# The Steenrod algebra and the automorphism group of additive formal group law 

By<br>Masateru Inoue*

## 1. Introduction

Let $H_{*} H$ be the Hopf algebra of stable co-operations of the mod 2 ordinary cohomology theory $H^{*}()$. The structure of $H_{*} H$ is well known as follows. First J. P. Serre [7] determined the unstable cohomology of the Eilenberg-MacLane complex $K(n, \mathbb{Z} / 2)$. He has shown the stable part of $H^{*}(K(n, \mathbb{Z} / 2))$ is generated by iterated Steenrod operations and computed the rank of $H^{i}(K(n, \mathbb{Z} / 2))$ in terms of excess operations. He assumed the existence of Steenrod squares $S q^{i}$ but did not use the Adem relations. Using the Adem relations, we see that the algebra $S^{*}$ generated by Steenrod squares modulo the Adem relations is isomorphic to $H^{*} H$. Moreover Milnor [4] determined the Hopf algebra structure of $S_{*}$, the dual Steenrod algebra which is the polynomial algebra $\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]$ with the coproduct $\psi\left(\xi_{n}\right)=\sum_{i=0}^{n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}$, and therefore we obtain the Hopf algebra structure of $H_{*} H$.

Now we recall strict automorphisms of the additive formal group law. Let $G_{a}$ be the additive formal group law, and $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ the set of strict automorphisms of $G_{a}$ over a non-negatively graded commutative $\mathbb{F}_{2}$-algebra $R_{*}$. An element $f(x)$ in $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ is written as a formal power series $x+\sum_{i=1}^{\infty} a_{i} x^{2^{i}}$, where $a_{i} \in R_{2^{i}-1}$. Here $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)(-)$ is a functor from the category of graded algebras to the category of sets. A product of Aut $\mathbb{F}_{2}\left(G_{a}\right)\left(R_{*}\right)$ is defined by the composition of power series, and induces the group structure. Therefore $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)(-)$ is a functor to the category of groups, and is represented by the Hopf algebra $A_{*}=\mathbb{F}_{2}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]$ with the coproduct $\psi\left(\bar{\xi}_{n}\right)=\sum_{i=0}^{n} \bar{\xi}_{n-i}^{2^{i}} \otimes \bar{\xi}_{i}$. In other words, we have a natural group isomorphism

$$
\operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(A_{*}, R_{*}\right) \cong \operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)
$$

Comparing $S_{*}$ with $A_{*}$, we see that $S_{*} \cong A_{*}$ as a Hopf algebra.
We recall the Dickson algebra. Let $V^{n}$ be the $\mathbb{F}_{2}$-vector space spanned by elements $x_{1}, \ldots, x_{n}$. In the polynomial ring $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right][t]$, consider the

[^0]polynomial
$$
\prod_{\alpha \in V^{n}}(t+\alpha)=\sum_{s=0}^{n} q_{n, s} t^{t^{s}}, \quad \text { with } q_{n, n}=1
$$

Then $q_{n, s}$ is invariant under the usual action of $G L_{n}\left(\mathbb{F}_{2}\right)$ and Dickson [2] has shown that

$$
\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{G L_{n}\left(\mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left[q_{n, 0}, \ldots, q_{n, n-1}\right] .
$$

Formally putting $\operatorname{deg} x_{i}=1$, we have $\operatorname{deg} q_{n, s}=2^{n}-2^{s}$. Let $\Sigma_{2^{n}}$ be the symmetric group of degree $2^{n}$,

$$
P_{n}: H^{*}(X) \longrightarrow H^{2^{n} *}\left(E \Sigma_{2^{n}} \times_{\Sigma_{2^{n}}} X^{2^{n}}\right)
$$

the extended power operations of Steenrod [8], and $d_{n}: B \Sigma_{2^{n}} \times X \rightarrow E \Sigma_{2^{n}} \times \Sigma_{2^{n}}$ $X^{2^{n}}$ the diagonal map. We regard $\Sigma_{2^{n}}$ as the group of set automorphisms of $E^{n}$, and we obtain the regular embedding $i: E^{n} \subset \Sigma_{2^{n}}$ which takes $g \in E^{n}$ to the permutation induced by $h \mapsto g+h$. Identify $V^{n}$ by the dual of $E^{n}$ over $\mathbb{F}_{2}$. Then we have canonical isomorphisms $H^{1}\left(B E^{n}\right) \cong V^{n}$, and $H^{*}\left(B E^{n}\right) \cong$ $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$. Furthermore Mùi $[6]$ has proved $\operatorname{Im} i^{*}=\mathbb{F}_{2}\left[q_{n, 0}, \ldots, q_{n, n-1}\right]$. Now consider the restriction of $d_{n}^{*} P_{n}$

$$
H^{*}(X) \xrightarrow{d_{n}^{*} P_{n}} H^{*}\left(B \Sigma_{2^{n}}\right) \otimes H^{*}(X) \xrightarrow{i^{*} \otimes 1} H^{*}\left(B E^{n}\right) \otimes H^{*}(X),
$$

which is written by the same symbol $d_{n}^{*} P_{n}$. Actually $\operatorname{Im} d_{n}^{*} P_{n} \subset \mathbb{F}_{2}\left[q_{n, 0}, \ldots\right.$, $\left.q_{n, n-1}\right] \otimes H^{*}(X)$, and we can define an operation $S_{n}: H^{*}(X) \rightarrow \mathbb{F}_{2}\left[q_{n, 0}^{ \pm}, \ldots\right.$, $\left.q_{n, n-1}\right] \otimes H^{*}(X)$ by $S_{n}(x)=q_{n, 0}^{-\operatorname{deg} x} d_{n}^{*} P_{n}(x)$. We set $\xi_{i}[n]=q_{n, i} / q_{n, 0}$ and $D[n]_{*}=\mathbb{F}_{2}\left[\xi_{1}[n], \ldots, \xi_{n}[n]\right] \subset \mathbb{F}_{2}\left[q_{n, 0}^{ \pm}, \ldots, q_{n, n-1}\right]$. Then by $[6]$ we see $S_{n}$ takes value in $D[n]_{*} \otimes H^{*}(X)$.

