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FUNCTORS INVOLVING C.S.S. COMPLEXES

BY
DANIEL M. KAN()

1. Introduction. Using the theory of adjoint functors, developed in [4],
a procedure will be given by which functors and natural transformations
may be constructed which involve c.s.s. complexes. Several of the functors
and natural transformations obtained in this manner are well known. A
new such functor, HV(I', ), from chain complexes to c.s.s. abelian groups,
will be considered in more detail(?). It has the following properties

(a) The functor HV(T', ) sets up a one-to-one correspondence between
chain complexes which are zero in dimension <0 and c.s.s. abelian groups.

(b) For every chain complex K

H,.(K) = Tn(HV(P, K)J

i.e. the homology groups of the chain complex K are isomorphic with the
homotopy groups of the c.s.s. group H"(T', K).

(c) Let (m, ) be a chain complex which has the abelian group m in dimen-
sion 7 and 0 in the others. Then

HY(T, (m, n)) = K(x, n)

i.e. HV(T, (, n)) is the Eilenberg-MacLane complex of 7 on level #.

Two other functors obtained by the procedure mentioned above will be
discussed in [5].

In an appendix we define for a c.s.s. complex K the c.s.s. free abelian
group FAK generated by it. This notion is closely related to the functor
HV(T, ). For every c.s.s. complex K

H,(K) = m,(FAK) n > 0.

There is a natural way of embedding K into FAK. This embedding map
f: K—FAK induces homomorphisms of the homotopy groups of K into the
homotopy groups of FAK and hence by the above isomorphism into the
homology groups of K. It will be shown that these homomorphisms are the
Hurewicz homomorphisms.

The definitions and results of [4] will be used freely.

2. A definition of c.s.s. complexes. For each integer n20 let [n] denote
the ordered set (0, - - -, n). By a monotone function a: [m]—[n] we mean a
function such that ‘

Received by the editors September 20, 1956.

(1) The author is now at the Hebrew University in Jerusalem.
(%) This functor has also been found by A. Dold.
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FUNCTORS INVOLVING C.S.S. COMPLEXES 331
(i) £ afj) 0<igj<m

Clearly the composition of two monotone functions is again a monotone func-
tion and for every integer =0 the identity map €,: [#]—[#] is also mono-
tone. Hence the ordered sets [#] and the monotone functions a: [m]—[n]
form a (proper) category. Throughout this paper this category will be de-
noted by .

Let 91 be the category of sets. We recall that 9" denotes the category of
contravariant functors V—9N.

DEeFINITION (2.1). A c.s.s. complex K is a contravariant functor K: U—91,
i.e. an object of the category 9MV. Similarly a c.s.s. map f: K—L is a natural
transformation from K to L, i.e. a map of the category V. The elements of
the set K [n] are called n-simplices of K.

The category of c.s.s. complexes and c.s.s. maps, i.e. the category M,
will often be denoted by 8.

It is readily verified that Definition (2.1) is equivalent with that of
Eilenberg-Zilber [2; 3], except that the collection of the n-simplices of a c.s.s.
complex is required to be a set, i.e. an object of the category 9. Following
Eilenberg-Zilber we shall write oo instead of (Ka)s, where ¢ &K [n] and
a: [m]—[n] is a monotone function.

3. The general case. Let Z be a category which has direct limits [4,
Def. 9.1]. Then with every covariant functor 2: V—Z, i.e. object of the cate-
gory Zy [4, §7] we will associate two covariant functors

®2:8— Z, H'(Z,):Z—8

where ®Z is a left adjoint of H"(Z, ) [4, Def. 3.1]. Conversely every pair of
covariant functors
S:8— Z, T:Z—8

where S is a left adjoint of T may (up to natural equivalences) be obtained
in this manner.

