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 FUNCTORS INVOLVING C.S.S. COMPLEXES

 BY

 DANIEL M. KAN(')

 1. Introduction. Using the theory of adjoint functors, developed in [4],
 a procedure will be given by which functors and natural transformations
 may be constructed which involve c.s.s. complexes. Several of the functors
 and natural transformations obtained in this manner are well known. A
 new such functor, H(r, ), from chain complexes to c.s.s. abelian groups,
 will be considered in more detail(2). It has the following properties

 (a) The functor Hv(r, ) sets up a one-to-one correspondence between
 chain complexes which are zero in dimension <0 and c.s.s. abelian groups.

 (b) For every chain complex K

 Hn(K) 7rn(Hv(rP K),

 i.e. the homology groups of the chain complex K are isomorphic with the
 homotopy groups of the c.s.s. group Hv(r, K).

 (c) Let (7r, n) be a chain complex which has the abelian group Xr in dimen-
 sion n and 0 in the others. Then

 Hv((r (r, n)) = K(7r, n)

 i.e. Iv(r, (r, n)) is the Eilenberg-MacLane complex of xr on level n.
 Two other functors obtained by the procedure mentioned above will be

 discussed in [5].
 In an appendix we define for a c.s.s. complex K the c.s.s. free abelian

 group FAK generated by it. This notion is closely related to the functor
 Hv(r, ). For every c.s.s. complex K

 Hn(K) ":- 7rn(FAK) n > O.

 There is a natural way of embedding K into FAK. This embedding map
 f: K--FAK induces homomorphisms of the homotopy groups of K into the
 homotopy groups of FAK and hence by the above isomorphism into the
 homology groups of K. It will be shown that these homomorphisms are the
 Hurewicz homomorphisms.

 The definitions and results of [4] will be used freely.
 2. A definition of c.s.s. complexes. For each integer n> 0 let [n] denote

 the ordered set (0, * * *, n). By a monotone function oa: [m]--[n] we mean a
 function such that

 Received by the editors September 20, 1956.
 (1) The author is now at the Hebrew University in Jerusalem.
 (2) This functor has also been found by A. Dold.
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 FUNCTORS INVOLVING C.S.S. COMPLEXES 331

 a(i) < (j) O i <j < m.

 Clearly the composition of two monotone functions is again a monotone func-
 tion and for every integer n ?0 the identity map e,: [n ] - >[n] is also mono-
 tone. Hence the ordered sets [n] and the monotone functions a: [m] -- [n]
 form a (proper) category. Throughout this paper this category will be de-
 noted by V.

 Let M1Z be the category of sets. We recall that YLMv denotes the category of
 contravariant functors e-->.

 DEFINITION (2.1). A c.s.s. complex K is a contravariant functor K: t-->
 i.e. an object of the category vlZv. Similarly a c.s.s. map f: K--L is a natural
 transformation from K to L, i.e. a map of the category YlZv. The elements of
 the set K[n] are called n-simplices of K.

 The category of c.s.s. complexes and c.s.s. maps, i.e. the category YlZv,
 will often be denoted by S.

 It is readily verified that Definition (2.1) is equivalent with that of
 Eilenberg-Zilber [2; 3], except that the collection of the n-simplices of a c.s.s.
 complex is required to be a set, i.e. an object of the category MZ. Following
 Eilenberg-Zilber we shall write oa instead of (Ka)o-, where o-CK[n] and
 a: [m ]- >[n] is a monotone function.

 3. The general case. Let Z be a category which has direct limits [4,
 Def. 9.1]. Then with every covariant functor 1: 1U--Z, i.e. object of the cate-
 gory Zv [4, ?7] we will associate two covariant functors

 ?2:8--Z, Hv(2, ): Z-8

 where 0Z is a left adjoint of Hv(Z, ) [4, Def. 3.1]. Conversely every pair of
 covariant functors

 S:8--Z, T: Z-8

 where S is a left adjoint of T may (up to natural equivalences) be obtained
 in this manner.

 Because Z has direct limits, the embedding functor Ed: Z-*Zd has a left
 adjoint [4, Th. 7.8]. Let liMd: Zd- >Z be an arbitrary but fixed such left
 adjoint and let ad be an arbitrary but fixed natural equivalence ad: liMd (Zd)
 H Ed(Z). Let the functor 0d: WV, ZV--Zd and the natural transformation

 'Y: H(YIIV 0 d Zv, Ed(Z)) -- H(yvl, HV(Zv, Z))

 be as defined itn [4, ?14]. Composition of the natural equivalence ad with the
 functor ?d yields a natural equivalence

 aZd d: H(limd (ZV ? d ZV), Z) -> H(yHcV ? d ZV, Ed(Z)).

