Odd primary Steenrod algebra, additive formal group laws, and modular invariants

By Masateru Inoue

(Received Jun. 3, 2004)
(Revised Mar. 14, 2005)

Abstract

We give a conceptual clarification of Milnor's theorem, which tells us the Hopf algebra structure of the stable co-operations $H_{*} H$ in the odd primary ordinary cohomology. Directly connecting $H_{*} H$ with the quasi-strict automorphism group of some 1-dimensional additive formal group law and modular invariants, we give a new proof of this theorem of Milnor.

1. Introduction.

Suppose that p is an odd prime, and that H is the $\bmod p$ Eilenberg-MacLane spectrum. Let \mathscr{F}^{*} be the free associative graded algebra generated by the symbols $\beta, P^{1}, P^{2}, \ldots$ Let S^{*} be the quotient algebra of \mathscr{F}^{*} modulo the Adem relations. The Cartan formula gives a coalgebra structure of S^{*}. Therefore S^{*} is a Hopf algebra, and it is called the Steenrod algebra. As usual, we regard $\beta, P^{1}, P^{2}, \ldots$ as elements in the stable operations $H^{*} H$. Then it is well known that S^{*} is isomorphic to $H^{*} H$ as a Hopf algebra. Milnor [7] showed that S_{*}, the dual Hopf algebra of S^{*}, is isomorphic to the Hopf algebra $E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\xi_{1}, \xi_{2}, \ldots\right]$ whose coproduct is given by

$$
\tau_{n} \mapsto \tau_{n} \otimes 1+\sum_{i=0}^{n} \xi_{n-i}^{p^{i}} \otimes \tau_{i}, \quad \xi_{n} \mapsto \sum_{i=0}^{n} \xi_{n-i}^{p^{i}} \otimes \xi_{i}
$$

This induces the Hopf algebra structure of the stable co-operations $H_{*} H$.
Our aim is to reinforce and clarify this theorem of Milnor by introducing the quasistrict automorphism group of a 1-dimensional additive formal group law and modular invariants. Our argument consists of two steps.

In the first step, we consider two functors $\mathrm{Op}(-)$ and $\mathrm{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ on the category of non-negative graded commutative algebras over \boldsymbol{F}_{p}. The functor $\mathrm{Op}(-)$ assigns $\mathrm{Op}\left(R_{*}\right)$, the set of all multiplicative operations

$$
H^{*}(-) \longrightarrow H^{*}(-) \otimes R_{*}
$$

which satisfy certain properties, to each R_{*}, a non-negatively graded commutative algebra over \boldsymbol{F}_{p}. The functor $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ assigns $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$, the set of all quasi-strict

[^0]automorphisms of the 1-dimensional additive formal group law over the ring of dual numbers $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$ to each R_{*}. Then $\mathrm{Op}(-)$ and $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ are represented by the graded algebras $H_{*} H$ and $A_{*}=E\left(\bar{\tau}_{0}, \bar{\tau}_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]$, respectively. In other words, we have natural isomorphisms
$$
\lambda: \mathrm{Op}(-) \xrightarrow{\cong} \operatorname{Hom}_{\boldsymbol{F}_{p} \text {-alg }}\left(H_{*} H,-\right), \quad T: \operatorname{Hom}_{\boldsymbol{F}_{p} \text {-alg }}\left(A_{*},-\right) \xrightarrow{\cong} \operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-) .
$$

Moreover we can define a natural transformation

$$
F: \mathrm{Op}(-) \rightarrow \operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)
$$

which directly connects $H_{*} H$ with the quasi-strict automorphism group of a 1dimensional additive formal group law. These induce the following commutative diagram:

Here $N=T^{-1} \circ F \circ \lambda^{-1}$. In particular, we obtain the crucial homomorphism of algebras

$$
N\left(\operatorname{id}_{H_{*} H}\right): A_{*} \rightarrow H_{*} H .
$$

The composite of two quasi-strict automorphisms is also a quasi-strict one. This means that $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ is a functor to the category of groups, which induces the Hopf algebra structure of A_{*}. Then we see $N\left(\mathrm{id}_{H_{*} H}\right)$ is a Hopf algebra homomorphism.

In the second step, we show that $N\left(\mathrm{id}_{H_{*} H}\right)$ is an isomorphism by the usage of a multiplicative operation

$$
S_{n}: H^{*}(-) \longrightarrow H^{*}(-) \otimes D[n]_{*},
$$

where $D[n]_{*}=E\left(\tau[n]_{0}, \ldots, \tau[n]_{n-1}\right) \otimes \boldsymbol{F}_{p}\left[\xi[n]_{1}, \ldots, \xi[n]_{n}\right]$. The definition of S_{n} depends heavily upon Mùi's work on cohomology operations derived from modular invariants. Once such a multiplicative operation S_{n} is defined, we immediately obtain the following commutative diagram from (1.1):

Here $T^{-1} \circ F\left(S_{n}\right)$ is shown to be an isomorphism in some low range of homological degree, which becomes arbitrarily large as we choose sufficiently large n. This implies
that $N\left(\mathrm{id}_{H_{*} H}\right)$ is injective. Furthermore by the old work of Cartan [2], [3], the Poincaré series of A_{*} and that of $H_{*} H$ are the same. Therefore $N\left(\mathrm{id}_{H_{*} H}\right)$ is an isomorphism. This leads us to the Hopf algebra structure of $H_{*} H$, for we can easily obtain the Hopf algebra structure of A_{*}.

In [6], we showed a similar result in the mod 2 case, which tells us the Hopf algebra structure of the stable co-operations $H \boldsymbol{Z} / 2_{*} H \boldsymbol{Z} / 2$ in the $\bmod 2$ ordinary cohomology by using the strict automorphism group of a 1-dimensional additive formal group law and modular invariants. The approach in this paper is similar to the one we used in [6]. However there is a difference. The strict automorphism group of the 1-dimensional additive formal group law over R_{*} plays an important role in [6], whereas the quasi-strict one over $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$ does it in this paper. The usage of the strict one over R_{*} in this paper determine the polynomial part $\boldsymbol{F}_{p}\left[\xi_{1}, \xi_{2}, \ldots\right]$ of $H_{*} H$ only.

This paper is divided into five sections and an appendix. In Section 2, we introduce the notion of multiplicative operations. We define a multiplicative operation ψ with good properties, which induces the natural isomorphism λ. In Section 3, we recall the definition of reduced power operations $[\mathbf{1 0}]$ and Mùi's results $[\mathbf{8}],[\mathbf{9}]$, and introduce the multiplicative operation S_{n} by using these results. In Section 4, we study $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ and obtain the natural isomorphism T. In Section 5, we define the natural transformation F which relates $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ with $\mathrm{Op}(-)$, and then we show the main theorem (Theorem 5.2). In Appendix A, we define higher dimensional graded formal group laws and homomorphisms. Especially we study a certain 2-dimensional graded additive formal group law G_{a} and the quasi-strict automorphism group of G_{a}. Then we prove the main theorem by the usage of the quasi-strict automorphism group of G_{a} instead of $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$.

Throughout this paper, we use the following notations. Suppose that X and Y are spaces, and that p is an odd prime. We denote the $\bmod p$ cohomology by $H^{*}(-)$. Let e_{1}, \ldots, e_{n} be the standard basis of $(\boldsymbol{Z} / p)^{n}$. Let

$$
\epsilon_{1}, \ldots, \epsilon_{n} \in H^{1}\left(B(\boldsymbol{Z} / p)^{n}\right)=\operatorname{Hom}\left((\boldsymbol{Z} / p)^{n}, \boldsymbol{Z} / p\right)
$$

be the dual of e_{1}, \ldots, e_{n}. Put $x_{i}=\beta \epsilon_{i}$, where β is the Bockstein homomorphism. Then we have

$$
H^{*}\left(B(\boldsymbol{Z} / p)^{n}\right)=E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right] .
$$

Any graded \boldsymbol{F}_{p}-algebra R_{*} is supposed to be non-negatively graded and commutative, that is to say, $R_{n}=0$ for $n<0$, and $a \cdot b=(-1)^{\operatorname{deg} a \cdot \operatorname{deg} b} b \cdot a$.

We set degree as follows. For an element x in $H^{n}(X)$, we define the degree of x by $\operatorname{deg} x=n$. For a graded \boldsymbol{F}_{p}-algebra R_{*} and $r \in R_{m}$, we define the degree of r by $\operatorname{deg} r=-m$. Therefore $x \otimes r \in H^{*}(X) \otimes R_{*}$ is of degree $n-m$.

The author is grateful to the referee for making many useful suggestions. In the first manuscript of this paper, we proved the main theorem by using a 2 -dimensional graded additive formal group law. The referee suggested to the author replacing it with the ordinary 1-dimensional additive formal group law in the context of the ring of dual numbers. Almost all contents in Section 4 are given by the referee. This simplifies the proof of the main theorem. The author is grateful to Professor Minoru Itoh, Dr. Kazuhiko

Yamaki and Dr. Takeshi Abe for pointing out many problematic English expressions and for giving lectures on English.

2. Multiplicative operations.

We now define multiplicative operations in a way similar to Definition 2.1 in [6].
Definition 2.1. Let R_{*} be a graded \boldsymbol{F}_{p}-algebra. Consider the graded module whose degree k-part is $\prod_{n \geq 0} H^{k+n}(X) \otimes R_{n}$. By abuse of notation, we denote it by $H^{*}(X) \otimes R_{*}$. A natural operation $\gamma: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$ which preserves degree is said to be multiplicative if γ satisfies the following conditions:
(i) The following diagram is commutative:

Here \times is the cross product, m is the multiplication on R_{*}, and μ is defined by $\mu(x, y)=(-1)^{m n}(y, x)$ for $x \in R_{m}$ and $y \in H^{n}(Y)$.
(ii) $\gamma(u)=u \otimes 1$ when u is a generator of $H^{1}\left(S^{1}\right)$.