Because Z has direct limits, the embedding functor E4: Z—Z, has a left
adjoint [4, Th. 7.8]. Let limg: Zg—Z be an arbitrary but fixed such left
adjoint and let ag be an arbitrary but fixed natural equivalence aq: lim, (Za)
— E4(Z). Let the functor ®g4: MY, Zy—Zs and the natural transformation

v: H(mV Qa Zy, Ed(z)) - H(mV, HV(ZV: Z))
be as defined in [4, §14]. Composition of the natural equivalence a, with the
functor ®, yields a natural equivalence
a; ®q: Hlimg (O ®4 Zy), Z) — HMY Q4 Zy, Ea(Z)).
Composition of the natural equivalences aa®a and v yields the natural
equivalence (see [4, Th. 14.1]) '

8: H(limg (WY Q4 Zv), Z) — H(MY, HY(Zy, Z)).
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332 D. M. KAN [March

It follows that B8 is completely determined by the choice of lima and aa; a different
choice of limg and g changes B by a unigue natural equivalence [4, Theorem
(4.4 ].

Now denote by

R:M, Zy—>Z

the composite functor limg ®4: MY, Zy—Z and write 8 instead of 7. Then
B is a natural equivalence

8: HS ® Zy, Z) — H(S, H (Zv, Z)).

Hence, given the functor limy: Z;—Z and the natural equivalence ag: limg— Eq,
we may associate with every object Z& Zy
(i) the covariant functor

H (Z,):Z—8

which is the right adjoint of
(ii) the covariant functor

®2:8—>Z

under
(iii) the natural equivalence

Bz = B, 2, Z): HS @ 2, Z) — H(S, H'(Z, Z)),
(iv) the natural transformation induced by Bz
xz: E(8) > H"(Z,8 ® 2)
satisfying the relation
Baf = H'(Z,f) o xzK
for every object KES$ and ZEZ and every map f: K®Z—ZEZ [4, Lemma

6.2], and
(v) the natural transformation induced by Bz’

pz: H'(Z, Z) ® 2 — E(Z)
satisfying the relation
ﬂ;lg =uZog®Z

for every object KES$ and ZEZ and every map g: K—H'(Z, Z2)ES8 [4,
Lemma 6.2*].

When no confusion can arise the subscript 2 will be omitted in Bz, kz
and Mz,

By a suitable choice of the category Z and the object ZEZy the above
functors and natural transformations reduce to well known ones.

That every pair of covariant functors S: $—Z and T: Z—8§ where S is a
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1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 333

left adjoint of T may (up to natural equivalences) be obtained in the above

manner can be seen as follows. Consider the identity functor E: U—%U as an

object of the category Uy. Then the lifted functor HY: Uy, V—9M" induces a
functor HV(E, ): V—8(MV=S8). Let Z: V—Z be the composite functor

HV(E,) S

Y — 8 > Z.

Then it is readily verified, using the fact that S is a left adjoint of T, that
there exists a natural equivalence 7: H"(Z, )—T and hence [4, Th. (3.2%)]
implies the existence of a natural equivalence o: S—Q®Z.

REMARK. The results of this section also hold if U is replaced by any
other proper category U and § by Y.

4. Topological spaces. Let @ be the category of topological spaces and
and continuous maps

ProrosITION (4.1). The category @ has direct limits.

Proof. Let U be a proper category and let K: U4— @ be a covariant functor-
Denote by B the set of all pairs (U, x) where U&U is an object and xEKU
a point. Define a relation (U, x)~(U’, x’) if there exists a map u: U-U’'€&U
such that (Ku)x=x'. This relation ~ induces an equivalence relation on B.
Let A be the set of all equivalence classes and for every object USU let

kU: KU— A4

be the function which assigns to a point x&KU the equivalence class of
(U, x). Introduce a topology in 4 by defining a subset M CA open if for every
object UEU

ko (M N ky(KU))
is open in KU. It is now easily verified that
A= lim;, K

where the map k: K—EyA is given by kU =Fky for every object UEU. This
completes the proof.

It should be noted (see [4, Remark 7.9]) that in the proof of Proposition
4.1 not merely the existence of a direct limit is established but that a pro-
cedure is given by which simultaneously for all pairs (U, K), where U is a
proper category and K:U—@ a covariant functor, an object 4 and a map
k: K—EyA can be found such that 4 =lim; K. Let the functor

Iim=Q@s— @
d

and the natural equivalence .

aq: H(limg (@g), @) — H(Qq, E4(Q))
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334 D. M. KAN [March

be the unique ones induced by the above procedure of assigning to every pair
(U, K) an object A and a map k: K—EyA (see [4, Theorem 9.5]).