Now we have four algebras $H_{*} H, S_{*}, A_{*}$ and $D[n]_{*}$. The purpose of this paper is to give a new proof of theorem of Milnor. In other words, we have showed directly that there exists a Hopf algebra isomorphism

$$
\chi_{\psi}: A_{*} \longrightarrow H_{*} H
$$

without the usage of $S_{*}$. Since the Hopf algebra structure of $A_{*}$ is easily seen, we can obtain that of $H_{*} H$. Hence we have $S_{*} \cong H_{*} H$ as a corollary. The key idea to relate those algebras is the notion of unstable multiplicative operations based on a graded ring $R_{*}$

$$
H^{*}(X) \longrightarrow H^{*}(X) \otimes R_{*}
$$

A multiplicative operation $\omega: H^{*}(X) \longrightarrow H^{*}(X) \otimes R_{*}$ induces the graded algebra homomorphism $\chi_{\omega}: A_{*} \rightarrow R_{*}$. Moreover we have the universal multiplicative operation $\psi: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$. Namely, there exists a unique algebra homomorphism $\bar{\omega}: H_{*} H \rightarrow R_{*}$ which satisfies $(1 \otimes \bar{\omega}) \circ \psi=\omega$
for a multiplicative operation $\omega$. For the above multiplicative operation $S_{n}$ : $H^{*}(X) \rightarrow H^{*}(X) \otimes D[n]_{*}$, we can get the following diagram:


Here $\chi_{S_{n}}$ is an isomorphism in low dimensional range for sufficiently large $n$. Therefore $\chi_{\psi}$ is injective and we see that $\chi_{\psi}$ is an isomorphism by Serre's result [7]. Furthermore we can show that the algebra homomorphism $\chi_{\psi}$ is actually a Hopf algebra homomorphism.

This paper is constructed as follows. We define a multiplicative operation and construct the universal multiplicative operation $\psi$ in Section 2. In Section 3, we recall the definition of the reduced power operation in Steenrod and Epstein [8] and Mùi's results [5] [6], and introduce the multiplicative operation $S_{n}$. In Section 4, we construct $A_{*}$ and $\chi_{\omega}: A_{*} \rightarrow R_{*}$ from a multiplicative operation $\omega$ over $R_{*}$. We prove main theorem (Theorem 4.2). In appendix, we determine a coproduct of certain elements in the algebra $D_{*, *}=\prod_{n} D[n]_{*}$, and consider relations to $A_{*}$ and $H_{*} H$.

This paper is written under the supervision of Professor Goro Nishida. I am grateful to him for his extraordinary patience, generous help and inspiring guidance.

## 2. Multiplicative operation

We assume that $X$ and $Y$ are spaces, and denote by $H^{*}(X)$ the $\bmod 2$ ordinary cohomology of $X$ in this paper.

Definition 2.1. Let $R_{*}$ be a non-negatively graded commutative algebra over $\mathbb{F}_{2}$, namely $R_{*}=0$ for $*<0$. We consider a graded module in which the cohomological degree $k$-part is $\prod_{n \geq 0} H^{k+n}(X) \otimes R_{n}$. By abuse of notation we denote the graded module by $H^{*}(X) \otimes R_{*}$. We call a natural operation $\beta: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$ with cohomological degree preserving multiplicative when $\beta$ satisfies the following conditions:
(i) The diagram

is commutative, where $\times$ is the cross product, $\mu$ interchanges the first and second factors, and $m$ is the multiplication on $R_{*}$.
(ii) $\beta(u)=u \otimes 1$ where $u$ is the generator of $H^{1}\left(S^{1}\right)$.

Let $\widetilde{H}^{*}()$ be the reduced cohomology. We consider the following diagram:

with the horizontal sequences exact. Then we can define the reduced operation $\tilde{\beta}: \widetilde{H}^{*}(X) \rightarrow \widetilde{H}^{*}(X) \otimes R_{*}$ such that the above diagram is commutative. Obviously $\tilde{\beta}$ is natural and the following diagram is commutative:

where $\wedge$ is the smash product.
Lemma 2.2. For a multiplicative operation $\beta, \tilde{\beta}$ is stable. That is, the following diagram is commutative:

where $\sigma$ is the suspension isomorphism.
Proof. By the commutative diagram (1), we have the following commutative diagram:

$$
\begin{array}{ccc}
\widetilde{H}^{*}(X) \otimes \widetilde{H}^{*}\left(S^{1}\right) \\
\begin{array}{c}
\tilde{\beta} \otimes \tilde{\beta} \\
\widetilde{H}^{*}(X) \otimes R_{*} \\
\otimes \widetilde{H}^{*}\left(S^{1}\right) \otimes R_{*}
\end{array} \xrightarrow{1 \otimes \mu \otimes 1} \widetilde{H}^{*}(X) \otimes \widetilde{H}^{*}\left(S^{1}\right) \otimes R_{*} \otimes R_{*} \xrightarrow{\wedge \otimes m} \widetilde{H}^{*}\left(X \wedge S^{1}\right) \otimes R_{*} .
\end{array}
$$