Let $\tilde{H}^{*}(-)$ be the reduced $\bmod p$ cohomology, and γ a multiplicative operation. Then γ induces the reduced operation $\tilde{\gamma}: \widetilde{H}^{*}(X) \rightarrow \widetilde{H}^{*}(X) \otimes R_{*}$, which satisfies the following commutative diagram:

Here \wedge is the smash product.
Lemma 2.2 (See [6, Lemma 2.2]). Suppose that γ is a multiplicative operation. Then $\tilde{\gamma}$ is stable. That is, the following diagram is commutative:

Here σ is the suspension isomorphism.

Proof. By the commutative diagram (2.1), we have the following commutative diagram:

For any element x in $\widetilde{H}^{*}(X)$, we have

$$
\begin{aligned}
\tilde{\gamma}(\sigma(x)) & =\tilde{\gamma}(u \wedge x)=(\wedge \otimes m) \circ(1 \otimes \mu \otimes 1) \circ(\tilde{\gamma}(u) \otimes \tilde{\gamma}(x)) \\
& =(\wedge \otimes m) \circ(1 \otimes \mu \otimes 1)(u \otimes 1 \otimes \tilde{\gamma}(x))=u \wedge \tilde{\gamma}(x)=(\sigma \otimes 1) \circ \tilde{\gamma}(x)
\end{aligned}
$$

This means that $\tilde{\gamma}$ is a stable operation.
Let H be the $\bmod p$ Eilenberg-MacLane spectrum. We want to introduce a multiplicative operation $\psi: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$ with good properties. We define a map

$$
\bar{\psi}: H^{*}(X)=\left\{X^{+}, H\right\}^{*} \rightarrow\left\{X^{+}, H \wedge H\right\}^{*}
$$

by $\bar{\psi}(f)=i \wedge f \in\left\{S^{0} \wedge X^{+}, H \wedge H\right\}^{*}$, where $i: S^{0} \rightarrow H$ is the unit map. Let $m: H \wedge H \rightarrow H$ be the multiplication on H. The map $\kappa: H^{*}(X) \otimes H_{*} H \rightarrow\left\{X^{+}, H \wedge H\right\}^{*}$ induced by $H \wedge(H \wedge H) \xrightarrow{m \wedge 1} H \wedge H$ is an isomorphism since $H_{n} H$ is finite dimensional for each n. (See [6, Lemma 2.3].) We set

$$
\begin{equation*}
\psi=\kappa^{-1} \circ \bar{\psi}: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H \tag{2.2}
\end{equation*}
$$

We see that ψ is a multiplicative operation by the same proof as [$\mathbf{6}$, Lemma 2.4].
In the remainder of this section, we study properties of ψ. From now on, we assume that any graded algebra R_{*} over \boldsymbol{F}_{p} is of finite type, that is, R_{n} is finite dimensional for each n. Since R_{*} is of finite type, $H^{*}(X) \otimes R_{*}$ satisfies the wedge axiom

$$
H^{*}\left(\vee X_{\alpha}\right) \otimes R_{*} \cong \prod_{\alpha} H^{*}\left(X_{\alpha}\right) \otimes R_{*}
$$

Therefore $H^{*}(X) \otimes R_{*}$ is a cohomology theory, and we write $H R_{*}$ for the spectrum representing it. The cohomology $H^{*}() \otimes R_{*}$ has the products

$$
\begin{gathered}
H^{*}(X) \otimes R_{*} \otimes H^{*}(Y) \otimes R_{*} \longrightarrow H^{*}(X \times Y) \otimes R_{*} \\
\left(x \otimes r \otimes y \otimes r^{\prime} \mapsto(-1)^{\operatorname{deg} r \cdot \operatorname{deg} y}(x \times y) \otimes r \cdot r^{\prime}\right), \\
H^{*}(X) \otimes\left(H^{*}(Y) \otimes R_{*}\right) \longrightarrow H^{*}(X \times Y) \otimes R_{*} \quad(x \otimes y \otimes r \mapsto(x \times y) \otimes r) .
\end{gathered}
$$

These imply that $H R_{*}$ is a commutative ring spectrum and an H-module spectrum.
By Adams [1, III, 13.5], we have the isomorphism

$$
\lambda:\left(H R_{*}\right)^{*} H \xrightarrow{\cong} \operatorname{Hom}_{\boldsymbol{F}_{p}}^{*}\left(H_{*} H, R_{*}\right) .
$$

Here this map is defined by $\lambda(x)=\left(H \wedge H \xrightarrow{1 \wedge x} H \wedge H R_{*} \xrightarrow{\tau} H R_{*}\right)$ for $x \in\left\{H, H R_{*}\right\}^{*}$, where $\tau: H \wedge H R_{*} \rightarrow H R_{*}$ is the H-module map. It is easily seen that the following diagram is commutative:

Let $\operatorname{Op}\left(R_{*}\right)$ be the set of all multiplicative operations over R_{*}. Given a graded algebra homomorphism $R_{*} \rightarrow R^{\prime}{ }_{*}$ and $\gamma \in \operatorname{Op}\left(R_{*}\right)$,

$$
(1 \otimes r) \circ \gamma: H^{*}(X) \xrightarrow{\gamma} H^{*}(X) \otimes R_{*} \xrightarrow{1 \otimes r} H^{*}(X) \otimes R_{*}^{\prime}
$$

is a multiplicative operation over $R^{\prime}{ }_{*}$. Therefore $\mathrm{Op}(-)$ is a covariant functor from the category of graded algebras to the category of sets. From Lemma 2.2, $\tilde{\gamma}$ is a stable cohomology operation. In conclusion, we can regard γ as an element in $\left(H R_{*}\right)^{0} H$, and hence we have $\operatorname{Op}\left(R_{*}\right) \subset\left(H R_{*}\right)^{0} H$. We denote the restriction $\operatorname{Op}\left(R_{*}\right) \rightarrow \operatorname{Hom}_{\boldsymbol{F}_{p}}\left(H_{*} H, R_{*}\right)$ of λ by the same symbol λ. Then we have the following theorem. Since the proof is the same as that of [$\mathbf{6}$, Theorem 2.5], we omit it.

Theorem 2.3. There is a one-to-one correspondence

$$
\lambda: \mathrm{Op}\left(R_{*}\right) \longrightarrow \operatorname{Hom}_{\boldsymbol{F}_{p}-\operatorname{alg}}\left(H_{*} H, R_{*}\right) .
$$

Here λ is natural in R_{*}, and satisfies the commutativity of the diagram (2.3). Especially $\lambda(\psi)$ is the identity map of $H_{*} H$.

3. Steenrod's reduced power operations.

Let I be a finite ordered set. We denote by $\operatorname{Sym}(I)$ and $\operatorname{Alt}(I)$ the symmetric group and the alternating group of I, respectively. Let J be a finite ordered set, G a subgroup of $\operatorname{Alt}(I)$, and H a subgroup of $\operatorname{Alt}(J)$. Let $G \int H=G \ltimes \prod_{X} H$, the wreath product of G and H. Then we have

$$
\begin{equation*}
G \times H \subset G \int H \subset \operatorname{Alt}(I \times J) \tag{3.1}
\end{equation*}
$$

where the first inclusion is given by the diagonal $H \rightarrow \prod_{I} H$.

Consider the vector space $E^{n}=E_{1} \times \cdots \times E_{n}$, where $E_{i}=\boldsymbol{Z} / p$. Let $\Sigma_{p^{n}}$ and $A_{p^{n}}$ be the symmetric group $\operatorname{Sym}\left(E^{n}\right)$ and the alternating group $\operatorname{Alt}\left(E^{n}\right)$ on the point set E^{n}, respectively. The vector space E^{n} acts on itself: $g \in E^{n}$ sends $h \in E^{n}$ to $g+h$. Thereby we can regard E^{n} as a permutation group on E^{n}. This implies the inclusion $E^{n} \subset \Sigma_{p^{n}}$. We define a Sylow p-subgroup $\Sigma_{p^{n}, p}$ of $\Sigma_{p^{n}}$ by $\Sigma_{p^{n}, p}=E_{1} \int \cdots \int E_{n}$. Using (3.1) repeatedly, we have

$$
A_{p^{n}} \supset \Sigma_{p^{n}, p} \supset E_{1} \times \cdots \times E_{n}=E^{n}
$$

We recall reduced power operations in [10]. Let G be a subgroup of $\operatorname{Alt}(I)$, where I is an ordered set of m elements. Given a space X and $X_{i}=X$ for any $i \in I$, we put $X^{I}=\prod_{i \in I} X_{i}$ and $E_{G}(X)=E G \times_{G} X^{I}$. Steenrod defined the power operation

$$
P_{G}: H^{q}(X) \longrightarrow H^{m q}\left(E_{G}(X)\right) .
$$

Let $d_{G}: B G \times X \rightarrow E_{G}(X)$ be the diagonal map. Then we see

$$
d_{G}^{*} P_{G}: H^{q}(X) \rightarrow H^{m q}(B G \times X) .
$$

Let G^{\prime} be a subgroup of G. The inclusion $i_{G, G^{\prime}}: G^{\prime} \hookrightarrow G$ induces $B G^{\prime} \rightarrow B G$ and $E_{G^{\prime}}(X) \rightarrow E_{G}(X)$, which are denoted by the same symbol $i_{G, G^{\prime}}$. It is known in $[\mathbf{1 0}$, VII] that $i_{G, G^{\prime}}^{*} P_{G}=P_{G^{\prime}}$. Moreover d_{G} and $i_{G, G^{\prime}}$ are continuous. Hence we have the following equalities for $E^{n} \subset \Sigma_{p^{n}, p} \subset A_{p^{n}}$:

$$
\begin{equation*}
i_{A_{p^{n}}, E^{n}}^{*} d_{A_{p^{n}}}^{*} P_{A_{p^{n}}}=i_{\Sigma_{p^{n}, p}, E^{n}}^{*} d_{\Sigma_{p^{n}, p}}^{*} P_{\Sigma_{p^{n}, p}}=d_{n}^{*} P_{n}: H^{q}(X) \rightarrow H^{p^{n} q}\left(B E^{n} \times X\right) . \tag{3.2}
\end{equation*}
$$

Here $d_{n}=d_{E^{n}}$ and $P_{n}=P_{E^{n}}$.
$d_{n}^{*} P_{n}$ has the following fundamental properties.
Lemma 3.1. Put $h=(p-1) / 2$. Then we have
(i) $d_{n}^{*} P_{n}=d_{1}^{*} P_{1} d_{n-1}^{*} P_{n-1}$.
(ii) $d_{n}^{*} P_{n}(u v)=(-1)^{n h q r} d_{n}^{*} P_{n}(u) \cdot d_{n}^{*} P_{n}(v)$, where $q=\operatorname{deg} u$ and $r=\operatorname{deg} v$.