Define an object Z€ @y as follows. For each integer =0, =[x] is an
euclidean n-simplex with ordered vertices Ay, - + - , 4,; for each map a: [m]
—[n], Za: Z[m]—Z[n] is the simplicial map defined by (Za)4d;=A. for
all0=1=m.

The following then can readily be verified by comparison with the usual
definitions.

PROPOSITION (4.2). For every topological space X
HV(Z, X)
is its simplicial singular complex (see [2]).
ProrosITION (4.3). For every c.s.s. complex K
K®z

is its geometrical realization (by a CW-complex of which the n-cells are in one-
to-one correspondence with the nondegenerate simplices of K; (see [6]).

The existence of the (natural) equivalence
BHK®Z X)—>HK, H(Z, X))

expresses the fact that for every object K &8 and X €@ there exists a one-to-
one correspondence between the continuous maps K ®2Z—X and the c.s.s.
maps K—HV(Z, X).

PRroPoOSITION (4.4). For every c.s.s. complex K
kK: K-> H"(Z, K ® 2)

is the (natural) embedding of K into the simplicial singular complex of its geo-
metrical realization (see [6]).

PROPOSITION (4.5). For every topological space X
wWX:H'Z, X)) ®2—>X

is the (natural) map of the geometrical realization of the simplicial singular com-
plex of X onto X (see [6]).

For a locally compact space Y€ @ define another object 2y € Gy by
Sy[n] = 2] X ¥; (Cr)a= Za X ir

where X denotes the cartesian product. As for every two topological spaces
X and Z there exists a (natural) equivalence

HZ X Y, X) ~ H(Z, XY)
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1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 335

where XY denotes the function space with the compact open topology, it
follows immediately that

PROPOSITION (4.6). For every topological space X
H"(Zy, X) = H"(Z, XY).

Similarly because the operation of “taking the direct limit” commutes
with “taking the cartesian product with ¥” it follows that

PRroPOSITION (4.7). For every c.s.s. complex K
K®@Zyr=(K®2Z)X V7.

5. C.s.s. complexes.

ProroSITION (5.1). The category $ has direct limats.

Proof. This follows immediately from [4, Corollary 12.2] and the follow-
ing proposition. ‘
PRrOPOSITION (5.2). The category I has direct limits.

Proof. Omit all mention of topology from the proof of Proposition 4.1.

Define an object AESy as follows. Consider the identity functor E: V—U
as an object of the category Uy and define, using the lifted functor H": Uy,
V-am¥

Aln] = HY(E, [#]);  Aa = H'(E, o).
Thus A [n] is the standard n-simplex (this is K [z] in the notation of Eilenberg-
Zilber, see [2; 3]).

The functors associated with the object AE Sy are, up to a natural equiva-
lence, the identity. For every n-simplex o of a c.s.s. complex K let ¢,: A[n]—K
denote the unique map such that ¢,a=ca for all @EA[n]. It then follows
easily from the uniqueness of the map ¢, that

PRroPOSITION (5.3). The function

¢K: K — H"(A, K)
given by
(¢K)U = ¢¢ g e K
is an isomorphism. This isomorphism is natural.
Similarly it can be shown:
ProPosITION (5.4). The map
8 ¢pK): K® A— K

is a (natural) isomorphism.
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336 D. M. KAN [March

For a c.s.s. complex L define another object ALESy by
Arln] = Aln] X L,  (Ar)e = Aa X i

where X denotes the cartesian product. Then Proposition 5.4 together with
the fact that “taking the direct limit” commutes with “taking the cartesian
product with L” yields

PRrOPOSITION (5.5). For every c.s.s. complex K
KQ® A=K X L.

For L, M &8 define the function complex M* by
ML = H"(AL, M).

“Taking the cartesian product” is thus a left adjoint of “taking the function
complex.” In fact we have

ProprosIiTION (5.6). Let K, L and M&S. Then there exists a (natural)
equivalence

MEXL ~ (YLK,
The functors associated with still another choice of an object of Sy will
be considered in [5].

6. Chain complexes. Let G be the category of chain complexes and chain
maps.

ProPOSITION (6.1). The category 0G has direct limits.
In order to prove this we need
ProroOSITION (6.2). The category G of abelian groups has direct limits.

