
TOPOLOGICAL HOCHSCHILD HOMOLOGY OF THE IMAGE OF J

DAVID JONGWON LEE AND ISHAN LEVY

Abstract. We compute the mod (p, v1) and mod (2, η, v1) THH of many variants of the
image-of-J spectrum. In particular, we do this for jζ , whose TC is closely related to the
K-theory of the K(1)-local sphere. We find in particular that the failure for THH to satisfy
Zp-Galois descent for the extension jζ → ℓp corresponds to the failure of the p-adic circle
to be its own free loop space. For p > 2, we also prove the Segal conjecture for jζ , and we
compute the K-theory of the K(1)-local sphere in degrees ≤ 4p− 6.
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1. Introduction

The algebraic K-theory of the K(1)-local sphere, or K(LK(1)S), is an object capturing
fundamental structural information about the K(1)-local category. Part of Ausoni–Rognes’
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original vision of chromatic redshift was that it could be understood, at least T (2)-locally,
via Galois hyperdescent. More specifically, they conjectured [AR02, pg 4] that the map

K(LK(1)S)⊗ V → K(KUp)
hZ×

p ⊗ V

is an equivalence in large degrees when V is a type 2 finite spectrum. The T (n + 1)-
local K-theory of Morava E-theory has been shown in [CMNN20, Theorem 1.10] to have
Galois descent for finite subgroups of the Morava stabilizer group. Moreover, recent work
of Ben Moshe–Carmeli–Schlank–Yanovski [BMCSY23] combined with [HRW22, Theorem

1.3.6] shows that LK(2)K(LK(1)S) → LK(2)K(KUp)
hZ×

p is an equivalence, i.e that Galois
hyperdescent is satisfied for the K(2)-locally.

Recent work of the second author [Lev22] has made K(LK(1)S) an integrally accessible
object. If we consider the connective Adams summand ℓp (or ko2 for p = 2) as a Z-equivariant
E∞-ring via the Adams operation Ψ1+p, then jζ is defined to be its Z-homotopy fixed points.
Then it is shown that there is a cofiber sequence

K(jζ)→ K(LK(1)S)→ ΣK(Fp)

split on π∗. It is also shown that the Dundas–Goodwillie–McCarthy square

K(jζ) TC(jζ)

K(Zp) TC(ZhZ
p )

is a pullback square. The three spectra K(Fp), K(Zp), and TC(ZhZ
p )1 are understood, so

understanding K(LK(1)S) is essentially reduced to understanding TC(jζ).
The primary goal of this paper is to understand THH(jζ) modulo (p, v1) and (2, η, v1),

which is the first step in understanding TC(jζ).

Theorem 1.1. For p > 2, there is an isomorphism of rings

π∗THH(jζ)/(p, v1) ∼= π∗THH(ℓp)/(p, v1)⊗Fp HH∗(FhZ
p /Fp)

For p = 2, there is an isomorphism of rings

π∗THH(jζ)/(2, η, v1) ∼= π∗THH(ko2)/(2, η, v1)⊗F2 HH∗(FhZ
2 /F2).

Each of the terms on the right hand side of the equivalences is well understood. The ring
π∗THH(ℓp)/(p, v1) can be found in [MS93] or Example 4.3, and π∗THH(ko2)/(2, η, v1) can
be found in [AR05] or Example 4.16.

The last tensor factor is given in Lemma 4.6 as

HH∗(FhZ
p /Fp) ∼= Λ[ζ]⊗ C0(Zp;Fp)

where |ζ| = −1, and C0(Zp;Fp) denotes the ring of continuous functions from Zp to Fp.
The C0(Zp;Fp) appearing can be viewed as the failure of descent at the level of THH for

the Zp-Galois extension coming from the Zp-action on ℓp and ko2. More precisely, at the
level of π∗, the map

THH(ℓhZp )/(p, v1)→ THH(ℓp)
hZ/(p, v1)

1This is essentially the nil-TC of Zp by [LT23, Corollary 4.5], which is studied in [HM04].
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is base changed from the map C0(Zp;Fp)→ Fp that sends a continuous function to its value
at 0 (Remark 4.13).

This phenomenon can be explained by interpreting THH in terms of free loop spaces. If
X is a pro-p-finite space, then the Fp-Hochschild homology of the cochain algebra C∗(X;Fp)
is computed as

HH(C∗(X;Fp)/Fp) = C∗(LX;Fp)

where LX is the free loop space of X. Since C∗(BZp;Fp) ∼= FhZ
p , the failure of the descent

HH(FhZ
p /Fp) ̸∼= HH(Fp/Fp)

hZ

is explained by the fact that BZp is not LBZp
∼= BZp × Zp. For any p-complete E∞-ring

R with a trivial Z-action, this completely accounts for the failure of p-complete THH to
commute with Z-fixed points (Corollary 4.8). The content of Theorem 1.1 is that the same
phenomenon happens for THH(jζ) on π∗ mod (p, v1) or (2, η, v1), even though the action is
no longer trivial. In particular, Theorem 1.1 implies that there is an isomorphism of rings

π∗THH(jζ)/(p, v1) ∼= π∗THH(ℓ
triv,hZ
p )/(p, v1)

where ℓtriv,hZp is the fixed points of ℓp by a trivial Z-action.
The key idea in our proof of Theorem 1.1 is to run the spectral sequence for THH obtained

by filtering jζ via the homotopy fixed point filtration, and showing that the differentials in
the associated spectral sequence behave similarly enough to the case of a trivial action. To
understand the associated graded algebra of the homotopy fixed point filtration, we further
filter it by the p-adic filtration. At the level of the associated graded of both filtrations, jζ is
indistinguishable from the fixed points by a trivial action, and we show that mod (p, v1) and
(2, η, v1) this remains true at the level of homotopy rings after running the spectral sequences
for THH of those filtrations.

The phenomenon that the Z-action on ℓp behaves like the trivial one is shown in [BHLS]
to asymptotically hold even at the level of cyclotomic spectra. More precisely, it is shown
there that given any fixed type 3 finite spectrum V , for all sufficiently large k,

THH(ℓhp
kZ

p )⊗ V ∼= THH(ℓtriv,hZp )⊗ V

as cyclotomic spectra.
It is shown then that the failure of descent we observe on THH continues at the level of the

T (2)-local TC. Combining this with the aforementioned hyperdescent result of the K(2)-
local K-theory and the formula for the K-theory of the K(1)-local sphere, this implies that
LT (2)K(LK(1)S) is not K(2)-local and hence is a counterexample to the height 2 telescope
conjecture. In particular, this implies that the map

K(LK(1)S)⊗ V → K(KU)hZ
×
p ⊗ V

considered by Ausoni–Rognes is not an equivalence in large degrees.
The ring C0(Zp;Fp) that appears in our formula for THH(jζ) is a key ingredient in [BHLS]

to maintain asymptotic control over THH(jζ,k) as a cyclotomic spectrum, and is one of the
advantages of jζ versus the usual connective image-of-J spectrum j = τ≥0jζ . If one was only
interested in understanding LT (2)K(LK(1)S), there are isomorphisms

LT (2)K(LK(1)S) ∼= LT (2)TC(j) ∼= LT (2)TC(jζ)

so one can in principle approach the telescopic homotopy via TC(j) instead of TC(jζ).
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However, j is not as well behaved as jζ is, as we now explain. We extend our methods
for computing THH(jζ) in Sections 5 and 6 to compute THH of j, giving a relatively simple
proof of the result below due to Angelini-Knoll and Höning [AK21, Hön21].

Theorem 1.2. For p > 32, the ring π∗THH(j)/(p, v1) is the homology of the CDGA

Fp[µ2]⊗ Λ[α1, λ2, a]⊗ Γ[b], d(λ2) = aα1

|b| = 2p2 − 2p, |a| = 2p2 − 2p− 1, |λ2| = 2p2 − 1, |µ2| = 2p2

For k ≥ 1 and any p > 2, we have an isomorphism of rings

π∗THH(τ≥0(ℓ
hpkZ
p ))/(p, v1) ∼= π∗THH(ℓp)/(p, v1)⊗ HH∗(τ≥0Fp[v1]

hZ/Fp[v1])/v1.

The ring HH∗(τ≥0Fp[v1]
hZ/Fp[v1])/v1 is described in Proposition 5.1: it is isomorphic to

Γ[dα1/pk ] ⊗ ΛFp [α1/pk ] where α1/pk is a class in degree 2p − 3 and dα1/pk is a divided power
generator in degree 2p− 2.

In the above theorem, π∗THH(j)/(p, v1) is not what one would expect in the case of the
trivial action: there are two more differentials in the spectral sequence for the filtration we
use to prove Theorem 1.2 than what one would find for the trivial action. The differentials
witness the fact that λ1, λ2 ∈ π∗THH(ℓp)/(p, v1) don’t lift to THH(j)/(p, v1). Whereas
most computations of THH in this paper use Bökstedt’s computation of THH(Fp) as their
fundamental input, these differentials ultimately come from the Adams–Novikov spectral
sequence.

A key difference between the THH of jζ and j is that the ring C0(Zp;Fp) that appeared
in π∗THH(jζ)/(p, v1) is replaced by a divided power algebra for j. The advantage of the
ring C0(Zp;Fp) over a divided power algebra is that it up to units, it consists entirely of
idempotents, which decompose THH(jζ) as an S1-equivariant spectrum into a continuous
Zp-indexed family of spectra. This decomposition is not evidently present in THH(j).

Another advantage of jζ over j is that jζ satisfies the THH Segal conjecture but j doesn’t,
which we show for p > 2 in Section 8:

Theorem 1.3. For p > 2, the cyclotomic Frobenius map

THH(jζ)/(p, v1)→ THH(jζ)
tCp/(p, v1)

has (2p− 3)-coconnective fiber, but the fiber of the cyclotomic Frobenius map

THH(j)/(p, v1)→ THH(j)tCp/(p, v1)

is not bounded above.

The Segal conjecture for a ring j is a necessary condition [AN21, Proposition 2.25] for
the Lichtenbaum–Quillen conjecture to hold, i.e for TR(j)⊗V to be bounded above for any
finite type 3 spectrum V . Thus Theorem 1.3 implies that j doesn’t satisfy the Lichtenbaum–
Quillen conjecture. On the other hand, Theorem 1.3 is a key ingredient in proving the
Lichtenbaum–Quillen conjecture for jζ as carried out in [BHLS]. This Lichtenbaum–Quillen

2We also compute an associated graded ring THH(j)/(p, v1) for p = 3 (see Theorem 5.5), but are unable
to solve multiplicative extension problems coming from the fact that j/(p, v1) is not an associative algebra
for p = 3. Nonassociative multiplicative extensions aren’t considered in [AK21], so the results of that paper
also only compute an associated graded ring for p = 3.
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conjecture can be viewed as the part of Ausoni–Rognes’s conjecture that is true. Namely, it
implies that the map

K(LK(1)S)⊗ V → K(LK(1)S)⊗ V [v−1
2 ]

is an equivalence in large degrees for V a type 2-complex.
In Section 7, we show how THH computations can give information about TC in the stable

range. For a map of E1-rings f : R→ S, the E1-cotangent complex LS/R is the S-bimodule
that is the fiber of the multiplication map S ⊗R S → S. We prove the following result:

Theorem 1.4. Given a map of E1-ring spectra f : R→ S, there is a natural map

fibTC(f)→ THH(S;LS/R).

If f is an n-connective map of (−1)-connective rings for n ≥ 1, this natural map is (2n+1)-
connective.

A consequence of Theorem 1.4 is that the natural map above can be identified with the
linearization map in the sense of Goodwillie calculus for the functor fibTC(f) : Alg(Sp)R/ →
Sp when R is (−1)-connective.
In the case the map f is a trivial square zero extension of connective rings, a K-theory

version of the result was obtained as [DM94, Theorem 3.4], and a TC version is essentially
[Ras18, Theorem 4.10.1]3. The point of Theorem 1.4 is to have a version of the result
that works for arbitrary maps of E1-rings rather than trivial square-zero extensions, and for
(−1)-connective rings instead of connective rings.
We use Theorem 1.4 to reprove basic facts about TC, such as the understanding of the

map TC(Sp) → TC(Zp) on π2p−1. This is an ingredient in the computation of TC(Zp) as a
spectrum (see [BM93, Section 9]).

We also apply Theorem 1.4 to compute the fiber of the map TC(jζ) → TC(ZhZ
p ) in the

stable range, giving information about K(LK(1)S):

Theorem 1.5. For p > 2, there are isomorphisms

τ≤4p−6 fib(TC(jζ)→ TC(ZhZ
p )) ∼= Σ2p−2C0(Zp;Fp)

and

K∗LK(1)S ∼= K∗−1Fp ⊕K∗Sp ⊕ π∗Σ
2p−2C0(Zp;Fp)/Fp, ∗ ≤ 4p− 6.

In particular, for p > 2, the infinite family of classes in the fiber of TC(jζ) → TC(ZhZ
p )

found in [Lev22] are simple p-torsion, and completely account for all the classes in the stable
range.

Acknowledgements. We are very grateful to Robert Burklund, Sanath Devalapurkar,
Jeremy Hahn, Mike Hopkins, Tomer Schlank, and Andy Senger for conversations related
to this work. The second author is supported by the NSF Graduate Research Fellowship
under Grant No. 1745302.

3See also [Hes94] and [LM12].
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Notations and conventions.

• The term category will refer to an ∞-category as developed by Joyal and Lurie.
• We refer the reader to [NS18] for basic facts about THH, which we freely use.
• Map(a, b) will denote the space of maps from a to b (in some ambient category).
• Tensor products and THH are implicitly p-completed.
• We use Λ[x] and Γ[x] to denote exterior and divided power algebras in homotopy rings.
• In an Fp-vector space, we use a

.
= b to mean that a = cb for some unit c ∈ F×

p , and a ˙7→ b
to mean that a is sent to b up to a unit in F×

p .
• Conventions about filtrations and spectral sequences are addressed in Section 2.
• For a pro-finite set A, we use C0(A;Fp) to denote continuous functions from A to Fp.
• Let D be a monoidal category acting on a category C. Given objects X ∈ C, Z ∈ D
with a self map f : X ⊗ Z → X, we use X/f to denote the cofibre of this map.
We use X/(f1, . . . , fn) to denote (. . . (X/f1)/ . . . )/fn, where each fi is a self map of
X/(f1, . . . , fi−1).

2. Filtrations

In this section, we set up notation for working with filtered objects and explain how to put
filtrations on ℓp, ko2, jζ , and j, as well as for finite extensions. Our constructions amount
to the filtration coming from the homotopy fixed point spectral sequences computing those
objects, which in all cases except for jζ , is also the Adams–Novikov filtration.