Put $G L_{n}=G L_{n}\left(\boldsymbol{F}_{p}\right), S L_{n}=\left\{w \in G L_{n} \mid \operatorname{det} w=1\right\}$ and $\widetilde{S L}_{n}=\{w \in$ $\left.G L_{n} \mid(\operatorname{det} w)^{h}=1\right\}$. Consider the graded algebras

$$
\boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right], \quad E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]
$$

with $\operatorname{deg} \epsilon_{i}=1$ and $\operatorname{deg} x_{i}=2$. Here $E()$ is an exterior algebra over \boldsymbol{F}_{p}. Any subgroup K of $G L_{n}$ operates naturally on them. Let

$$
\boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]^{K}, \quad\left(E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)^{K}
$$

be the subalgebras of the K-invariants. Recall the K-invariants for the case of $K=G L_{n}$,
$S L_{n}$ or $\widetilde{S L}_{n}$ from Dickson [4] and Mùi [8], [9]. These are needed to describe $d_{n}^{*} P_{n}(u)$ for $u \in H^{*}(X)$, which leads us to the definition of a multiplicative operation S_{n}.
$\operatorname{Put}\left[e_{1}, \ldots, e_{n}\right]=\operatorname{det}\left(x_{i}^{p_{j}}\right)$ for any sequence of non-negative integers $\left(e_{1}, \ldots, e_{n}\right)$. In particular, we set $L_{n, s}=[0, \ldots, \hat{s}, \ldots, n]$ for $0 \leq s \leq n$, and $L_{n}=L_{n, n}$. By the definition, we have $\operatorname{deg} L_{n, s}=2\left(p^{n+1}-p^{s}\right) /(p-1)$ and $\operatorname{deg} L_{n}=2\left(p^{n}-1\right) /(p-1)$. According to [4], $[\mathbf{8}, \mathrm{I} .4 .15, \mathrm{I} .4 .16]$ and $[\mathbf{9}, 2.1], L_{n, s} / L_{n}$ is an element in $\boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$, and it is denoted by $Q_{n, s}$. Note that $Q_{n, n}=1$. By the definition, we see $\operatorname{deg} Q_{n, s}=2\left(p^{n}-p^{s}\right)$. From Dickson [4], we have

$$
\boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]^{S L_{n}}=\boldsymbol{F}_{p}\left[L_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] .
$$

Let $\left(a_{i j}\right)$ be a matrix of type (n, n) over a graded algebra. Then the determinant $\operatorname{det}\left(a_{i j}\right)$ is defined as follows:

$$
\operatorname{det}\left(a_{i j}\right)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)} .
$$

We set

$$
\left[k ; e_{k+1}, \ldots, e_{n}\right]=\frac{1}{k!} \operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & \cdots & \epsilon_{n} \\
\vdots & \ddots & \vdots \\
\epsilon_{1} & \cdots & \epsilon_{n} \\
x_{1}^{p_{k+1}} & \cdots & x_{n}^{p^{e_{k+1}}} \\
\vdots & \ddots & \vdots \\
x_{1}^{p^{e_{n}}} & \cdots & x_{n}^{p_{n}}
\end{array}\right)
$$

for any sequence of non-negative integers $\left(e_{k+1}, \ldots, e_{n}\right)$. For $0 \leq s_{1}<\cdots<s_{k} \leq n-1$, we put

$$
M_{n, s_{1}, \ldots, s_{k}}=\left[k ; 0, \ldots, \hat{s}_{1}, \ldots, \hat{s}_{k}, \ldots, n-1\right] .
$$

Then we obtain $\operatorname{deg} M_{n, s_{1}, \ldots, s_{k}}=k+2\left(p^{n}-1\right) /(p-1)-2\left(p^{s_{1}}+\cdots+p^{s_{k}}\right)$. Here are results of Mùi.

Theorem 3.2 ([8, I.4.8]). We have the direct sum decomposition

$$
\begin{aligned}
& \left(E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)^{S L_{n}} \\
& \quad \cong \boldsymbol{F}_{p}\left[L_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] \oplus \bigoplus_{0 \leq s_{1}<\cdots<s_{k} \leq n-1} \boldsymbol{F}_{p}\left[L_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] \cdot M_{n, s_{1}, \cdots, s_{k}}
\end{aligned}
$$

as an $\boldsymbol{F}_{p}\left[L_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]$-module. The multiplicative structure is given by the relations

$$
M_{n, s}^{2}=0, \quad M_{n, s_{1}} \cdots M_{n, s_{k}}=(-1)^{k(k-1) / 2} M_{n, s_{1}, \ldots, s_{k}} L_{n}^{k-1}
$$

for $0 \leq s_{1}<\cdots<s_{k} \leq n-1$.
From [9, Lemma 2.1] and this theorem, we obtain the following corollary.
Corollary 3.3 ([9, 2.5]). We have the direct sum decomposition

$$
\begin{aligned}
& \left(E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)^{\widetilde{S L_{n}}} \\
& \quad \cong \boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] \oplus \bigoplus_{0 \leq s_{1}<\cdots<s_{k} \leq n-1} \boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] \cdot \tilde{M}_{n, s_{1}, \cdots, s_{k}}
\end{aligned}
$$

as an $\boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]$-module. Here $\tilde{L}_{n}=L_{n}^{h}$ and $\tilde{M}_{n, s_{1}, \ldots, s_{k}}=M_{n, s_{1}, \ldots, s_{k}} L_{n}^{h-1}$. Then $\operatorname{deg} \tilde{L}_{n}=p^{n}-1$ and $\operatorname{deg} \tilde{M}_{n, s_{1}, \ldots, s_{k}}=k-1+p^{n}-2\left(p^{s_{1}}+\cdots+p^{s_{k}}\right)$.

As in [8], we put $V_{k}=\prod_{a_{i} \in \boldsymbol{Z} / p}\left(a_{1} x_{1}+\cdots+a_{k-1} x_{k-1}+x_{k}\right)$. Then we obtain the relations

$$
L_{n}=V_{1} V_{2} \cdots V_{n}, \quad Q_{n, s}=Q_{n-1, s} V_{n}^{p-1}+Q_{n-1, s-1}^{p}
$$

Proposition $3.4([\mathbf{9}, 2.6])$. Suppose $U_{k}=M_{k, k-1} L_{k-1}^{h-1}$. Then we have

$$
\begin{aligned}
& V_{k+1}=(-1)^{k} \sum_{s=0}^{k}(-1)^{s} Q_{k, s} x_{k+1}^{p^{s}} \\
& U_{k+1}=(-1)^{k}\left(\tilde{L}_{k} \epsilon_{k+1}+\sum_{s=0}^{k-1}(-1)^{s+1} \tilde{M}_{k, s} x_{k+1}^{p^{s}}\right)
\end{aligned}
$$

where $\operatorname{deg} V_{k+1}=2 p^{k}$ and $\operatorname{deg} U_{k+1}=p^{k}$.
We identify $H^{*}\left(B E^{n}\right)$ with the above algebra $E\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$. Using the invariants, we describe the images of

$$
i_{\Sigma_{p^{n}, p}, E^{n}}^{*}: H^{*}\left(B \Sigma_{p^{n}, p}\right) \rightarrow H^{*}\left(B E^{n}\right), \quad i_{A_{p^{n}}, E^{n}}^{*}: H^{*}\left(B A_{p^{n}}\right) \rightarrow H^{*}\left(B E^{n}\right)
$$

as follows.
Theorem 3.5 ([8, II Theorem 5.2], [9, Theorem 3.10]).

$$
\operatorname{Im} i_{\Sigma_{p^{n}, p}^{*}, E^{n}}=E\left(U_{1}, \ldots, U_{n}\right) \otimes \boldsymbol{F}_{p}\left[V_{1}, \ldots, V_{n}\right]
$$

In the proof of [$\mathbf{9}$, Theorem 3.10], it is shown that

$$
\operatorname{Im} i_{A_{p^{n}}, E^{n}}^{*}=\operatorname{Im} i_{\Sigma_{p^{n}, p}, E^{n}}^{*} \cap\left[H^{*}\left(B E^{n}\right)\right]^{\widetilde{L_{L}}} .
$$