Proof of Proposition (6.2). Let U be a proper category and let K:u—g
be a covariant functor. Let A be the abelian group generated by the pairs
(U, x) where US4 is an object and x €K U an element, with the following
relations: for every object U&U and every two elements x, yEK U

(U) x) + (U) y) = (U) x+ 3’)
and for every map u: U—-U'€U and every element xEKU
(U, x) = (U, (Ku)2).

It follows from the first kind of relations that for every object UCU the
function ky: KU—A given by kyx= (U, x) is a homomorphism. Straightfor-
ward computation now yields that

4 =1limK .
where the map k: K—EyA is given by kU =*ky for every object UCAU.
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1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 337

Proof of Proposition (6.1). Let Z be the category of which the objects are
the integers and which contains one map m—n for each pair of integers
(m, m) with m <n. It then follows from Proposition (6.2) and [4], Corollary
(12.2) that the category GZ has direct limits. Clearly 3G may be considered
as a full subcategory of GZ and 9Gs as a full subcategory of GZ. It is easily seen
that a functor lims: G—GZ maps any object of 3G, into 9G. Hence the category
9§ has direct limits.

Define an object I'€dGy by

I'[n] = CyA[n], Ta = CyAa

where Cw: 8—9G is the normalized chain functor (see [2]). Of the two adjoint
functors associated with T' one, ®T, is, up to a natural equivalence, the
normalized chain functor Cy; the other functor H”(T, ), will be investigated
in the remainder of this paper.

PROPOSITION (6.3). There exists a natural equivalence
c:8 @ I'— Cx(8).

Proof. Let K €8 be an object. Define a map f: K @ I'»E4CyK by f([n], )
= Cn@, for every n-simplex ¢ €K, where ¢,: A[n]—K is the unique map such
that ¢,a=oca for all a€A[n]. Let c: K@T—CyK be the unique map such
that f=Eac 0 Ns(K ®.I"), where Ma: E(0G4)—E4 lim, (9Ga) is the natural trans-
formation induced by the natural equivalence aa: limg (9Gs) = E4(9G). Straight-
forward computation then yields that ¢ is an isomorphism. Naturality now
follows easily.

7. Some definitions and lemmas. We shall now state several definitions
and lemmas which will be needed in the sequel. For proofs, see [7].

For every pair of integers (k, n) with 0Sk=<n let ¢: [n—1]—[n] be the
monotone function given by

@) =1 1< k;

(@) =i+ 1 ik
and let 7*: [n]—[n—1] be given by

() =1 i Sk

() =1 —1 1> k.

DEFINITION (7.1). A c.s.s. complex K is said to satisfy the extension con-
dition if for every pair of integers (k, ) with 0 Sk <~ and for every n (n—1)-
simplices oo, * -+, 04_1, Oa41, - - -, 0, EK such that o;e/~1=g;e' for 1<j and
z#k#j, there exists an n-simplex ¢ €K such that oef=¢; for :=0, - - -,

Lo,

Denote by 8z the full subcategory of 8 generated by the c.s.s. complexes

which satisfy the extension condition.
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338 D. M. KAN [March

DEFINITION (7.2). Two n-simplices o and 7 of a c.s.s. complex K are called
homotopic (notation o~r) if

(i) their faces coincide, i.e. ge'=g¢’ for all 7,

(ii) there exists an (n+1)-simplex pEK such that
0 —

pe® = o,
pel = 1,
peitl = gein® = rein® 0<i=Zn.

LeMMA (7.3). If KESg, then ~ is an equivalence relation on the simplices
of K.

DEFINITION (7.4). Let KESg and let ¢EK be a 0-simplex. For every
integer #=0 a group m,.(K; ¢), the nth homotopy group of K rel. ¢ will be de-
fined as follows. Consider the collection Z of the n-simplices ¢ €K such that

get = ¢n - - - 2 01 = n.

The equivalence relation ~ divides Z into classes. These classes a, b, etc.
will be the elements of m,.(K; ¢). Now let cE€a and 7 &b be arbitrary repre-
sentatives of the classes @ and b. Because K &8k there exists an (n+1)-
simplex pEK such that

pe’ = g,
pe’ = T,
pet = ¢n - - - gt 2<i=n+ 1.

