutative diagram of type, 

a .......... - ~ b 

! o >! 
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where a ~a'• and b--~b' are reductions and no step in a'--8->b' is 

an instantiation of ~ , ~ , k', p' or their inverses. 

Proof : 

Remark that the proposition is immediate when a ~ b  is an iden- 

tity or an instantiation of k , p , ~', p' or their inverses because 

proposition 4 allows us to choose the reductions in the most suitable 

way for our purposes. If a' = a, that is, if an identity is a reduc- 

tion of a and we are not in the preceding case, then an identity is 

also a reduction of b and the proposition is immediate. 

For the general case we need to prove a preliminary statement: 
* * 

suppose that a 0 .~c is a path with no instantiation of ~ , ~ , k', ~' 

or their inverses and such that an identity is not a reduction of a. 

Then, we are going to prove the existence of a commutative diagram of 

type 

a O > c 

a~ O > c~ 

where a vn ra I. , is a sequence, with at least one element, of instantia- 
* * 

tions of A , ~ , ~' or ~', c C >c~ is a sequence of identities or 

instantiations of ~ , p , ~' or ~' and in a l ~ c  l '  ' there are no in- 

stantiations of ~ , ~ , ~' ~' , or their inverses. 

Observe that one consequence of the conditions of the above 

statement is that la~l < lal and that if an identity is a reduction of 

I . v a~ then any vertex in the path a I n ~c~ has an identity as a reduc- 
* * 

tion (because in it there is no instantiation of k , ~ , ~' p' , or 

their inverses). This preliminary statement can be proved by induc- 

tion on lal following the method outlined in the following diagrams 

and their analogons: 
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a = x + y ~ x' + y = b 

x l + Y  "~ z l + y  

a = x + n ~ x' + n = b 

L L 
X ~ X v 

a = x + (y + z) ~ (x + y) + z 

L L 
x' + (y + z) ~ (x' + y) + z , 

a = x(y + z) ~ xy + xz 

x' (y' + z') ~ x'y' + x'z' 

From this it is immediate to prove by induction on lal that if 

in the path a C >b there is no instantiation of I , ~ , ~', P' or 

their inverses, then, for a C >a' and b C }b' reductions there is a 

commutative diagram of type 

a /-~ "- b 

a' 0 >- b' 

where in a' C >b' there is no instantiation of I , p , i', ~' or 

their inverses. This statement includes all the cases in which the 

proposition was not proved yet. 

Note that we have not used the hypothesis that the arrows of 

distributivity are monomorphisms and that an immediate consequence of 

the above proposition is that if for some element, a of A, Supp a = n, 
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then the value of any path from a to b depends only upon a and b. 

~5. The concept of rappel 

Let a be an element of A. 

such that, 

i) 

ii) 

A rappel of a is a path a O>a' 

Each step in a C>a' is an identity or an instantiation of 6 or 6#. 

There is no instantiation of 6 or 6# with origin in a' 

Intuitively speaking, a rappel of a is a path with origin in a 

obtained by application, as many times as possible, of the distributive 

law. It is easy to check that condition ii) is equivalent to stating 

that a is the sum of elements that are product of elements of X. 

We have to remark that the end of a rappel is not uniquely de- 

termined by the origin: thus, it is easy to prove the existence of 

two rappels with origin in (x I + x2) (x 3 + x 4) ending in the elements 

(XlX 3 + x2x 3) + (XlX 4 + x2x 4) and (XlX 3 + XlX 4) + (x2x 3 + x2x4). We 

will see that this difficulty is easy to handle. 

In this paragraph we are going to use often induction on siz a- 

rank a. Note that this number is always non-negative and that any 

instantiation of ~, ~', their inverses, y, and y' preserves the size 

and rank and that any instantiation of 6 or 6# preserves the size and 

increases the rank, that is, the value of siz a - rank a decreases by 

instantiations of 6 or 6#: this fact can be used to prove by induction 

on siz a - rank a the existence of a rappel for the element a. 