 Composition of the natural equivalences ad0d and y yields the natural
 equivalence (see [4, Th. 14.1]) A

 j3: H(limd (ZRV ?d ZV), Z) -- H(MYrv, Hv(Zv, Z)).
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 332 D. M. KAN [March

 It follows that , is completely determined by the choice of liMn and ad; a different
 choice of liMd and aod changes ,3 by a unique natural equivalence [4, Theorem
 (4.4*) ].

 Now denote by

 0: VI Zv + Z

 the composite functor liMd ?d: VP, Zv--Z and write S instead of rv. Then
 ,3 is a natural equivalence

 0: H(S X ZV, Z) -* H(S, Hv(Zv, Z)).

 Hence, given the functor liMd: Zd--Z and the natural equivalence ad: liMd H Ed,
 we may associate with every object 2;EZv

 (i) the covariant functor

 Hv(2;, ): Z - 8

 which is the right adjoint of
 (ii) the covariant functor

 OM: S -* Z

 under
 (iii) the natural equivalence

 p2 = ($I, 2, Z): H(S 0 2, Z) -* H(S, Hv(2, z)),

 (iv) the natural transformation induced by 13z

 KZ: E(S) -+ Hv(2 Z)

 satisfying the relation

 Zf= HV(2,nf)0 KzK

 for every object KES and ZEZ and every mapf: K@2-+ZEZ [4, Lemma
 6.2], and

 (v) the natural transformation induced by f3;1

 AZ: Hv(2, Z) 0 2-* E(Z)

 satisfying the relation

 #z g = 'Oz 0 g?
 for every object KES and ZEZ and every map g: K-+Hv(2, Z) Es [4,
 Lemma 6.2*].

 When no confusion can arise the subscript 2 will be omitted in 3Z, K2
 and ,z.

 By a suitable choice of the category Z and the object 2E -Zv the above
 functors and natural transformations reduce to well known ones.

 That-every pair of covariant functors S: S-*Z and T: Z-*S where S is a
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 1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 333

 left adjoint of T may (up to natural equivalences) be obtained in the above
 manner can be seen as follows. Consider the identity functor E: OC--V as an
 object of the category Ov. Then the lifted functor Hv: Ov, %)-->fv induces a
 functor Iv(E, ): O )8(MZv=8). Let 1: OC-->Z be the composite functor

 Hv(E,) S
 .V - S -- Z.

 Then it is readily verified, using the fact that S is a left adjoint of T, that
 there exists a natural equivalence T: Hv(l, )--T and hence [4, Th. (3.2*)]
 implies the existence of a natural equivalence o: S- .

 REMARK. The results of this section also hold if O) is replaced by any

 other proper category cA and 8 by MlU.
 4. Topological spaces. Let a be the category of topological spaces and

 and continuous maps

 PROPOSITION (4.1). The category (i has direct limits.

 Proof. Let it be a proper category and let K: It-->a be a covariant functor-

 Denote by B the set of all pairs (U, x) where UCE'Lt is an object and xEKU
 a point. Define a relation (U, x)-(U', x') if there exists a map u: U )U'CRt
 such that (Ku)x = x'. This relation - induces an equivalence relation on B.
 Let A be the set of all equivalence classes and for every object UEC.t let

 ku: KU-- A

 be the function which assigns to a point xEKU the equivalence class of
 (U, x). Introduce a topology in A by defining a subset MCA open if for every
 object UE U

 ku1 (M n ku(KU))

 is open in KU. It is now easily verified that

 A = limk K

 where the map k: K--EuA is given by kU=ku for every object UELt. This
 completes the proof.

 It should be noted (see [4, Remark 7.9]) that in the proof of Proposition
 4.1 not merely the existence of a direct limit is established but that a pro-
 cedure is given by which simultaneously for all pairs (,t, K), where it is a
 proper category and K: At->(D a covariant functor, an object A and a map
 k: K-*EuA can be found such that A = limk K. Let the functor

 lim = (id -e
 d

 and the natural equivalence

 ad: H(limd (ad), a) -* H(ad, Ed(a))
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 334 D. M. KAN [March

 be the unique ones induced by the above procedure of assigning to every pair
 (ci, K) an object A and a map k: K->EuA (see [4, Theorem 9.5]).