For any element $x$ in $\widetilde{H}^{*}(X)$,

$$
\begin{aligned}
\tilde{\beta}(x \wedge u) & =(\wedge \otimes m) \circ(1 \otimes \mu \otimes 1) \circ(\tilde{\beta}(x) \otimes \tilde{\beta}(u)) \\
& =(\wedge \otimes m) \circ(1 \otimes \mu \otimes 1)(\tilde{\beta}(x) \otimes u \otimes 1) \\
& =\tilde{\beta}(x) \wedge u,
\end{aligned}
$$

where $\tilde{\beta}(x) \wedge u=\sum_{n}\left(y_{n} \wedge u\right) \otimes \alpha_{n}$ for $\tilde{\beta}(x)=\sum_{n} y_{n} \otimes \alpha_{n}$. This implies that $\tilde{\beta}$ is a stable operation.

Let $H$ be the mod 2 Eilenberg-MacLane spectrum, and $H_{*} H$ be $\pi_{*}(H \wedge H)$. We want to introduce a multiplicative operation $\psi: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$. We define a map

$$
\bar{\psi}: H^{*}(X)=[X, H]^{*} \longrightarrow[X, H \wedge H]^{*}
$$

by $\bar{\psi}(f)=i \wedge f \in\left[S^{0} \wedge X, H \wedge H\right]^{*}$, where $i: S^{0} \rightarrow H$ is the unit map.
Let $\kappa$ be the map

$$
\kappa: H^{*}(X) \otimes H_{*} H \longrightarrow[X, H \wedge H]^{*}
$$

induced by $H \wedge(H \wedge H) \xrightarrow{m \wedge 1} H \wedge H$, where $m$ is the multiplication on $H$.
Lemma 2.3. $\kappa$ is an isomorphism.
Proof. If $X=S^{n}, \kappa$ is an isomorphism. Therefore if $H^{*}(X) \otimes H_{*} H$ is a cohomology, $\kappa$ is a cohomology operation. Because $H_{n} H$ is finite dimensional, we have the result.

Therefore $\kappa^{-1} \bar{\psi}: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$ is well-defined and it is denoted by $\psi$.

Theorem 2.4. The operation $\psi: H^{*}(X) \longrightarrow H^{*}(X) \otimes H_{*} H$ is multiplicative.

Proof. The map $i \wedge 1: S^{0} \wedge H \rightarrow H \wedge H$ is a ring spectra map. Therefore $\bar{\psi}$ : $H^{*}(X) \rightarrow(H \wedge H)^{*}(X)$ preserves the external product. Since the multiplication $m: H \wedge H \rightarrow H$ is a ring spectra map, $m \wedge 1: H \wedge H \wedge H \rightarrow H \wedge H$ is so. Therefore we see that $\kappa: H^{*}(X) \otimes H_{*} H \rightarrow(H \wedge H)^{*}(X)$ preserves the external product. Hence $\psi$ satisfies Definition 2.1 (i).

Next we prove that $\psi$ satisfies Definition 2.1 (ii). It is enough to prove for $u=\Sigma i$. Since $\Sigma i \wedge i=i \wedge \Sigma i$ in $\left[S^{1}, \Sigma(H \wedge H)\right]$, we see

$$
\psi(\Sigma i)=\kappa^{-1} \circ \bar{\psi}(\Sigma i)=\kappa^{-1}(i \wedge \Sigma i)=\kappa^{-1}(\Sigma i \wedge i)=u \otimes 1
$$

From now on, we assume any graded algebra $R_{*}$ is of finite type, that is $R_{n}$ is finite dimensional for each $n$. We define $\operatorname{Op}\left(R_{*}\right)$ by the set of all multiplicative operations over $R_{*}$. This is a covariant functor from the category of graded algebras over $\mathbb{F}_{2}$ to the category of sets. We now construct a natural transformation

$$
\lambda: \mathrm{Op}\left(R_{*}\right) \longrightarrow \operatorname{Hom}_{\mathbb{F}_{2}}\left(H_{*} H, R_{*}\right),
$$

where $\operatorname{Hom}_{\mathbb{F}_{2}}($,$) is the set of all graded linear homomorphisms.$
Since $H^{*}(X) \otimes R_{*}$ is a cohomology theory in the same way as the proof of Lemma 2.3, we denote the spectrum which represents the cohomology $H^{*}() \otimes$
$R_{*}$ by $H R_{*}$. Obviously $H R_{*}$ is a commutative ring spectrum and an $H$-module spectrum induced by the products

$$
\begin{gathered}
H^{*}(X) \otimes R_{*} \otimes H^{*}(Y) \otimes R_{*} \longrightarrow H^{*}(X \times Y) \otimes R_{*}, \\
\left(x \otimes r \otimes y \otimes r^{\prime} \mapsto(x \times y) \otimes r \cdot r^{\prime}\right),
\end{gathered}
$$

and

$$
\begin{gathered}
H^{*}(X) \otimes\left(H^{*}(Y) \otimes R_{*}\right) \longrightarrow H^{*}(X \times Y) \otimes R_{*}, \\
(x \otimes y \otimes r \mapsto(x \times y) \otimes r) .
\end{gathered}
$$

Under these conditions, we have

$$
\bar{\lambda}:\left(H R_{*}\right)^{*} H \xrightarrow{\cong} \operatorname{Hom}_{\mathbb{F}_{2}}^{*}\left(H_{*} H, R_{*}\right),
$$

from [1, III, 13.5]. This map is defined by $H \wedge H \xrightarrow{1 \wedge x} H \wedge H R_{*} \xrightarrow{\tau} H R_{*}$, where $x \in\left[H, H R_{*}\right]$ and the $H$-module map $\tau: H \wedge H R_{*} \rightarrow H R_{*}$. For an element $\alpha$ in $\left(H R_{*}\right)^{*} H$, we write $\bar{\lambda}(\alpha)$ as $\bar{\alpha}$.