For any element a of A it is easy to prove that an identity 

path a O >a is a rappel if and only if rank a = siz a, and that this 

is equivalent to stating that a is a sum of products of elements of X. 

PROPOSITION 6. 

Suppose that a ~ b is not an instantiation of I , P , l', ~' 

or their inverses and that a ~ c is an instantiation of 6 or 6 # . 

Then if C is coherent there exists a commutative diagram of type 
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b .© > e 

/ t 
~ c  • 0 >d 

such that d C > e is a sequence of identities or instantiations of 

~, ~', k, ~, their inverses, 7,and 7', while b C > e, c C > d are 

sequences of instantiations of 6 and 6 #. Moreover in d nv > e there 

is some instantiation of l,~, or their inverses if and only if a ~b 

is an instantiation of the same type. 

Proof: 

The proof can be done by induction on lal in the form outlined 

by the following diagrams. 

i) In the case 

X' +y 0 >e+y 

a=x+y 

\ 
x" + y 0 >c + y 

we use the induction hypothesis. 

2) In the situation given by 

x' + y 

a = x + y 

~ x  + y' 

there are two different cases. If x + y % x' + y is an instantia- 

tion of 6 or 6# we can use the construction given by 
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x' +y O 

a ~ x + y 

x+y' 0 

> x' + y' 

t 
x' + y' 

Id. 

Otherwise, we can take the construction given by 

x' + y O > x' + y' 

a = x + y 

x + y' O > x + y' 

In both constructions we make use of the naturality of @. 

3) The naturality of Y allows us to make the construction given by 

~+ x O > y i x' 

a=x+y 

+y >x' +y 

4) The naturality of y allows the following construction 

( ~ +  y) + z O 

a=x+ (y+z) 

+ (y+z) O 

> (x' + y) + z 

> x' + (y + z) 

5) 

We omit the analogous cases for the product. 

The commutativity of the diagrams of type (VIII) of the coherence 

conditions is used in the following construction 
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x[(y + z)w] 0 > x(yw) + x(zw) 

a = [x(y + z)]/~w I 

(xy + xz)w 0 > (xy)w + (xz)w 

We omit the analogous cases in which we should use the commuta- 

tivity of (VI) and (VII). 

6) The commutativity of the diagrams of type (II) is used in the fol- 

lowing construction 

/ •  + z)x 0 > yx i zx 

a =x(y + z) 

+ XZ ~ ~ xy + XZ 
-- S" 

We omit the analogous cases in which we should use the commu- 

tativity of (I) and (III). 

7) The commutat'ivity of the diagrams of type (IX) is used in the fol- 

lowing construction 

(x + y) z + (x + y)w 

a = (x + y)(z + w) 

x(z + w) + y(z + w) 

O > (xz + yz) + (xw + yw) 

"~v > (xz + xw) + (yz + yw) 

8) The commutativity of the diagrams of type (IV) is used in the fol- 

lowing construction 
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a= [x+ 

[(x + y) + z]w --- v > (xw + ~) + zw 

(y + z)Jw 

xw + (y + z)w ~ xw + (yw + zw) 

We omit the analogous cases in which we should use the co~uta- 

tivity of (V). 

9) We use the commutativity of the diagrams of type (XXIII) in the 

following construction 

//•÷y 
0 >xiy 

a = u(x + y) 

ux + uy 0 > ux + uy 

We omit the analogous case in which we should use the commuta- 

tivity of (XXIV). 

10) In the construction 

x 0 >x' 

a = ~X 

u×' 0 .- > ux' 

We are using the naturality of k. 

We omit the analogous case in which we should use the naturality 

of~. 

ii) We use the naturality of 6 in the construction given by 
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x'(y + z) © > x'y + x'z 

a = x(y + z) 

xy + xz O > xy + xz 

We omit the analogous cases in which we should use the naturality 

of 6 and 6#. 