 Define an object 2XC(v as follows. For each integer n>O, 4[n] is an
 euclidean n-simplex with ordered vertices Ao, - - *, An; for each map a: [mi]
 -[n], Za: [m]-*4n] is the simplicial map defined by (:2a)Ai=Aa(i) for
 all O<i<m.

 The following then can readily be verified by comparison with the usual

 definitions.

 PROPOSITION (4.2). For every topological space X

 Hv(2, X)

 is its simplicial singular complex (see [2]).

 PROPOSITION (4.3). For every c.s.s. complex K

 K 2

 is its geometrical realization (by a CW-complex of which the n-cells are in one-
 to-one correspondence with the nondegenerate simplices of K; (see [6]).

 The existence of the (natural) equivalence

 A: H (K 0 X, X) -* H(K, Hv (1, X))

 expresses the fact that for every object KGS and XC a there exists a one-to-
 one correspondence between the continuous maps K?2;-X and the c.s.s.
 maps K-*Hv(2, X).

 PROPOSITION (4.4). For every c.s.s. complex K

 KK: K -+ Hv(X2, K? X)

 is the (natural) embedding of K into the simplicial singular complex of its geo-
 metrical realization (see [6]).

 PROPOSITION (4.5). For every topological space X

 ,uX: Hv(z2, X) 0 - > X

 is the (natural) map of the geometrical realization of the simplicial singular com-
 plex of X onto X (see [6]).

 For a locally compact space YEza define another object 2y C(v by

 Xy[ln] = I[n] X Y; (2y)a = la X iy

 where X denotes the cartesian product. As for every two topological spaces
 X and Z there exists a (natural) equivalence

 H(Z X Y, X) - H(Z, XY)
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 1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 335

 where Xy denotes the function space with the compact open topology, it
 follows immediately that

 PROPOSITION (4.6). For every topological space X

 Hv(2;,, X) =- Hv(2;, XY).

 Similarly because the operation of "taking the direct limit" commutes
 with "taking the cartesian product with Y" it follows that

 PROPOSITION (4.7). For every c.s.s. complex K

 K 2yr = (K C) 2) X Y.

 5. C.s.s. complexes.

 PROPOSITION (5.1). The category 8 has direct limits.

 Proof. This follows immediately from [4, Corollary 12.2] and the follow-
 ing proposition.

 PROPOSITION (5.2). The category 1 has direct limits.

 Proof. Omit all mention of topology from the proof of Proposition 4.1.
 Define an object AC8v as follows. Consider the identity functor E: O-)

 as an object of the category Ov and define, using the lifted functor H7: Vv,

 A[n] = H'7(E, [n]); Aa = H'7(E, a).

 Thus A [n] is the standard n-simplex (this is K [n] in the notation of Eilenberg-
 Zilber, see [2; 3]).

 The functors associated with the object Ae8v are, up to a natural equiva-
 lence, the identity. For every n-simplex o of a c.s.s. complex K let qa: A [n ] ->K
 denote the unique map such that 5c.a=a for all caA[n]. It then follows
 easily from the uniqueness of the map cko that

 PROPOSITION (5.3). The function

 OK: K-Hv (A, K)

 given by

 (OK)a =E K

 is an isomorphism. T"his isomorphism is natural.

 Similarly it can be shown:

 PROPOSITION (5.4). The map

 -1(4K): K? A-*K

 is a (natural) isomorphism.
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 336 D. M. KAN [March

 For a c.s.s. complex L define another object ALz8V by

 AL [n] = A [n] X L, (AL)a = Aa X iL

 where X denotes the cartesian product. Then Proposition 5.4 together with
 the fact that "taking the direct limit" commutes with "taking the cartesian
 product with L" yields

 PROPOSITION (5.5). For every c.s.s. complex K

 K X AL - K X L.

 For L, MS define the function complex ML by

 ML = HV(AL, M).

 "Taking the cartesian product" is thus a left adjoint of "taking the function
 complex." In fact we have

 PROPOSITION (5.6). Let K, L and MES. Then there exists a (natural)
 equivalence

 MKXL (ML)K

 The functors associated with still another choice of an object of 8v will
 be considered in [5].

 6. Chain complexes. Let O99 be the category of chain complexes and chain
 maps.

 PROPOSITION (6.1). The category O39 has direct limits.

 In order to prove this we need

 PROPOSITION (6.2). The category S of abelian groups has direct limits.