The sum a5 of the classes a and b then is defined as the class of the #-simplex
pel. It can be shown that 7,(K; ¢) so defined is a group and is independent
of the different choices made in its definition.

DEFINITION (7.5). Let 3¢ be the category of groups and homomorphisms.
The objects of the category 3¢” will be called c.s.s. groups and the maps of
37 ¢.s.s. homomorphisms. A c.s.s. group G thus is a c.s.s. complex such that

(i) G[n] is a group for each integer =0,

(i) Ga:G[n]—G[m] is a homomorphism for every map a: [m]—[n]E.
The objects of the category GV (G is the category of abelian groups) will be
called c.s.s. abelian groups.

The following results are due to J. C. Moore. (see [7]).

LEMMA (7.6). Every c.s.s. group satisfies the extension condition.

Let G be a c.s.s. group. For each integer =0 define a subgroup G,CG ]
by
Gn = N kernel Ge'.
=1 A

Then ¢€G,,, implies 0e®EG,. Define a homomorphism 9nt1: Gap1—Ga by
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1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 339

6,.+1tr age’, ie. 6,,+1—Ge°| Gny1. For each integer #<0 let G,=1 and let
Oni1l Gn.,.l—)G be the trivial homomorphism. It may be shown that for all n
image dn41 is a normal subgroup of kernel 8., i.e. G= {Gn, 6,,} is a (not neces-
sary abelian) chain complex. Its homology groups are

HA(G) = kernel 3,/image dpp1.
Let G be a c.s.s. group and let e&G[0] be the identity. The homotopy
group m,.(G; €) will often be denoted by m.(G). The group structure of G[0]

induces a group structure in mo(G) =m(G; ¢), the set of the components of G
and we have

LeEMMA (7.7). m.(G) = H.(G) for each integer n=0.

Let G be a c.s.s. group and let ¢ G[0]. For each n-simplex ¢ €G denote
by ¢+ the n-simplex

tar = o(g70 - - ).
Then clearly the function ¢# induces an isomorphism
éx: a(G; @) — ma(G).

8. The functor HY(I', ). For every object A in 4G, the category of
(abelian) chain complexes, the c.s.s. complex HV(I', 4) may be converted
into a c.s.s. abelian group as follows. Let ¢, 7: I'[#] >4 be two n-simplices of
HV(T', A). Then the sum g+7:'[#]—4 is defined by

(c+ 1)y =0v+ 1y vy € I'[n].

For every chain map f: A—B the c.s.s. map H"(T, f): H'(T', A)—H" (T, B)
then becomes a c.s.s. homomorphism. Hence HV(I', ) may be regarded as a
functor

Hv(T,): 8§ — G".

Let 0G° be the full subcategory of dG generated by the chain complexes
which are 0 in dimension <0, i.e. 4€&3dg° if and only if 4,=0 for ¢<0. Let

M:g" — 9g°

be the functor which assigns to every c.s.s. abelian group G the chain com-
plex MG=G and to every c.s.s. homomorphism f: G—H the chain map
Mf: G—H given by (Mf)o=fo for ¢ EG.

Roughly speaking, the functor H"(I', ) sets up a one-to-one correspond-
ence between the objects and maps of dG° and those of V. An exact formula-
tion of both halves of this statement is given in the following two theorems,
in which E denotes the identity functor.

THEOREM (8.1). There exists a natural equivalence
a: MHY (T, 95°) — E(3GY).
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340 D. M. KAN [March

THEOREM (8.2). There exists a natural equivalence
b: E(G") — H(T, M(G")).
Let A ©dG and let A°CA be the subcomplex given by

An = An n > O,
Ao = 87 (0),
Az =0 n < 0.

It is readily verified that
H"(T, A) = HY(T, A°)
and that the inclusion map j: 4°—>4 induces isomorphisms
Jat Ha(A%) — Ho(4) nz 0.
Application of Theorem 8.1 and Lemma 7.7 now yields
COROLLARY (8.3). Let AEG. Then for every integer n=0
jxax: mo(HV(T, A)) = H,(4)

i.e. the nth homotopy group of the c.s.s. group HY(T, A) is isomorphic with the
nth homology group of the chain complex A.