PROPOSITION 7 

Suppose that C is coherent, that a ~ > b is a path in whose 

vertices there is no occurrence of n and that a O> a' and b O> b' 

are rappels. Then there exists a commutative diagram of type 

a O >b 

a' O > b' 

such that a' ~v f b' is a sequence of identities or instantiations of 

~, ~', k, p, their inverses, 7 and 7'. 

Proof: 

The exclusion of n in the vertices of a O> b implies that in 

a O> b there is no instantiation of k ,P , k', p' or their inverses 

and then the form of the proposition allows us to reduce to the case 

in which a O > b is an identity or an instantiation of ~, ~, ~, ~' , 

their inverses, y, ¥', 6 or 6#, and this will be done in three parts. 

The first part will be proved by induction on siz a - rank a 

and studies the case in which a v, b is an identity or an instantia- 

tion of ~, ~', their inverses, y and y', in which case, siz a - rank a 

= siz b - rank b. The case siz a - rank a = siz b - rank b = 0 is 

trivial; otherwise we can use the diagram 
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a --~ b 

a I (P) b' (P) 
1 

(H) 
a' ~ ' ~ .% v > c ~ d' > e' O >g' 

• b I 

in which a % a I ~> a' and b % b I ~> b' are the given rappels, 

the diagrams with the symbol (H) have been constructed by the induction 

hypothesis and the ones with the symbol (P) are constructed using 

proposition 6. Note that the possibility of the decomposition of the 

path b ~ b i O > d in proposition 6 is assured by the fact that 

siz a - rank a = siz b - rank b, which implies 

< 
siz d - rank d = siz a_ - rank z_ < siz a - rank a. 

i I 

Remark also that to do the induction we have to impose the additional 

condition that a' O > b' is a sequence of identities or instantiations 

of ~, ~', their inverses, y and y' 

The second part is going to be the proof of the proposition 

when a ~ b is an instantiation of i, ~, 6 or 6#, and this will be 

done by induction on siz a - rank a. Remark that for any a of A, 

siz(au) - rank(au) = (siz a)(siz u) - rank a - rank u = 

siz a - rank a + siz a - rank u, 

where siz a - rank u = 0 if and only if a ¢ X. Hence, in this case, 

within trivial exception, we can suppose that, siz a - rank a > siz b - 

rank b, and the proof is outlined in the following diagram 
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a 

L (p) 

a I 0 > c 

a ! ~ c i 

0 

0 

b 

t ~k 
d (I<) ~b' !/ 

where the symbol (H) in the inside of a diagram means that the induc- 

tion hypothesis is the reason for the commutativity, (K) the first 

part of this proposition and the induction hypothesis, and (P) the 

proposition 6. 

The third part is going to be the proof of the proposition for 

the case in which a ~ b is an instantiation of k-i or ~-i and this 

is an immediate consequence of the second part and the fact that the 

bottom path is a sequence of instantiations with formal inverse whose 

value is an isomorphism. 

16. The concept of normalization 

Let a be an element of A. A normalization of a is a path 

~ a' satisfying the following conditions: a v ~  

i) Any step in a O> a' is an identity or an instantiation of ~ or ~. 

ii) a' is not the origin of any instantiation of k or ~. 

Intuitively speaking a normalization is a path obtained by 

application, as many times as possible, of instantiations of k and ~. 

It is easy to prove that if a is the end of a rappel the condition ii) 

is equivalent to the following: a is the sum of elements that are 

either u or the product of elements of X different from u. In the 

general case it is not possible to give a simple characterization of 

the elements satisfying ii). 

The concept of normalization is similar to the concept of reduc- 

tion or rappel, but it is only useful when applied to elements that 

are ends of rappels because in this case it eliminates almost com- 

pletely the occurrences of u in the expression of the elements. In the 
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general case one typical situation is the following: an identity is a 

normalization of the element Xl(U + x2) , but Xl(U + x 2) "~ XlU + XlX 2 

and an identity is not a normalization of XlU + XlX 2 for which a nor- 

malization is the path 

XlU + XlX 2 % x I + XlX 2 

that in fact eliminates all the occurrences of u in the expression of 

the element. 