 Proof of Proposition (6.2). Let Al be a proper category and let K:m-*l
 be a covariant functor. Let A be the abelian group generated by the pairs
 (U, x) where UERcl is an object and xEKU an element, with the following
 relations: for every object UEzcL and every two elements x, yCKU

 (U, x) + (U, y) = (U, x + y)

 and for every map u: U->U'EzcL and every element xEKU

 (U, x) = (U', (Ku)x).

 It follows from the first kind of relations that for every object UC-U the
 function ku: K U->A given by kux = (U, x) is a homomorphism. Straightfor-
 ward computation now yields that

 A = limkK

 where the map k: K-EBuA is given by kU=ku for every object UC-IL.
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 1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 337

 Proof of Proposition (6.1). Let Z be the category of which the objects are
 the integers and which contains one map m-*n for each pair of integers
 (m, n) with m_?n. It then follows from Proposition (6.2) and [4], Corollary
 (12.2) that the category gZ has direct limits. Clearly OS may be considered
 as a full subcategory of gZ and OSd as a full subcategory of z. It is easily seen
 that a functor liMd: z-+z maps any object of Cld into OS. Hence the category
 OS has direct limits.

 Define an object rEOlv by

 r[n] = CNA[n], ra = CNAa

 where CN: 8- )d is the normalized chain functor (see [2]). Of the two adjoint
 functors associated with r one, ?r, is, up to a natural equivalence, the
 normalized chain functor CN; the other functor Hv(r, ), will be investigated
 in the remainder of this paper.

 PROPOSITION (6.3). There exists a natural equivalence

 c: 8s ?C -k CN(8).

 Proof. Let KES be an object. Define a mapf: K?drF-EdCNK by f(f[n], a)
 = CNvq for every n-simplex oCK, where 0,: A [n]-*K is the unique map such
 that O,a ==oa for all A [n]. Let c: K?Fr-CNK be the unique map such
 thatf =Edc O Xd(Kfdr), where Xd: E(Old)--Ed liMd (Cld) is the natural trans-
 formation induced by the natural equivalence ad: liMd (Cld) -1 Ed(O1). Straight-
 forward computation then yields that c is an isomorphism. Naturality now
 follows easily.

 7. Some definitions and lemmas. We shall now state several definitions
 anid lemmas which will be needed in the sequel. For proofs, see [7].

 For every pair of integers (k, n) with O<k?n let ek: [n-i] -[n] be the
 monotone function given by

 e*(i) = i i < k;

 ek(i) i + 1 i _ k

 and let tlk: [n ][n-i J be given by

 k()= i ? k;
 114(i) i i-1 i > k.

 DEFINITION (7.1). A c.s.s. complex K is said to satisfy the extension con-
 dition if for every pair of integers (k, n) with 0 ? k ? n and for every n (n - 1)-
 simplices ao, * * *, ak-1, ak+b, * * *, aoEK such that aieP-0=aiei for i<j and
 i5k=j, there exists an n-simplex aEK such that o7'=o, for i=O, *

 - , n.

 Denote by SE the full subcategory of 8 generated by the c.s.s. complexes
 which satisfy the extension condition.
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 338 D. M. KAN [March

 DEFINITION (7.2). Two n-simplices a and r of a c.s.s. complex K are called
 homotopic (notation a-T) if

 (i) their faces coincide, i.e. oe$=aoi for all i,
 (ii) there exists an (n+1)-simplex pEK such that

 peo = 0*,

 pe' = Ty

 pei+l = e'no = TeinO 0 < i ? n.

 LEMMA (7.3). If K ESE, then is an equivalence relation on the simplices
 of K.

 DEFINITION (7.4). Let KESE and let 4EzK be a 0-simplex. For every
 integer n _0 a group rnr(K; 4), the nth homotopy group of K rel. 0 will be de-
 fined as follows. Consider the collection z of the n-simplices oEK such that

 oli = On'q . . . rqn-2 0 < i < n.

 The equivalence relation divides z into classes. These classes a, b, etc.
 will be the elements of 7rn(K; 4). Now let o-a and r-b be arbitrary repre-
 sentatives of the classes a and b. Because KESE there exists an (n+1)-
 simplex pEK such that

 peo = T

 pe2 =

 Pei = 'Ono ... rn-I 2 < i < n + 1.
 The sum a+b of the classes a and b then is defined as the class of the n-simplex
 p0-. It can be shown that irn(K; 0) so defined is a group and is independent
 of the different choices made in its definition.