From [9, Lemma 3.11] and Corollary 3.3, we see
$\operatorname{Im} i_{\Sigma_{p^{n}, p}, E^{n}}^{*} \cap\left[H^{*}\left(B E^{n}\right)\right]^{\widetilde{S L_{n}}}=E\left(\tilde{M}_{n, 0}, \ldots, \tilde{M}_{n, n-1}\right) \otimes \boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]$.
Therefore we have the following theorem.
Theorem 3.6 ([9, Theorem 3.10]).

$$
\operatorname{Im} i_{A_{p^{n}, E^{n}}^{*}}^{*} E\left(\tilde{M}_{n, 0}, \ldots, \tilde{M}_{n, n-1}\right) \otimes \boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]
$$

Since we have $d_{n}^{*} P_{n}=i_{A_{p^{n}}, E^{n}}^{*} d_{A_{p^{n}}}^{*} P_{A_{p^{n}}}$ from the equality (3.2), we obtain

$$
\operatorname{Im} d_{n}^{*} P_{n} \subset\left(E\left(\tilde{M}_{n, 0}, \ldots, \tilde{M}_{n, n-1}\right) \otimes \boldsymbol{F}_{p}\left[\tilde{L}_{n}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]\right) \otimes H^{*}(X)
$$

Hence the following is well defined.
Definition 3.7 ([9, Definition 4.1]). For every $u \in H^{q}(X)$, we write

$$
d_{n}^{*} P_{n}(u)=\sum \tilde{M}_{n, s_{1}} \cdots \tilde{M}_{n, s_{k}} \tilde{L}_{n}^{r_{0}} Q_{n, 1}^{r_{1}} \cdots Q_{n, n-1}^{r_{n-1}} \otimes \mathscr{D}_{S, R}(u),
$$

where the summation runs over all sequences $S=\left(s_{1}, \ldots, s_{k}\right)$ with $0 \leq s_{1}<\cdots<s_{k} \leq$ $n-1$ and all sequences of non-negative integers $R=\left(r_{0}, \ldots, r_{n-1}\right)$. This formula defines the maps

$$
\mathscr{D}_{S, R}: H^{q}(X) \longrightarrow H^{p^{n} q-|S, R|}(X)
$$

where $|S, R|=k p^{n}+r_{0}\left(p^{n}-1\right)+2\left(\sum_{j=1}^{n-1} r_{j}\left(p^{n}-p^{j}\right)-\sum_{i=1}^{k} p^{s_{i}}\right)$.
Mùi proved the following lemma about $\mathscr{D}_{S, R}$.
Lemma 3.8 ([9, Lemma 4.2]). If $q-k-r_{0}$ is not even or $q<k+r_{0}+2\left(r_{1}+\cdots+\right.$ $\left.r_{n-1}\right)$, then $\mathscr{D}_{S, R}(u)=0$.

Let us introduce a multiplicative operation S_{n}. We set $\mu(q)=(h!)^{q}(-1)^{h q(q-1) / 2}$, and

$$
\Gamma[n]_{*}=E\left(\tilde{M}_{n, 0}, \ldots, \tilde{M}_{n, n-1}\right) \otimes \boldsymbol{F}_{p}\left[\tilde{L}_{n}^{ \pm}, Q_{n, 1}, \ldots, Q_{n, n-1}\right] .
$$

Then we define an operation $\bar{S}_{n}: H^{*}(X) \longrightarrow \Gamma[n]_{*} \otimes H^{*}(X)$ by

$$
x \mapsto \mu(\operatorname{deg} x)^{-n} \tilde{L}_{n}^{-\operatorname{deg} x} d_{n}^{*} P_{n}(x) .
$$

Since $\operatorname{deg} \tilde{L}_{n}^{-\operatorname{deg} x}=-(\operatorname{deg} x) \cdot\left(p^{n}-1\right)$ and $\operatorname{deg} d_{n}^{*} P_{n}(x)=(\operatorname{deg} x) \cdot p^{n}$, we see \bar{S}_{n} preserves degree. Put $\tau[n]_{i}=(-1)^{i+1} \tilde{M}_{n, i} / \tilde{L}_{n}$ for $0 \leq i \leq n-1$, and $\xi[n]_{i}=(-1)^{i} Q_{n, i} / \tilde{L}_{n}^{2}$ for $1 \leq i \leq n$. Denote by $D[n]_{*}$ the subalgebra generated by $\tau[n]_{0}, \ldots, \tau[n]_{n-1}$ and $\xi[n]_{1}, \ldots, \xi[n]_{n}$ in $\Gamma[n]_{*}$. Then we can easily see

$$
D[n]_{*}=E\left(\tau[n]_{0}, \ldots, \tau[n]_{n-1}\right) \otimes \boldsymbol{F}_{p}\left[\xi[n]_{1}, \ldots, \xi[n]_{n}\right] .
$$

Here $\operatorname{deg} \tau[n]_{i}=-\left(2 p^{i}-1\right)$ and $\operatorname{deg} \xi[n]_{i}=-2\left(p^{i}-1\right)$, i.e., $\tau[n]_{i} \in D[n]_{2 p^{i}-1}$ and $\xi[n]_{i} \in D[n]_{2\left(p^{i}-1\right)}$. By Lemma 3.8, we have the following lemma.

Lemma 3.9. $\operatorname{Im}\left(\bar{S}_{n}\right) \subset D[n]_{*} \otimes H^{*}(X)$.
We denote by S_{n} the composite operation

$$
H^{*}(X) \xrightarrow{\bar{S}_{n}} D[n]_{*} \otimes H^{*}(X) \xrightarrow{\mu} H^{*}(X) \otimes D[n]_{*},
$$

where μ is the interchange map $\sum a_{i} \otimes b_{i} \mapsto \sum(-1)^{\operatorname{deg} a_{i} \cdot \operatorname{deg} b_{i}} b_{i} \otimes a_{i}$.
Lemma 3.10. The cohomology operation S_{n} is multiplicative.
Proof. For $u \in H^{q}(X)$ and $v \in H^{r}(X)$, we have

$$
\begin{aligned}
\bar{S}_{n}(u v) & =\mu(q+r)^{-n} \tilde{L}_{n}^{-(q+r)} d_{n}^{*} P_{n}(u v) \\
& =\mu(q+r)^{-n} \tilde{L}_{n}^{-(q+r)}(-1)^{n h q r} d_{n}^{*} P_{n}(u) \cdot d_{n}^{*} P_{n}(v) \\
& =\bar{S}_{n}(u) \cdot \bar{S}_{n}(v)
\end{aligned}
$$

Here the second equality follows from Lemma 3.1, and the third is obvious since $\mu(q+r)=$ $\mu(q) \cdot \mu(r) \cdot(-1)^{h q r}$. Therefore S_{n} satisfies the condition (i) in Definition 2.1.

It remains to prove that S_{n} satisfies the condition (ii) in Definition 2.1. Let u be a generator of $H^{1}\left(S^{1}\right)$. Since

$$
d_{1}^{*} P_{1}(u)=\mu(1)\left(y^{h} \otimes u\right)=\mu(1)\left(\tilde{L}_{1} \otimes u\right),
$$

we have $S_{n}(u)=u \otimes 1$.
For $H^{*}\left(B E_{k+1}\right)=E\left(\epsilon_{k+1}\right) \otimes \boldsymbol{F}_{p}\left[x_{k+1}\right]$, we consider

$$
d_{k}^{*} P_{k}: H^{*}\left(B E_{k+1}\right) \longrightarrow H^{*}\left(B\left(E_{1} \times \cdots \times E_{k}\right) \times B E_{k+1}\right)=H^{*}\left(B E^{k+1}\right)
$$

Then the following theorem is known in Mùi [8].
Theorem 3.11 ([8], [9, Theorem 3.8], [11, Proposition 1.1(iii)]). We have

$$
d_{k}^{*} P_{k}\left(\epsilon_{k+1}\right)=(-h!)^{k} U_{k+1}, \quad d_{k}^{*} P_{k}\left(x_{k+1}\right)=V_{k+1}
$$

This implies the following corollary. It is used in the proof of Theorem 5.2.
Corollary 3.12. For $\epsilon \in H^{1}(B \boldsymbol{Z} / p)$ and $x \in H^{2}(B \boldsymbol{Z} / p)$, we have

$$
S_{n}(\epsilon)=\epsilon \otimes 1+\sum_{s=0}^{n-1} x^{p^{s}} \otimes \tau[n]_{s}, \quad S_{n}(x)=x \otimes 1+\sum_{s=1}^{n} x^{p^{s}} \otimes \xi[n]_{s}
$$

Proof. By Lemma 3.4 and Theorem 3.11, we obtain

$$
\begin{aligned}
\bar{S}_{n}(\epsilon) & =\mu(1)^{-n} \tilde{L}_{n}^{-1} d_{n}^{*} P_{n}(\epsilon) \\
& =(h!)^{-n} \tilde{L}_{n}^{-1}(-h!)^{n}(-1)^{n}\left(\tilde{L}_{n} \otimes \epsilon+\sum_{s=0}^{n-1}(-1)^{s+1} \tilde{M}_{n, s} \otimes x^{p^{s}}\right) \\
& =1 \otimes \epsilon+\sum_{s=0}^{n-1} \tau[n]_{s} \otimes x^{p^{s}}
\end{aligned}
$$

This induces $S_{n}(\epsilon)=\epsilon \otimes 1+\sum_{s=0}^{n-1} x^{p^{s}} \otimes \tau[n]_{s}$.
We see

$$
\begin{aligned}
\mu(2) & =(h!)^{2}(-1)^{h}=(1 \cdot 2 \cdots(p-1) / 2)^{2}(-1)^{h} \\
& =(1 \cdot 2 \cdots(p-1) / 2) \cdot\{(-1) \cdot(-2) \cdots(-(p-1) / 2)\} \\
& =1 \cdot 2 \cdots p-1=-1 .
\end{aligned}
$$

Therefore by Lemma 3.4 and Theorem 3.11, we have

$$
\bar{S}_{n}(x)=\mu(2)^{-n} \tilde{L}_{n}^{-2} d_{n}^{*} P_{n}(x)=(-1)^{-n} \tilde{L}_{n}^{-2}(-1)^{n} \sum_{s=0}^{n}(-1)^{s} Q_{n, s} x^{p^{s}}=\sum_{s=0}^{n} \xi[n]_{s} \otimes x^{p^{s}},
$$

where $\xi[n]_{0}=1$. In consequence, we have $S_{n}(x)=x \otimes 1+\sum_{s=1}^{n} x^{p^{s}} \otimes \xi[n]_{s}$.

