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Abstract

In Klein (Math. Ann, 319 (2001) 421–456) we de5ned a variant of Farrell–Tate cohomology
for a topological group G and any naive G-spectrum E by taking the homotopy co5ber of a
certain norm map DG ∧hG E → EhG . In this paper, we show how to axiomatize this theory. We
then interpret the norm map as the assembly map for the homotopy 5xed point functor E �→ EhG .
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1. Introduction

The Tate cohomology groups Ĥ
∗
(G;M) were introduced in order to exploit the

similarities between the cohomology and the homology of groups. At 5rst, they were
de5ned for 5nite groups G equipped with a Z[G]-module M . Later, Farrell [6] extended
the de5nition to discrete groups having 5nite virtual cohomological dimension.
Based on a construction appearing in [8], one can associate a generalized Farrell–

Tate spectrum EtG to any topological (or discrete) group G and any naive G-spectrum
E. In this way, we obtain generalized Farrell–Tate groups Ĥ

∗
(G;E) by taking the

homotopy groups of EtG. These groups have many of the formal properties of the
classical theory (the classical case occurs when G is discrete and E is an Eilenberg–
MacLane spectrum).
It is the purpose of this paper to show how to characterize EtG by a short list of

axioms.

1 The author is partially supported by the NSF.
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1.1. The axioms

Let SpG denote the category of naive G-spectra, where G denotes the realization of
a simplicial group. Suppose we are given a functor

E �→ EtG

from G-spectra to spectra which satis5es the following four axioms:

Axiom 1 (Homotopy invariance). The functor E �→ EtG preserves weak equivalences.

A weak equivalence of G-spectra is a morphism which induces an isomorphism on
homotopy groups.

Axiom 2 (Vanishing on ;nite objects). EtG is weakly contractible whenever E is a
5nite G-spectrum.

A G-spectrum is said to be ;nite if it is built up from the zero object by attaching
a 5nite number of free cells.
This axiom requires some explanation: if G is a 5nite, discrete group and M is a

free Z[G]-module, then the Tate groups Ĥ
∗
(G;M) vanish (this uses [2, Chapter VI,

5:3]). In particular, if M is ;nitely generated and free, the Tate groups vanish. We
justify Axiom 2 by thinking of the 5nite G-spectra as spectrum level versions of the
5nitely generated free Z[G]-modules.
The spectrum level analogues of the free modules are the induced spectra,

i.e., the G-spectra of the form W ∧ G+, where W is an unequivariant spectrum.
The reader might justi5ably ask why we haven’t demanded the stronger
requirement:

Axiom 2′ (Vanishing on induced objects). EtG is weakly contractible whenever E is
an induced G-spectrum.

We have two reasons for not requiring Axiom 2′. The 5rst is that Axioms 1–4 are
equivalent to Axioms 1; 2′; 3 and 4 whenever G happens to be a compact Lie group
(this uses [8, Corollary 10:2]). The second reason is that in the case of a general
topological group G, I know of no example of a functor E �→ EtG which satis5es
Axioms 1; 2′; 3 and 4 (it seems likely to me that a modi5cation of Axiom 4 would
be needed if Axiom 2′ is imposed).
Weiss and Williams [12] also construct a variant of Farrell–Tate cohomology for

arbitrary topological groups. Their functor satis5es Axioms 1; 2′ and 3. However, it is
not obvious to me (and is probably not the case) that their functor satis5es Axiom 4
for arbitrary groups G. However, in the case when the input G-spectrum E has 5nite
skeleta, it is not diHcult to see that their construction is equivalent to the one given
in this paper.
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Axiom 3 (Relation to group cohomology). The functor EtG comes equipped with a
natural transformation EhG → EtG, where EhG denotes the homotopy 5xed point spec-
trum of G acting on E.

Axiom 4 (Homology axiom). Let EtG be the homotopy 5ber of EhG → EtG. Then the
functor E �→ EtG is a homology theory.

Being a homology theory means:
• the value at the zero object is (weakly) contractible,
• the functor preserves homotopy cocartesian squares, and
• the functor commutes with 5ltered (homotopy) colimits.
(The 5rst two conditions mean that the functor is excisive.)
Thus the functor E → EtG can be viewed as the “diJerence” between a homology

theory and a cohomology theory. In particular, E �→ EtG is excisive.

Theorem A (Existence). There exists a functor E �→ EtG satisfying Axioms 1–4
above.
(Uniqueness). Given another homotopy functor E �→ EwG satisfying Axioms 1–4;

there exists a chain of weak equivalences EtG �→EwG which transfers the natural map
EhG → EtG onto the natural map EhG → EwG.