 DEFINITION (7.5). Let SC be the category of groups and homomorphisms.
 The objects of the category aCv will be called c.s.s. groups and the maps of
 3ev c.s.s. homomorphisms. A c.s.s. group G thus is a c.s.s. complex such that

 (i) G[n] is a group for each integer n>O,
 (ii) Ga: G [n]-G [m ] is a homomorphism for every map a: [m [n] G V.

 The objects of the category gv (9 is the category of abelian groups) will be
 called c.s.s. abelian groups.

 The following results are due to J. C. Moore. (see [7]).

 LEMMA (7.6). Every c.s.s. group satisfies the extension condition.

 Let G be a c.s.s. group. For each integer n _O define a subgroup GnCG[n]
 by

 n

 n= n kernel GEi.
 i=l a

 Thenl o~G7W? implies O?E0Gn. Define a homomorphism dn+i Gn+1->Gn by
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 1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 339

 5n+10= aT6E0 i.e. a,+,i = GO j 0+i. For each integer n <0 let Gn= 1 and let
 Tn+1: Gn+l-*Gn be the trivial homomorphism. It may be shown that for all n
 image Xn+1 is a normal subgroup of kernel On, i.e. G = { Gn, An } is a (not neces-
 sary abelian) chain complex. Its homology groups are

 HF(G) = kernel On/image a,+,.

 Let G be a c.s.s. group and let eEG[O] be the identity. The homotopy
 group 2-7n(G; e) will often be denoted by 2-7n(G). The group structure of G[O]
 induces a group structure in ro(G) =ro(G; e), the set of the components of G
 and we have

 LEMMA (7.7). 2r.(G) =Hn(G) for each integer n_O.

 Let G be a c.s.s. group and let OEEG[O]. For each n-simplex oEG denote
 by k#o- the n-simplex

 q5#o- = (0-1,00. . . n-1)

 Then clearly the function 4# induces an isomorphism

 q *: 7r.(G; q5) >- rn(G) .

 8. The functor HV(F, ). For every object A in 49, the category of
 (abelian) chain complexes, the c.s.s. complex Hv(F, A) may be converted
 into a c.s.s. abelian group as follows. Let o, r: F [n]--A be two n-simplices of
 Iff(r, A). Then the sum o+r: r[n]--A is defined by

 (o- + r)), = o-y + vy dy E rP[n].

 For every chain mapf:A A-B the c.s.s. map Hv(F, f): HV(F, A) --Hv(F, B)
 then becomes a c.s.s. homomorphism. Hence HV(F, ) may be regarded as a
 functor

 Hrv(r, ) 09 -, gv.

 Let o9? be the full subcategory of 89 generated by the chain complexes
 which are 0 in dimension <0, i.e. A 990 if and only if Ai=O for i<O. Let

 M: 9v ,- o9

 be the functor which assigns to every c.s.s. abelian group G the chain com-
 plex MG= G and to every c.s.s. homomorphism f: G-*H the chain map
 Mf: G->Xf given by (Mf)o=fo for -EG.

 Roughly speaking, the functor HV(F, ) sets up a one-to-one correspond-

 ence between the objects and maps of 990 and those of gv. An exact formula-
 tion of both halves of this statement is given in the following two theorems,
 in which E denotes the identity functor.

 THEOREM (8.1). There exists a natural equivalence

 a: MHV(r, a9O) -> E(a* )
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 340 D. M. KAN [March

 THEOREM (8.2). There exists a natural equivalence

 b: E(q;v) -- v(r, M(qv)).

 Let A '99 and let AICA be the subcomplex given by

 An = A, n > O,

 AO ao (?),

 0

 An=O n<O.

 It is readily verified that

 Hv(r, A) = Hv(r, A0)

 and that the inclusion map j: A 0-?A induces isomorphisms

 j*: Hn(A 0) -> Hn(A) n _ 0.

 Application of Theorem 8.1 and Lemma 7.7 now yields

 COROLLARY (8.3). Let A CE99. Then for every integer n ? 0

 j*a*: 7rn(HV(rP A)) H: Hn(A)

 i.e. the nth homotopy group of the c.s.s. group H"(r, A) is isomorphic with thte
 nth homology group of the chain complex A.

 Proof of Theorem (8.1). For each nondegenerate simplex aEEA[n] let
 CNa be the corresponding generator of F [n]. Let A EE990 be an object and let
 G=HV(Jr, A). For each simplex o: F [n] -A EGO define an element ao(EAn by

 ao- = u(CnEn)i

 where en: [n]- >[n] is the identity map, i.e. the only nondegenerate n-simplex
 of A [n]. As the addition in G was induced by that of A it follows that the
 function a: Gn->An is a homomorphism for each n.