4. Some 1-dimensional additive formal group law.

Let g_{a} be the 1-dimensional additive formal group law. For each graded algebra R_{*}, we consider the graded algebra $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$, the ring of dual numbers of R_{*}. Here $\operatorname{deg} \epsilon=1$.

Definition 4.1. We set $\operatorname{deg} x=2$. A power series $f(x)=\sum_{i=1}^{\infty}\left(\epsilon m_{i}+n_{i}\right) x^{i}$ in $R_{*}[\epsilon] /\left(\epsilon^{2}\right)[[x]]$ is called a quasi-strict automorphism of g_{a} over $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$ if it satisfies the following three conditions:
(i) $f(x+y)=f(x)+f(y)$
(ii) $n_{1}=1$
(iii) $m_{i} \in R_{2 i-1}$ and $n_{i} \in R_{2 i-2}$.

Remark. The condition (iii) is equivalent to $\operatorname{deg} \epsilon m_{i} x^{i}=\operatorname{deg} n_{i} x^{i}=2$ for any i.
The condition (i) in this definition implies $m_{i}=0$ and $n_{i}=0$ for $i \neq p^{\alpha}$, and thereby we can express a quasi-strict automorphism $f(x)$ as

$$
f(x)=\sum_{k=0}^{\infty}\left(\epsilon a_{k}+b_{k}\right) x^{p^{k}}, \quad a_{k} \in R_{2 p^{k}-1}, b_{k} \in R_{2 p^{k}-2}, b_{0}=1 .
$$

We write $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$ for the set of all quasi-strict automorphisms over $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$. Then $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ is a functor from the category of graded algebras over \boldsymbol{F}_{p} to the category of sets. We put $A_{*}=E\left(\bar{\tau}_{0}, \bar{\tau}_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]$, where $\bar{\tau}_{i} \in A_{2 p^{i}-1}$ and $\bar{\xi}_{i} \in A_{2 p^{i}-2}$. We have a natural isomorphism of sets

$$
\begin{equation*}
T: \operatorname{Hom}_{\boldsymbol{F}_{p}-\operatorname{alg}}\left(A_{*}, R_{*}\right) \longrightarrow \operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right), \quad h \mapsto \sum_{k=0}^{\infty}\left(\epsilon h\left(\bar{\tau}_{k}\right)+h\left(\bar{\xi}_{k}\right)\right) x^{p^{k}} \tag{4.1}
\end{equation*}
$$

where $\bar{\xi}_{0}=1$. We define a product of $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$ by the composition $(g \cdot f)(x)=$ $f(g(x))$. Then $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$ is a group, and therefore $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ is a functor to the category of groups. Furthermore $\operatorname{Hom}_{\boldsymbol{F}_{p} \text {-alg }}\left(A_{*},-\right)$ is also a functor to the category of groups via (4.1), and this induces the coproduct $\Delta: A_{*} \rightarrow A_{*} \otimes A_{*}$. Given a couple of elements in $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$:

$$
\begin{aligned}
& f(x)=\sum_{j=0}^{\infty}\left(\epsilon a_{j}^{\prime}+b_{j}^{\prime}\right) x^{p^{j}}, \quad a_{j}^{\prime}, b_{j}^{\prime} \in R_{*}, \quad b_{0}^{\prime}=1 \\
& g(x)=\sum_{k=0}^{\infty}\left(\epsilon a_{k}^{\prime \prime}+b_{k}^{\prime \prime}\right) x^{p^{k}}, \quad a_{j}^{\prime \prime}, b_{j}^{\prime \prime} \in R_{*}, \quad b_{0}^{\prime \prime}=1,
\end{aligned}
$$

we obtain the product

$$
\begin{aligned}
(f \cdot g)(x) & =\sum_{i=0}^{\infty}\left(\epsilon a_{i}+b_{i}\right) x^{p^{i}}=\sum_{k=0}^{\infty}\left(\epsilon a_{k}^{\prime \prime}+b_{k}^{\prime \prime}\right)\left(\sum_{j=0}^{\infty}\left(\epsilon a_{j}^{\prime}+b_{j}^{\prime}\right) x^{p^{j}}\right)^{p^{k}} \\
& =\sum_{k=0}^{\infty}\left(\epsilon a_{k}^{\prime \prime}+b_{k}^{\prime \prime}\right)\left(\sum_{j=0}^{\infty}\left(\epsilon a_{j}^{\prime}+b_{j}^{\prime}\right)^{p^{k}} x^{p^{j+k}}\right) \\
& =\left(\epsilon a_{0}^{\prime \prime}+b_{0}^{\prime \prime}\right) \sum_{j=0}^{\infty}\left(\epsilon a_{j}^{\prime}+b_{j}^{\prime}\right) x^{p^{j}}+\sum_{k=1}^{\infty}\left(\epsilon a_{k}^{\prime \prime}+b_{k}^{\prime \prime}\right) \sum_{j=0}^{\infty} b_{j}^{\prime p^{k}} x^{p^{j+k}} \\
& =\sum_{i=0}^{\infty}\left(\epsilon\left(a_{i}^{\prime}+\sum_{k=0}^{i} b_{i-k}^{\prime p^{k}} a_{k}^{\prime \prime}\right)+\sum_{k=0}^{i} b_{i-k}^{p^{k}} b_{k}^{\prime \prime}\right) x^{p^{i}} .
\end{aligned}
$$

Therefore the coproduct Δ is given by

$$
\Delta\left(\bar{\tau}_{i}\right)=\bar{\tau}_{i} \otimes 1+\sum_{k=0}^{i} \bar{\xi}_{i-k}^{p^{k}} \otimes \bar{\tau}_{k}, \quad \Delta\left(\bar{\xi}_{i}\right)=\sum_{k=0}^{i} \bar{\xi}_{i-k}^{p^{k}} \otimes \bar{\xi}_{k} .
$$

Therefore we have the following theorem.
Theorem 4.2. Let A_{*} be the Hopf algebra $E\left(\bar{\tau}_{0}, \bar{\tau}_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]$ whose coproduct is given by

$$
\Delta\left(\bar{\tau}_{i}\right)=\bar{\tau}_{i} \otimes 1+\sum_{k=0}^{i} \bar{\xi}_{i-k}^{p^{k}} \otimes \bar{\tau}_{k}, \quad \Delta\left(\bar{\xi}_{i}\right)=\sum_{k=0}^{i} \bar{\xi}_{i-k}^{p^{k}} \otimes \bar{\xi}_{k} .
$$

Then T is a natural isomorphism of groups.

5. A relation between $H_{*} H$ and $\operatorname{AUT}_{F_{p}}\left(g_{a}\right)$.

The product $a: B \boldsymbol{Z} / p \times B \boldsymbol{Z} / p \rightarrow B \boldsymbol{Z} / p$ induces the coproduct map

$$
a^{*}: H^{*}(B \boldsymbol{Z} / p) \cong E(\epsilon) \otimes \boldsymbol{F}_{p}[x] \longrightarrow H^{*}(B \boldsymbol{Z} / p \times B \boldsymbol{Z} / p) \cong E\left(\epsilon_{1}, \epsilon_{2}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, x_{2}\right]
$$

and we see that $a^{*}(\epsilon)=\epsilon_{1}+\epsilon_{2}$ and $a^{*}(x)=x_{1}+x_{2}$. Consider a multiplicative operation $\gamma: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$. If $X=B \boldsymbol{Z} / p$, we get the following isomorphisms

$$
H^{*}(B \boldsymbol{Z} / p) \otimes R_{*} \cong E(\epsilon) \otimes R_{*}[[x]] \cong R_{*}[\epsilon] /\left(\epsilon^{2}\right)[[x]] .
$$

For $\gamma(\epsilon) \in\left[H^{*}(B \boldsymbol{Z} / p) \otimes R_{*}\right]^{1}$ and $\gamma(x) \in\left[H^{*}(B \boldsymbol{Z} / p) \otimes R_{*}\right]^{2}$, we define an element $f_{\gamma}(x)$ in $R_{*}[\epsilon] /\left(\epsilon^{2}\right)[[x]]$ as $f_{\gamma}(x)=\epsilon \gamma(\epsilon)+\gamma(x)$.

Lemma 5.1. $\quad f_{\gamma}(x)$ is a quasi-strict automorphism of g_{a} over $R_{*}[\epsilon] /\left(\epsilon^{2}\right)$. In other words, $f_{\gamma}(x)$ is an element in $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$.

Proof. Since a multiplicative operation γ preserves degree, $f_{\gamma}(x)$ satisfies the condition (iii) in Definition 4.1.