Proof of Theorem (8.1). For each nondegenerate simplex aEA[n] let
Cya be the corresponding generator of I'[z]. Let A €8G° be an object and let
G=HV(T, A). For each simplex ¢: I' [n] 54 €G, define an element ac €4, by

a0 = 0(Crén),

where e,: [#]—[n] is the identity map, i.e. the only nondegenerate n-simplex
of A[n]. As the addition in G was induced by that of 4 it follows that the
function a: G,—A, is a homomorphism for each #.

It follows from the definition of G, that a simplex ¢: I'[#]—4 is in G, if
and only if o€': I'[n—1]—4 is the zero map for 450, i.e. ¢ maps all generators
of I'[], with the possible exception of Cye, and Cye’, into zero. Consequently

3a(a0) = da(o(Cren) = 22 (—1)¥(o(Cre?)
= ¢(Cne®) = (0€®) (Cnen-1)
= (9,0)(Cyen-1) = (8n0),
i.e. the function a: G—4 is a chain map. It also follows that ¢ is completely

determined by o¢(Cye,) EA.. Hence a: G—A4 is an isomorphism. Naturality

is easily verified.
The proof of Theorem (8.2) will be given in §11.
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1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 341

Let X be a topological space. The homotopy groups of X are by definition
those of its simplicial singular complex K = H"(Z, X) (see §4), and the singu-
lar homology groups of X are the homology groups of the chain complex
CwnK. Let ¢ be a 0-simplex of K, let

ha: ma(K; ¢) — H,(CnK)
be the Hurewicz homomorphism and let
k: E8) > H' (I, s ®T)

be the natural transformation induced by the natural equivalence 8: QT
— HY(T', 8g). Then it can be shown that

PROPOSITION (8.4). Commutativity holds in the diagram
m(HV(T, K @ T),¢)
~ | ¥x
m(H" (I, K @ TI)
~ | a4
H (K ®T)
=~ | cs
H ,(CyK)

(kK)x

. (K; ¢)

where Y = (kK)@, i.e. the map kK: K—HY (', KQT') induces (up to an equiva-
lence) the Hurewicz homomor phisms.

9. The K(m, n). Let = be an abelian group and let # be an integer 20.
Denote by (m, ) the chain complex with 7 in dimension # and 0 in the others.

ProposITION (9.1). HV(T, (m, n)) =K(m, n), the Eilenberg-MacLane com-
plex of ™ on level n (see [1]).

Proof. A g-simplex of K (mr, n) is an element of Z*(A[g], ), i.e. a chain map
I'[¢]—(r, n) and hence a g-simplex of HY(T', (w, n)) and conversely. It is
readily verified that this one-to-one correspondence commutes with all oper-
ators a.

Combination of Proposition (9.1) with Lemma (7.7) yields

COROLLARY (9.2). m(K(w, n)) =m; mi(K(mw, n)) =0 for i#n.
Let K be a c.s.s. complex. Then combination of the equivalence
B8: HK ® T, (x, n)) — H(K, H' (T, (w, n))
with the equivalence ¢: K QI'—CnyK of Proposition 6.3 yield an equivalence
@' H(CyK, (7, n)) — H(K, K(=, n))

which expresses the well known fact that the elements of Z*(K; ), i.e. the
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chain maps CyK—(w, n) are in one-to-one correspondence with the c.s.s.

maps K—K(w, n).
10. Two lemmas. We shall now give two lemmas which will be needed in

the proof of Theorem (8.2).
Let G be a c.s.s. abelian group and let o1, - - -, 0, &G[n—1] be such that

g 1=gje for 0<i<j. Let
én = o™,
¢r = o* ! — Prr1€nt ! + it 0<k<mn
and define an n-simplex ¢(ay, - - -, ,) EG[n] by
#(o1, * + + 5 00) = ¢1.
LeEMMA (10.1). ¢(oy, « - -, on)€ei=0; for 15%0.
LEMMA (10.2). Let TE€G[n—1]. Then
d(rnid, - - -, Tien) = i for0<i<n—1.
Proof of Lemma (10.1). Clearly
L
dret = o' let — Prp1€nFTlel + dryiet = ox.
If 1<k =1, then
Gr—1€’ = op_1* %€ — Gl e + dued
= gi167 "2 — ue'e It + et
= g It — o I* 2 + 05 = ou
Hence ¢(o1, - - -, on)ei=1e*=0; for 1540,
Proof of Lemma (10.2). If ¢r41=779* for some k, then
o = it — Grprentl + drpa
= rnietgtl — Tyl 4 i = Ty,
Hence it suffices to show that ¢4 =77¢ for all 2. For i=n—1
$n = T lem Tl = Ty,
Let
Yno1 = T "2,
Ui = 1l — Yl Yy for 0 <k <n— 1,
Then for i<n—1
¢n = iyt = rer gyt = Y’