Let $\beta: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$ be a multiplicative operation. Since $\tilde{\beta}$ is stable by Lemma 2.2, we can identify $\beta$ as a stable cohomology operation. Therefore $\mathrm{Op}\left(R_{*}\right)$ is a subset in $\left(H R_{*}\right)^{0} H . \beta$ satisfies the following commutative diagram:

from the commutative diagram:


Here $x$ is a spectra map which represents $\beta$. We define $\lambda$ by the restriction of $\bar{\lambda}$ to $\operatorname{Op}\left(R_{*}\right)$. Since $\operatorname{Op}\left(R_{*}\right) \subset\left(H R_{*}\right)^{0} H$, the image of $\lambda$ is actually included in $\operatorname{Hom}_{\mathbb{F}_{2}}\left(H_{*} H, R_{*}\right)$.

Theorem 2.5. Let $\operatorname{Hom}_{\mathbb{F}_{2} \text {-alg }}($,$) be the set of all graded algebra ho-$ momorphisms. Then there is an one to one correspondence

$$
\lambda: \mathrm{Op}\left(R_{*}\right) \longrightarrow \operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(H_{*} H, R_{*}\right)
$$

which is natural in $R_{*}$.

Proof. We now prove $\lambda\left(\mathrm{Op}\left(R_{*}\right)\right) \subset \operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(H_{*} H, R_{*}\right)$. It is enough to prove that the following diagram is commutative:

where $\beta$ is a multiplicative operation, $x$ represents $\beta$, and $m_{R_{*}}$ is the multiplication on $H R_{*}$. Because $\beta$ is a multiplicative operation, the following diagram is commutative:


Therefore the upper square in the diagram (2) is commutative. The lower square in (2) is commutative since $H R_{*}$ is a commutative ring spectrum and $m_{R_{*}}: H R_{*} \wedge H R_{*} \rightarrow H R_{*}$ is an $H$-module spectra map.

For any $r$ in $\operatorname{Hom}_{\mathbb{F}_{2} \text {-alg }}\left(H_{*} H, R_{*}\right)$, the operation

$$
(1 \otimes r) \circ \psi: H^{*}(X) \longrightarrow H^{*}(X) \otimes H_{*} H \longrightarrow H^{*}(X) \otimes R_{*}
$$

is multiplicative. This shows $\lambda\left(\operatorname{Op}\left(R_{*}\right)\right)=\operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(H_{*} H, R_{*}\right)$.

## 3. Construction of the reduced power

Let $G$ be a subgroup of the symmetric group $\Sigma_{m}$ of degree $m$. For a space $X, G$ acts on $X^{m}$ as a permutation. Steenrod defined the extended power operation

$$
P_{G}: H^{q}(X) \rightarrow H^{m q}\left(E_{G}(X)\right),
$$

where $E_{G}(X)$ is defined by $E G \times_{G} X^{m}[8, \mathrm{VII}]$. From the diagonal map $d_{G}$ : $B G \times X \rightarrow E_{G}(X)$, we have the natural map $d_{G}^{*} P_{G}: H^{q}(X) \rightarrow H^{m q}(B G \times X)$.

Let $E^{n}$ be the elementary abelian 2-group with dimension $n$ and we write $E^{n}=E_{1} \times \cdots \times E_{n}$, where $E_{i}=\mathbb{Z} / 2$. Then we can identify Aut Set $\left(E^{n}\right)$, the set of all permutations of the set $E^{n}$, as $\Sigma_{2^{n}}$. Since $E^{n}$ acts on itself as a vector space, there is the regular embedding $E^{n} \subset \Sigma_{2^{n}}$. The wreath product $E_{1} \int \cdots \int E_{n}$ is a 2 -sylow subgroup of $\Sigma_{2^{n}}$, and it is denoted by $\Sigma_{2^{n}, 2}$. Obviously, $\Sigma_{2^{n}, 2}$ contains $E^{n}$. We define an inclusion $E^{n-1} \subset E^{n}$ by $E^{n-1} \cong\{0\} \times E_{2} \times$ $\cdots \times E_{n} \subset E^{n}$. Then it induces the inclusion $\Sigma_{2^{n-1,2}} \subset E_{1} \int \Sigma_{2^{n-1,2}}=\Sigma_{2^{n}, 2}$.

From $i_{G, G^{\prime}}: G^{\prime} \subset G$, we have three maps $B G^{\prime} \rightarrow B G, E_{G^{\prime}}(X) \rightarrow E_{G}(X)$, and $B G^{\prime} \times X \rightarrow B G \times X$. They induce $H^{*}(B G) \rightarrow H^{*}\left(B G^{\prime}\right), H^{*}\left(E_{G}(X)\right) \rightarrow$
$H^{*}\left(E_{G^{\prime}}(X)\right)$ and $H^{*}(B G \times X) \rightarrow H^{*}\left(B G^{\prime} \times X\right)$, which are denoted by the same symbol $i_{G, G^{\prime}}^{*}$. Since we see $i_{G, G^{\prime}}^{*} P_{G}=P_{G^{\prime}}$ by [8, VII, 2.5], we obtain