2.1. Filtered objects and spectral sequences. Let C be a presentably symmetric monoidal
stable category with accessible t-structure compatible with the symmetric monoidal struc-
ture. Let Fil(C) = Fun(Zop

≤ , C) be the category of decreasingly filtered objects, and let
gr(C) = Fun(Z, C) be the category of graded objects, so that both are symmetric monoidal
via Day convolution. Basic properties of these categories are developed in [Lur15] and
[BHS20, Appendix B]. Given an object x ∈ Fil(C) or gr(C), we write xi for the value at
i ∈ Z. The left adjoint of the functor (−)i in the case of Fil(C) is the functor (−)0,i, defined
for c ∈ C by

(c0,i)j =

{
c (j ≤ i)

0 (j > i).

We also use the notation ck,n := Σkc0,n+k, π♡
k,nx := π♡

k xn+k, and πk,nx := πkxn+k =

π0Map(1k,n, x), and use c to also denote c0,0. There is a filtration parameter τ ∈ π−1,01
0,0

such that the map xi → xi−1 giving the filtration is obtained levelwise from tensoring with
τ .

The functor (−)0,0 : C → Fil(C) is a symmetric monoidal fully faithful functor, which
we refer to as the trivial filtration. We often identify an object c ∈ C with the trivial
filtered object in Fil(C). In fact, gr(C) can be identified with Modcof τ (Fil(C)), so that taking
associated graded amounts to base changing to cof τ . Given an object x ∈ Fil(C), we let

grx ∈ gr(C) denote the associated graded object, so that (grx)i = gri x = cof(xi+1
τ−→ xi).

On the other hand, there is an identification Fil(C)[τ−1] ∼= C, so that given a filtered
object x ∈ Fil(C), its underlying object ux ∈ C, given by colimi xi, is identified with x[τ−1].
Under the assumption that the t-structure is compatible with filtered colimits, we have an
isomorphism π♡

∗∗x[τ
−1] ∼= π♡

∗ ux⊗ Z[τ±1].
6



Construction 2.1. Given a filtered object x ∈ Fil(C), there is a spectral sequence which
we refer to as the spectral sequence associated with x.

Es,t
1 = π♡

t−s,s grx = π♡
t−s(grx)t =⇒ π♡

t−s(ux)

The dr-differential is a map from Es,t
r to Es+r+1,t+r

r , which is a page off from the usual Adams
convention, i.e. our dr differential would be the dr+1 differential in the Adams convention. We
shall say Adams weight and filtration degree to refer to the bidegrees s and t, respectively. ◁

In addition to the spectral sequence associated with x, there is also the τ -Bockstein spectral
sequence, which has signature

E∗∗
1 = (π♡

∗∗ grx)[τ ] =⇒ π♡
∗∗x

We do not use the following lemma, but we state it as an exercise to help acquaint the
unfamiliar reader with filtered objects. The τ -inverted τ -Bockstein spectral sequence refers
to the spectral sequence obtained from the τ -Bockstein spectral sequence by inverting τ on
each page.

Lemma 2.2. Let x ∈ Fil(C). For each r ≥ 1, the Er-page of the τ -inverted τ -Bockstein
spectral sequence for x is isomorphic to Z[τ±] tensored with the Er-page of the spectral se-
quence associated with x. Moreover, the dr differential on the former is given by τ r times the
dr differential on the latter. The filtration on π♡

∗∗x[τ
±1] coming from the spectral sequence

agrees with the filtration on π♡
∗ x⊗ Z[τ±] coming from the filtration on x.

Proof. These statements can be checked for example by using explicit formulas for the pages
and differentials. See, for example, [Lur17, Construction 1.2.2.6]. □

2.2. t-structures. We turn to studying t-structures on categories of filtered objects. Our
ability to produce t-structures comes from the following general result.

Lemma 2.3 ([Lur17, Proposition 1.4.4.11]). Let C be a presentable stable category. If {Xα}
is a small collection of objects in C, then there is an accessible t-structure (C≥0, C≤0) on
C such that C≥0 is the smallest full subcategory of C containing each Xα and closed under
colimits and extensions. The full subcategory of coconnective objects is characterized by the
condition that Y ∈ C≤0 if and only if Map(ΣXα, Y ) = 0 for each Xα.

Definition 2.4. Let f : Z → Z be a function. Define a t-structure (Fil(C)f≥0,Fil(C)
f
≤0) on

the underlying category Fil(C) be the t-structure whose connective objects are generated

by the objects Σf(i)c0,i for c ∈ C≥0. We let τ f≥i and τ f≤i denote the associated truncation

functors. We similarly define a t-structure (gr(C)f≥0, gr(C)
f
≤0) by taking the image of those

objects under the functor gr to be the generators. ◁

Lemma 2.5. Let x ∈ Fil(C).
(1) x ∈ Fil(C)f≤0 if and only if xi is f(i)-coconnective in C for each i.

(2) If f is nondecreasing, then x ∈ Fil(C)f≥0 iff xi is f(i)-connective for each i. In this

case, the truncation functor τ f≥0 is given by (τ f≥0x)i = τ≥f(i)(xi).

(3) The same results hold for (gr(C)f≥0, gr(C)
f
≤0).

7



Proof. We prove the result for Fil(C), as the result for gr(C) is similar but easier. Coconnec-

tivity can be checked by mapping in the generators of Fil(C)f≤0. Because of the adjunction
defining the functor (−)0,n, the condition for coconnectivity follows.
Now suppose f is nondecreasing. To prove the claims, It suffices to show that if x ∈ Fil(C)

has xi ∈ C≥f(i), then x admits no maps to a coconnected object. If y is a coconnected
object, then xi admits no maps to yj for j ≤ i because yj is f(j)-coconnected, and since f is
nondecreasing, it is f(i)-coconnected. It follows that there are no nonzero maps of filtered
objects x→ y. □

Lemma 2.6. The t-structures Fil(C)f , gr(C)f are compatible with the symmetric monoidal
structure if f(0) = 0 and f(i) + f(j) ≥ f(i+ j).

Proof. The condition f(0) = 0 guarantees that the unit is connective. One needs to check

that the tensor product of any pair of generators of Fil(C)f≥0 is still in Fil(C)f≥0. But the

tensor product of Σf(i)c0,i and Σf(j)d0,j is Σf(i)+f(j)(c⊗ d)0,i+j, which is in Fil(C)f≥0 because
c⊗ d is in C≥0 and so the assumption on f shows that this is connective. □

The functor gr is right t-exact with respect to the t-structure corresponding to a non-
decreasing function f , but not in general t-exact. In the following situation it preserves
τ≥0.

Lemma 2.7. Suppose that c ∈ Fil(C), f : Z→ Z is nondecreasing, π♡
k,i−kc = 0 for f(i−1) ≤

k < f(i), and π♡
f(i)−1,i−f(i)+2 contains no simple τ -torsion. Then τ f≥0 gr(c)

∼= gr(τ f≥0(c)) and

τ f≤0 gr(c)
∼= gr(τ f≤0(c)).

Proof. It suffices to prove the statement for τ≥0 since gr is exact. There is a cofiber sequence

ci+1
τ−→ ci → gri c. By Lemma 2.5 we would like τ≥f(i+1)ci+1 → τ≥f(i)ci → τ≥f(i) gri c to

remain a cofiber sequence. From the exact sequence of homotopy groups, we see that we
would like τ≥f(i+1)ci+1 = τ≥f(i)ci+1 and π♡

f(i)−1ci+1 → π♡
f(i)−1ci to be injective. This is exactly

the condition that π♡
k ci = π♡

k,i−kc vanish when f(i − 1) ≤ k < f(i) and π♡
f(i)−1ci+1 =

π♡
f(i)−1,i−f(i)+2c has no simple τ -torsion. □

Example 2.8. Let f(i) = ⌈ai⌉ where a ≥ 0. This gives rise to the slope 1−a
a

t-structure,

whose truncation functors we denote τ
/a
≥0, τ

/a
≤0. ◁

Example 2.9. Let f(i) = 0 for i ≤ 0 and f(i) = ⌈ i
2
⌉ for i > 0. This gives rise to the v

t-structure, whose truncation functors we denote τ v≥0, τ
v
≤0. ◁

The slope 1−a
a

and v t-structures satisfy the conditions of Lemma 2.6 and Lemma 2.5, so
are compatible with the symmetric monoidal structure, and can be computed by truncating
level-wise. The reason for the name slope is that in the Adams grading, the homotopy groups
of objects in the heart of this t-structure lie along a line of slope 1−a

a
. The v t-structure is

named so because the curve it describes is the vanishing curve on the homotopy groups of
the BP-synthetic sphere at the prime 2.

Example 2.10. We now specialize Example 2.8 to obtain two t-structures we use here.
Taking a = 0, we get the constant t-structure, whose connective cover functor τ const≥0 just

takes connective cover on each filtered piece.
8



Taking a = 1, we get the diagonal t-structure, whose connective cover functor τ d≥0 is given

by taking the ith-connective cover on the ith filtered piece. ◁

The functor (−)const : C → Fil(C) is the symmetric monoidal functor given by the constant
filtered object.

2.3. Filtrations on rings of interest. We now specialize to the case C = Sp with its
standard symmetric monoidal structure. We begin by constructing jζ as a filtered ring. We
use τ≥∗(−) to denote the composite functor τ d≥0((−)const). Indeed, τ≥i(−) is the ith filtered
piece of this functor.

We now use τ≥∗(−) to obtain a filtration on ℓp, jζ , ko2, and j for p > 2. We use Rfil to
denote these rings equipped with these filtrations, and Rgr to denote the associated graded
algebras.

Definition 2.11. Let Zfil
p be the ring of p-adic integers with the p-adic filtration. It is a

filtered E∞-ring since it is in the heart of the constant t-structure. Its associated graded
ring is Fp[v0], where v0 ∈ π0,1Zgr

p . We write ṽ0 ∈ π0,1Zfil
p for the class of filtration 1 detecting

p ∈ Zp, which projects to v0 in the associated graded. ◁

Definition 2.12. For p > 2, consider ℓp, viewed as an E∞-ring equipped with the Z-action
given by the Adams operation Ψ1+p, and for p = 2, consider it with the Z×C2-action given
by the Adams operations Ψ3, Ψ−1.
We now define most of our filtered E∞-rings of interest:

• ℓfilp := τ≥∗ℓp
• kofil2 := τ v≥0((ℓ

fil
2 )

hC2)

• jfilζ,k := (ℓfilp )
hpkZ for p > 2 and (kofil2 )

hZ for p = 2

• jufil
ζ,k := (ℓfil2 )

h2kZ

• jfilk := τ const≥0 (jfilζ,k) for p > 2.

In the case k = 0, we just write jfilζ , ju
fil, jfil, and we remove fil to denote the underlying

E∞-ring. For example, we write jζ,k = ℓhp
kZ

p . ◁

Remark 2.13. The filtrations of Definition 2.12 aren’t as ‘fast’ as they can possibly be.
Namely, the spectra in the filtrations only change every multiple of 2p−2 filtrations. Speeding
up the filtration doesn’t affect very much related to the filtration in any case. ◁

Remark 2.14. For p > 2, it is also possible to use variants of the Adams filtration on the
various rings of study, as in [HW22, Section 4.3], which would avoid the use of two filtrations.
However this doesn’t work as well at the prime 2, since the Adams filtration on is poorly
suited to studying ko2’s THH. ◁

The key properties of these filtrations that we use is that the associated graded algebras
mod p are easy to describe.

Lemma 2.15. The associated graded algebras of filtered rings defined in Definition 2.12 are
E∞-Z-algebras.

Proof. The 0’th piece of every associated graded algebra is coconnective with π0 = Zp, so
the unit map from S0,0 factors canonically through Z, giving it a canonical E∞-Z-algebra
structure. □

9
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Figure 1. Above is the E2-page of the spectral sequence associated with the
filtered ring (τ≥∗ℓ2)

hC2 , which embeds into the homotopy fixed point spectral
sequence for KO2. The dots indicate a copy of F2 and the rectangles indicate
a copy of Z2. The spectral sequence collapses at the E3-page.

Lemma 2.16. For p > 2, there are isomorphisms of graded E∞-Fp-algebras

ℓgrp /p
∼= Fp[v1]

jgrζ,k/p
∼= Fp[v1]⊗Fp FhZ

p

and for p = 2, there are isomorphisms of graded E∞-F2-algebras

jgrζ,k/2
∼= (kogr2 /2)⊗F2 FhZ

2

jugr
ζ,k/2

∼= F2[v1]⊗F2 FhZ
2

kogr2 /2 ∼= τ v≥0(F
hC2
2 ⊗F2 F2[v1]).

Proof. ℓgrp is the associated graded of the Postnikov filtration, which is Zp[v1], where the
grading of v1 is its topological degree, namely 2p − 2. Reducing mod p, we get the claim
about ℓgr/p. The Z-action on ℓgrp is the action of Ψ1+p on the homotopy of ℓp. It is a ring

automorphism sending v1 to (1 + p)p−1v1, which in particular is trivial modulo p. Since ℓgrp
is a discrete object (it is in the heart of the diagonal t-structure), it follows that the action
on ℓgrp /p is trivial, giving the claimed identification of jgrζ,k for p > 2 and jugr

ζ,k for p = 2.
For p = 2, we first recall that the in the homotopy fixed point spectral sequence for

KO2
∼= KUhC2

2 , all differentials are generated under the Leibniz rule by the differential
d3v

2
1 = η3, where η is represented by the class in H1(C2; π2KU2). The spectral sequence

for ℓhC2
2 = kuhC2

2 , displayed in Figure 1, embeds into this, after a page shift. Thus, we see
that everything in π∗∗(ku

fil)hC2 above the line of slope 1 intercept zero is either in negative
10



underlying homotopy or doesn’t have τ -multiples on or below the line of slope 1 intercept 2.
We learn that the bigraded homotopy ring of (ℓfil2 )

hC2 is

Z2[x, η, τ, b, v
4
1]/(b

2 − 4v41, η
3τ 2, 2η, 2x, xητ 2, v41x− η4, ηb),

where x represents v−4
1 η4, and b represents 2v21.

By applying Lemma 2.7, we learn that the connective cover τ v≥0 can be computed the level
of associated graded, and that this even holds after taking the cofiber by 2. The C2-action
on kugr

2 /2 is trivial, so indeed kogr2 /2 ∼= gr(τ v≥0(F
hC2
2 ⊗F2 F2[v1])). For j

gr
ζ,k/2, we just observe

that the residual Z-action is also trivial. □

Remark 2.17. At the prime 2, it is possible to define j as a filtered E∞-ring, but we do not
study this in this paper. One can define its underlying E∞-ring as the pullback

j kohZ2

τ≤2S2 (τ≤2 ko2)
hZ

⌟

and then consider the underlying filtered E∞-ring of νBP (j) where νBP is the synthetic
analogue functor of [Pst22]. ◁

Finally, we show convergence properties of our THH applied to the filtrations we use.
Given a filtered spectrum X ∈ Fil(Sp), the spectral sequence associated with X converges
conditionally if and only if limiXi = 0. This is equivalent to asking that X is τ -complete,
where τ is in π0,−1S0,0.
The following lemma shows completeness for THH with respect to all of the filtrations

constructed in this section.