Remark 1.1. It will be shown in Section 5 that the homotopy co5ber of the norm map

DG ∧hG E → EhG

(see [8]) satis5es Axioms 1–4. Here DG denotes the dualizing spectrum of G, which
was de5ned in [8] to be the homotopy 5xed spectrum of G acting on the suspension
spectrum of G+.

The uniqueness part of Theorem A says that E �→ EtG is unique in the homotopy
category of functors equipped with a natural transformation from the homotopy 5xed
point functor. In a sense which we would not bother to make precise, the category of
all factorizations EhG → EtG ∼→EwG has contractible realization.

Assembly. Let C be a Quillen model category [9]. In particular, the notion of homotopy
cocartesian square makes sense in C. Let Sp denote the category of spectra. Suppose
that

F :C → Sp

is a functor which preserves weak equivalences.

De�nition 1.2 (cf : Weiss and Williams [11]). A natural transformation

�F :F% → F



228 J.R. Klein / Journal of Pure and Applied Algebra 172 (2002) 225–238

of homotopy functors is said to be an assembly map if it possesses the following
properties:
• F% is a homology theory.
• The map �F is a “universal” approximation (from the left) of F by a homology
theory (in the homotopy category of functors): i.e., given any natural transformation
G → F with G a homology theory, there is a factorization G → F% → F up to
formal inversion of (pointwise) weak equivalence of functors.

Note that any two choices of assembly map are isomorphic in the homotopy category
of functors.
Classically, C was taken to be the category of topological spaces, and F was

the L-theory functor. In fact, Weiss and Williams prove that any homotopy invari-
ant F from spaces to spectra has an assembly map. In this paper, we take C to
be the category of G-spectra, and F will be the homotopy 5xed point functor
E �→ EhG.

Theorem B. The norm map DG ∧hG E → EhG is the assembly map for the homotopy
;xed point functor E �→ EhG.

We can now reformulate part of [8, Theorem D] in this language. Restated,
we obtain a solution to “Borel Conjecture” for the homotopy 5xed point
functor:

Corollary C. Let G be a topological group with �0(G) ;nitely presented. Then the
following are equivalent:
• the classifying space BG is ;nitely dominated;
• the assembly map for the homotopy ;xed point functor is a weak equivalence at

every object E;
• the assembly map for the homotopy ;xed point functor is a weak equivalence when
E= S0 is the sphere spectrum (with trivial G-action).

Outline: Section 2 is primarily language. In Section 3 we prove the existence part
of Theorem A. In Section 4 we introduce a construction which enables us later to
reinterpret the co5ber of the norm map. Section 5 contains the proof of the uniqueness
part of Theorem A. In Section 6 we prove Theorem B. Section 7 discusses a variant
of the norm map which is related to Carlsson’s transfer for in5nite
groups.

2. Conventions

All spaces are assumed to be compactly generated. The term “topological group”
means a group object in the category of compactly generated spaces. We will only
consider those topological groups which arise as the geometric realizations of simplicial
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groups. (This is not a serious restriction, as a topological group can be replaced by the
realization of its singularization, and the constructions of [8] are insensitive to such
manipulations.)
A (naive) G-spectrum E consists of based, left G-spaces En, and based G-maps

�En → En+1, where by convention G acts trivially on the suspension coordinate of the
domain. For technical reasons, we typically assume that the underlying spaces of En are
CW complexes. If necessary, this can always be arranged by applying singularization
then realization degreewise to the spaces in a G-spectrum.
A morphism E → E′ of G-spectra consists of based G-maps En → E′

n which are
compatible with the structure maps. A morphism is a weak equivalence if it induces
an isomorphism on homotopy groups. Weak equivalences are indicated by ∼→, and a
chain of weak equivalences is indicated by �. Schwede [10] has shown that the above
notion of weak equivalence arises from a Quillen model category structure on the
category of G-spectra. We now describe the 5brant and co5brant objects in this model
structure.
The 5brant objects in this instance are the �-spectra (i.e., those G-spectra E such

that the adjoint En → �En+1 is a weak homotopy equivalence of spaces for all n).
If E is a G-spectrum, it has a functorial ;brant approximation E ∼→Ef given by
Efn:= hocolimj �jEn+j.
To describe the co5brant objects, let k be an integer. De5ne Sk−1