$$
\begin{align*}
i_{\Sigma_{2^{n}}, E^{n}}^{*} d_{\Sigma_{2^{n}}}^{*} P_{\Sigma_{2^{n}}} & =i_{\Sigma_{2^{n}, 2}^{*}, E^{n}} d_{\Sigma_{2^{n}, 2}}^{*} P_{\Sigma_{2^{n}, 2}} \\
& =d_{n}^{*} P_{n}: H^{q}(X) \rightarrow H^{2^{n} q}\left(B E^{n} \times X\right), \tag{3}
\end{align*}
$$

where $d_{n}=d_{E^{n}}$ and $P_{n}=P_{E^{n}}$. We can identify $P_{E_{1}} P_{\Sigma_{2^{n-1,2}}}$ with $P_{\Sigma_{2^{n}, 2}}$ from the following commutative diagram:

$$
\begin{array}{ll}
\quad H^{*}(X) \quad \stackrel{P_{\Sigma_{2^{n}, 2}}}{ } & H^{*}\left(E_{\Sigma_{2^{n}, 2}}(X)\right) \\
P_{\Sigma_{2^{n-1,2}}} \downarrow & \downarrow \cong \\
H^{*}\left(E_{2^{n-1}, 2}(X)\right) \xrightarrow{P_{1}} H^{*}\left(E_{E_{1}}\left(E_{\Sigma_{2^{n-1,2}}}(X)\right)\right) \cong H^{*}\left(E_{E_{1} \int \Sigma_{2^{n-1,2}}}(X)\right) .
\end{array}
$$

By the naturality of $P$, the following diagram is commutative:

$$
\begin{aligned}
& H^{*}(X) \\
& P_{\Sigma_{2^{n-1}, 2}} \downarrow \\
& \begin{array}{cc}
H^{*}\left(E_{\Sigma_{2^{n-1,2}}}(X)\right) & \xrightarrow{d_{n-1}^{*}}
\end{array} \begin{array}{c}
H^{*}\left(B E^{n-1} \times X\right) \\
P_{1} \downarrow
\end{array} \\
& H^{*}\left(E_{E_{1}}\left(E_{\Sigma_{2^{n-1,2}}}(X)\right)\right) \xrightarrow{E_{E_{1}}\left(d_{n-1}\right)^{*}} H^{*}\left(E_{E_{1}}\left(B E^{n-1} \times X\right)\right) \\
& d_{1}^{*} \downarrow \downarrow d_{1}^{*} \\
& H^{*}\left(B E_{1} \times E_{\Sigma_{2^{n-1,2}}}(X)\right) \xrightarrow{\left(1 \times d_{n-1}\right)^{*}} \quad H^{*}\left(B E^{n} \times X\right) .
\end{aligned}
$$

Hence we see the following lemma:
Lemma 3.1 ([8]). We have

$$
d_{n}^{*} P_{n}=d_{1}^{*} P_{1} d_{n-1}^{*} P_{n-1} .
$$

Given the diagonal maps

$$
\lambda: E E^{n} \times E^{n}(X \times Y)^{2^{n}} \longrightarrow E E^{n} \times E E^{n} \times_{E^{n} \times E^{n}} X^{2^{n}} \times Y^{2^{n}},
$$

and $\quad d^{\prime}: B E^{n} \times X \times Y \longrightarrow B E^{n} \times B E^{n} \times X \times Y$,
we obtain the following maps:

$$
\begin{aligned}
& H^{*}(X) \otimes H^{*}(Y) \xrightarrow{P_{n} \times P_{n}} H^{*}\left(E E^{n} \times_{E^{n}} X^{2^{n}}\right) \otimes H^{*}\left(E E^{n} \times_{E^{n}} Y^{2^{n}}\right) \\
& \stackrel{\times}{\longrightarrow} H^{*}\left(E E^{n} \times E E^{n} \times{E^{n} \times E^{n}}^{\left.2^{2^{n}} \times Y^{2^{n}}\right) \xrightarrow{\lambda^{*}} H^{*}\left(E E^{n} \times{E^{n}}(X \times Y)^{2^{n}}\right),}\right.
\end{aligned}
$$

and

$$
\begin{gathered}
H^{*}(X) \otimes H^{*}(Y) \xrightarrow{P_{n} \times P_{n}} H^{*}\left(E E^{n} \times_{E^{n}} X^{2^{n}}\right) \otimes H^{*}\left(E E^{n} \times_{E^{n}} Y^{2^{n}}\right) \\
\xrightarrow{d_{n}^{*} \times d_{n}^{*}} H^{*}\left(B E^{n} \times B E^{n} \times X \times Y\right) \xrightarrow{d^{\prime}} H^{*}\left(B E^{n} \times X \times Y\right) .
\end{gathered}
$$

Lemma 3.2. We have
$d_{n}^{*} P_{n}(u \times v)=d^{\prime *}\left(d_{n}^{*} \times d_{n}^{*}\right)\left(P_{n} u \times P_{n} v\right): H^{*}(X) \otimes H^{*}(Y) \longrightarrow H^{*}\left(B E^{n} \times X \times Y\right)$.
Proof. By Steenrod and Epstein [8, VII, Lemma 2.6], we obtain $\lambda^{*}\left(P_{n} u \times\right.$ $\left.P_{n} v\right)=P_{n}(u \times v)$, where $u \in H^{*}(X)$ and $v \in H^{*}(Y)$. The commutative diagram

induces

$$
\begin{gathered}
H^{*}\left(B E^{n} \times X \times Y\right) \stackrel{d_{n}^{*}}{\longleftarrow} H^{*}\left(E E^{n} \times E_{E^{n}}(X \times Y)^{2^{n}}\right) \\
d_{d^{\prime *}} \uparrow \\
H^{*}\left(B E^{n} \times B E^{n} \times X \times Y\right) \stackrel{\lambda^{*}}{\stackrel{d_{n}^{*} \times d_{n}^{*}}{\longleftarrow} H^{*}\left(E E^{n} \times E E^{n} \times E^{n} \times E^{n} X^{2^{n}} \times Y^{2^{n}}\right) .}
\end{gathered}
$$