Lemma 2.18. Suppose that R is a filtered ring such that the i-th filtered piece Ri is (−1+ci)-
connective for every i and some fixed c > 0. Then, the i-th filtered piece of THH(R) is also
(−1 + ci)-connective, so in particular the filtration on THH(R) is complete.

Proof. Note that R = cof(S0,0 → R) satisfies the same conditions of the statement. The
filtration from the cyclic bar construction gives us an increasing filtration on THH(R) with

k-th associated graded piece ΣkR⊗R
⊗k
. The i-th filtered piece of ΣkR⊗R

⊗k
is (−1 + ci)-

connective since it is a colimit of spectra of the form ΣkRj0⊗Rj1⊗· · ·⊗Rjk with j0+· · ·+jk ≥
i, which has connectivity of at least

k +
k∑

s=0

(−1 + cjs) ≥ −1 + ci. □

The other filtration we use is the p-adic filtration on Zp, which we call Zfil
p , whose associated

graded algebra is Fp[v0]. We call ṽ0 the element in π0,1Zp that is a lift of p to filtration 1,
and projects to v0 in the associated graded.

Lemma 2.19. Let R be a (possibly graded) E1-Zp-algebra. Then, the filtration on the filtered
ring

THH(R⊗Zp Zfil
p )/ṽ0.

11



is complete and its associated graded ring is concentrated in two filtration degrees t = 0, 1.
Informally, the filtration is of the form

· · · → 0→ 0→ I → THH(R)/p

for some (possibly graded) spectrum I. In particular, the associated spectral sequence col-
lapses at the E2-page.

Proof. By using the symmetric monoidality of THH and the fact that p = 0 in Zfil
p /ṽ0, we

obtain an equivalence

THH(R⊗Zp Zfil
p )/ṽ0

∼= (THH(R)/p)⊗(THH(Zp)/p) THH(Zfil
p )/ṽ0.

Since the conclusion of the statement is stable under base-change along trivially filtered
rings, the statement reduces to the case R = Zp.

For R = Zp, the associated graded is THH(Fp[v0])/v0, which has homotopy ring Fp[σ
2p]⊗

Λ[dv0] (see Example 4.2), which is indeed in filtrations≤ 1. It remains to see that THH(Zfil
p )/ṽ0 =

THH(Zfil
p ;Fp) has a complete filtration. It suffices to show that THH(Zfil

p ;Fp)⊗THH(Zp) Zp
∼=

THH(Zfil
p /Zp;Fp) has a complete filtration, since THH(Zp) is built from Zp via extensions

and limits that are finite in each degree, and completeness of the filtration can be checked
degreewise. The nth associated graded term of the cyclic bar construction computing this is

Σn(Zfil
p )

⊗Zpn ⊗Zp Fp
∼= Σn(Zfil

p ⊗Zp Fp)
⊗Fpn

Zfil
p ⊗Zp Fp is complete since it is Fp in each nonnegative degree, with transition maps 0,

or in other words, it is a direct sum Fp ⊕
⊕∞

1 Σ0,iFp/τ . It follows that its tensor powers
over Fp are also sums of Fp in each degree with transition maps 0 in positive filtration, so
are complete. Since only finitely many terms in the cyclic bar complex contribute to each
degree of THH, we learn that the THH is complete. □

3. Tools for understanding THH

In this section, we explain some general tools which we use in understanding THH.

3.1. Suspension operation in THH. We begin by reviewing and proving some basic facts
about the suspension maps, which are studied in [HW22, Section A]. Let R be an E1-algebra
in a presentably symmetric monoidal stable category C. By [HW22, Section A], there are
natural maps

σ : Σ fib(1R)→ R⊗R(1)

σ2 : Σ2 fib(1R)→ THH(R)(2)

where 1R is the unit map of R. Note that the first map is defined by the diagram

1 0

R R⊗R

1R

id⊗1R−1R⊗id

and that it factors through fib(µ)→ R⊗R where µ : R⊗R→ R is the multiplication map.
12



Let I be an object of C with a map I → R⊗R and nullhomotopies of the composites

I → R⊗R
µ−→ R

I → R⊗R
µ◦T−−→ R,

where T : R⊗R→ R⊗R is the exchange map. Then, we obtain a map

ΣI → THH(R)

by the commutative diagram

(3)

I 0

R⊗R R

0 R R⊗R⊗Rop R.

µ

µ◦T 1⊗id

id⊗1

By the proof of [HW22, Lemma A.3.2], if I = Σfib(1R) and the map I → R⊗R is given by
(1), then the induced map ΣI → THH(R) is the map (2).

Definition 3.1. Let X be a spectrum. Given a class x ∈ π∗(X ⊗ 1) and a lift x̃ ∈ π∗(X ⊗
fib(1R)) we shall write σx ∈ π∗+1(X ⊗R⊗R) and σ2x ∈ π∗+2(X ⊗ THH(R)) for the image
of x̃ under the maps (1) and (2). The notation is ambiguous since we need to choose a lift
x̃, but these lifts will often be well-defined.

We shall write d for

π∗(X ⊗R)→ π∗+1(X ⊗ THH(R))

induced by the map of spectra ΣR→ Σ2 fib(1R)→ THH(R). ◁

Remark 3.2. If R is homotopy commutative in addition to being an E1-algebra, then we
can set I = fib(µ) in (3) and obtain a map

(4) σ : Σ fib(µ)→ THH(R),

which is functorial on R and the homotopy4 µ ∼= µ ◦ T . Then, the map (2) is the composite

Σ2 fib(1R)→ Σfib(µ)→ THH(R)

of (1) and (4) up to sign.
If X is a spectrum, given a class y ∈ π∗(X ⊗ R ⊗ R) and a lift ỹ ∈ π∗(X ⊗ fib(µ)), we

shall write σy ∈ π∗+1(X ⊗ THH(R)) for the image of ỹ under the map (4). Then, we have
dx = σ((ηL−ηR)x) for x ∈ π∗(X⊗R), where ηL and ηR are the left and right units of R⊗R,
respectively. ◁

4The same construction is studied in [HW22, Variant A.2.2], but we believe that additional hypotheses
are required to make sense of their argument. For example, R is only assumed to be an E1-ring in their
generality, but an assumption such as homotopy commutativity of R is needed to ensure that the composite

fib(µ)→ R⊗R
µ◦T−−−→ R

is nullhomotopic. In their notation, we would need to assume, for example, that there is a homotopy 1k ∼= 1τk.
This does not affect any other part of their work since they only use rings that have enough structures.

13



Lemma 3.3 ([AR05, Prop. 5.10]). Let X be a homotopy unital ring spectrum and R be an
E2-algebra in C. Then, d satisfies the Leibniz rule

d(xy) = d(x)y + (−1)|x|xd(y)
for any x, y ∈ π∗(X ⊗R).

Proof. By [HW22, Example A.2.4], the map d can be identified with the map

S1
+ ⊗R→ THH(R)

induced by the unit map R → THH(R) and the S1-action on THH(R). Since the map
R → THH(R) is a map of E1-rings, the S1-action on the target gives an S1-family of ring
maps, and so we obtain a map of E1-rings

(5) R→ lim
S1

THH(R) = DS1
+ ⊗ THH(R) = THH(R)⊕ Σ−1THH(R)

given by the sum of the identity map and d. Here, DS1
+ is the Spanier-Whitehead dual of

S1 with the algebra structure given by the diagonal map of S1.
The homotopy ring of DS1

+ is given by

π∗(DS1
+) = (π∗S

0)[t]/(t2)

with |t| = −1. Since (5) is a ring map, taking the X-homology, we have

1⊗ xy + t⊗ d(xy) = (1⊗ x+ t⊗ dx)(1⊗ y + t⊗ dy)

for x, y ∈ π∗(X ⊗R). Expanding it using t2 = 0 gives us the desired Leibniz rule. □

Our use of the symbol d recovers the use in the HKR theorem. Recall that a strict Picard
element L of a symmetric monoidal category C is a map of spectra Z→ pic(C). Given such
a strict Picard element, viewing it as a symmetric monoidal functor Z → C, the colimit of
the composite

N→ Z→ C
is an E∞-algebra in C which we denote 1[x], where x is a class in the Picard graded homotopy
in the degree of L .

Lemma 3.4 (HKR isomorphism). Let C be a presentably symmetric monoidal stable category
with a strict Picard element L . Let 1[x] denote the polynomial algebra on a class x in degree
L . Then HH(1[x]) is a free 1[x]-module on 1 and dx.

Proof. The universal example of such a C is graded spectra, where 1[x] is the graded poly-
nomial algebra Σ∞

+N, so it suffices to prove it there. But now this follows from from
the Kunneth spectral sequence computing π∗THH(S[x]) = π∗S[x] ⊗S[x1,x2] S[x], since dx
is σ((ηL − ηR)(x)). □

We now explain some basic THH computations involving the suspension map.

Example 3.5 (Bökstedt periodicity). The fundamental computation of Bökstedt states that
the ring π∗THH(Fp) is isomorphic to Fp[σ

2p]. ◁

Lemma 3.6. Let R ∈ Fil(Sp) be a filtered E1-ring and X ∈ Sp a spectrum. Let y ∈
πk,r−k(R⊗X), x ∈ πkX be classes such that τ ry = x ∈ πk,−k(R⊗X).

Then there is a choice of nullhomotopy of x in THH(grR) ⊗X such that in the spectral
sequence for THH(R) ⊗ X, the corresponding element σ2x on the E1-page survives to the
Er-page and has dr-differential dr(σ

2x) = ±dy.
14



Proof. A choice of homotopy τ ry ∼ x in R ⊗X becomes in cof(S0,0 → R) ⊗X a choice of
nullhomotopy of the image of τ ry, which corresponds to a map Σ|y| cof(τ r) → cof(S0,0 →
R)⊗X. This map of filtered spectra gives a map of the associated spectral sequences, and
in the spectral sequence for cof(τ r), there is a dr-differential between the two spheres on the
associated graded.

We claim the image of the two shifts of cof τ in the map

Σ|y|(cof(τ)⊕ Σ1,−(r+1) cof(τ)) ∼= Σ|y| cof(τ r)⊗ cof(τ)→ cof(S0,0 → R)⊗X ⊗ cof(τ)

correspond to the image of y and the suspension of a nullhomotopy of x under the map
S0,0 → grR.

The claim that the first cof τ is sent to y is clear by construction, and the claim that the
second cof τ is sent to the suspension of a nullhomotopy of x follows since on associated
graded our original homotopy τ ry ∼ x becomes a nullhomotopy of x.
It then follows that there is a dr differential between these two classes.
Composing with the filtered map

Σ cof(S0,0 → R)⊗X ∼= Σ2 fib(S0,0 → R)⊗X
σ2

−→ THH(R)⊗X

of Equation (2), y gets sent to dy and the nullhomotopy of x gets sent to σ2x (up to a
possible sign), giving the desired differential in the spectral sequence for THH(R) ⊗ X.
Therefore, it is enough to prove that the connecting map sends x̃ to y, and since the map
π∗(Z ⊗ X1) → π∗(Z ⊗ X0) is injective, it is enough to prove that x̃ is sent to η∗(x) by
the composite F → X1 → X0. This composite is homotopic to F → S → X0 since the
connecting map F → X1 is given by the nullhomotopy □

3.2. THH in the stable range. Throughout this subsection, let S be a connective E∞-
algebra and R be a connective E1-S-algebra.
In this section, we show that in the situation that the unit map S → R is highly connective,

THH(R/S) in low degrees becomes relatively straightforward to understand. This is used
later in Section 5 to understand THH(j). Let ∆n denote the subcategory of ∆ consisting of
ordinals of size ≤ n.

Lemma 3.7. If the unit map S → R is i-connective, then the natural map

colim∆op
n
R⊗S∗+1 → colim∆op R⊗S∗+1 ∼= THH(R/S)

is (n+ 1)(i+ 2)− 1-connective.

Proof. Let R = cof(S → R) be the cofiber of the unit map. The mth term of the associated

graded of the filtration coming from the cyclic bar construction is ΣmR ⊗S R
⊗Sm

, which is
m(i+ 2)-connective because R is connective and R is (i+ 1)-connective. It follows that the
cofiber of the map in question has an increasing filtration whose associated graded pieces
are m(i+ 2)-connective for m > n. This implies the result. □

The above lemma gives a simple description of THH in low degrees.

Proposition 3.8. If the unit map S → R is i-connective, then the map

Σ2 fib(1R)⊕R
σ2⊕1−−−→ THH(R/S)

is (2i+ 2)-connective, where σ2 is defined as in (2).
15



Proof. Consider the case n = 1 in Lemma 3.7. Then, we have an equivalence

colim∆op
1
R⊗S∗+1 ∼= colim


R⊗S R R

R

µ

µ◦T


(see [MV15, Theorem 9.4.4]), where T is the exchange map, and this colimit maps into
THH(R/S) by a (2i+ 3)-connective map.
Therefore, it is enough to prove that the map

colim


Σfib(1R)⊕R R

R

proj2

proj2

→ colim


R⊗S R R

R

µ

µ◦T


is (2i+ 2)-connective, where the map Σfib(1R)⊕R→ R⊗S R is σ ⊕ (1R ⊗ id) and the two
maps R→ R are the identities. The fiber of this map is

Σ fib(Σfib(1R)⊕R
σ⊕1−−→ R⊗S R)

which is (2i+ 2)-connective by the next lemma. □

Lemma 3.9. If the unit map 1R : S → R is i-connective, then the map

Σfib(1R)⊕R
σ⊕1−−→ R⊗S R

is (2i+ 1)-connective.

Proof. This is equivalent to asking that the total cofiber of the following diagram

S ⊗S S S ⊗S R

R⊗S S R⊗S R

is (2i+2)-connective. This follows from the assumption since the total cofiber is Σ2 fib(1R)⊗S

fib(1R), which is (2i+ 2)-connective since fib(1R) is i-connective. □

Corollary 3.10. The group π2p−1THH(Zp) is isomorphic to Z/p and is generated by σ2α1.

Proof. Since Sp → Zp is (2p − 3)-connective, the result follows from Proposition 3.8, which
implies that σ2 induces an isomorphism

Z/p = π2p−3 fib(Sp → Zp) ∼= π2p−1THH(Zp). □

Corollary 3.11. For p > 2, the map

j ⊕ Σ2 fib(Sp → j)
1⊕σ2

−−−→ THH(j)

is (4p2 − 4p− 2)-connective.

Proof. For p > 2, Sp → j is 2p2 − 2p− 2-connective. This is because the first element of the
fiber is β1 (see for example [Rav86, Theorem 4.4.20]) which is in that degree. □
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4. The THH of jζ

In this section, we compute THH(jζ)/(p, v1) using the filtration constructed in Section 2.
Let us first assume that p is an odd prime. We shall discuss the case p = 2 later in the
section.