G to be the object
which in degree j is given by Sk−1+j ∧ G+ if k − 1 + j¿ 0, and a point otherwise
(here the structure maps are obvious). Let Dk

G denote the object given by taking the
degreewise cone on Sk−1

G . Then Dk
G is the free cell of dimension k. Given a morphism

f : Sk−1
G → Y , we can form the object Y ∪fDk

G, which is the eJect of attaching a k-cell.
The co;brant G-spectra are then the (retracts of) spectra built up from the zero object
by attaching free cells. Every G-spectrum E has a functorial co;brant approximation
Ec ∼→E. (The procedure for constructing the latter is essentially the same as the one
given in [5] for topological spaces; we omit the details.)
The ;nite G-spectra are those objects built up from the zero object by a 5nite number

of free cell attachments.
The homotopy orbit spectrum EhG of G-acting on E is given by EG+ ∧G E, i.e.,

the spectrum which in degree n is EG+ ∧G En= the orbits of G acting En made free.
The homotopy ;xed point spectrum is given by F(EG+; Ef )hG = the spectrum which
in degree n is the function space of based G-maps from EG+ to (Ef )n.
The category of G-spectra has homotopy limits and colimits (cf. [1]). To describe

the nth space of the homotopy colimit of a diagram � �→ E� of G-spectra, one sim-
ply takes the homotopy colimit of the associated diagram of nth spaces � �→ (E�)cn
(where (E�)c is the eJect of making E� co5brant). Similar remarks apply to homotopy
limits.
We shall use handicrafted smash products of equivariant spectra (we only require

associativity up to homotopy). If E is an H -spectrum, and W is a G-spectrum, then
E ∧W is a (G × H)-spectrum.
We refer the reader to [8] for a more detailed discussion of the category of G-spectra.
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3. Proof of Theorem A (existence)

Recall from [8] that we de5ned EtG to be the homotopy co5ber of a certain norm
map

DG ∧hG E → EhG

in which
• DG is the dualizing spectrum of G. Recall that the latter is de5ned to be S0[G]hG

where S0[G] denotes the suspension spectrum of G+, homotopy 5xed points are
taken using the G-action de5ned by translation using the left action of G on G+ and
the action of G on DG is de5ned by translation with respect to the right action of
G on G+.

• The domain of the norm map is the homotopy orbit spectrum of G acting diagonally
on the smash product of DG ∧ E.
• The codomain of the norm map is the homotopy 5xed point spectrum of G acting
on E.
For reasons of space, we will not review the construction of the norm map (in any

case, we shall later reconstruct it in Sections 4 and 5). However, as remarked in [8],
there is a straightforward way to think of the construction, provided one is willing
to accept that the homotopy category of G-spectra has internal function objects. The
norm map may then be de5ned as the composition pairing

hom(S0; S0[G]) ∧S0[G] hom(S0[G]; E)→ hom(S0; E);

where hom is taken in the homotopy category of G-spectra. Here S0 denotes the
sphere spectrum (with trivial G-action). In the homotopy category, the function object
hom(S0; S0[G]) is isomorphic to DG, hom(S0[G]; E) is isomorphic to E and hom(S0; E)
is isomorphic to EhG.
We now establish the existence part of A. Axiom 1 is a consequence of the fact that

taking homotopy co5bers is homotopy invariant. Axiom 2 follows from [8, Theorem D]
(since we showed there that the norm map is a weak equivalence for 5nitely dominated
G-spectra). Axiom 3 results from the fact that there is an evident map from EhG into
the homotopy co5ber of the norm map. Axiom 4 is a consequence of the fact that the
homotopy 5ber of the map EhG → EtG is identi5ed with DG ∧hG E and the functor
E �→ DG ∧hG E is clearly a homology theory.
This establishes the existence part of Theorem A. It remains for us to establish the

uniqueness part.

4. A construction

We discuss here to give an alternate description of the co5ber of the norm map.
This will be used to establish the uniqueness part of Theorem A.
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4.1. Motivation

Suppose it were possible to write any G-spectrum E up to weak equivalence as a
homotopy colimit

E � hocolim
�

E�;

in which E� are 5nite G-spectra. Assuming this, we de5ne E(�) to be the homotopy
co5ber of the map E� → E, then we get a spectrum

Et′G =hocolim
�

(E(�))hG:

If one could make the assignment E → Et′G functorial and homotopy invariant, then
an argument given below shows that Et′G and EtG are naturally weak equivalent.
As a 5rst guess at what this system of 5nite G-spectra might be, take the indexing

category of the homotopy colimit to have objects � :E� → E where E� is any 5nite
G-spectrum and � is any map of G-spectra. A morphism is then a map f :E� → E�

such that � ◦ f= �. There is then an evident map from the homotopy colimit of the
diagram de5ned by � �→ E� into E.
However, this construction presents several technical diHculties. For one thing if E

fails to be an �-spectrum, then there might not be enough maps into it. Secondly, the
indexing category is not 5ltered, so it is diHcult in general to identify the homotopy
type of the homotopy colimit. To avoid these diHculties, we perform a simplicial
version of the forgoing, which has better properties. 1 Thereafter, we use singularization
and realization to give us a well-behaved construction for topological spectra.

4.2. The simplicial version

Let G. be a simplicial group. A (simplicial) G.-spectrum is a collection of based
simplicial sets {En}n¿0 with (based, left) G.-action, together with equivariant structure
maps �En → En+1. Note that the realization |E| of E taken degreewise has the structure
of a topological G-spectrum, where G= |G.|. Similarly, the singularization SingW of
a topological G-spectrum W is a simplicial G.- spectrum.
A map E → E′ of G.-spectra consists of equivariant maps En → E′

n which are
compatible with the structure maps. A map E → E′ is a weak equivalence if |E| → |E′|
is a weak equivalence. Schwede [10] has shown that this notion of weak equivalence
arises from a Quillen model structure on the category of G.-spectra.
We will mostly need to know what the 5brant and co5brant objects are in this

model structure. The ;brant objects are those G.-spectra E which are degree-wise Kan
simplicial sets (after forgetting actions) and moreover, the adjoints En → �En+1 to the
structure maps are weak homotopy equivalences. A co;brant object is the retract of
an object which is built up from the zero object by attaching free cells (equivalently, a
co5brant object E is one in which En is free away from the basepoint, and moreover,

1 I would like to thank S. Schwede for explaining to me why the simplicial version has better properties.
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the structure map �En → En+1 is a free map, i.e., En+1 is obtained from En by attaching
free G.-cells). An object E is ;nite if it is built up from the zero object by attaching
a 5nite number of free cells.
Given a 5brant and co5brant G.-spectrum E, we can consider the homotopy colimit

Eb:= hocolim
�∈CE

E�;

where the indexing category CE is de5ned so that
• objects are maps � :E� → W such that E� is 5nite G.-spectrum, and
• morphisms are maps f :E� → E� such that � ◦ f= �.

Lemma 4.1. The category CE is ;ltered.

Proof. If � :E� → E and � :E� → E are objects, then the coproduct �+� :E�∨E� → E
is an object which is the base of a cone containing � and �.
Let f; g :E� → E� be a pair of morphisms of CE and let E� denote their equalizer

in the category of G.-spectra. Then E� is 5nite and the base of a cone containing f
and g.

Lemma 4.2. The evident map Eb → E is a weak equivalence.

Proof. Let IE denote the category whose objects are � :E� → E such that � is an
inclusion. Morphisms E� → E� are also required to be inclusions.
Then the inclusion functor IE → CE is co5nal: (i) if � :E� → E is an object of CE ,

then the image of � is an object im� → E of IE , and there is an evident morphism
E� → im�; (ii) if t :B→ E is another object of IE together equipped with a morphism
E� → B, then im� ⊂ B. These two properties show that IE ⊂ CE is co5nal.
Consequently, we have an isomorphism of colimits (not homotopy colimits)

colim
�∈IE

E�
∼= colim

�∈CE

E�:

But homotopy groups commute with 5ltered colimits, so one has that the colimit on
the right is identi5ed with the corresponding homotopy colimit.
On the other hand, the evident map

colim
�∈IE

E� → E;

is a weak equivalence because a map from a 5nite object into E automatically factors
through this colimit.

Remark 4.3. The previous lemma shows that we could have used IE instead of CE as
the indexing category of the homotopy colimit. However, the reason why we use CE

is that the associated homotopy colimit is functorial.
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4.3. A version for topological G-spectra

Suppose next that E is a (topological) G-spectrum, where G= |G.|. Let Ec; f be
the result of making E functorially 5brant and co5brant. De5ne sE to be SingEc; f =
the degreewise singular complex of Ec; f . Then there is a functorial chain of weak
equivalences from |sE| to E. Moreover, sE is both 5brant and co5brant.
Let E �→ E] be the functor from G-spectra to G-spectra given by

E]:= hocolim
�∈CsE

|E�|:

Using Lemma 4:2, we have

Proposition 4.4. The functor E �→ E] admits a chain of natural weak equivalences to
the identity.