Therefore

$$
d_{n}^{*} P_{n}(u \times v)=d_{n}^{*} \lambda^{*}\left(P_{n} u \times P_{n} v\right)=d^{\prime *}\left(d_{n}^{*} \times d_{n}^{*}\right)\left(P_{n} u \times P_{n} v\right)
$$

We recall that $H^{*}\left(B E^{n}\right)=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$, where each $x_{i}$ is of degree 1 . It is well known by Mùi [5] that
(4) $\operatorname{Im}\left(i_{\Sigma_{2^{n}}, E^{n}}^{*}\right)=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{G L_{n}\left(\mathbb{F}_{2}\right)}, \quad \operatorname{Im}\left(i_{\Sigma_{2^{n}, 2}}^{*}, E^{n}\right)=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{T_{n}}$, where $T_{n}$ the upper triangular subgroup of $G L_{n}\left(\mathbb{F}_{2}\right)$. We define $v_{k+1}$ by

$$
v_{k+1}=\prod\left(\sum_{i=1}^{k} \lambda_{i} x_{i}+x_{k+1}\right)
$$

and $q_{n, i}$ by

$$
\begin{equation*}
\prod_{\alpha \in E^{n}}(x+\alpha)=\sum_{s=0}^{n} q_{n, s} x^{2^{s}} \quad \text { with } q_{n, n}=1 \tag{5}
\end{equation*}
$$

Obviously $\operatorname{deg} q_{n, i}=2^{n}-2^{i}$. Dickson [2] and Mùi [5] have shown

$$
\begin{aligned}
\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{G L_{n}\left(\mathbb{F}_{2}\right)} & \cong \mathbb{F}_{2}\left[q_{n, 0}, q_{n, 1}, \ldots, q_{n, n-1}\right], \\
\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{T_{n}} & \cong \mathbb{F}_{2}\left[v_{1}, \ldots, v_{n}\right] .
\end{aligned}
$$

Furthermore the following relations between $q_{n, i}$ and $v_{i}$ are known.

Theorem 3.3 ([5]). We have

$$
q_{n, j}=q_{n-1, j} v_{n}+q_{n-1, j-1}^{2},
$$

where $q_{n, j}=0$ for $j<0$ or $n<j$.
We need the following definition and theorem in [8].
Definition 3.4 ([8] VII 3.2). Suppose $H^{*}\left(B E^{1}\right)=\mathbb{F}_{2}[x]$ and $u \in$ $H^{q}(X)$. Then we can write $d_{1}^{*} P_{1}(u)=\sum_{k} x^{k} \times S q^{q-k}(u)$, where

$$
S q^{k}: H^{q}(X) \longrightarrow H^{q+k}(X) .
$$

Theorem 3.5 ([8] VII 4.3, 4.4, 3.4). For each $k$, $S q^{k}$ is a homomorphism. If $u \in H^{q}(X)$, then $S q^{k}(u)=0$ for $k<0, S q^{0}(u)=u$ and $S q^{q}(u)=u^{2}$.

We now consider

$$
\begin{equation*}
d_{1}^{*} P_{1}: H^{*}\left(B E^{n}\right) \rightarrow H^{*}\left(B E^{1} \times B E^{n}\right) \tag{6}
\end{equation*}
$$

Obviously $B E^{1} \times B E^{n}=B E^{n+1}$. Since

$$
E^{n} \cong\{0\} \times E_{2} \times \cdots \times E_{n+1} \subset E^{n+1}=E_{1} \times \cdots \times E_{n+1},
$$

we identify $B E^{1}$ as $B E_{1}$ and $B E^{n}$ as $B\left(E_{2} \times \cdots \times E_{n+1}\right)$ in (6).
Theorem 3.6 ([6] Theorem 1.5). Define an element $v_{n}^{\prime}$ by

$$
v_{n}^{\prime}=\prod_{\lambda_{i}=0,1}\left(\sum_{i=2}^{n} \lambda_{i} x_{i}+x_{n+1}\right) \quad \text { in } H^{*}\left(B E^{n}\right)=\mathbb{F}_{2}\left[x_{2}, \ldots, x_{n+1}\right] .
$$

Then we have

$$
d_{1}^{*} P_{1}\left(v_{n}^{\prime}\right)=v_{n+1}, \quad \text { in } \quad H^{*}\left(B E^{n+1}\right)
$$

Especially

$$
d_{n}^{*} P_{n} x_{n+1}=v_{n+1},
$$

where $H^{*}\left(B E_{n+1}\right)=\mathbb{F}_{2}\left[x_{n+1}\right]$ and $d_{n}^{*} P_{n}: H^{*}\left(B E_{n+1}\right) \rightarrow H^{*}\left(B\left(E_{1} \times \cdots \times\right.\right.$ $\left.\left.E_{n}\right) \times B E_{n+1}\right)$.