4.1. THH of Zp and ℓp. Before computing the THH of jζ , we shall compute the THH of
Zp modulo p and the THH of ℓp modulo (p, v1) in this section, as a warm-up. They will be
computed using the spectral sequences associated with THH(Zfil

p ) and THH(ℓfilp ). Later, we

show that the computation of the spectral sequence for THH(jfilζ ) looks the same. We note
that the computations for Zp and ℓp are well-known (see for example [AR05, Theorem 5.12]).

Lemma 4.1. Let k be a discrete ring and let R be a Zm-graded E2-k-algebra such that the
homotopy groups of R form a polynomial algebra

π∗R = k[x1, . . . , xn]

on even degree generators x1, . . . , xn. Then, there is an equivalence of Zm-graded E1-THH(k)-
algebras

THH(R) ∼= THH(k)⊗k HH(k[x1, . . . , xn]/k).

Proof. Let S[x1, . . . , xn] be the Zm-graded E2-ring spectrum of [Lur15]. Then, by [HW22,
Prop. 4.2.1], there is an equivalence of Zm-graded E2-k-algebras

R ∼= k ⊗ S[x1, . . . , xn].

Therefore, since THH is a symmetric monoidal functor Alg(Sp)→ Sp, there is an equivalence
of Zm-graded E1-k-algebras

THH(R) ∼= THH(k)⊗ THH(S[x1, . . . , xn]),

and the statement follows by base changing the second tensor factor on the right hand side
along S→ k. □

Example 4.2. Consider the filtered spectrum THH(Zfil
p )/ṽ0. Its associated graded spectrum

is THH(Fp[v0])/v0 and its underlying spectrum is THH(Zp)/p. The E1-page of the associated
spectral sequence is Fp[σ

2p]⊗Λ[dv0] by Lemma 4.1. Note that σ2p and dv0 are in filtrations
0 and 1, respectively.

By Lemma 3.6, we have a differential d1(σ
2p)

.
= dv0 in the spectral sequence associ-

ated with the filtered ring THH(Zfil
p ). Then, mapping to THH(Zfil

p )/ṽ0 and using the Leib-

niz rule, we can determine all differentials, and the E2-page is isomorphic to Fp[(σ
2p)p] ⊗

Λ[(σ2p)p−1dv0]. There are no differentials in later pages by Lemma 2.19.
Therefore, the homotopy ring π∗THH(Zp)/p is isomorphic to Fp[µ]⊗ Λ[λ1] with |µ| = 2p

and |λ1| = 2p− 1. By [HW22, Propsition 6.1.6], µ can be identified with σ2v1
5, where v1 ∈

π2p−2Sp and λ1 can be identified with σt1, in the sense of Remark 3.2, where t1 ∈ π∗(Z⊗ Z)
is the image of t1 ∈ π∗(BP⊗BP) under the map BP → Z. By Corollary 3.10, we have
λ1

.
= σ2α1

6. ◁
5v1 is not well defined at the prime 2, but still exists: it is just not a self map of cof(2). It is generally

defined as any element of π2p−2S/p whose BP-Hurewicz image is v1.
6Alternatively, if one knows that the p-Bockstein on µ is

.
= λ1, one learns that σ2α

.
= λ1 from the fact

that the p-Bockstein on v1 is α1 and the fact that σ2 is compatible with the p-Bockstein (since it comes from
a map of spectra).
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Example 4.3. Consider the filtered spectrum THH(ℓfilp )/(p, ṽ1), where ṽ1 ∈ π∗ℓp is the class
of filtration (2p−2). Its associated graded spectrum is THH(Z[v1])/(p, v1) and its underlying
spectrum is THH(ℓp)/(p, v1). By Lemma 4.1, the E1-page of the associated spectral sequence
is Fp[σ

2v1]⊗Λ[λ1, dv1]. Note that the for degree reasons, the first and last page a differential
can happen is the E2p−2-page.
Applying Lemma 3.6, there is a differential d2p−2σ

2v1
.
= dv1 in the spectral sequence

associated with the filtered spectrum THH(ℓfilp )/p. Mapping to THH(ℓfilp )/(p, ṽ1) and using

the Leibniz rule, we can determine the d2p−2-differentials on powers of σ2v1. The class
λ1 is a permanent cycle for degree reasons. Therefore, the E2p−1-page is isomorphic to
Fp[(σ

2v1)
p]⊗ Λ[λ1, (σ

2v1)
p−1dv1]. The classes (σ2v1)

p, (σ2v1)
p−1dv1 are permanent cycles for

degree reasons, so the spectral sequence degenerates at the E2p−1-page.
We let λ2 denote a class detecting (σ2v1)

p−1dv1, and µ denote a class detecting (σ2v1)
p.

To check that there are no multiplicative extensions, we need to check λ2
1 = λ2

2 = 0, which
follows for degree reasons. The homotopy ring π∗THH(ℓp)/(p, v1) is thus isomorphic to
Fp[µ1] ⊗ Λ[λ1, λ2] where λ1 and λ2 can be identified with σt1 and σt2 as in the case of
THH(Zp)/p. For p > 2, µ2 can be identified with σ2v2. ◁

4.2. The associated graded. We further filter the associated graded ring jgrζ by the p-
adic filtration to ultimately reduce the computation to our understanding of THH(Fp). In
running the spectral sequences to obtain the THH mod (p, v1), we find that they are close
enough to the spectral sequences of (ℓtrivp )hZ, the fixed points of ℓp with the trivial Z-action.

Definition 4.4. We define the p-adic filtration on jgrζ to be jgrζ ⊗Zp Zfil
p . This is an E∞-Z-

algebra object in the category of filtered graded spectra.
By taking the associated graded, we obtain jgrζ ⊗Zp Fp[v0], which is an E∞-Z-algebra object

in the category of bigraded spectra. We shall write hfp grading for the grading on jgrζ if we

need to distinguish it from the p-adic grading on Fp[v0]. For example, in jgrζ ⊗Zp Fp[v0], v1
has hfp degree 2p− 2 and p-adic degree 0, and v0 has hfp degree 0 and p-adic degree 1. ◁

Lemma 4.5. For p > 2, there is an isomorphism of bigraded E1-THH(Fp)-algebras for

THH(jgrζ ⊗Zp Fp[v0]) ∼= THH(Fp)⊗Fp HH(Fp[v0, v1]/Fp)⊗Fp HH(FhZ
p /Fp)

Proof. First note that jgrζ ⊗Zp Fp[v0] ∼= jgrζ /p ⊗Fp Fp[v0], which by Lemma 2.16 is equivalent

to Fp[v1, v0]⊗Fp FhZ
p . Then, the statement follows from Lemma 4.1. □

We next study the behavior of fixed points by trivial Z-actions on THH. We use the
spherical Witt vectors adjunction [BSY22, Proposition 2.2] [Lur18, Section 5.2] between
perfect Fp-algebras and p-complete E∞-rings. For a perfect Fp-algebra A, W(A) is an E∞-
ring that is (p-completely) flat under Sp, and whose Fp homology is A. The right adjoint is
π♭
0 which is defined to be the inverse limit perfection of the Fp-algebra π0(R)/p.

Lemma 4.6. There is an equivalence of E∞-ShZ
p -algebras THH(ShZ

p ) ∼= ShZ
p ⊗W(C0(Zp;Fp)).

The restriction map ShZ
p → ShpZ

p on π♭
0 is the map C0(Zp;Fp)→ C0(pZp;Fp) that restricts a

function to pZp.

Proof. There is a natural map ShZ
p ⊗W(π♭

0(THH(ShZ
p ))→ THH(ShZ

p ), and so for the first claim

it suffices to show that this is an equivalence and that π♭
0(THH(ShZ

p )) ∼= C0(Zp;Fp). Both of

these can be checked after base change to Fp. Note that THH(ShZ
p )p ⊗ Fp

∼= HH(FhZ
p /Fp).
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Since FhZ
p = colimn FBZ/pnZ

p and BZ/pnZ is p-finite, we have, by [Lur11, Corollary 1.1.10],

HH(FBZ/pnZ
p /Fp) ∼= FBZ/pnZ

p ⊗
F(BZ/pnZ)2
p

FBZ/pnZ
p

∼= F
BZ/pnZ×(BZ/pnZ)2BZ/pnZ
p .

We have equivalences of spaces natural in n

BZ/pnZ×(BZ/pnZ)2 BZ/pnZ ∼= LBZ/pnZ = BZ/pnZ× Z/pnZ.
where L denotes the free loop space. Then, via the Künneth isomorphism and taking the
colimit over n, we get

HH(FhZ
p /Fp) ∼= FhZ

p ⊗ colimn FZ/pnZ
p .

Since colimn FZ/pnZ
p is C0(Zp;Fp), so we obtain the desired equivalence.

To see the claim about π♭
0, we note the natural map FhZ

p → FhpZ
p is the colimit of FhBZ/pnZ

p →
FhBZ/pn−1Z
p , where the map is given by the inclusion Z/pn−1Z→ Z/pnZ. At the level of the π0,

LBZ/pn−1Z→ LBZ/pnZ is also the inclusion Z/pn−1Z→ Z/pnZ, so induces the restriction
map at the level of C0(−;Fp). Taking the colimit over n gives the claim. □

Remark 4.7. Lemma 4.6 can be interpreted as saying that the failure of p-adic THH to
commute with taking Z-homotopy fixed points in the universal case is measured by π♭

0. In

particular, the map THH(ShZ
p )

f−→ THH(Sp)
hZ on π♭

0 is the map C0(Zp;Fp)
π♭
0f−−→ Fp evaluating

at 0, and the comparison map is base changed along W(π♭
0f). ◁

Corollary 4.8. Let R be a p-complete E∞-ring with trivial Z-action. Then there is an
equivalence of E∞-R-algebras THH(RhZ) ∼= THH(R)hZ ⊗W(C0(Zp;Fp)).

Combining Corollary 4.8 with Lemma 4.5 and the HKR isomorphism, we get the following.

Corollary 4.9. For p > 2, we have an isomorphism of rings

π∗THH(j
gr
ζ ⊗Zp Fp[v0]) ∼= Fp[σ

2p, v0, v1]⊗ Λ[dv0, dv1, ζ]⊗ C0(Zp;Fp)

4.3. Spectral sequences. Let us first run the spectral sequence for the p-adic filtration.

Proposition 4.10. For p > 2, we have an isomorphism of rings

π∗THH(j
gr
ζ )/p ∼= π∗THH(Zp)/p⊗ Fp[v1]⊗ Λ[dv1, ζ]⊗ C0(Zp;Fp).

Proof. As in Example 4.2, the spectral sequence associated with THH(jgrζ ⊗ Zfil
p )/ṽ0 has E1-

page isomorphic to π∗THH(j
gr
ζ ⊗Zp Fp[v0])/v0 ∼= Fp[σ

2p, v1]⊗ Λ[dv0, dv1]⊗H∗
ct(S

1 × Zp;Fp)

and converges to π∗THH(j
gr
ζ )/p.

Because there is a map of filtered rings jgrζ ⊗Zp Zfil
p → THH(jgrζ ⊗Zp Zfil

p ), we see that the
classes v1, ζ are permanent cycles. The class dv1 is a permanent cycle since it detects the
suspension dv1 of v1 ∈ π∗j

gr
ζ /p. The elements of C0(Zp;Fp) are permanent cycles since there

are no elements of negative topological degree and positive filtration.
From the map of filtered rings

THH(Zfil
p )→ THH(jgrζ ⊗Zp Zfil

p ),

there is a d1-differential σ
2p 7→ σv0 by Example 4.2, and (σ2p)p and (σ2p)p−1dv0 are perma-

nent cycles detecting images of classes in THH(Zp). It follows that after the d1-differential,
the E2-page is Fp[(σ

2p)p, v1] ⊗ Λ[(σ2p)p−1dv0, dv1, ζ] ⊗ C0(Zp;Fp), so the spectral sequence
19



The spectral sequence for THH(jufil)/(2, v1)

−2 0 2 4 6 8 10

−8

−6

−4

−2

0

λ′
1

1

ζ

σ2v1

dv1

Figure 2. Above is the spectral sequence associated with the filtered ring
THH(jufil)/(2, v1). This spectral sequence is the p = 2 version of the spectral
sequence in Theorem 4.11 (see Theorem 6.2), and only has d2 differentials.
Each square represents a copy of C0(Z2;F2).

collapes at the E2-page. There are no multiplicative extensions since every class comes from
either jgrζ , THH(Zp), or THH(ShZ

p ). □

Our next goal is to compute mod (p, v1) the spectral sequence THH(jgrζ ) =⇒ THH(jζ).
Before doing so, we run the analogous spectral sequence for computing THH(ℓp)/(p, v1), as
a warm up. We consider the E∞-ring Zζ = ZhZ

p with the trivial filtration.

Theorem 4.11. For p > 2, π∗(THH(jζ))/(p, v1) ∼= Fp[σ
2v2]⊗ Λ[λ1, λ2, ζ]⊗ C0(Zp;Fp) with

|λi| = 2pi − 1 and |σ2v2| = 2p2.

Proof. As in Example 4.3, we consider the spectral sequence associated with the filtered
spectrum THH(jfilζ )/(p, ṽ1). The analogous spectral sequence in the case p = 2 is displayed
in Figure 2 above. The underlying spectrum is THH(jζ)/(p, v1) and the associated graded
spectrum is THH(jgrζ )/(p, v1). By Proposition 4.10, the E1-page is isomorphic to Fp[σ

2v1]⊗
Λ[λ1, dv1, ζ]⊗ C0(Zp;Fp).
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The classes in C0(Zp;Fp) are permanent cycles by the Leibniz rule, since they are all their
own pth-power. The class ζ ∈ H1(S1;Fp) is a permanent cycle because it detects a class in
the image of jζ → THH(jζ).

By Lemma 3.6, there is a differential d2p−2(σ
2v1)

.
= dv1, and the Leibniz rule determines

the differentials on powers of σ2v1.
Similarly, by Lemma 3.6, there must be a d2p−2 differential λ1

.
= σ2α1 ˙7→dα1 in the spectral

sequence THH(jgrζ ) =⇒ THH(jζ) mod p. By Lemma 3.3, we have

dα1 = d(v1ζ) = v1dζ − ζdv1,

so that we have the differential d2p−2(λ1)
.
= ζdv1 mod (p, v1). By using the previous para-

graph and replacing λ1 with
λ′
1 = λ1 − ϵζµ

for some ϵ ∈ F×
p , we may assume that d2p−2(λ

′
1) = 0.

This completely determines the spectral sequence up to the E2p−2-page, and we learn the
E2p−1-page is isomorphic to Fp[(σ

2v1)
p] ⊗ Λ[λ′

1, (σ
2v1)

p−1dv1, ζ] ⊗ C0(Zp;Fp). There are no
more differentials since there is no class outside filtration degree 0 and 2p− 2. There are no
multiplicative extension problems since the multiplicative generators in nonzero degree are
free generators as a graded ring.