PROPOSITION 8 

Suppose that C is coherent and that a is the end of a rappel. 

Then if a O > a' is a normalization, the element a' and the value of 

a O > a' are uniquely determined by a. 

Proof : 

The proof is similar to (and simpler than) the proof of proposi- 

tion 4. 

PROPOSITION 9 

Let a and b be elements of A that are ends of rappels, a v z b 

a path whose steps are instantiations of ~, ~', k, P, their inverses, 

7 and y' and a v r a , b ~ b' normalizations of a and b respective- 

ly. If C is coherent, there exists a commutative diagram of type 

a O >b 

a' v ~ ~ b' 

such that a' O > b' is a sequence of identities and instantiations of 

~, ~', their inverses, y and 7'. 

Proof: 

It is analogous to (and simpler than) the proof of proposition 

5. 

normalization. 

Suppose that a is the end of a rappel and that a -~-~ a' is a 

If a is regular so is a' and if Adec a = (ai,'°°,a ~) 
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then if i @ j the set of factors of a. is different from the set of 
1 

factors of a. as is an immediate consequence of the definition of 
3 

regularity, and, moreover, among the factors of any a i there is no 

repetition of elements, as can be also proved almost immediately. 

~7. The coherence theorem 

We are going to use the results on coherence stated in the 

Theorem 4.2 of [4], but expressed in a more formal language. We omit 

a complete proof of the equivalence that is neither difficult nor 

specially illuminating: in fact it reduces to the same proof given in 

[4] that holds in the formulation we are going to give. We have to 

remark that this formulation is different from the one contained in 

~3 of [2]. 

Let A' be the subset of A generated additively by X - In}: 

is the free [+~-algebra over X - ~n~. The edges of H are a ~+,.~- 

algebra and hence a {+~-algebra, and we take as H' the subgraph of 

whose edges are all the elements of the + -subalgebra of the edges of 

! 
H generated by all the elements of the form, ~' ~,-I '7x and 
-- x,y,z' x,y,z ,y 

i x for x,y,z elements of _A'" Suppose that a ~> b is a path whose 

vertices are in ~' and whose steps are elements of H'~, then the 

Theorem 4.2 of [4] states that if a is regular and C is coherent for 

, ¥ , , ~' the value of the path a v ~ b only depends upon a 

and b. Note that an element of A' is regular if and only if it is the 

sum of different elements of X. 

We are going to deduce some consequences of that result. Let a 

be a regular element of A in which there is no occurrence of n and 

suppose that a ~> c is a path whose steps are identities or instan- 

tiations of ~' ~,-i l or y' If Adec a = (al,''',ar), the regularity 

of a implies the relation, i ~ j------~a @ a and from this and the 

coherence result above it follows that the value of a -~ c only de- 

pends upon a and c. 
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Similar consequences hold for the product. 

PROPOSITION 10 (Coherence theorem) 

If ~ is coherent and a is a regular element of A, the value of 

any path a ~> b depends only upon a and b. 

Proof: 

Let a -~--> a' and b -~-> b' be reductions. By proposition 5 it 

is possible to find a commutative diagram of type 

a ' , ~  0 > b '  , 

where the value of the columns are isomorphisms that only depend upon 

~ b' there is no occurrence of instantiations of a and b, in a' ~f 

~' @' ~* * 
, , , ~ or their inverses, and where all the vertices are n or 

no n is in the vertices of a' -~ b'. Hence we are reduced to proving 

the proposition when in a - ~  b there is no instantiation of k' ~' 

k , p or their inverses and where the symbol n is not involved in the 

expression of the vertices: from now on we are going to assume these 

~ k  hypotheses on a ~ f b. 