 It follows from the definition of Gn that a simplex o: F [n]--A is in Gn if
 and only if ei: F [n-1 ] -A is the zero map for i 5$O, i.e. o- maps all generators
 of F [n], with the possible exception of CNEn and CNGO, into zero. Consequently

 M(ao) = an(Of(CNEn)) =E (- 1) (a(CNEi
 = o-(CNE0) = (OE0) (CNEn-1)

 = (5nGo) (CNen-1) = a(5n)X

 i.e. the function a: G0-A is a chain map. It also follows that o- is completely
 determined by o-(CNen) CAn. Hence a: G-*A is an isomorphism. Naturality
 is easily verified.

 The proof of Theorem (8.2) will be given in ?11.
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 1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 341

 Let X be a topological space. The homotopy groups of X are by definition
 those of its simplicial singular complex K =Hv(l, X) (see ?4), and the singu-
 lar homology groups of X are the homology groups of the chain complex
 CNK. Let 4 be a 0-simplex of K, let

 I*: 7rn(K; q5) ->+ H(CNK)

 be the Hurewicz homomorphism and let

 K: E(S) -> Hv(r,, s 0 r)

 be the natural transformation induced by the natural equivalence A: S0r

 -HHv(F, a9). Then it can be shown that
 PROPOSITION (8.4). Commutativity holds in the diagram

 7rn(HV(r, K X r), o)

 (KK)* ~ _ ,

 7rn(HV(r, K 0 r)

 7n(K; P4)< I a*
 \Hn(K 0 r)

 .HW(CN K)

 where i1 = (KK)qS, i.e. the map KK: K--+Hv(F, K0F) induces (up to an equiva-
 lence) the Ilurewicz homomorphisms.

 9. The K(ir, n). Let 7r be an abeliaii group and let n be ain integer ?0.
 Denote by (7r, n) the chain complex with ir in dimension n and 0 in the others.

 PROPOSITION (9.1). HIv(F, (7r, n)) =K(ir, n), the Eilenberg-MacLane com-
 plex of r1 on level n (see [1]).

 Proof. A q-simplex of K(7r, n) is an element of Zn(A [q], r), i.e. a chain map
 F [q] -(7r, n) and hence a q-simplex of IIv(F, (7r, n)) and conversely. It is
 readily verified that this one-to-one correspondence commutes with all oper-
 ators a.

 Combination of Proposition (9.1) with Lemma (7.7) yields

 COROLLARY (9.2). -rn(K(-, n)) =r; ri(K(7r, n)) =0 for iXn.

 Let K be a c.s.s. complex. Then combination of the equivalence

 /3: H(K 0 r, (7r, n)) -> H(K, HV(r, (7r, n))

 with the equivalence c: K0IF-CNK of Proposition 6.3 yield an equivalence

 /': H(CNK, (7r, n)) -> H(K, K(7r, n))

 which expresses the well known fact that the elements of Zn(K; ir), i.e. the
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 chain maps CNK->(lr, n) are in one-to-one correspondence with the c.s.s.
 maps K->K(r, n).

 10. Two lemmas. We shall now give two lemmas which will be needed in
 the proof of Theorem (8.2).

 Let G be a c.s.s. abelian group and let 01, * **, oCG [n-1 ] be such that
 iTi-1l= Tjet for O<i<j. Let

 On = ?07

 4Ok = Tktl1 -4k+ lE k1 k + 4k+ 0 O < k < n

 and define an n-simplex 4(aj, * , o") GG[n] by

 (1, * , o-n) = 41.

 LEMMA (10.1). c/(o1, , o_n)Et=o_ifor i$.0

 LEMMA (10.2). Let rEG[n-1]. Then

 O (7,i,61, * * * 7- i,n) = Trqi for 0 _ i n -1.

 Proof of Lemma (10.1). Clearly

 g n =s n-1 n=

 OkE= k .kflk ik - 'kk+lekn k-lek + 4,k+lek = 0k.

 If 1 <k <i, then

 4k-16' = (7k- 1k2-i - 'kkek-1 ik-2e + Okf '

 = 0k-lfz i7 1k 2 - 4OkiEk-1 i k-2 + 4'kei

 = TiEk l 1k-2 - LiTEk l71k-2 + O, = 0j.