Finally, let us show that the polynomial generator µ2 is the class σ
2v2. Let us consider the

map jfilζ → Zζ induced by applying (τ≥∗(−))hZ to the Z-equivariant truncation map ℓp → Zp.
This induces a map of spectral sequences for THH. Since Zζ has the trivial filtration, its
THH does too, so has no differentials in its associated spectral sequence. By Corollary 4.8
and Example 4.2, THH(Zζ)p ∼= THH(Zp)

hZ ⊗W(C0(Zp;Fp)), so

π∗THH(Zζ)/(p, v1) ∼= Fp[σ
2v1, λ1, λ]⊗ C0(Zp;Fp).

v2 ∈ π2p2−2S/(p, v1) has a canonical nullhomotopy in jζ/(p, v1) ∼= FhZ
p and Zζ/(p, v1) ∼=

Fp[σv1]
hZ, so there is a canonical element σ2v2 in π2p2 THH(jζ)/(p, v1) and π2p2 THH(Zζ)/(p, v1),

which we claim is detected in the spectral sequence for THH(jfilζ ) by (σ2v1)
p. To see this, it

suffices to show this in THH(Zζ) because the map is injective in degree 2p2 − 2. But now it
is the image of σ2v2 from the map ℓfilp → Zζ , and in ℓfilp , which we know by Example 4.3 is

detected by (σ2v1)
p. □

Remark 4.12. In the proof of the previous theorem, a reader might wonder why λ1 supports
a differential while σ2α1 is still well-defined in THH(jζ). This can be explained by the fact
that σ2α1 is not well-defined in THH(Zζ)/(p, v1) since

π2p−3(fib(S→ Zζ)/(p, v1))→ π2p−3(S/(p, v1))
is not injective. The class σ2α1 is well-defined in THH(Z)/(p, v1) and THH(jζ)/(p, v1), but
their images in THH(Zζ)/(p, v1) are different. The class λ1 in the E1-page represents the
former and λ′

1 represents the latter. ◁

Remark 4.13. We can carry out the same computation for THH(ℓp)
hZ/(p, v1) using the

same filtrations ℓfilp and ℓgrp ⊗ Zfil
p . Then, we obtain an isomorphism of rings

π∗THH(ℓp)
hZ/(p, v1) ∼= Fp[σ

2v2]⊗ Λ[λ1, λ2, ζ].

Furthermore, by keeping track of the map

THH(jζ)/(p, v1)→ THH(ℓp)
hZ/(p, v1)
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at every stage, we see that on homotopy groups, this map is the base-change along

C0(Zp;Fp)→ Fp

that evaluates a function at 0 ∈ Zp. ◁

4.4. The prime 2. We next turn to the prime 2. We first need to run the analogous analysis
as in Example 4.3 for ko2. We consider kogr2 /2[v0] as the bigraded ring given as the associated
graded of kogr2 ⊗Z2Zfil

2 . To understand this, we need the following lemma.

Lemma 4.14. There is an isomorphism of bigraded rings

π∗THH(ko
gr
2 /2[v0])/η ∼= F2[v0, v1, σ

22, dη]/((dη)2 + v1dη)⊗ Λ[dv0, dwv1]

Proof. The associated graded of kogr2 /2[v0] with respect to the Posnikov filtration is F2[v0, v1, η].
By symmetric monoidality of THH, we have an equivalence

THH(F2[v0, v1, η]) ∼= THH(F2[v0, v1])⊗THH(F2) THH(F2[η])

Since the argument of Lemma 4.5 works at the prime 2, we learn that the first tensor factor
has homotopy ring F2[σ

2p, v0, v1]⊗ Λ[dv0, dv1].
For the second tensor factor, we note that THH(F2[η])⊗THH(F2)F2

∼= HH(F2[η]/F2), whose
homotopy ring is F2[η]⊗ Λ[dη]. Since the map THH(F2)→ F2 is the cofiber of σ2p, we can
run a σ2p-Bockstein spectral sequence to recover THH(F2[η]). In the spectral sequence, η, dη
are permanent cycles since they are in the image of the unit map and the map d. We also
see that there are no multiplicative extensions mod η for degree reasons, i.e. we have

π∗THH(F2[η])/η = Λ(dη)⊗F2 F2[σ
22].

In the spectral sequence computing THH(kogr2 /2[v0]) from this, everything is a permanent
cycle since all classes are generated either from the image of the unit map, the map from
THH(F2), or the map d.
Now we turn to the multiplicative extensions, which we compute by mapping to the σ22-

completion of THH(FhC2
2 [v0, v1]). As before, we can compute this via the σ22-Bockstein

spectral sequence whose E1-page is HH(FhC2
2 [v0, v1]/F2)[σ

22].
We have an isomorphism HH(FhC2

2 [v0, v1]/F2) ∼= HH(FhC2
2 /F2) ⊗F2 HH(F2[v0, v1]). More-

over, HH∗(F2[v0, v1]) ∼= F2[v0, v1] ⊗ Λ[dv0, dv1], and HH(FhC2
2 ) is FhC2

2 × FhC2
2 , since the free

loop space of BC2 is BC2 × C2. If h is the generator of π−1FhC2
2 , then a nontrivial idempo-

tent in π0HH(FhC2
2 ) is given by dh. By the Leibniz rule (Lemma 3.3), dη = v1dh+ hdv1, so

(dη)2 = v21dh = v1dη + ηdv1. This this relation happens in THH(ko2)/σ
22, but for degree

reasons, this forces it to happen in THH(ko2)/η as well.
To see that the classes dv0 and dv1 square to 0, we note that this is true in HH(F2[v0, v1]/F2),

and that we have a map

THH(F2)⊗F2 HH(F2[v0, v1]/F2) ∼= THH(F2[v0, v1])→ THH(F2[v0, v1]
hC2)

using the isomorphism of Lemma 4.1. □

Lemma 4.15. There is an isomorphism of graded rings

π∗(THH(ko
gr
2 )/(2, η))

∼= F2[v1, σ
2v1, dη]/((dη)

2 + v1dη)⊗ Λ[σ2η, dv1]
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Proof. We now understand the spectral sequence computing π∗(THH(ko
gr
2 )/(2, η)) by running

the 2-adic filtration spectral sequence on THH(ko2⊗Z2Zfil
2 )/(v0, η). By Example 4.2, there

is a differential from σ2v0 to dv0, σ
2η is a class squaring to zero detected by σ2v0dv0, and

σ2v1
7 detects (σ2v0)

2. The remaining classes are either in the image of the unit map or
the image of d, so are permanent cycles. The relation (dη)2 + v1dη = 0 occurs because
it does on associated graded, and because there are no classes in topological degree 4 and
positive p-adic filtration. The class dv1 squares to zero since there are no classes of weight
−2, topological degree 6, and positive p-adic filtration. □

We now compute THH(ko2)/(2, η, v1), which was also computed in [AR05, Theorem 8.14].

Example 4.16. We now can run the spectral sequence

THH(kogr2 )/(2, η, v1) =⇒ THH(ko2)/(2, η, v1)

, which is a spectral sequence associated with a filtered E∞-ring since F2
∼= kofil2 /(2, η, v1),

where η and v1 are taken in filtration 2. This spectral sequence is displayed in Figure 3. The
first page of this spectral sequence by Lemma 4.15 is F2[σ

2v1]⊗Λ[dv1, dη, σ
2η]. It follows as

in Example 4.3 that there are differentials from σ2η to dη and σ2v1 to dv1. What remains
after these differentials are F2[(σ

2v1)
2]⊗Λ[σ2v1dv1, σ

2ηdη]. For degree reasons, there can be
no further differentials. the classes in odd degree square to 0 because there are no classes in
degrees 2 or 6 mod 8. ◁

We now run the analogous analysis to compute THH(jζ)/(2, η, v1).

Lemma 4.17. There is an isomorphism of graded rings

π∗THH(j
gr
ζ )/(2, η, v1) ∼= π∗THH(ko

gr
2 )/(2, η, v1)⊗ π∗(HH(FhZ

2 /F2))

Proof. Since kogr2 /2⊗F2 FhZ
2
∼= jgrζ /2, we learn from Lemma 4.14 that

π∗(THH(j
gr
ζ /2[v0])/(v0, η, v1) ∼= F2[σ

2v0]⊗ Λ[dη, dv0, dv1]⊗ HH∗(FhZ
2 /F2)

where HH(FhZ
2 /F2) is computed via Corollary 4.8 as FhZ

2 ⊗ C0(Zp;Fp).
Exactly as in Lemma 4.15, in the spectral sequence for the 2-adic filtration, there is a

differential from σ2v0 to dv0, σ
2η is a class squaring to zero detected by σ2v0dv0, and σ2v1

is a class detecting (σ2v0)
2. The rest of the classes are permanent cycles because they are

either in the unit map, come from d, or are permanent cycles by the Leibniz rule. □

Theorem 4.18. There is an isomorphism of rings for p = 2

π∗THH(jζ)/(2, η, v1) ∼= F2[µ]⊗ Λ[λ2, x, ζ]⊗ C0(Zp;Fp)

where |x| = 5, |λ2| = 7, |µ| = 8.

Proof. We run the spectral sequence THH(kogr2 )/(2, η, v1) =⇒ THH(ko2)/(2, η, v1). As in
Example 4.16, there are differentials from σ2η to dη and σ2v1 to dv1. For degree reasons,
(σ2v1)

2 is a permanent cycle, as are σ2ηdη, σ2v1dv1, and ζ. C0(Z2;Fp) is a permanent
cycle by the Leibniz rule. If we let λ2 and x denote classes detecting σ2v1dv1 and σ2ηdη
respectively, then λ2

2 = 0 and x2 = 0 for degree reasons. □

7The element v1 ∈ π2S/2 exists, even though it does not extend to a self map.
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Figure 3. Above is the spectral sequence associated with the filtered ring
THH(kofil2 )/(2, η, v1).

5. The THH of j

We now consider THH(j)/(p, v1) for p > 2. We first compute the Hochschild homology of
the Fp-algebra jgr/p, which is isomorphic to τ≥0(Fp[v1]

hZ) by Lemma 2.16.

Proposition 5.1. Let p > 2. HH∗((j
gr/p)/Fp) ∼= HH∗(τ≥0(Fp[v1]

hZ)/Fp) is isomorphic as a
ring to

Λ[dv1, α1]⊗ Fp[v1, x0, x1, . . . ]/(x
p
i = vp

i+1−pi

1 xi + vp
i+1−pi−1

1 α1(
i−1∏
j=0

xp−1
j )dv1; i ≥ 0)

where |xi| = pi(2p− 2), and xi is in grading pi(2p− 2).

Proof. Define a graded ring R = τ≥0Zp[v1]
hZ using a trivial Z-action so that R/p ∼= jgr/p. We

shall show that π∗HH(R/Zp) is the Zp-algebra generated by v1, dv1, α, and a set of generators
x0, x1, . . . with |xi| = pi(2p− 2) having relations

xp
i = pxi+1 + vp

i+1−pi

1 xi + vp
i+1−pi−1

1 α(
i−1∏
j=0

xp−1
j )dv1.

Then, the statement follows by the base-change Zp → Fp.
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Let Rζ = Zp[v1]
hZ defined using a trivial Z-action and let η : R → Rζ denote the con-

nective cover map. To compute the Hochschild homology, we shall show that the map
η∗ : π∗HH(R)→ π∗HH(Rζ) is injective and describe the image. Note that π∗Rζ = Zp[v1, ζ]
and π∗R = Zp[v1, α] where η∗(α) = v1ζ.

Let us consider the Künneth spectral sequence

(6) E2(HH(R)) = Torπ∗(R⊗ZR)(π∗R, π∗R) =⇒ π∗HH(R).

Since π∗R = Zp[v1]⊗ Λ[α], the E2-page can be computed as

E2(HH(R)) = Zp[v1]⊗ Λ[dv1, α]⊗ Γ[dα].

Similarly, there is a spectral sequence

(7) E2(HH(Rζ)) = Zp[v1]⊗ Λ[dv1, ζ]⊗ Γ[dζ] =⇒ π∗HH(Rζ)

up to p-completion.
We claim that E2(HH(R))→ E2(HH(Rζ)) is injective. By Lemma 3.3, we have

dα 7→ −ζdv1 + v1dζ.

To prove the injectivity, it is enough to prove it after taking the associated graded group
with respect to the (dv1)-adic filtration. Then, we may assume that dα maps to v1dζ, and
since E2(HH(Rζ)) is torsion-free, the divided power γn(dα) maps to vn1 γn(dζ). Therefore, we
have the desired injectivity. Note also that the map is injective mod p.

The spectral sequence (7) degenerates at the E2-page using the symmetric monoidality of
HH, Corollary 4.8, and Lemma 3.4. We then see that (6) also degenerates at the E2-page
and that η∗ : π∗HH(R)→ π∗HH(Rζ) is injective, even after mod p.
Let us describe the Künneth filtration on

π∗HH(Rζ) = Zp[v1]⊗ Λ[dv1, ζ]⊗W (C0(Zp;Fp))

in more detail. Here, the ring

W (C0(Zp;Fp)) = lim
k

C0(Zp;Zp/p
k)

is the ring of all continuous functions Zp → Zp. It can also be described, up to completion,
as the algebra generated by y0, y1, . . . with relations

ypi = pyi+1 + yi.

Here, the element y0 is the identity function Zp → Zp and the yi’s for i > 0 can be defined
with the above formula since yp ≡ y (mod p) for any y ∈ W (C0(Zp;Fp)). In π∗HH(Rζ), the
element y0 equals dζ, and the yi’s represent the pi-th divided power of dζ in the Künneth
spectral sequence (7).

To determine π∗HH(R), we need to find the classes xi’s representing the divided powers
γpi(dα) ∈ E2(HH(R)) up to a p-adic unit. The first divided power dα ∈ E2(HH(R)) has
a canonical lift x0 := dα ∈ π∗HH(R) and its image under η∗ is v1y0 − ζdv1. Inductively,
suppose that we have chosen x0, . . . , xi in a way that the image of xj is

η∗(xj) = vp
j

1 yj − vp
j−1

1 (

j−1∏
k=0

yp−1
k )ζdv1
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for 0 ≤ j ≤ i. Let xi+1 be any class representing γpi+1(dα). Then, after scaling by a unit, we
must have

xp
i = pxi+1 + c

for some class c ∈ π∗HH(R) with Künneth filtration < pi+1. Applying η∗, we have

η∗(c) ≡ η∗(xi)
p ≡ vp

i+1

1 ypi ≡ vp
i+1

1 yi (mod p).