and if ¢r =y’ for 1+2 <k<n, then
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br—1 = T¢I R — eI 4 gy
= (re=Ik3 — Yy 1Pt 4 )0t = Yi—apt.
Hence
Gir1 = NIt — dipaettint + Bips
= ' — Yam'etint + Yomt = mb
REMARK. In the proofs of the Lemmas (10.1) and (10.2) no use was made
p

of the fact that G is abelian. Hence both lemmas also hold in the nonabelian
case.

11. Proof of Theorem (8.2). Let G be a c.s.s. abelian group and let
H=H"(T, G). For each integer #=0 define a function b: G[n]|—H[n] by

bo = a”lo dim ¢ = 0;
be = a (o — ¢(ael, - - -, ae®)) + ¢(b(ael), - - -, b(ae™)) dim ¢ > 0.

Clearly the function b: G[0]—>H]|[0] is an isomorphism because a is so. Now
suppose it has already been proved that the functions b: G [i]—H[i] are iso-
morphisms for 7<% and commute with all face and degeneracy operators in
dimension <#, then it must be shown that b=G[n]—H|[n] is an isomorphism
and that b commutes with all face and degeneracy operators in dimension
=n.

That b: G[n]—H|[n] is a homomorphism follows from the induction hy-
pothesis and the fact that the function ¢ only involves face and degeneracy
operators and therefore is additive.

We now first show that & commutes with all face operators in dimension
=n. It follows from Lemma (10.1) that for 750:

(bo)e' = a7 (o — ¢(ae, - - -, gen)et + $(b(oe), - - -, b(ae™))e?
= aYoe! — o¢?) + b(ae?) = b(oe).
Let p1=¢(o¢€!, - - -, ge*). Then it follows from the definition of b that
(b41)e® = ¢(b(ae"), - - -, blae))e’.

Thus (b¢1)€ is obtained from oe!, - - -, ge” by application of the isomorphism
b: G[n—1]—H][n—1] and operators €' and 7i. These operators can always be
rearranged in such a manner that first all operators €' are applied and then
all 7. As in this way only simplices in dimension <# are involved, these oper-
ators can now be commuted with the isomorphism & (by induction hypoth-
esis). Arranging the operators €' and 77 back again in their original order we
thus get
(b¢1)e” = b(d(ae!, - - -, aen)e’) = b(¢e’).

Let ¢y =0—¢(oel, - - -, oe?). Then in view of Lemma "10.1 Yei=0 for 0.
Hence
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(W)€ = a1 (Y — d(Yel, - - -, Yer)e® + ¢(b(e), - - -+, b(Ye))e’
= a}(Ye® — 0) + 0 = a~1(Ye)
= a7} (Y — p(Yelel, - - -, Yl ) + p(b(be€), - - - b(e%erT))
= b(YeY).
Hence
(bo)e® = (b(¥ + ¢1))€® = (BY)e® + (bpn)e®
= b(Ye®) + b(¢1e®) = b((¥ + ¢1)€") = b(ae).

We now show that b commutes with all degeneracy operators in dimen-
sion <n. Let rEG[n—1], then in view of the induction hypothesis

b(rpie) = b(re1p%) = (br)ei~ ' = (br)n'e’ 1<j—1;
brm'e) = br = (brym'e i= = 1,4;
b(rpied) = b(rein™1) = (br)ely~! = (br)n'e’ P> 7.