From the commutative diagram

we have

$$
\begin{aligned}
\gamma\left(\epsilon_{1}+\epsilon_{2}\right) & =\gamma(\epsilon \times 1+1 \times \epsilon) \\
& =((\times) \otimes m) \circ(1 \otimes \mu \otimes 1)(\gamma(\epsilon) \otimes \gamma(1)+\gamma(1) \otimes \gamma(\epsilon))=\gamma\left(\epsilon_{1}\right)+\gamma\left(\epsilon_{2}\right), \\
\gamma\left(x_{1}+x_{2}\right) & =\gamma(x \times 1+1 \times x) \\
& =((\times) \otimes m) \circ(1 \otimes \mu \otimes 1)(\gamma(x) \otimes \gamma(1)+\gamma(1) \otimes \gamma(x))=\gamma\left(x_{1}\right)+\gamma\left(x_{2}\right) .
\end{aligned}
$$

It follows from the above equalities that $f_{\gamma}\left(x_{1}+x_{2}\right)=f_{\gamma}\left(x_{1}\right)+f_{\gamma}\left(x_{2}\right)$, and thereby $f_{\gamma}(x)$ satisfies the condition (i) in Definition 4.1.

It remains to show that $f_{\gamma}(x)$ satisfies the condition (ii) in Definition 4.1. Since $f_{\gamma}(x)$ satisfies the conditions (i) and (iii) in Definition 4.1, we obtain the form

$$
f_{\gamma}(x)=\sum_{k=0}^{\infty}\left(\epsilon a_{k}+b_{k}\right) x^{p^{k}}, \quad a_{k} \in R_{2 p^{k}-1}, b_{k} \in R_{2 p^{k}-2} .
$$

It is enough to prove $b_{0}=1$. Let z be the element in $H^{2}\left(B S^{1}\right)$ which satisfies $j^{*}(z)=x$ for the inclusion $j: B \boldsymbol{Z} / p \rightarrow B S^{1}$. Then we see that $H^{*}\left(B S^{1}\right) \cong \boldsymbol{F}_{p}[z]$, and that j^{*} is injective. Moreover we can write $\gamma(z)$ as $\gamma(z)=\sum_{k=0}^{\infty} c_{k} z^{p^{k}}$. From the commutative diagram

we have

$$
\sum_{k=0}^{\infty} c_{k} x^{p^{k}}=\left(j^{*} \otimes 1\right) \circ \gamma(z)=\gamma \circ j^{*}(z)=\gamma(x)
$$

By the definition of $f_{\gamma}(x)$ and the preceding equality, we see that $b_{0}=1$ is equivalent to $c_{0}=1$.

Let $l: S^{2} \rightarrow B S^{1}$ be the inclusion, and u the element in $H^{2}\left(S^{2}\right)$ which satisfies $l^{*}(z)=u$. By Definition 2.1 (ii) and Lemma 2.2, we have $\gamma(u)=u \otimes 1$. From the commutative diagram

we obtain

$$
u \otimes c_{0}=\left(l^{*} \otimes 1\right) \circ \gamma(z)=\gamma \circ l^{*}(z)=\gamma(u)=u \otimes 1
$$

Hence $c_{0}=1$. This completes the proof of the lemma.
By this lemma, we can define a natural transformation $F: \mathrm{Op}(-) \rightarrow \operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ by $F(\gamma)=f_{\gamma}(x)$. We consider the following commutative diagram:

Here $N=T^{-1} \circ F \circ \lambda^{-1}$. We write χ_{γ} for $T^{-1} \circ F(\gamma) \in \operatorname{Hom}_{\boldsymbol{F}_{p} \text {-alg }}\left(A_{*}, R_{*}\right)$. We obtain two algebra homomorphisms $\chi_{\psi}: A_{*} \rightarrow H_{*} H$ and $\chi_{S_{n}}: A_{*} \rightarrow D[n]_{*}$ from the multiplicative operations $\psi: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$ in (2.2) and $S_{n}: H^{*}(X) \rightarrow H^{*}(X) \otimes D[n]_{*}$ in

Lemma 3.10, respectively. From Theorem 2.3, we see $N\left(\operatorname{id}_{H_{*} H}\right)=\chi_{\psi}$, where $\operatorname{id}_{H_{*} H}$ is the identity map of $H_{*} H$. Since N is a natural transformation, we have

$$
N(l)=N\left(l \circ \operatorname{id}_{H_{*} H}\right)=l \circ N\left(\operatorname{id}_{H_{*} H}\right)=l \circ \chi_{\psi}
$$

for any graded algebra homomorphism $l: H_{*} H \rightarrow R_{*}$. From the commutative diagram (5.1) and the above equality, we see

$$
\chi_{S_{n}}=T^{-1} \circ F\left(S_{n}\right)=N \circ \lambda\left(S_{n}\right)=N\left(\lambda\left(S_{n}\right)\right)=\lambda\left(S_{n}\right) \circ \chi_{\psi},
$$

i.e., the following diagram is commutative:

The map $H \wedge S^{0} \wedge H^{1 \wedge i \wedge 1} H \wedge H \wedge H$ induces the coproduct map

$$
\delta: H_{*} H=\left\{S^{0}, H \wedge H\right\}_{*} \longrightarrow\left\{S^{0}, H \wedge H \wedge H\right\}_{*} \cong H_{*} H \otimes H_{*} H .
$$

Then $H_{*} H$ is a Hopf algebra and $H^{*}(X)$ is an $H_{*} H$-comodule with $\psi: H^{*}(X) \rightarrow$ $H^{*}(X) \otimes H_{*} H$.

The following is the main theorem.
Theorem 5.2. $\chi_{\psi}=N\left(\operatorname{id}_{H_{*} H}\right): A_{*} \longrightarrow H_{*} H$ is a Hopf algebra isomorphism.
Proof. By Corollary 3.12, we have

$$
f_{S_{n}}(x)=\epsilon S_{n}(\epsilon)+S_{n}(x)=\sum_{i=0}^{n-1} \epsilon \tau[n]_{i} x^{p^{i}}+\left(x+\sum_{j=1}^{n} \xi[n]_{i} x^{p^{i}}\right)=\sum_{i=0}^{n}\left(\epsilon \tau[n]_{i}+\xi[n]_{i}\right) x^{p^{i}},
$$

where $\xi[n]_{0}=1$ and $\tau[n]_{n}=0$. From the definition of $\chi_{S_{n}}$ and T, we see

$$
\begin{array}{llll}
\chi_{S_{n}}\left(\bar{\tau}_{i}\right)=\tau[n]_{i} & (0 \leq i \leq n-1), & \chi_{S_{n}}\left(\bar{\tau}_{i}\right)=0 & (i \geq n), \\
\chi_{S_{n}}\left(\bar{\xi}_{i}\right)=\xi[n]_{i} & (1 \leq i \leq n), & \chi_{S_{n}}\left(\bar{\xi}_{i}\right)=0 & (i>n) .
\end{array}
$$

In consequence, $\chi_{S_{n}}: H_{*} H \rightarrow D[n]_{*}$ is an isomorphism for $* \leq 2 p^{n}-2$, which becomes arbitrarily large. This and the commutative diagram (5.2) imply χ_{ψ} is injective. Cartan [3] showed that the Poincaré series of $H_{*} H$ is equal to

$$
\prod_{i=1}^{\infty} \frac{1+t^{2 p^{i-1}-1}}{1-t^{2 p^{i}-2}}
$$

The Poincaré series of A_{*} and that of $H_{*} H$ are the same, and hence χ_{ψ} is bijective.
We need to show that χ_{ψ} is a Hopf algebra homomorphism. Since ψ is an $H_{*} H$ comodule map, we have

$$
(\psi \otimes 1) \circ \psi=(1 \otimes \delta) \circ \psi: H^{*}(X) \longrightarrow H^{*}(X) \otimes H_{*} H \otimes H_{*} H
$$

It is not difficult to see that χ_{ψ} is a Hopf algebra homomorphism. (See [6, Theorem 4.1] for details.)

Appendix A. Higher dimensional graded formal group laws.

We recall higher dimensional commutative formal group laws in Hazewinkel [5]. For convenience, we abbreviate commutative formal group laws to formal group laws.

Definition A.1. An n-dimensional formal group law over a ring A is an n tuple of power series $F(X, Y)=(F(1)(X, Y), \ldots, F(n)(X, Y))$ in $2 n$ indeterminates $X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}$ such that
(i) $\quad F(i)(X, Y) \equiv X_{i}+Y_{i} \bmod \left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)^{2}, \quad i=1, \ldots, n$;
(ii) $F(i)(F(i)(X, Y), Z)=F(i)(X, F(i)(Y, Z)), \quad i=1, \ldots, n$;
(iii) $F(i)(X, Y)=F(i)(Y, X), \quad i=1, \ldots, n$.

Definition A.2. Let $F(X, Y)$ be an n-dimensional formal group law over a ring A and $G\left(X^{\prime}, Y^{\prime}\right)$ an m-dimensional formal group law over A. A homomorphism over A, $F(X, Y) \rightarrow G\left(X^{\prime}, Y^{\prime}\right)$ is an m-tuple of formal power series $\alpha(X)$ in n indeterminates X_{1}, \ldots, X_{n} such that $\alpha(X) \equiv 0 \bmod \left(X_{1}, \ldots, X_{n}\right)$ and $\alpha(F(X, Y))=G(\alpha(X), \alpha(Y))$.

We introduce higher dimensional graded formal group laws over a graded \boldsymbol{F}_{p}-algebra and homomorphisms between them.