Proof. By Theorem 3.5, we have $d_{1}^{*} P_{1}(u)=1 \times u^{2}+x_{1} \times u$ for $u \in H^{1}(X)$. By Lemma 3.2, we have

$$
\begin{aligned}
d_{1}^{*} P_{1}\left(v_{n}^{\prime}\right) & =\prod_{\lambda_{i}=0,1} d_{1}^{*} P_{1}\left(\sum_{i=2}^{n} \lambda_{i} x_{i}+x_{n+1}\right) \\
& =\prod_{\lambda_{i}=0,1}\left(\sum_{i=2}^{n} \lambda_{i} x_{i}+x_{n+1}\right)\left(x_{1}+\sum_{i=2}^{n} \lambda_{i} x_{i}+x_{n+1}\right) \\
& =v_{n+1} .
\end{aligned}
$$

The second claim is obvious by Lemma 3.1.
From (3) and (4), the image of $d_{n}^{*} P_{n}$ is included in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{G L_{n}\left(\mathbb{F}_{2}\right)} \otimes$ $H^{*}(X)$. For any $u \in H^{q}(X)$, we can denote $d_{n}^{*} P_{n} u$ by

$$
\begin{equation*}
d_{n}^{*} P_{n} u=\sum_{R=\left(r_{0}, \ldots r_{n-1}\right)} q_{n, 0}^{r_{0}} q_{n, 1}^{r_{1}} \cdots q_{n, n-1}^{r_{n-1}} \otimes \mathcal{D}_{R} u \tag{7}
\end{equation*}
$$

where $\mathcal{D}_{R}: H^{q}(X) \rightarrow H^{2^{q}-|R|}(X)$ with $|R|=\sum_{s=0}^{n-1} r_{s}\left(2^{n}-2^{s}\right)$.
Lemma 3.7 ([6], Lemma 2.3). $\quad \mathcal{D}_{R} u=0$ if $q<r_{0}+r_{1}+\cdots+r_{n-1}$.
Proof. We now prove by the induction on $n$. In the case of $n=1$, it is obvious by Definition 3.4 and Theorem 3.5. We assume that the lemma is true for $n=k-1$. We consider the case of $n=k$. By Lemma 3.1 we have

$$
d_{k}^{*} P_{k}(u)=d_{1}^{*} P_{1} d_{k-1}^{*} P_{k-1} u=\sum_{i=0}^{2^{k-1} q} x_{1}^{2^{k-1} q-i} S q^{i}\left(d_{k-1}^{*} P_{k-1} u\right) .
$$

So the degree of $d_{k}^{*} P_{k}(u)$ in $x_{1}$ is equal to $2^{k-1} q$. From Theorem 3.3, $\operatorname{deg}_{x_{1}} q_{k, s}$ $=\operatorname{deg}_{x_{k}} q_{k, s}=2^{k-1}$. From the equality (7), we must have

$$
2^{k-1}\left(r_{1}+\cdots+r_{k-1}\right) \leq 2^{k-1} q .
$$

Therefore the lemma is true.
Let $P_{n}=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]\left(=H^{*}\left(B E^{n}\right)\right), e_{n}=\prod\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \in P_{n}, \quad\left(\lambda_{i}=\right.$ 0 or $1, \sum \lambda_{i}>0$ ), and $\Phi_{n}=P_{n}\left[e_{n}^{-1}\right]$. Then there exists the natural action of $G L_{n}\left(\mathbb{F}_{2}\right)$ on $P_{n}$ and $\Phi_{n}$. Define $\Delta_{n}=\Phi_{n}^{T_{n}}$ and $\Gamma_{n}=\Phi_{n}^{G L_{n}}$, where $\Phi_{n}^{K}$ is the subalgebra of the invariants of $K$ in $\Phi_{n}$ for $K=T_{n}$ or $G L_{n}$. We set $w_{k+1}=v_{k+1} / e_{k}$. It is easily seen that

$$
\Delta_{n}=\mathbb{F}_{2}\left[v_{1}^{ \pm 1}, \ldots, v_{n}^{ \pm 1}\right] \cong \mathbb{F}_{2}\left[w_{1}^{ \pm 1}, \ldots, w_{n}^{ \pm 1}\right], \Gamma_{n}=\mathbb{F}_{2}\left[q_{n, 0}^{ \pm 1}, q_{n, 1}, \ldots, q_{n, n-1}\right] .
$$

Let $S_{n}: H^{*}(X) \rightarrow \Phi_{n} \otimes H^{*}(X)$ be the map which sends $x$ to $q_{n, 0}^{-\operatorname{deg}(x)} d_{n}^{*} P_{n}(x)$. From the definition, $S_{n}$ preserves cohomological degree. It is the same as the definition of $S_{n}$ by Lomonaco [3] substantially.

Let $D[n]_{*}$ be the subalgebra generated by $\xi_{1}[n], \xi_{2}[n], \ldots, \xi_{n}[n]$ in $\Phi_{n}$, where $\xi_{i}[n]=q_{n, i} / q_{n, 0}$. It is easily seen that $\xi_{i}[n]$ is an element in $D[n]_{2^{i}-1}$ and $D[n]_{*}=\mathbb{F}_{2}\left[\xi_{1}[n], \ldots, \xi_{n}[n]\right]$.

Corollary 3.8. Suppose $H^{*}(B \mathbb{Z} / 2)=\mathbb{F}_{2}[x]$. Then we have

$$
S_{n}(x)=\sum_{s=0}^{n} \xi_{s}[n] x^{2^{s}}
$$

Proof. From the definition of $v_{n}$ and the equality (5), we have $v_{n+1}=$ $\sum_{s=0}^{n} q_{n, s} x_{n+1}^{2^{s}}$. By Theorem 3.6 and the definition of $S_{n}$, we have $S_{n}(x)=$ $\sum_{s=0}^{n} \xi_{s}[n] x^{2^{s}}$.