Consequently application of Lemma 10.2 yields for 0 <7<n
b(mn) = a7 (rn* — d(mie!, - - -, 'e")) + S(b(rnie), - - -, b(rn'e™))
= a7 — %) + $((br)n'e, - - -, (br)n'e)) = (br)n’.
In order to show that b: G[n]—H|[n] is an isomorphism consider a simplex
o0 EG[n] such that be =0. Then (bo)e' =b(o€’) =0. By the induction hypothe-
sis this implies ce!=0. Hence
0=bs=a o— 0, ---,0)+¢0,---,0) =alc
and because a~! is an isomorphism this implies ¢ =0 i.e. b: G[n]—>H|[n] is a
monomorphism. Now let r€H[n] and let

0i = bire),  p = alr — d(re, - -, 7).

Then

alp + ¢(boy, * - -, boa)

=aY o+ ¢o1, -+ +, ) — b(oy, - -+, 00) + by, - - -, ba)
= b(p + #(o1, * * +, n)),

i.e. b: G[n]|—>H][n] is also an epimorphism and is thus an isomorphism.
Naturality of b is now easily verified.

<\
Il

APPENDIX

12. The c.s.s. free abelian group generated by a c.s.s. complex. Define a
functor

FA:8—¢gv
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as follows. Let KES$ be an object. Then FAK [n] is the free abelian group
with a generator ¢ for eachc €K [rn] and (FAK)a is the homomorphism given
by

(FAK)a)i = va.

FAK is called the c.s.s. free abelian group generated by K. For each c.s.s. map
f: K—L a c.s.s. homomorphism FAf: FAK—FAL is defined by

(FANG =fo

The functor FA is closely related to the functors H"(I', ) and Cy (or
equivalently ®T"). The relation is expressed by the following theorem.

THEOREM (12.1). There exists a natural equivalence
d: FA(8) — H(T, Cn(8)).
Proof. For each object K &8 define a c.s.s. homomorphism
d: FAK — H"(T', CyK)
by
dé = Cyos,

where ¢,: A[n]—K is the unique map such that ¢,a=ca for all a EA[n]. The
naturality of d then is obvious. It is also clear that d is an isomorphism in
dimension 0. Now suppose it has already been proved that d is an isomor-
phism in dimension <#. Then it is sufficient to show that d is also an iso-
morphism in dimension n. Let D (resp. E) be the subgroup of FAK [n]
(resp. H(T'[n], CyK)) generated by the degenerate simplices. Then Lemma
(10.2) and the additivity of ¢ imply

p € D (resp. E) if and only if p = ¢(pe!, - - -, per).

Combining this with the fact that d is an isomorphism in dimension n—1 we
get that d: D—E is an isomorphism. It is easily seen that D is freely gener-
ated by those ¢ for which ¢ is degenerate. Consequently FAK [n]=D+D,
where D is the free abelian group generated by elements & —¢(Gel, - - - , Ge*)
where ¢ is nondegenerate. Similarly we get H(I'[n], CyK) =E+a"'(CyK)a.
It now follows from

d(G — ¢(a¢!, - - -, 7€) (Cnen) = (Cno)(Crnen) — d(@(Gel, - - -, Ge*))(Cre™)
= Cyo + 0 = Cyo

where Cyo is the generator of CyK, corresponding with the nondegenerate
simplex ¢, that d: D—a~!(CyK), is also an isomorphism and so is therefore
d: FAK [n]—H(T'[n], CxK).

Let X be a topological space, let K=H"(Z, X) (see §4) and let €K [0].
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Let again
hi: wa(K; ¢) — Ha(CxK)
be the Hurewicz homomorphism. Consider the (natural) map
f: K—FAK
defined by fo = 7,0 € K.
ProrosiTioN (12.2). Commutativity holds in the diagram
Tw(FAK; ¢)
J* =~ | $x
v m(FAK)
(K ; 8) ad ld*
m(H"(T, CnK))
hx =~ | ax
H,.(CyK)

i.e. the map f: K—FAK induces (up to a natural equivalence) the Hurewicz
homomor phisms.

Proof. Let vE 7w, (K; ¢), v5%0 and let ¢€v. If Cyo is the corresponding
generator of CyK, then Cyo Ehww&EH,(CyK). Furthermore
Ffo = —Fn0 -,
ddtfc = Cnde — (dd)n° - - - ™7,
adotfo = (Cngs)(Cres) — ((dg)1° - - - 9" 1) (Cren)
= Cyo — 0 = Cyo.

Hence
0x s Bufx = hx.
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