 Hence C(or1, * , un)ei=q1e1i=o for iS0.
 Proof of Lemma (10.2). If ckk+1=r7f' for some k, then

 4>k = rr ei, l - 1 k+le 1kk + 4k+1

 = -w^iek^1 _ 7r7iek k1- + Tli = i

 Hence it suffices to show that j+l =rtqi for all i. For it= n -1

 f n= T77"lE"7 n-1 = n-1

 Let

 tJn-1 = Tfz. 2

 = ,7k27k1 - #k+lekkk- 1 + #k+1 for 0 < k < n -1.

 Then for i<n-1

 i Tfl'En n-1 - 7En-1n-2i =

 and if q5k4ik-lR1 for i+2 <k_n, then
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 4k-1 = T?7iEk lk-2 - kkk- lk-2 + (Pk

 = (,rEk-2nk-3 - lPk- E 277k-3 + lIk-1l)7i = Ik-277i
 Hence

 i+j = T7qiEi+1?7i - i+2Ei+l77i + OPi+2

 = T-7 _/i?li)i+l?)i + ik+?ii = T7i

 REMARK. In the proofs of the Lemmas (10.1) and (10.2) no use was made
 of the fact that G is abelian. Hence both lemmas also hold in the nonabelian
 case.

 11. Proof of Theorem (8.2). Let G be a c.s.s. abelian group and let
 H=HV(F, 6). For each integer n?0 define a function b: G[n]->H[n] by

 bo- = alo- dim o- = 0;

 bo = a-'(o- - 4(el , , aen)) + 4(b(oel), * b(aen)) dim a- > 0.

 Clearly the function b: G[O]-*H[O] is an isomorphism because a is so. Now
 suppose it has already been proved that the functions b: G[i]->H[i] are iso-
 morphisms for i<n and commute with all face and degeneracy operators in

 dimension <n, then it must be shown that b = G [n] -H[n] is an isomorphism
 and that b commutes with all face and degeneracy operators in dimension
 <n.

 That b: G[n]->H[n] is a homomorphism follows from the induction hy-

 pothesis and the fact that the function 0 only involves face and degeneracy
 operators and therefore is additive.

 We now first show that b commutes with all face operators in dimension
 <n. It follows from Lemma (10.1) that for i$0:

 (bo-)Ei = a'(o- - . . . X LTn))Ei + 4(b(oE'), * * *
 = a'(o-Ei - Tei) + b(o-ei) = b(cei)

 Let =O(oel, * * , u&n). Then it follows from the definition of b that

 (bol)J = 0(b(ofEl), * * * b( ,En))E0

 Thus (b41)E0 is obtained from oE1, * * *, -En by application of the isomorphism

 b: G [n -1] ]-H[n -1] and operators ei and qj. These operators can always be
 rearranged in such a manner that first all operators ei are applied and then

 all -pi. As in this way only simplices in dimension <n are involved, these oper-
 ators can now be commuted with the isomorphism b (by induction hypoth-
 esis). Arranging the operators ei and 77i back again in their original order we
 thus get

 bX)?= b .(al . . ., o-e')e?) = b+e)

 Let 41=a-0(aEl, * * *, ue). Then in view of Lemma "10.1 4,'ei=0 for i-0.
 Hence

This content downloaded from 
������������128.151.13.225 on Tue, 25 Apr 2023 11:31:26 UTC������������� 

All use subject to https://about.jstor.org/terms



 344 D. M. KAN [March

 (b+)6? = -~l(+ _ B>(+ * * *, \l))E?' + bp(b(e)n * )),

 a-1 6E?- 0) + 0 =a-l(ieO)

 =-1 (00 - _ #(jPeOeo * eOe*-1)) + 4O(b(e0e% )... b,(0e?,,n-1))

 Hence

 (bo-)e = (b(# + 01))eO = (b4)e0 + (b41)eo

 = b(#e0) + b(q5je0) = b((# + q5i)eO) = b(au?).

 We now show that b commutes with all degeneracy operators in dimen-
 sion < n. Let r EG [n-I], then in view of the induction hypothesis

 b(,rne==) = = = (br)nii i <j - 1;

 b(,rniel) = br = (br),iei i = j-1,j;

 b(rjiel) = b(,re4'-') = (br)eiqi-1 = (br)iei i > j.