4.4. The functor E �→ Et′G

Using the indexing convention in the colimit, de5ne E(�) to be the homotopy co5ber
of the map |�| : |E�| → |sE|. Note that the homotopy colimit of the E(�) is weakly
contractible by Lemma 4.2 because there are co5bration sequences |E�| → |sE| → E(�).
Let us de5ne

Et′G:= hocolim
�

(E(�))hG;

where the homotopy colimit is indexed over the category CsE .

Proposition 4.5. There exists a natural weak equivalence

EtG � Et′G;

where EtG denotes the homotopy co;ber of the norm map.

Proof. For each index �∈CsE , we have a homotopy co5ber sequence

DG ∧hG E(�) → (E(�))hG → (E(�))tG

Consequently, taking homotopy colimits, we obtain a homotopy co5ber sequence

hocolim
�

DG ∧hG E(�) → hocolim
�

(E(�))hG → hocolim
�

(E(�))tG:

The 5rst term is weakly contractible, since (i) the homotopy colimit of the E(�) is
weakly contractible and (ii) smash product with DG and homotopy orbits commute
with (homotopy) colimits. By de5nition, the second term of this sequence is Et′G. We
infer that the evident map

Et′G → hocolim
�

(E(�))tG

is a weak equivalence.
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Let 0 : ∗ → |sE| denote the map from the zero object. To complete the proof of the
proposition, it will suHce to show that the inclusion

EtG � (E(0))tG → hocolim
�

(E(�))tG

is a weak equivalence. For this to be true, we need only show that the maps (E(�))tG →
(E(�))tG are weak equivalences for a morphism f :E� → E�. This follows from Axioms
1 and 4 by applying (−)tG to the homotopy co5ber sequence Cf → E(�) → E(�) and
observing that the 5rst term of the latter (= the homotopy co5ber f) is 5nite up to
homotopy.

Remark. In the above construction, if one replaces “5nite” by “bounded” G-spectra,
one obtains a possibly diJerent theory E �→ EfG that satis5es axioms 1, 2’ and 3. It
can be shown (we omit the proof) that this variant coincides with Vogel cohomology
[7] when G is discrete and E is an Eilenberg–MacLane spectrum.

5. Proof of Theorem A (uniqueness)

Let E �→ EwG be a functor satisfying Axioms 1–4. In particular, we have a natural
map EhG → EwG. Then, with respect to the notation of the previous section, we have
maps

(E(�))hG → (E(�))wG �← (|sE|)wG � EwG;

where the second map is given by applying the functor (−)wG to the evident map
|sE| → E(�) (the second displayed map is a weak equivalence by the same argument
used in the proof of Proposition 4.5). To avoid notational clutter, in what follows we
will abuse notation and identify E with |sE|. With respect to this change of notation,
we have compatible maps E → E(�).
Since we have natural transformations EhG → EtG and EhG → EwG, for each index

� the diagram

EtG ←−−−− EhG −−−−→ EwG

↓ ↓ ↓
(E(�))tG ← (E(�))hG → (E(�))wG

commutes. Consequently, there is a commutative diagram involving the associated ho-
motopy colimits

EtG ←−−−−− EhG −−−−−→ EwG

�↓ ↓ ↓�
hocolim

�
(E(�))tG ←−−−−−� hocolim

�
(E(�))hG → hocolim

�
(E(�))wG:

Set

Ew′G:= hocolim
�

(E(�))wG:
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Then the diagram shows that we have a natural map

Et′G → Ew′G

which is compatible with the structure maps out of EhG. Furthermore, the diagram
shows that Et′G (Ew′G) is naturally weak equivalent to EtG (resp. EwG) by a chain of
weak equivalences preserving the structure maps out of EhG.
We now have a commutative diagram

Et′G → EhG → Et′G

↓ || ↓
Ew′G → EhG → Ew′G

in which the rows are homotopy 5ber sequences, the left vertical map is the induced
map of homotopy 5bers, and the functors E �→ Et′G and E �→ Ew′G commute with
5ltered homotopy colimits.
If E happens to be a 5nite G-spectrum, then the map Et′G → Ew′G is a weak

equivalence by the 5ve lemma (since Et′G and Ew′G are contractible in this instance,
so the right vertical map of the diagram is a weak equivalence, and therefore the left
one is too). Let E now be general. As E �→ Et′G and E �→ Ew′G commute with 5lter
homotopy colimits, and since E can be written up to weak equivalence as the 5ltered
homotopy colimit of 5nite G-spectra, it follows that the map Et′G → Ew′G is a weak
equivalence for every E. Another application of the 5ve lemma now shows that the
map Et′G → Ew′G is a weak equivalence for every E. This completes the proof of
Theorem A.