Let d ∈ π∗HH(R) be the class vp
i+1−pi−1

1 (v1xi+α(
∏i−1

k=0 x
p−1
k )dv1), having Künneth filtration

pi. Then, we can compute that η∗(d) = vp
i+1

1 yi so that η∗(c) ≡ η∗(d) (mod p). Since η∗ is
injective mod p, we have c ≡ d (mod p), so by replacing xi+1 with xi+1 − (c− d)/p, we can
assume that c = d. Then, we have

η∗(xi+1) = p−1η∗(x
p
i − c)

= p−1
(
vp

i+1

1 yi − pvp
i+1−1

1 (yi · · · y0)p−1ζdv1 − vp
i+1

1 yi

)
= vp

i+1

1 yi+1 − vp
i+1−1

1 (yi · · · y0)p−1ζdv1.

The desired ring structure of π∗HH(R) can now be read off from the ring structure on
π∗HH(Rζ). □

Lemma 5.2. There is an isomorphism of bigraded E1-THH(Fp)-algebras for p > 2

THH(jgr ⊗Zp Fp[v0]) ∼= THH(Fp)⊗Fp HH(Fp[v0]/Fp)⊗Fp HH(τ≥0Fp[v1]
hZ/Fp)

Proof. We run the strategy of Lemma 4.5 with appropriate modifications. First, we have
the isomorphism jgr ⊗Zp Fp[v0] ∼= jgr/p ⊗Fp Fp[v0], which by Lemma 2.16 is equivalent to
τ≥0Fp[v1, v0] ⊗Fp FhZ

p . As an E2-ring, we claim this is equivalent to the tensor product of
Fp ⊗ S[v0] with the pullback of the cospan

S[v1]⊗ ShZ

S ShZ

where the vertical map is the augmentation sending v1 to 0.
This isomorphism is a consequence of the isomorphism of Lemma 4.5 and the pullback

square

jgr/p jgrζ /p

Fp FhZ
p

Given this equivalence, we conclude by arguing exactly as in Lemma 4.5. □

Proposition 5.3. Let p > 2. Then

π∗THH(j
gr)/p ∼= π∗THH(Zp)/p⊗ π∗HH(τ≥0Fp[v1]

hZ/Fp)
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Proof. We follow the strategy in Proposition 4.10, running the spectral sequence correspond-
ing to the p-adic filtration

π∗THH(j
gr/p[v0])/p =⇒ π∗THH(j

gr)/p.

The E1-page is understood via Lemma 5.2 to be

Fp[σ
2p, v0]⊗ Λ[dv0]⊗ π∗HH(τ≥0Fp[v1]

hZ/Fp)

where the last tensor factor is described in Proposition 5.1. There is a differential d1σ
2p =

dv0, coming from the map from Zfil
p → Zfil

p ⊗ jfil and Example 4.2.
We need to show that the remaining classes are permanent cycles. The classes v1, α are

permanent cycles because they are in the image of the unit map, and dv1 is a permanent
cycle because it is in the image of the map σ2. The classes xi are permanent cycles for
degree reasons, as everything of positive p-adic filtration is in nonnegative degree, and the
differentials respect the hfp grading. One also sees for degree reasons and the map from
THH(Zp)/p that there are no multiplicative extension problems. □

We now run the spectral sequence THH(jgr)/(p, v1) =⇒ THH(j)/(p, v1) associated with
the filtered spectrum THH(jfil)/(p, ṽ1) where ṽ1 ∈ π∗j/p is the class of filtration 2p− 2. The
following lemma guarantees the multiplicativity of the spectral sequences.

Lemma 5.4. jfil/(p, ṽ1) admits a homotopy commutative Ap−1-multiplication for p > 2, and
in particular is homotopy associative for p > 3.

Proof. By [Ang08, Example 3.3], it follows that S/p is an Ap−1-algebra, and it is easy to see
that there is no obstruction to its multiplication being homotopy commutative for p > 2.
We conclude by observing that jfil/(p, ṽ1) ∼= τ≤2p−3j

fil ⊗ S/p.
Note that by loc. cit., the multiplication is not Ap, the obstruction being α1. □

Theorem 5.5. For p > 3, π∗THH(j)/(p, v1) is the homology of the CDGA

Fp[µ2]⊗ Λ[α1, λ2, a]⊗ Γ[b], d(λ2) = aα1

|b| = 2p2 − 2p, |a| = 2p2 − 2p− 1, |λ2| = 2p2 − 1, |µ2| = 2p2

and for p = 3, the above result is true after taking an associated graded ring.

Proof. The E1-page of the spectral sequence

E1 = π∗THH(j
gr)/(p, v1) =⇒ π∗THH(j)/(p, v1)

is isomorphic to
Fp[µ1]⊗ Λ[σ2α1, dv1, α1]⊗ Γ[dα1].

by Proposition 5.3. By Lemma 3.6, there are d2p−2-differentials

σ2α1 ˙7→ dα1

σ2v1 ˙7→ dv1.

The class α1 is a permanent cycle since it must represent the image of α1 ∈ π∗j/(p, v1) along
the unit map, and the divided power classes (dα1)

(k) are permanent cycles because they are
in weight 0, and there are no classes of weight > 1. Therefore, by the Leibniz rule, the
E2p−1-page is isomorphic to

Fp[µ2]⊗ Λ[λ2, a, α1]⊗ Γ[γp(dα1)]
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where µ2, λ2 and a represent (µ1)
p, (σ2v1)

p−1dv1 and (σ2α1)γp−1(dα1), respectively.
For degree reasons, the only possible further nonzero differential is

dp−1(λ2)
.
= α1

To prove that this differential actually happens, it is enough to show that

π2p2−2THH(j)/(p, v1) = 0.

By Corollary 3.11, there is a (4p2 − 4p− 2)-connective map j ⊕ Σ2 fib(Sp → j) → THH(j),
so it suffices to show that

π2p2−2(j/(p, v1)) = π2p2−2(Σ
2 fib(1j)/p, v1) = 0.

The former group is clearly 0. The latter is 0 from the computation of the Adams–Novikov
E2-page for S/(p, v1) in low degrees (see the discussion after [Rav86, Theorem 4.4.9] and
Theorem 4.4.8 of op. cit.).

The last nontrivial differential of the spectral sequence is displayed for p = 3 in Figure 4.
We now check for p ≥ 5 that there are no multiplicative extension problems in our de-

scription of the commutative ring structure on π∗THH(j)/(p, v1). If we choose γpib to be
detected by (γpi+1(dα1)), the relations γpi(b)

p = 0 follow since there is nothing of higher
filtration in that degree. Let µ2 be any lift of (σ2v1)

p. The homology of the CDGA
ΛFp [α1, λ2, a], d(λ2) = aα1 is 6-dimensional over Fp, given by

{1, a, α1, λ2a, λ2α1, λ2aα1}
Let α1, x, y, z denote lifts of the classes α1, a, λ2a, λ2α1 respectively (so that α1y is a lift of
λ2aα1). The relation α1y = −xz holds because it is true on the associated graded and there
is nothing of higher filtration in that degree. The classes α1z, yz, xα1 are 0 because there
are no nonzero classes in degree (p+ 1)(2p− 2), 2p2 − 1 + 2(2p− 3), 2(2p2 − 1) + (2p− 3) +
p(2p − 2) + 1 respectively. The only remaining relation, xy = 0, occurs because it happens
on the associated graded, and there is nothing of higher filtration. □

Remark 5.6. For p = 3, it is more complicated to figure out the multiplicative extensions,
since the homotopy ring is not necessarily associative. Many of the multiplicative extensions
can be ruled out using the Postnikov filtration on j/(3, v1), but not all of them: for example
this doesn’t rule out the possible non-associative extension x(xµ2

2) = zb2 in degree 62. ◁

6. THH of finite extensions

In this section, we shall make the analogous computations for the THH of jζ,k := ℓhp
kZ

p ,
juζ,k, and and also of jk := τ≥0jζ,k for p > 2, which are introduced as filtered rings in
Definition 2.12. jζ,k is a Z/pk Galois extension of jζ in Spp. The computations are very
similar to the cases of jζ and j, so we shall only point out the differences from the proofs of
those cases.

Theorem 6.1. There is an isomorphism of rings for p > 2

π∗THH(jζ,k)/(p, v1) ∼= π∗(THH(ℓp)/(p, v1))⊗ Λ[ζ]⊗ C0(Zp;Fp)

and for p = 2

π∗THH(jζ,k)/(2, η, v1) ∼= π∗(THH(ko2)/(2, η, v1))⊗ Λ[ζ]⊗ C0(Z2;Fp)
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Figure 4. Above is the E8-page of the spectral sequence associated with
the filtered ring THH(jfil)/(3, v1). The spectral sequence collapses at the E9-
page.

The maps THH(jζ,k)/(p, v1)→ THH(jζ,k+1)/(p, v1) on π∗ are the identity on the THH(ℓp)/(p, v1)
component, send ζ to 0, and are the restriction map C0(Zp;Fp)→ C0(pZp;Fp) ∼= C0(Zp;Fp).

Proof. The proof is exactly the same as in Theorem 4.11 and Theorem 4.18. The only
difference is that for k ≥ 1, Remark 4.12 doesn’t apply: the class λ1 in the spectral sequence
THH(jgrζ )/(p, v1) =⇒ THH(jζ)/(p, v1) is a permanent cycle, which can be seen from the
Leibniz rule. As noted in the remark, this doesn’t affect the final answer.

The claim about the maps π∗THH(jζ,k)/(p, v1)→ THH(jζ,k+1)/(p, v1) can be deduced at
the level of associated graded of the filtrations. For example, by choosing elements λ1, λ2, σ

2v2
in THH(jζ)/(p, v1), one sees that their images in THH(jζ,k)/(p, v1) are valid generators of the
corresponding classes. To see what the transition maps do on Λ[ζ]⊗C0(Zp;Fp), we can use
Lemma 4.6 since these classes are in the image of THH(ShZ

p ). It then follows that map sends

C0(Zp;Fp) → C0(pZp;Fp) given by restriction of functions, and ζ goes to pζ = 0 because
that is what happens on the level of mod p cohomology of the p-fold cover map S1 → S1. □

We next explain the computation for juζ,k, which is nearly identical to that of jζ,k

Theorem 6.2. For each k ≥ 0, there is an isomorphism of rings

π∗THH(juζ,k)/(2, v1) ∼= π∗(THH(ℓ2)/(2, v1))⊗ Λ[ζ]⊗ C0(Z2;Fp)

The maps THH(juζ,k)/(p, v1)→ THH(juζ,k+1)/(p, v1) on π∗ are the identity on the THH(ℓ2)/(2, v1)
component, send ζ to 0, and are the restriction map C0(Z2;Fp)→ C0(2Z2;Fp) ∼= C0(Z2;Fp)
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Proof. The proof is nearly exactly as the proof of Theorem 6.1 for p > 2. The only difference
is that in checking multiplicative extension problems in spectral sequences, one must check
that odd degree classes square to zero (since we are at the prime 2). This always follows
because the square lands in a zero group; see Figure 2 for a chart. □

Our argument to compute THH(jk) for k ≥ 1 uses Dyer–Lashof operations to produce
permanent cycles, so we first give jk/(p, v1) an E∞-structure.

Proposition 6.3. For k ≥ 1, jk/(p, v1) admits the structure of an E∞-algebra under jk that
is a trivial square zero extension of Fp by Σ2p−2Fp.

Proof. To construct jk/(p, v1) as an E∞-ring, we first begin with τ≤2p−3jk, whose homotopy
groups are Zp in degree 0 and Z/pk+1 in degree 2p−3, where α1 is a p-torsion class in degree
2p− 3.
By [Lur17, Corollary 7.4.1.28] this is a square zero extension of Zp by Σ2p−3Z/pk+1, i.e it

fits into a pullback square

τ≤2p−3jk Zp

Zp Zp ⊕ Σ2p−2Z/pk+1

By using the map Z/pk+1 → Z/p that kills every multiple of p (including α1 since k ≥ 1),
we can produce an E∞-algebra R under τ≤2p−3jk defined as the pullback

R Zp

Zp Zp ⊕ Σ2p−2Z/p

We claim that R is a trivial square zero extension of Zp. To see this, square zero extensions
of Zp by Σ2p−1Fp are classified by maps of Zp-modules LZp/Sp → Σ2p−1Fp, where LZp/Sp
denotes the E∞ relative cotangent complex. By [Lur17, Theorem 7.4.3.1], since Sp → Zp is
2p− 3-connective, there is a 4p− 4-connective map

Zp ⊗Sp cof(Sp → Zp)→ LSp/Zp

showing that π2p−2LZp/Sp is Fp. It follows that up to isomorphism, there is a unique
nontrivial square zero extension of Zp by Σ2p−3Fp. But τ≤2p−3Sp must be this nontrivial
extension, since α1 ̸= 0 there. Since α1 = 0 in R, it follows that R is the trivial square
zero extension Zp ⊕ Σ2p−3Fp. Thus τ≤2p−3(R ⊗Zp Fp) is an E∞-Fp-algebra under it that is
a trivial square zero extension of Fp by Σ2p−2Fp. But it is easy to see that the underlying
unital jk-module of this is jk/(p, v1). □

Theorem 6.4. For k ≥ 1, p > 2, there is an isomorphism

π∗THH(jk)/(p, v1) ∼= π∗THH(ℓp)/(p.v1)⊗ Λ[α1/pk ]⊗ Γ[dα1/pk ]

where |α1/pk | = 2p− 2 and |σα1/pk | = 2p− 1.
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Proof. The proof of Proposition 5.3 carries over exactly for jk to give an isomorphism

π∗THH(j
gr
k )/(p, v1) ∼= π∗THH(Zp)/p⊗ π∗HH(τ≥0Fp[v1]

hpkZ/Fp)/v1

The second tensor factor on the right hand side by Proposition 5.1 is Λ[α1/pk , dv1]⊗Γ[dα1/pk ]
8.

In the spectral sequence for THH(jgrk )/(p, v1) =⇒ THH(jk)/(p, v1), there is a differential
d2p−2σ

2v1 = dv1 arising as in Theorem 5.5, but the target of the differential from σ2α1,
which is σα1, is zero since α1 = 0 in jk/(p, v1). In fact, the class σ2α1 is a permanent cycle
since it can be constructed using a nullhomotopy of α1. Let λ1 be a class in THH(jk)/(p, v1)
detecting this.

By Proposition 6.3, jk/(p, v1) is an E∞-algebra under jk that is an E∞-Fp-algebra, so
THH(jk)/(p, v1) ∼= THH(jk)⊗jk jk/(p, v1) is an E∞-Fp-algebra with Dyer–Lashof operations.
We define λ2 to be the E2-Dyer–Lashof operation on λ1. In THH(ℓp)/(p, v1), this operation on
the class λ1 gives the class λ2 in π2p2−1THH(ℓp)/(p, v1) [AR02, Section 2], which is detected

by σ2vp−1
1 dv1 in the spectral sequence for THH(ℓfilp )/(p, v1) by Example 4.3. Since maps of

filtered objects can only increase filtrations in which elements are detected, it follows that
λ2 must also be detected by σ2vp−1

1 dv1 in THH(jk)/(p, v1), so that class is a permanent
cycle. The class α1/pk is a permanent cycle since it is in the image of the unit map, and
the classes in Γ[dα1/pk ] must be permanent cycles for degree reasons, so there are no further
differentials. There are no even degree classes of positive weight, so classes representing the
divided powers of dα1/pk have zero pth-power for degree reasons. For degree reasons there
can be no further multiplicative extensions. □

7. TC in the stable range

TC is an important invariant of rings, partially because of the Dundas–Goodwillie-McCarthy
theorem, which says that for nilpotent extensions of rings, the relative K-theory is the rela-
tive TC.