Definition A.3. Suppose that α_{i} is odd for $0 \leq i \leq s$, and that α_{j} is even for $s+1 \leq j \leq n$. Let X_{j} and Y_{j} be indeterminates of degree α_{j}. Then an n-tuple of elements $F(X, Y)=(F(1)(X, Y), \ldots, F(n)(X, Y))$ in

$$
E\left(X_{1}, \ldots, X_{s} ; Y_{1}, \ldots, Y_{s}\right) \otimes R_{*}\left[\left[X_{s+1}, \ldots, X_{n} ; Y_{s+1}, \ldots, Y_{n}\right]\right]
$$

is called an n-dimensional graded formal group law over a graded F_{p}-algebra R_{*} if it satisfies the following conditions:
(i) $F(i)$ is a homogeneous formal power series of degree α_{i}, i.e., $\operatorname{deg} t_{I, I^{\prime}} X^{I} Y^{I^{\prime}}=\alpha_{i}$ if $F(i)=\sum t_{I, I^{\prime}} X^{I} Y^{I^{\prime}}$, where $X^{I}=X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}, Y^{I^{\prime}}=Y_{1}^{k_{1}^{\prime}} \cdots Y_{n}^{k_{n}^{\prime}}$ and $t_{I, I^{\prime}} \in R_{*}$ for $I=\left(k_{1}, \ldots, k_{n}\right)$ and $I^{\prime}=\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right)$;
(ii) $F(i)(X, Y) \equiv X_{i}+Y_{i} \bmod \left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)^{2}$;
(iii) $F(i)(F(i)(X, Y), Z)=F(i)(X, F(i)(Y, Z))$;
(iv) $F(i)(X, Y)=F(i)(Y, X)$.

In particular, we define a graded formal group law $G_{a}(X, Y)$ by $G_{a}(i)(X, Y)=X_{i}+Y_{i}$, which is called a graded additive formal group law.

Definition A.4. Suppose that α_{i} is odd for $1 \leq i \leq s$, and that α_{i} is even for $s+1 \leq i \leq n$. Suppose that β_{j} is odd for $1 \leq j \leq s^{\prime}$, and that β_{j} is even for $s^{\prime}+1 \leq j \leq m$. Given indeterminates X_{i}, Y_{i} and $X_{j}^{\prime}, Y_{j}^{\prime}$ such that $\operatorname{deg} X_{i}=\operatorname{deg} Y_{i}=\alpha_{i}$ and $\operatorname{deg} X_{j}^{\prime}=\operatorname{deg} Y_{j}^{\prime}=\beta_{j}$, let $F(X, Y)$ be an n-dimensional graded formal group law with X_{i}, Y_{i} over a graded \boldsymbol{F}_{p}-algebra R_{*}, and $G\left(X^{\prime}, Y^{\prime}\right)$ an m-dimensional graded formal group law with $X_{j}^{\prime}, Y_{j}^{\prime}$ over R_{*}. Then a homomorphism $f(X): F(X, Y) \rightarrow G\left(X^{\prime}, Y^{\prime}\right)$ is an m-tuple of elements $f(X)=(f(1)(X), \ldots, f(m)(X))$ in

$$
E\left(X_{1}, \ldots, X_{s}\right) \otimes R_{*}\left[\left[X_{s+1}, \ldots, X_{n}\right]\right]
$$

which satisfies the following conditions:
(i) $f(i)(X)$ is a homogeneous formal power series of degree β_{i}, i.e., $\operatorname{deg} t_{I} X^{I}=\beta_{i}$ if $F(i)=\sum t_{I} X^{I}$, where $X^{I}=X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}$, and $t_{I} \in R_{*}$ for $I=\left(k_{1}, \cdots, k_{n}\right)$;
(ii) $f(X) \equiv 0 \bmod \left(X_{1}, \ldots, X_{n}\right)$;
(iii) $f(F(X, Y))=G(f(X), f(Y))$.

A homomorphism $f(X): F \rightarrow G$ is called an isomorphism if there exists a homomorphism $g\left(X^{\prime}\right): G \rightarrow F$ such that $f\left(g\left(X^{\prime}\right)\right)=X^{\prime}$ and $g(f(X))=X$. Let $J(f)$ be the matrix

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

where $f(i)(X) \equiv a_{i 1} X_{1}+\cdots+a_{i n} X_{n} \quad \bmod \left(X_{1}, \ldots, X_{n}\right)^{2}$. Note that $J(f)$ is a matrix over a graded algebra. We can easily see that $f(X)$ is an isomorphism if and only if $J(f)$ is invertible. Suppose that $J(f)$ is an upper triangular matrix with all diagonal entries 1, i.e.

$$
\left(\begin{array}{ccc}
1 & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)
$$

Then we see that $J(f)$ is invertible, and $f(X)$ is called a quasi-strict isomorphism.
We now consider a 2-dimensional graded additive formal group law $G_{a}\left(\epsilon_{1}, x_{1} ; \epsilon_{2}, x_{2}\right)$ with $\operatorname{deg} \epsilon_{i}=1$ and $\operatorname{deg} x_{i}=2$. Write $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$ for the set of all quasi-strict automorphisms of $G_{a}\left(\epsilon_{1}, x_{1} ; \epsilon_{2}, x_{2}\right)$ over a graded \boldsymbol{F}_{p}-algebra R_{*}. Obviously Aut $\boldsymbol{F}_{p}\left(G_{a}\right)(-)$ is a functor from the category of graded algebras to the category of sets. By the definition of quasi-strict automorphisms, an element $f(X)=(f(1)(\epsilon, x), f(2)(\epsilon, x))$ in $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$ satisfies the following conditions:

$$
\begin{align*}
& f(1)(\epsilon, x), f(2)(\epsilon, x) \in E(\epsilon) \otimes R_{*}[[x]] \tag{A.1}\\
& \operatorname{deg} \epsilon=1, \operatorname{deg} x=2, \operatorname{deg} f(1)=1, \operatorname{deg} f(2)=2 \tag{A.2}
\end{align*}
$$

$$
\begin{align*}
& f(1)\left(\epsilon_{1}+\epsilon_{2}, x_{1}+x_{2}\right)=f(1)\left(\epsilon_{1}, x_{1}\right)+f(1)\left(\epsilon_{2}, x_{2}\right) ; \tag{A.3}\\
& f(2)\left(\epsilon_{1}+\epsilon_{2}, x_{1}+x_{2}\right)=f(2)\left(\epsilon_{1}, x_{1}\right)+f(2)\left(\epsilon_{2}, x_{2}\right) ; \tag{A.4}\\
& f(1)(\epsilon, x) \equiv \epsilon+a_{0} x, f(2)(\epsilon, x) \equiv x \quad \bmod (\epsilon, x)^{2} \tag{A.5}
\end{align*}
$$

We express a quasi-strict automorphism $f(X)=(f(1)(\epsilon, x), f(2)(\epsilon, x))$ as

$$
f(1)(\epsilon, x)=\sum_{i=0}^{\infty}\left(\epsilon m_{i}+m_{i}^{\prime}\right) x^{i}, \quad f(2)(\epsilon, x)=\sum_{i=1}^{\infty}\left(\epsilon n_{i}+n_{i}^{\prime}\right) x^{i},
$$

where $m_{0}=1, m_{0}^{\prime}=0, n_{1}^{\prime}=1, m_{i} \in R_{2 i}, m_{i}^{\prime} \in R_{2 i-1}, n_{i} \in R_{2 i-1}$, and $n_{i}^{\prime} \in R_{2 i-2}$. From the conditions (A.3) and (A.4), we see

$$
\begin{aligned}
\sum_{i=0}^{\infty}\left(\left(\epsilon_{1}+\epsilon_{2}\right) m_{i}+m_{i}^{\prime}\right)\left(x_{1}+x_{2}\right)^{i} & =\sum_{i=0}^{\infty}\left(\epsilon_{1} m_{i}+m_{i}^{\prime}\right) x_{1}^{i}+\sum_{i=0}^{\infty}\left(\epsilon_{2} m_{i}+m_{i}^{\prime}\right) x_{2}^{i}, \\
\sum_{i=1}^{\infty}\left(\left(\epsilon_{1}+\epsilon_{2}\right) n_{i}+n_{i}^{\prime}\right)\left(x_{1}+x_{2}\right)^{i} & =\sum_{i=1}^{\infty}\left(\epsilon_{1} n_{i}+n_{i}^{\prime}\right) x_{1}^{i}+\sum_{i=1}^{\infty}\left(\epsilon_{2} n_{i}+n_{i}^{\prime}\right) x_{2}^{i} .
\end{aligned}
$$

If $i \geq 1$, then

$$
\left(\epsilon_{1}+\epsilon_{2}\right)\left(x_{1}+y_{1}\right)^{i}=\epsilon_{1} x_{1}^{i}+\epsilon_{2} x_{2}^{i}+\epsilon_{1} x_{2}^{i}+\epsilon_{2} x_{1}^{i}+A
$$

where A is a polynomial. This implies $m_{i}=n_{i}=0$ for $i \geq 1$. If $i=p^{\alpha}$, then $\left(x_{1}+x_{2}\right)^{i}=$ $x_{1}^{i}+x_{2}^{i}$, and if $i \neq p^{\alpha}$, then $\left(x_{1}+x_{2}\right)^{i}=x^{i}+y^{i}+x y B$, where B is a non-zero polynomial. Therefore we have $m_{i}=0$ and $n_{i}=0$ for $i \neq p^{\alpha}$. These show that the conditions (A.1)-(A.5) are equivalent to

$$
\begin{aligned}
& f(1)(\epsilon, x)=\epsilon+a_{0} x+a_{1} x^{p}+\cdots+a_{n} x^{p^{n}}+\cdots \\
& f(2)(\epsilon, x)=\quad x+b_{1} x^{p}+\cdots+b_{n} x^{p^{n}}+\cdots
\end{aligned}
$$

where $a_{i} \in R_{2 p^{i}-1}$ and $b_{i} \in R_{2 p^{i}-2}$. We put $\hat{A}_{*}=E\left(\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\hat{\xi}_{1}, \hat{\xi}_{2}, \ldots\right]$, where $\hat{\tau}_{i} \in \hat{A}_{2 p^{i}-1}$ and $\hat{\xi}_{i} \in \hat{A}_{2 p^{i}-2}$. Define a natural map

$$
\hat{T}: \operatorname{Hom}_{\boldsymbol{F}_{p}-\operatorname{alg}}\left(\hat{A}_{*}, R_{*}\right) \longrightarrow \operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)
$$

by

$$
h \mapsto f(X)=(f(1)(\epsilon, x), f(2)(\epsilon, x))=\left(\epsilon+\sum_{i=0}^{\infty} h\left(\hat{\tau}_{i}\right) x^{p^{i}}, x+\sum_{i=1}^{\infty} h\left(\hat{\xi}_{i}\right) x^{p^{i}}\right) .
$$