Take now a rappel b ~ b' / : the value of it is a monomorphism, 

hence we are reduced to prove the uniqueness of the value of any path 

~ b ~ ', a ~ ~ f b that is, we can (and will) assume the additional 

hypothesis that b is the end of a rappel. Let a O> a' be a rappel: 

By proposition 7 there is a commutative diagram of type 

a 0 >-b \ /  
a o 

f 

where a' ~r b is a path with no occurrence of instantiations of 6 or 

6#, and we are reduced to prove the uniqueness of the value of a'~APb, 

that is, we are going to assume that a and b are ends of rappels. 
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Suppose now that a ~> a' and b O> b' are normalizations. 

By propositions 8 and 9 there exists a commutative diagram of type 

a 0 >b 

a' O > b' 

where a' b' and the values of a a and b O> b' depend only 

upon a and b, and the fact that the values of the columns are iso- 

morphisms allows us to reduce our considerations to the uniqueness of 

the value of the path a' ~v, b', that satisfies the conditions indi- 

cated in proposition 9. Hence, we are reduced to proving the proposi- 

tion for the following conditions: 

i) Every step in a O> b is an identity or an instantiation of ~, ~', 

their inverses, 7 and Y' 

ii) Any vertex in the path a vf b is a sum of elements each of which 

is either or a product of elements of X different from u. 

The naturality of ® and • implies that any instantiation of ~, 

-I -I , 
or Y is commutative with any instantiation of ~', ~' or y and 

this proves the existence of a commutative diagram of type 

a -.~ >b 

C 

such that in a O > c every step is an identity or an instantiation of 

, or y , and every step in c ~> b is an identity or any in- 

stantiation of ~, ~-i or 7. Our next aim is to prove the uniqueness 

of c. For this, note the following relations: 

-i 
i) If d ~ e is an instantiation of ~, ~ or y, then Apt d = Apt e. 

This can be proved very easily by induction on Idl. Form this it 

follows that Apt c = Apt b. 
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2) If d % e is an instantiation of ~' u.-i , or y, and d is the end 

o o o  of a rappel, and Adec d = (dlod 2, ,d r ) then, 

Adec e = (d~l,d62,°°°,dGr), with ~¢ S r. This can be proved by 

induction on Ida. From this it follows that if 

al,a 2 a r "°',a6r) for some Adec a = ( ,°°°~ ), then, Adec c = (a61, 

¢ S r and, as we will see later, b determines ~ uniquely. 

3) If c -~-> b is a sequence of instantiations of ~, -i and y, c is 

the end of a rappel, Adec c = (Cl,''',Cr), and Adec b = (bl,''',br), 

then for i = 1,2,°°',r, there is a path a i O~ b i whose steps are 

-i 
identities or instantiations of ~, ~ or 7. 

From this it follows that for i = 1,2,''',r, a6i O> b i, and 

hence, Supp a6i = Supp b i. But the regularity of a imposes that, 

i ~ j ~Supp a i @ Supp aj, and this proves that6i is uniquely de- 

termined by the condition, Supp a6i = Supp b i. Thus b and a determine 

uniquely Adec c and Apt c and by proposition 1 the element c is 

uniquely defined. 

The uniqueness of the value of a ~> c has been stated in the 

remarks of the beginning of ~7. 

The only thing that remains to be proved is the uniqueness of 

the value of the path c O> d in which all the steps are instantia- 

tions of ~, -i and y. Suppose that c = c' + c", then it is very easy 

to prove the existence of a commutative diagram of type, 

C r-% v >d 

\d+o/ 
such that in c ~> d' + c" all the steps are elements of type H + ic. 

for some step ~ and in d' + c" ~f d all the steps are of type Id.+N, 

and with a trivial induction on Ic~ we are reduced to the case in which 

c is the product of elements of X, and the proof in this case is anal- 

ogous to (and easier than) the proof of the uniqueness of the value of 

path a ~ • c. 
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