Theorem 7.1 (Dundas–Goodwillie–McCarthy). Let f : R → S an i-connective map of
connective E1-rings, for i ≥ 1. Then there is a pullback square

K(R) K(S)

TC(R) TC(R)

A precursor to this theorem is a result of Waldhausen9, which computes the first nonvan-
ishing homotopy group of fibTC(f) ∼= fibK(f) in terms of Hochschild homology.

Proposition 7.2 (Waldhausen [Wal78, Proposition 1.2]). Let f : R→ S be an i-connective
map of connective E1-algebras for i ≥ 1. Then fib(K(f)) ∼= fib(TC(f)) is (i+1)-connective,
with πi+1 fib(K(f)) ∼= HH0(π0S; πi fib f).

8As an algebra this doesn’t depend on k, but we have given names depending on k to indicate that the
exterior class α1/pk is sent to 0 in THH(jgrk+1)/(p, v1).

9Although Waldhausen proves this result for E1-Z-algebras, the proof works equally well for any E1-
algebra: see for example [Lev22, Proposition 3.3].
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Our goal in this section is to refine Proposition 7.2 to compute the spectrum fib(K(f))
in the stable range in terms of THH. We use this to understand the maps K(Sp)→ K(Zp)
and K(jζ)→ K(ZhZ

p ) in the stable range.
Given a map of E1-rings, R→ S, the relative E1-cotangent complex LS/R is the S-bimodule

given by the fiber of the multiplication map S ⊗R S → S10. Our result is as follows:

Theorem 7.3. Given a map of ring spectra f : R→ S, there is a natural map fibTC(f)→
THH(S;LS/R). If f is an n-connective map of −1-connective rings for n ≥ 1, this natural
map is 2n+ 1-connective.

Remark 7.4. In fact the map of Theorem 7.3 is the linearization map in the sense of
Goodwillie calculus, of the functor f 7→ fib(TC(f)). See [Hes94, DM94] for a variant of this,
where one considers only trivial square-zero extensions of S rather than arbitrary E1-ring
maps. ◁

We first construct the natural transformation using the following lemma.

Lemma 7.5. Let f : R → S be a map of E1-rings. Then there is a natural equivalence
THH(R;S) ∼= THH(S;S ⊗R S) making the diagram below commute.

THH(R;S) THH(S;S)

THH(S;S ⊗R S)

Proof. Consider the map f ∗ : Mod(R) → Mod(S) and its right adjoint f∗ : Mod(S) →
Mod(R). The composite f ∗f∗ corresponds to the S-bimodule S ⊗R S, and the composite
f∗f

∗ corresponds to the R-bimodule S. Since THH of a bimodule is the trace of the bimodule
as an endomorphism in presentable stable categories, cyclic invariance of the trace gives the
desired equivalence THH(R;S) ∼= THH(S;S ⊗R S). There is a diagram

Mod(R) Mod(S)

Mod(S) Mod(S)

1S 1Sf∗ f∗

f∗

1S

where we use the natural transformation ϵ : f ∗f∗ → 1S and 1f∗ to fill in the 2-morphisms in
the diagram. The horizontal maps in the diagram induce at the level of bimodules the maps
f ∗f∗ =⇒ 1S and f∗f

∗ =⇒ 1S which induce the maps THH(R;S),THH(S;S ⊗R S) →
THH(S;S) in the triangle of the lemma statement. The C2-action on THH(S) coming from
writing 1S as 1S ◦ 1S corresponds to restricting the S1-action on THH(S) to C2 ⊂ S1. It
follows that the claimed diagram naturally commutes because S1 is connected, so the rotation
by π action on THH(S) is homotopic to the identity. □

Construction 7.6. We construct the natural transformation fib(TC(f)) → THH(S;LS/R)
for a map f : R → S as follows: composing the map TC(R) → THH(R) with THH(R) →
THH(R;S), we obtain a commutative square

10See for example [Lur17, Remark 7.4.1.12].
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TC(R) TC(S)

THH(R;S) THH(S;S)

Taking horizontal fibers and using the isomorphism of Lemma 7.5, we obtain the desired
natural transformation. ◁

We will first prove Theorem 7.3 in the case R → S is a square-zero extension with ideal
M . To do this, we consider the square-zero extension as a filtered E1-ring with underlying
R and associated graded S ⊕M [1]. Then THH(R) is a filtered S1-equivariant spectrum,
and the Frobenius maps Φp : THH(R) → THH(R)tCp send filtration i to filtration ip, so
in particular can be thought of as filtration preserving maps, since the filtration is only in
nonnegative degrees.

The key input we use is the computation of THH of a trivial square-zero extension as an
S1-equivariant spectrum:

Proposition 7.7 ([Ras18, Proposition 4.5.1]). For S⊕M the trivial square-zero extension of
an E1-ring R by a bimodule M , there is an S1-equivariant graded equivalance THH(S⊕M) ∼=
THH(S)⊕

⊕∞
m=1 Ind

S1

Z/mZTHH(S; (ΣM)⊗m)

Here IndS1

Z/mZ is the right adjoint of the forgetful functor from S1-equivariant spectra to

Z/mZ-spectra, and the Z/mZ-action on THH(S; (ΣM)⊗m) comes from cyclically permuting
the tensor factors.

We also record a key property of the THH of −1-connective rings that we use:

Lemma 7.8. Let R→ S be an n-connective map of −1-connective rings, and M a connective
S-bimodule. Then THH(S;M) is connective, and the map THH(R;M) → THH(S;M) is
n+ 1-connective.

Proof. Both of these follow from examining the associated graded coming from the cyclic bar
complex computing THH(R;M) and THH(S;M). For the latter is given by ΣmS⊗m ⊗M
which indeed is connective, and ΣmS⊗m⊗M → ΣmR⊗m⊗M is n+m-connective for m ≥ 1
and an isomorphism for m = 0. □

Proposition 7.9. Let f : R→ S be an n-connective square-zero extension of −1-connective
E1-rings for n ≥ 0. Then the map fibTC(f)→ THH(S;LS/R) is 2n+ 1-connective.

Proof. We consider the map fibTC(f) → fibTHH(f) → THH(S;LS/R) as a map of fil-
tered spectra, viewing S as a filtered E1-ring with associated graded R ⊕M . By Propo-

sition 7.7, gr(fibTHH(R)) ∼=
⊕∞

m=1 Ind
S1

Z/mZTHH(S; (ΣM)⊗m) as an S1-spectrum. Since
The Frobenius map is zero on associated graded since it takes filtration i to ip, so we learn

that grm(fibTC(f))
∼= (Σ IndS1

Z/mZTHH(S; (ΣM)⊗m))hS1
11. In particular, since S is −1-

connective and n ≥ 0, the connectivity of these terms goes to ∞ as m→∞ via Lemma 7.8

so the filtration on TC is complete. Since IndS1

Z/mZ decreases connectivity by 1, we learn that
grm(fibTC(f)) is (n+1)m− 1-connective. In particular, the map fibTC(f)→ gr1 fibTC(f)
is 2n+ 1-connective.

To finish, it suffices to show the following two claims:

11See also [Ras18, Theorem 4.10.1].
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(1) THH(S;LS/R)→ gr1THH(S;LS/R) is 2n+ 2-connective.
(2) gr1 fibTC(f)→ gr1 fibTHH(S;LS/R) is an isomorphism.

The claim (1) follows from the fact that grLS/R
∼= LS/S⊕M

∼=
⊕∞

m=1(ΣM)⊗Sm, and (ΣM)⊗Sm

is 2n+ 2-connective for m ≥ 2.
For claim (2), we see that

gr1 fibTC(f)
∼= Σ(IndS1

Z/1ZTHH(S; ΣM))hS1
∼= (IndS1

Z/1ZTHH(S; ΣM))hS
1 ∼= THH(S; ΣM)

ΣM is exactly gr1 LS/R, and THH(S; gr1 LS/R) ∼= gr1THH(S;LS/R) since S is entirely in
grading 0, so we are done. □

We prove Theorem 7.3 by reducing to the case of a square-zero extension. First, we
produce a natural way to factor a map of E1-rings through a square-zero extension. We
recall that given a S ′-S-bimodule M with a unit map S→M , the pullback S ′ ×M S admits
an E1-algebra structure where the maps S ′ → M and S → M are the S ′-module and
S-module maps adjoint to the unit map. This ring structure can be constructed as the
endomorphism ring of the triple (S ′, S, S → S ′⊗′

S M) viewed as an object of the oplax limit
Mod(S)×⃗M Mod(S ′) (see [LT23, Construction 2.5] and [BL23, Construction 4.1]). When M
comes from a cospan of ring maps S ′ → R← S, this agrees with the pullback of the span of
rings by [LT19, Lemma 1.7].

Construction 7.10. Given a map f : R→ S, we consider S⊗R S as an S-S-bimodule with
unit 1. We define Rf,2 to be the E1-ring given by S ×S⊗RS S. ◁

Lemma 7.11. We have natural maps R
h−→ Rf,2

g−→ S. If R→ S is an n-connective map of
connective rings for n ≥ 0, then h is 2n-connective, g is n-connective, and g is a square-zero
extension.

Proof. The fiber of h : R→ Rf,2 is the total fiber of the square

R S

S S ⊗R S

which is fib f ⊗R fib f , which is 2n-connective. Since f is n-connective, it follows that g is
too. It remains to show that g is a square-zero extension, which will follow if we identify
S ⊗R S as an S-bimodule with unit with the associated structure on S ⊕ LS/R coming from
the cospan of rings S → S ⊕LS/R ← S corresponding to the universal derivation. But since
R maps into the pullback of this cospan (since it is the universal square-zero extension of S
under R) we have a square of ring maps

R S

S S ⊕ LS/R

which defines an isomorphism of unital S-bimodules S ⊗R S → S ⊕ LS/R. □
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Proof of Theorem 7.3. We consider the maps h, g, f as in Lemma 7.11, giving us the diagram

(8)

fibTC(h) fibTC(f) fibTC(g)

THH(Rf,2;LRf,2/R) THH(S;LR/S) THH(S;LR2,f/S)

To produce a nullhomotopy of the composite of the lower horizontal maps, we identify them
with the vertical fibers of the following cofiber sequence using Lemma 7.5:

THH(R;Rf,2) THH(R;S) THH(Rf,2;S)

THH(Rf,2) THH(S) THH(S)

The map THH(Rf,2) → THH(S) lifts to THH(Rf,2;S), and this lifting provides the de-
sired nullhomotopy. Moreover, we see that the fiber of the map THH(Rf,2;LRf,2/R) →
THH(S; fibLR/S → LR2,f/S) is identified with the total fiber of the square

THH(R;Rf,2) THH(R;S)

THH(Rf,2) THH(Rf,2;S)

which is the fiber of the map THH(R; fib g) → THH(Rf,2; fib g). By [Lev22, Lemma 3.2],
since h is 2n-connective and fib g is n-connective, we see that this map is 3n+ 1-connective.
We next observe that in the right square of diagram (4), we know all maps except possibly

the vertical map which we want to show is 2n + 1-connective. Indeed, fibTC(h) is 2n + 1-
connective by Lemma 7.11 and Proposition 7.2, the right vertical map is 2n+1-connective by
Proposition 7.9, and the lower horizontal map is 2n+1-connective since the map S ⊗R S →
S ⊗Rf,2

S is 2n + 1-connective by [Lev22, Lemma 3.2]. It follows that the middle vertical
map in diagram (4) is 2n-connective. But since f is an arbitrary n-connective map and h
is 2n-connective, we learn that the left vertical map is 4n-connective. It follows that the
middle vertical map is 2n+ 1-connective since it is an extension of a 2n+ 1-connective map
and a 4n-connective map since n ≥ 1. □

Remark 7.12. There is a version of Theorem 7.3 for a 0-connective map of connective rings,
but one must ask that π0R→ π0S has a nilpotent kernel. ◁

7.1. Applications to the sphere and the K(1)-local sphere. We now apply Theo-
rem 7.3 to the map Sp → Zp for p ≥ 2 to understand the map TC(Sp) → TC(Zp) in the
stable range. The proposition below contains a key ingredient of [BM93, Section 9] used to
understand the homotopy type of TC(Zp).

Proposition 7.13. For p > 2, the map π∗TC(Sp) → π∗TC(Zp) in degrees ≤ 4p − 6 is an
isomorphism in all degrees except 2p− 1, where it is the map pZp → Zp.

Proof. By Theorem 1.4 we have a 4p− 5-connective map

fib(TC(Sp)→ TC(Zp))→ fib(THH(Sp;Zp)→ THH(Zp))
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The target of the map is fib(Zp → THH(Zp)), which after applying τ≤4p−5 is Σ2p−2Fp.
Thus it follows that there is a cofiber sequence

Σ2p−2Fp → τ≤4p−4TC(Sp)→ τ≤4p−4TC(Zp)

Recall that TC(Sp) ∼= Sp ⊕ Σ(CP∞
−1)p [BHM93]12, and that π∗TC(Zp)/(p, v1) is Fp in odd

degrees between −1 and 2p−1, and in degrees 0, 2p−2, and 0 in all other degrees [BM93]13.
From this description, it follows that both TC(Sp)/(p, v1) and TC(Zp)/(p, v1) are Fp in
degrees 2p − 2, 2p − 1. Thus in the cofiber sequence above mod (p, v1), the class in degree
2p − 2 must go to 0 and the class in degree 2p − 1 must go to the generator. It follows
that integerally, the class must go to 0, and that it maps to the Zp in TC2p−1(Sp) via the
p-Bockstein, giving the conclusion. □

Corollary 7.14. For p > 2, Proposition 7.13 also holds for j. In particular, the obstruction
to lifting λ1 ∈ TC(Zp) to TC(j) is up to a unit in Fp the class σα1 in THH(Zp;LZp/j).

Proof. Since the map Sp → j is 2p2−2p−2-connective (see Corollary 3.11), the map Sp → Zp

agrees with the map jp → Zp in the stable range, so the analysis in Proposition 7.13 applies
for j. In particular, the obstruction to lifting the class λ1 ∈ TC(Zp) to j is nonzero in
THH(Zp;LZp/j), so must be σα1 up to a unit in Fp, since π2p−2THH(Zp;LZp/j)

∼= Fp is
generated by this class. □

We now apply Theorem 7.3 to the map jζ → Zζ , and then make deductions about
K(LK(1)S) in the stable range.