6. Proof of Theorem B

In this section we show that the norm map DG∧hG → EhG is an assembly map for
the homotopy 5xed point functor E �→ EhG. In Section 4 we de5ned a functor

Et′G:= hocolim
�∈CsE

(E(�))hG;

where E(�) denotes the homotopy co5ber of |�| : |E�| → |sE|. Moreover, we showed
that the natural map EhG �→ Et′G coincides with EhG → EtG in the homotopy category
of functors (where EtG as usual denotes the homotopy co5ber of the norm map).
Consequently, if we de5ne

Et′G:= hocolim
�∈CsE

(E�)hG;

it follows that the natural map

Et′G → EhG

coincides with the norm map in the homotopy category of functors. It therefore suHces
to show that the latter is an assembly map.
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Let G(E)→ EhG be a natural transformation, where G is a homology theory. If we
de5ne G′ to be the functor

G′(E):= hocolim
�∈CsE

G(E�);

then the evident natural transformation G′(E)→ G(E) is a weak equivalence. We also
have an evident natural transformation G′(E)→ EhG, and the diagram

Et′G → EhG

↑ ↑
G′(E) ∼→ G(E)

is commutative. But this implies that the natural map Et′G → EhG is the universal
left approximation to E �→ EhG by a homology theory in the homotopy category of
functors.

7. Variants

The norm map DG∧hGE → EhG generalizes the classically de5ned norm map EhG →
EhG for 5nite groups G (it was shown in [8] that DG � S0 when G is 5nite). Thus
for in5nite groups, one has to replace the homotopy orbit spectrum EhG by a twisted
version DG ∧hG E of it.
It is natural to ask whether it is possible to perform instead a modi5cation of the

codomain EhG to obtain a norm map whose domain is EhG. We answer this in the
aHrmative below, as a special case of a more general construction.
The idea of this more general construction is that one can precompose the homotopy

5xed point functor with a homology theory from G-spectra to G-spectra. This yields
another functor from G-spectra to spectra.

7.1. Twisted ;xed points

Suppose that W denotes a (G × G)-spectrum. In order to distinguish between the
two actions of G, we write G ×G as G‘ ×Gr , where G‘ and Gr denote copies of G.
De5ne the twisted homotopy ;xed point functor E �→ EhWG from G-spectra to spectra
by the rule

E �→ (W ∧hG‘ E)
hGr :

Using the yoga of Sections 4–5, one obtains a norm (assembly) map

EtWG → EhWG

whose domain is the homotopy colimit

EtWG:= hocolim
�∈CsE

(E�)hWG:
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Example 7.1. We consider two special cases of the above. The 5rst recovers the norm
sequence of [8], whereas the second gives a norm map whose domain is the homotopy
orbit construction.
(1) If W = S0[G] (the suspension spectrum of G+), then EhWG � EhG and the norm

map in this case is just

DG ∧hG E → EhG:

(2) Let W = Ŝ
0
[G] denote the function spectrum F(G+; S0) whose jth space is the

space of stable maps G+ → Sj, with G × G acting via its action on the domain.

Note that (S0[G])hWG � S0. More generally, one has EhWG � EhG whenever E is
G-5nite. Using this identi5cation, it is fairly straightforward to check that the domain
of assembly map for the functor E �→ EhWG is just E �→ EhG, i.e., the homotopy orbit
construction. The norm map in this example has the form

EhG → (Ŝ
0
[G] ∧hG E)hG:

The composite of the latter with the forgetful map (Ŝ
0
[G] ∧hG E)hG → Ŝ

0
[G] ∧hG E

gives a transfer map

EhG → Ŝ
0
[G] ∧hG E:

If E is a 5nite G-spectrum and G is discrete, then the target of this transfer map
can be interpreted as “locally 5nite homology of E with S0-coeHcients”. This map
is similar to a transfer map for in5nite (discrete) groups de5ned by Carlsson [4] (the
essential diJerence is that the target of Carlsson’s transfer is locally 5nite homology
with Z-coeHcients). Carlsson’s transfer has been used to verify the K-theory Novikov
conjecture for a wide class of groups [3].
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