 Consequently application of Lemma 10.2 yields for 0 <i<n

 b('rni) = a -l( ri,- (rriele * * * "rie)) + k(b(irn),e% . b(,rien))
 = a- -(Tri - Tri) + 4.((br)nie', * * *, (b)i=n)) (br)ti.

 In order to show that b: G [n]--H[n] is an isomorphism consider a simplex
 aEG [n] such that bo = 0. Then (bo)ei =b(aci) = 0. By the induction hypothe-
 sis this implies aei =0. Hence

 O = bo- a-'(a -((0, * ,O)) + (0, . . ., O) = a-la

 and because a-' is an isomorphism this implies o=0 i.e. b: G[n]->H[n] is a
 monomorphism. Now let reH[n] and let

 ai = b-p(re% p = a(r - q(,e re,)).

 'Then

 r = a-lp + ck(boa, , b-n)

 = a-1(p + O(Oi, * . . . a)-(, , o^)) + 4(boi, * * , ba,,)
 = b(p + O * *,

 i.e. b: G[n]->H[n] is also an epimorphism atid is thus an isomorpllism.
 Naturality of b is now easily verified.

 APPENDIX

 12. The c.s.s. free abelian group generated by a c.s.s. complex. Definie a
 functor

 F1A: 8- 9v
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 as follows. Let KES be an object. Then FAK[n] is the free abelian group
 with a generator a for each cr E K [n] and (FAK)a is the homomorphism given
 by

 ((FAK)a)a = a-a.

 FAK is called the c.s.s. free abelian group generated by K. For each c.s.s. map
 f: K-*L a c.s.s. homomorphism FAf: FAK->FAL is defined by

 (FAf)a = fa-

 The functor FA is closely related to the functors Hv(r, ) and CN (or
 equivalently or). The relation is expressed by the following theorem.

 THEOREM (12.1). There exists a natural equivalence

 d: FA (8) -- v(r, CN(s)).

 Proof. For each object KG$ define a c.s.s. homomorphism

 d: FAK -* Hv(r, CNK)

 by

 da= CN4U

 where O.: A [n ] --K is the unique map such that ca = oa for all aEA [n]. The
 naturality of d then is obvious. It is also clear that d is an isomorphism in
 dimension 0. Now suppose it has already been proved that d is an isomor-
 phism in dimension <n. Then it is sufficient to show that d is also an iso-
 morphism in dimension n. Let D (resp. E) be the subgroup of FAK[n]
 (resp. H(r [n], CNK)) generated by the degenerate simplices. Then Lemma
 (10.2) and the additivity of 4 imply

 p E D (resp. E) if and only if p = 4(pel, . * pi.n).

 Combining this with the fact that d is an isomorphism in dimension n-1 we
 get that d: D--E is an isomorphism. It is easily seen that D is freely gener-
 ated by those a for which o- is degenerate. Consequently FAK [n]= D + D,
 where P is the free abelian group generated by elements ae-n(ie, * , aef)
 where o is nondegenerate. Similarly we get H(r [n], CNK) =E+a-'(CNK)n.
 It now follows from

 d( - q5(&e', . . . X arn))(CNEn) = (CNq5,)(CNren) - d(q5(&el, *,n))(CNen)
 = CNa- + 0 = CNa-

 where CNo is the generator of CNK, corresponding with the nondegenerate
 simplex a, that d: D- a-1(CNK)^ is also an isomorphism and so is therefore
 d: FAK[nI-H(r [n], CNK).

 Let X be a topological space, let K=IIv(2, X) (see ?4) and let q CK[O].
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 Let again

 h*: 7rn(K; 0) -- Hn(CNK)

 be the Hurewicz homomorphism. Consider the (natural) map

 f: K--FAK

 defined by fc = , o- E K.
 PROPOSITION (12.2). Commutativity holds in the diagram

 7rn(FAK; i)

 f* *
 7rn(FAK)

 7rn(K;qJ>) Fzd*

 \ rn(H?v(r, CNK))

 h*\~~- I a*
 Hn(CNK)

 i.e. the map f: K- FAK induces (up to a natural equivalence) the Hurewicz
 homomorphisms.

 Proof. Let vE7rn(K; 4), v?O0 and let oEv. If CNo- is the corresponding
 generator of CNK, then CGNUh*v-H(CNK). Furthermore

 '5#=ai^X . . .1n-1,

 d~#fa = CNO, - (di),q. * n-1,

 adq4#f = (CN,,) (CNen) - ((di) * *I ln-1) (CN6n)

 = CNa - 0 = CNa.

 Hence

 a*d*v*f* = h*.
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