Lemma 7.15. There is an isomorphism Σ2p−2Fp
∼= LZζ/jζ , where the generator is σ(α1).

Proof. In fact, we claim that LZgr
ζ /jgrζ

∼= Σ2p−2,0Fp on the class σ(α1) which implies the result,

since this is the associated graded of LZζ/jζ . To see this, we note that LZgr
ζ /jgrζ

/p ∼= LZgr
ζ /p/jgrζ /p.

Since jgrζ /p→ Zζ/p is the augmentation of a polynomial algebra over the target on the class

v1, LZgr
ζ /p/jgrζ /p

∼= Σ2p−1Zgr
ζ /p, where the generating class is σ(v1). In jgrζ , there is a p-Bockstein

differential d1v1 = v1ζ = α1, so applying the map σ, we get that σ(v1) has a p-Bockstein
d1-differential hitting ζσ(v1) = σ(α1). Thus we can conclude. □

The following proposition gives a way in which TC(jζ) does not behave as if the action on
ℓp is trivial.

Proposition 7.16. For p > 2, the image of the class λ1 ∈ TC(Zp)/(p, v1) in TC(Zζ)/(p, v1)
does not lift to TC(jζ)/(p, v1). The same statement is true for K-theory replacing TC.

Proof. The result for K-theory is equivalent to the one for TC by [Lev22]. We have a
commutative square of maps

fib(TC(j)→ TC(Zp) fib(TC(jζ)→ TC(ZhZ
p ))

THH(Zp;LZp/j) THH(Zζ ;LZζ/jζ)

12see also [KN18, Theorem 8.4]
13This argument is not circular, because TC(Zp)/(p, v1) is computed without knowing this proposition.
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where the vertical maps are 4p− 5-connective by Theorem 7.3.
The lower horizontal map sends σ(α1) to σ(α1), the generator of π2p−2THH(Zζ ;LZζ/jζ).

But σ(α1) since the class is the obstruction to lifting λ1 from TC(Zp) to TC(Sp), we learn
that the obstruction to lifting λ1 from TC(ZhZ

p ) to TC(jζ) is nontrivial. We also see that
this obstruction is nonzero modulo (p, v1). □

Theorem 7.17. For p > 2, there are isomorphisms

τ≤4p−6 fib(TC(jζ)→ TC(Zζ)) ∼= Σ2p−2C0(Zp;Fp)

and

K∗LK(1)S ∼= K∗−1Fp ⊕K∗Sp ⊕ π∗Σ
2p−2C0(Zp;Fp)/Fp, ∗ ≤ 4p− 6

Proof. The map f : jζ → Zζ is 2p−3-connective, so we learn that fibTC(f)→ THH(Zζ ;LZζ/jζ)
is 4p − 5-connective using Theorem 7.3. For the first statement, it suffices to show that
τ≤4p−4THH(Zζ ;LZζ/jζ)

∼= Σ2p−2C0(Zp;Fp). But using Corollary 4.8 and Lemma 7.15, we
learn

THH(Zζ ;LZζ/jζ)
∼= THH(Zζ ; Σ

2p−2Zζ/p⊗ShZp Sp)

∼= Σ2p−2THH(Zζ)/p⊗ShZp Sp
∼= Σ2p−2THH(Zp)/p⊗Fp C

0(Zp;Fp)

Since π∗THH(Zp)/p is by Example 4.2 Fp[σ
2α1, σ

2v1], we indeed learn the claim.
To get the statement about K-theory, by [Lev22], K∗(LK(1)S) ∼= K∗(jζ) ⊕K∗−1(Fp), and

we have a cofiber sequence

fib(TC(jζ)→ TC(Zζ))→ K(jζ)→ K(Zp)

K2p−1(Zp)p ∼= Zp, generated by λ1, and the map K2p−1(Zp)p. As noted in Proposition 7.16,
the boundary map K(Zp)→ fib(TC(jζ)→ TC(Zζ)) is nontrivial in the stable range, and λ1

doesn’t lift to K(jζ). In the stable range, THH(Zζ ;LZζ/jζ) is Σ2p−2C0(Zp;Fp). The kernel
of the map K(Zp) → fib(TC(jζ) → TC(Zζ) in the stable range then agrees with K(Sp) by
Proposition 7.13, so from the long exact sequence on homotopy groups, we see that there is
a short exact sequence in the stable range

0→ π∗Σ
2p−2C0(Zp;Fp)/Fp → K∗(jζ)→ K∗(Sp)→ 0

But the map K(Sp)→ K(jζ) clearly splits this sequence, giving the result. □

8. The Segal conjecture

The Segal conjecture for a cyclotomic spectrum X is the statement that the cyclotomic
Frobenius map X → X tCp is an isomorphism in large degrees. Knowing the Segal conjecture
for THH(R)⊗V where V is a finite spectrum is a key step in proving the Lichtenbaum–Quillen
conjecture for X, i.e the fact that TR(X) (and hence TC(X)) is bounded (see [HW22]).

Asking that the Segal conjecture hold for THH(R) ⊗ V is a regularity and finiteness
condition on R: for example it holds when V is p-torsion and R is a p-torsion free excellent
regular noetherian ring with the Frobenius on R/p a finite map [Mat21, Corollary 1.5].
In this section, we show that the Segal conjecture does hold for jζ for p > 2 as well as
the extensions jζ,k, but doesn’t hold for the connective covers j and jk. In particular the
Lichtenbaum–Quillen conjecture doesn’t hold for jk, and our result is used in [BHLS] to
show that it does hold for jζ,k for p > 2.
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A related regularity phenomenon was noted in [Lev22], namely that jζ is regular14 at
the height 2-locus: i.e the t-structure on Mod(jζ) restricts to a bounded t-structure on
Mod(jζ)

ω ⊗ Sp≥2. This t-structure is the key point in relating jζ ’s algebraic K-theory to
that of the K(1)-local sphere. On the other hand, j is not regular at the height 2-locus
which is why its integral K-theory is not closely related to that of the K(1)-local sphere.
Our first goal is to show that for odd p, jζ,k satisfies the Segal conjecture. A key input

is the following proposition, the proof of which is the same as in the reference, though the
statement is somewhat more general.

Proposition 8.1. [HW22, Proposition 4.2.2] Let R be an E1-ring, and consider the Zm-
graded polynomial algebra R[a1, . . . , an] := R⊗

⊗n
1 S[ai], where each ai has positive weight15

and is even topological degree and S[ai] is the free E1-algebra. The map

φ : LpTHH(R[a1, . . . , an])→ THH(R[a1, . . . , an])
tCp

at the level of π∗ is equivalent to the map

π∗THH(R)[ai]⊗ Λ[dai]→ π∗THH(R)tCp [ai]⊗ Λ[dai]

where the ai, dai are sent to themselves. If R is an E2-algebra and S[ai] are given the E2-
algebra structures coming from [Lur15], this is a homomorphism of rings.

The following lemma is used to reduce showing the Segal conjecture is true to the associated
graded of a filtration on the ring.

Lemma 8.2. Let C be a presentably symmetric monoidal stable category with a complete
t-structure compatible with filtered colimits, and suppose that f : Rfil → R′fil is a map of
homotopy associative filtered rings in C, where the filtration on the source and target is
complete.

If there is an element x ∈ π∗R := π∗map(1, R), ∗ > 0 such that the associated graded map
Rgr → R′ gr is n-coconnective in the constant t-structure and sends a class detecting x to a
unit, then the map R→ R′ is also n-coconnective, and is equivalent to the map

R→ R[x−1]

Proof. First, since the filtrations are complete and the map f is n-coconnective on associated
graded, we learn that the fiber is n-coconnective on associated graded, and complete, so the
underlying object is n-coconnective.

Let x̃ be an element in π∗∗R
fil whose underlying element is x that is sent to a unit in R′gr.

Since the filtration on R′ is complete, it follows that x̃ is sent to a unit, which allows us to
build a map Rfil[x̃−1]→ R′fil via the colimit of the diagram

Σ|x|Rfil Σ|x|R′fil

Rfil R′fil

...

...

x x

14See [BL24] for a discussion of regularity in the setting of prestable ∞-categories.
15i.e it is nonnegative weight in each copy of Z in Zm, and positive weight in some copy of Z.
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Note that the horizontal maps become more and more coconnective and the right vertical
maps are all equivalences. Then because the t-structure is complete and compatible with
filtered colimits, we learn that in the colimit the map is an equivalence. We also learn that
the filtration on Rfil[x−1] is complete, allowing us to conclude. □

Before proceeding to prove the Segal conjecture, we recall as in [HW22, Section C.5] that
given a filtered Zm-graded E1-ring Rfil, the cyclotomic Frobenius map refines to a filtered
map

φ : LpTHH(R
fil)→ THH(Rfil)tCp

where Lp is the operation on filtered spectra scaling the filtration and the gradings on R by
p.

Theorem 8.3 (Segal conjecture for jζ,k). For p > 2 and k ≥ 0, the map THH(jζ,k)/(p, v1)→
THH(jζ,k)

tCp/(p, v1) has 2p− 3-coconnective fiber, and is equivalent to the map

THH(jζ,k)/(p, v1)→ THH(jζ,k)[µ
−1]/(p, v1)

where µ ∈ π2p2 THH(jζ,k).

Proof. Using the filtration on jζ,k constructed in Section 2, we get a filtered map

φ : LpTHH(jζ,k)/(p, ṽ1)→ THH(jζ,k)
tCp/(p, φṽ1)

By the proof of Theorem 4.11 and Theorem 6.1, the class µ is detected in the spectral
sequence for THH(jζ,k)/(p, v1) by (σ2v1)

p. Thus by applying Lemma 8.2 for C = Sp and
Rfil → R′fil the maps in question, it suffices to show

(a) The filtration on the source and target are complete.
(b) The associated graded map inverts the class σ2v1 and is 2p− 3-coconnective.

To see (a), the source is complete by Lemma 2.18. The Tate construction (−)tCp sits in a
cofiber sequence up to shifts between the orbits (−)hCp and fixed points (−)hCp , so it suffices
to show each of those is complete. The orbits are complete for connectivity reasons: in any
finite range of degrees, the orbits are computed via a finite colimit. The fixed points are
complete because complete objects are closed under limits.

We turn to proving (b). We further filter jgrζ,k by the p-adic filtration as jgrζ,k ⊗ Zfil
p and

consider the map of filtered graded E∞-rings Lp THH(jζ,k)/(p̃, v1)→ THH(jζ,k)
tCp/(φp̃, φv1).

We claim:

(i) The filtration on the source and target are complete.
(ii) The associated graded map inverts the class σ2p and is 2p− 3-coconnective.

Given these claims, the proof is complete, since σ2v1 is detected in the spectral sequence
by (σ2p)p (see Example 4.2), so claim (b) follows from Lemma 8.2.

(i) follows from an argument identical to the argument for (a), the only difference being
that we use Lemma 2.19 to see that the filtration on THH(jgrζ ⊗Zfil

p )/(p̃, v1) is complete. To see

(ii), by Lemma 2.16 the associated graded algebra is Fp[v0, v1]
hZ, where the action is trivial.

By Lemma 4.5 we have π∗THH(Fp[v0, v1]
hZ)/(v0, v1) ∼= C0(Zp;Fp)⊗Λ[dv0, dv1, ζ]⊗ Fp[σ

2p],
where |dv0| = 1, |ζ| = −1, |dv1| = 2p − 1. It follows that if the Frobenius map mod (v0, v1)
inverts σ2p, it is 2p−3-coconnective, since it is injective on π∗, and an element in the cokernel
of largest degree is (σ2p)−1σv1σv0, which is in degree 2p− 2.
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Thus it remains to see that the Frobenius map mod (v0, v1) on π∗ inverts the class σ2p.
Since THH is a localizing invariant and ShZ is a trivial square-zero extension as an E1-
algebra, by [LT23, Theorem 4.1] we have a pullback square of bigraded THH(Fp)-modules
in cyclotomic spectra

THH(Fp[v0, v1]
hZ) THH(Fp[v0, v1])

THH(Fp[v0, v1]) THH(Fp[v0, v1][x0])

where x0 is a polynomial generator in degree 0. It thus suffices to show that for

THH(Fp[v0, v1][x0]),THH(Fp[v0, v1])

the cyclotomic Frobenius map inverts σ2p. These statements follow from Proposition 8.1
with R = Fp,Fp[x0], using the Segal conjecture for these discrete rings which is well known:
for example [Mat21, Corollary 1.5] implies the Frobenius is an isomorphism in large degrees,
but since it sends σ2p to a unit [NS18, Corollary IV.4.13], it must just invert σ2p. □

Remark 8.4. The bound 2p− 3 in Theorem 8.3 is optimal: the map is injective on π∗, and
a class of largest degree not in the image is µ−1λ1λ2, in degree 2p− 2, ◁

Now we show that the Segal conjecture fails for THH(jk).

Theorem 8.5. For p > 2 and k ≥ 0, the fiber of the Frobenius map THH(jk)/(p, v1) →
THH(jk)

tCp/(p, v1) is not bounded above. Thus jk does not satisfy the Lichtenbaum–Quillen
conjecture, i.e TR(jk)⊗ V is not bounded above for V a finite type 3 spectrum.

Proof. First we note that the failure of the Segal conjecture implies the failure of the
Lichtenbaum–Quillen conjecture by [AN21, Proposition 2.25], so we show that the Segal
conjecture fails.

We first show that µ ∈ THH(jk)/(p, v1) is sent to a unit in THH(jk)
tCp/(p, v1). It follows

from the spectral sequences used to calculate THH(jk)/(p, v1) that the image of µ in THH(Fp)

is (σ2p)p
2
up to a unit, which is sent under the Frobenius map to a class detected up to a

unit by t−p2 in the Tate spectral seqence for THH(Fp)
tCp/(p, v1) by [NS18, Corollary IV.4.13].

This is the lowest filtration of the Tate spectral sequence, so since in that filtration, the map
THH(jk)/(p, v1)→ THH(Fp)/(p, v1) is the map Zp → Fp, we learn that the image of µ must

be detected by a unit multiple of t−p2 in the Tate spectral sequence for THH(jk)
tCp and

hence be a unit.
If the Frobenius map has an element x in the kernel, then xµi is also in the kernel for each

i, so the fiber isn’t bounded above. On the other hand, if the Frobenius map is injective,
then the classes φ(µ)−1φ((σα1/pk)

(pi)) are an infinite family of classes of increasing degree in

THH(jk)
tCp that are not in the image of φ, so in this case too, we learn that the fiber is not

bounded above. □

Remark 8.6. In fact, π∗THH(jk)
tCp/(p, v1) under the Frobenius map is the completion of

π∗THH(jk)[µ
−1]/(p, v1) at the ideal generated by (σα

(pi)

1/pk
) for each i, and the map is in

particular injective on π∗. ◁
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