Obviously \hat{T} is an isomorphism of sets. A product of $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$ is defined by the composition $(f \cdot g)(X)=g(f(X))$, i.e.,

$$
\begin{aligned}
(f \cdot g)(X) & =((f \cdot g)(1)(X),(f \cdot g)(2)(X)) \\
& =(g(1)(f(1)(\epsilon, x), f(2)(\epsilon, x)), g(2)(f(1)(\epsilon, x), f(2)(\epsilon, x)))
\end{aligned}
$$

We see that $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$ is a group, and therefore $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-)$ is a functor to the category of groups. Then there exists a unique coproduct $\hat{\Delta}: \hat{A}_{*} \rightarrow \hat{A}_{*} \otimes \hat{A}_{*}$ such that \hat{T} is a group isomorphism. We express a couple of elements $f(X)=(f(1)(X), f(2)(X))$ and $g(X)=(g(1)(X), g(2)(X))$ in $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$ as

$$
\begin{array}{ll}
f(1)(X)=\epsilon+\sum_{j=0}^{\infty} a_{j}^{\prime} x^{p^{j}}, & f(2)(X)=\sum_{j=0}^{\infty} b_{j}^{\prime} x^{p^{j}},
\end{array} b_{0}^{\prime}=1 ; ~ 子 \sum_{k=0}^{\infty} a_{k}^{\prime \prime} x^{p^{k}}, \quad g(2)(X)=\sum_{k=0}^{\infty} b_{k}^{\prime \prime} x^{p^{k}}, \quad b_{0}^{\prime \prime}=1 . ~ . ~ . ~(1)(X)=\epsilon+{ }^{\infty} .
$$

Then we can describe the product $(f \cdot g)(X)$ as

$$
\begin{aligned}
(f \cdot g)(1)(X) & =\epsilon+\sum_{i=0}^{\infty} a_{i} x^{p^{i}}=\left(\epsilon+\sum_{j=0}^{\infty} a_{j}^{\prime} x^{p^{j}}\right)+\sum_{k=0}^{\infty} a_{k}^{\prime \prime}\left(\sum_{j=0}^{\infty} b_{j}^{\prime} x^{p^{j}}\right)^{p^{k}} \\
& =\epsilon+\sum_{i=0}^{\infty}\left(a_{i}^{\prime}+\sum_{k=0}^{i} b_{i-k}^{\prime p^{k}} a_{k}^{\prime \prime}\right) x^{p^{i}}, \\
(f \cdot g)(2)(X) & =\sum_{i=0}^{\infty} b_{i} x^{p^{i}}=\sum_{k=0}^{\infty} b_{k}^{\prime \prime}\left(\sum_{j=0}^{\infty} b_{j}^{\prime} x^{p^{j}}\right)^{p^{k}}=\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} b_{i-k}^{\prime} p^{k} b_{k}^{\prime \prime}\right) x^{p^{i}} .
\end{aligned}
$$

These imply that

$$
\hat{\Delta}\left(\hat{\tau}_{i}\right)=\hat{\tau}_{i} \otimes 1+\sum_{k=0}^{i} \hat{\xi}_{i-k}^{p^{k}} \otimes \hat{\tau}_{k}, \quad \hat{\Delta}\left(\hat{\xi}_{i}\right)=\sum_{k=0}^{i} \hat{\xi}_{i-k}^{p^{k}} \otimes \hat{\xi}_{k} .
$$

Therefore we have the following theorem.
Theorem A.5. Let \hat{A}_{*} be the Hopf algebra $E\left(\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots\right) \otimes \boldsymbol{F}_{p}\left[\hat{\xi}_{1}, \hat{\xi}_{2}, \ldots\right]$ whose coproduct is given by

$$
\hat{\Delta}\left(\hat{\tau}_{i}\right)=\hat{\tau}_{i} \otimes 1+\sum_{k=0}^{i} \hat{\xi}_{i-k}^{p^{k}} \otimes \hat{\tau}_{k}, \quad \hat{\Delta}\left(\hat{\xi}_{i}\right)=\sum_{k=0}^{i} \hat{\xi}_{i-k}^{p^{k}} \otimes \hat{\xi}_{k} .
$$

Then \hat{T} is a natural isomorphism of groups.
We can prove the main theorem by the usage of $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-)$ instead of $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$ as follows. Let $\gamma: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$ be a multiplicative operation. For $X=B \boldsymbol{Z} / p$, we have

$$
\gamma: H^{*}(B \boldsymbol{Z} / p) \cong E(\epsilon) \otimes \boldsymbol{F}_{p}[x] \longrightarrow H^{*}(B \boldsymbol{Z} / p) \otimes R_{*} \cong E(\epsilon) \otimes R_{*}[[x]]
$$

We define $\hat{f}_{\gamma}(X)=\left(\hat{f}_{\gamma}(1)(\epsilon, x), \hat{f}_{\gamma}(2)(\epsilon, x)\right)$ by $\hat{f}_{\gamma}(1)(\epsilon, x)=\gamma(\epsilon)$ and $\hat{f}_{\gamma}(2)(\epsilon, x)=\gamma(x)$. We can prove that $\hat{f}_{\gamma}(X)$ is a quasi-strict automorphism of G_{a} over R_{*} in a way similar to the proof of Lemma 5.1. Let $\hat{F}: \mathrm{Op}(-) \rightarrow \operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-)$ be the natural transformation which sends γ to $\hat{f}_{\gamma}(X)$. As in Section 5 , we have the following commutative diagram:

Here $\hat{N}=\hat{T}^{-1} \circ \hat{F} \circ \lambda^{-1}$. We put

$$
\hat{\chi}_{\psi}=\hat{N}\left(\operatorname{id}_{H_{*} H}\right): \hat{A}_{*} \rightarrow H_{*} H,
$$

where $\operatorname{id}_{H_{*} H}$ is the identity map of $H_{*} H$. In a way similar to the proof of Theorem 5.2, we can show the following theorem.

Theorem A.6. $\hat{\chi}_{\psi}$ is a Hopf algebra isomorphism.
Now we have the three natural operations $\operatorname{Op}(-), \operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-)$ and $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$. The Hopf algebras $H_{*} H, \hat{A}_{*}$ and A_{*} represent them, respectively. We want to investigate relations among them. First we construct a natural transformation

$$
W: \operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-) \rightarrow \operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-),
$$

and see relations among $\operatorname{Op}(-), \operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)(-)$ and $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)(-)$. Given an element

$$
f(X)=(f(1)(X), f(2)(X))
$$

in $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(G_{a}\right)\left(R_{*}\right)$, we put $W(f(X))=\epsilon f(1)(X)+f(2)(X)$. It is well defined since $\epsilon f(1)(X)+f(2)(X)$ is an element in $\operatorname{AUT}_{\boldsymbol{F}_{p}}\left(g_{a}\right)\left(R_{*}\right)$. Moreover W is an isomorphism. By the definition of F in Section 5, the following diagram is commutative:

Next we study relations among $H_{*} H, A_{*}$ and \hat{A}_{*}. Consider the Hopf algebra isomorphism $W^{\prime}: A_{*} \rightarrow \hat{A}_{*}$ given by $\bar{\tau}_{i} \mapsto \hat{\tau}_{i}$ and $\bar{\xi}_{i} \mapsto \hat{\xi}_{i}$. Then the following diagram is commutative:

From the commutative diagrams (5.1), (A.6), (A.7) and (A.8), we obtain a commutative diagram of isomorphisms

References

[1] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, Ill.-London, 1974, pp. x+373.
[2] H. Cartan, Sur les groupes d'Eilenberg-MacLane $H(\Pi, n)$. I. Méthode des constructions, Proc. Natl. Acad. Sci. USA, 40 (1954), 467-471.
[3] H. Cartan, Sur les groupes d'Eilenberg-MacLane. II, Proc. Natl. Acad. Sci. USA, 40 (1954), 704-707.
[4] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., 12 (1911), 75-98.
[5] M. Hazewinkel, Formal groups and applications, Pure and Appl. Math., 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978, pp. xxii+573.
[6] M. Inoue, The Steenrod algebra and the automorphism group of additive formal group law, J. Math. Kyoto Univ., 45 (2005), No. 1, 39-55.
[7] J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171.
[8] H. Mùi, Modular invariant theory and the cohomology algebras of symmetric spaces, J. Fac. Sci. Univ. Tokyo, 22 (1975), 319-369.
[9] H. Mùi, Cohomology operations derived from modular invariants, Math. Z., 193 (1986), 151-163.
[10] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Stud., No. 50, Princeton Univ. Press, 1962.
[11] N. Sum, Steenrod operations on the modular invariants, Kodai Math. J., 17 (1994), no. 3, 585595.

Masateru Inoue
Department of Mathematics
Graduate School of Science
Kyoto University
Kyoto 606-8502
Japan
E-mail: masateru@kusm.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55S10; Secondary 55N22, 55P20.
 Key Words and Phrases. Steenrod algebra, formal group laws, multiplicative operations, reduced power operations, Eilenberg-MacLane spectrum, modular invariants.

 The author was partially supported by JSPS Research Fellowships for Young Scientists.