Lemma 3.9. $\quad \operatorname{Im}\left(S_{n}\right) \subset D[n]_{*} \otimes H^{*}(X)$.
Proof. Trivial by Lemma 3.7.
We consider the operation $H^{*}(X) \xrightarrow{S_{n}} D[n]_{*} \otimes H^{*}(X) \rightarrow H^{*}(X) \otimes D[n]_{*}$, where the second map interchanges the first and second factors, and denote it by the same symbol $S_{n}$.

Lemma 3.10. The cohomology operation $S_{n}$ is multiplicative. That is, the following diagram is commutative:


Proof. By Lemma 3.2, it is obvious.

## 4. The relation between $H_{*} H$ and $\operatorname{Aut}_{\mathbb{F}_{2}} G_{a}$

Let $G_{a}$ be the additive formal group law and $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ the set of all strict automorphisms of $G_{a}$ over a graded $\mathbb{F}_{2}$-algebra $R_{*}$. Then Aut $\mathbb{F}_{2}\left(G_{a}\right)(-)$ is a functor from the category of graded algebras to the category of sets. An element in $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ is a power series $f(x) \in R_{*}[[x]]$ satisfying the following three conditions: (i) $f(x+y)=f(x)+f(y)$; (ii) the coefficient of $x$ in $f(x)$ is equal to 1 ; (iii) that of $x^{k}$ is an element in $R_{k-1}$. Therefore for $f(x) \in \operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ we have

$$
f(x)=x+a_{1} x^{2}+a_{2} x^{4}+\cdots+a_{m} x^{2^{m}}+\cdots, \quad \text { where } a_{i} \in R_{2^{i}-1} .
$$

Let $A_{*}$ be the graded polynomial algebra generated by $\left\{\bar{\xi}_{1}, \ldots, \bar{\xi}_{n}, \ldots\right\}$ with $\bar{\xi}_{i} \in A_{2^{i}-1}$. Such a power series is represented by a graded $\mathbb{F}_{2}$-algebra homomorphism

$$
\chi: A_{*}=\mathbb{F}_{2}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right] \longrightarrow R_{*}
$$

defined by $\chi\left(\bar{\xi}_{i}\right)=a_{i}$, and we have the natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(A_{*}, R_{*}\right) \cong \operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right), \quad \chi \mapsto \sum_{i=0}^{\infty} \chi\left(\xi_{i}\right) x^{2^{i}}, \tag{8}
\end{equation*}
$$

where $\xi_{0}=1$. A product of $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ is defined by $(g \cdot f)(x)=f(g(x))$. Then $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ is a group, and thereby $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)(-)$ is a functor to the category of groups. This induces the coproduct map $\Delta: A_{*} \rightarrow A_{*} \otimes A_{*}$. It is easy to check $\Delta\left(\bar{\xi}_{n}\right)=\sum_{i=0}^{n} \bar{\xi}_{n-i}^{2^{i}} \otimes \bar{\xi}_{i}$.

Consider a multiplicative operation $\beta: H^{*}(X) \rightarrow H^{*}(X) \otimes R_{*}$. The classifying space $B \mathbb{Z} / 2$ is an $H$-space and the Hopf algebra $H^{*}(B \mathbb{Z} / 2) \cong \mathbb{F}_{2}[x]$ is nothing but the additive formal group. We can identify $\beta(x)$ as an element in $R_{*}[[x]]$ and write it by $f_{\beta}(x)$.

Lemma 4.1. $\quad f_{\beta}(x)$ is an element in $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$.
Proof. The product map $a: B \mathbb{Z} / 2 \times B \mathbb{Z} / 2 \rightarrow B \mathbb{Z} / 2$ induces the commutative diagram:


Therefore we see
$\beta(x \times 1+1 \times x)=a^{*} \circ \beta(x)=\beta \circ a^{*}(x)=\beta(x \times 1)+\beta(1 \times x)=\beta(x) \times 1+1 \times \beta(x)$.

Let $\chi_{\beta}: A_{*} \rightarrow R_{*}$ be the algebra homomorphism corresponding to $f_{\beta}(x)$ in (8). For the multiplicative operations $\psi$ in Section 2 and $S_{n}$ in Section 3, we obtain the algebra homomorphisms $\chi_{\psi}: A_{*} \rightarrow H_{*} H$ and $\chi_{S_{n}}: A_{*} \rightarrow D[n]_{*}$.

The map $H \wedge S^{0} \wedge H \xrightarrow{1 \wedge i \wedge 1} H \wedge H \wedge H$ induces

$$
\delta: H_{*} H=\left[S^{0}, H \wedge H\right]_{*} \longrightarrow\left[S^{0}, H \wedge H \wedge H\right]_{*} \cong H_{*} H \otimes H_{*} H,
$$

and $H_{*} H$ is a Hopf algebra. Then $H^{*}(X)$ is an $H_{*} H$-comodule with $\psi$ : $H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H$.

Theorem 4.2. $\chi_{\psi}: A_{*} \longrightarrow H_{*} H$ is a Hopf algebra isomorphism.
Proof. From Theorem 2.5, there exists a unique algebra homomorphism $\bar{S}_{n}: H_{*} H \rightarrow D[n]_{*}$ with the commutative diagram


It induces the following commutative diagram:


From Corollary 3.8, $\chi_{S_{n}}$ is defined by $\chi_{S_{n}}\left(\bar{\xi}_{i}\right)=\xi_{i}[n]$. For sufficiently large $m$, there exists a number $n$ such that $\chi_{S_{n}}: H_{*} H \rightarrow D[n]_{*}$ is an isomorphism on

* $\leq m$. Therefore $\chi_{\psi}$ is injective. Serre [7, $\S 18$, Théorème 3] has shown that the Poincaré series of $H^{*} H$ and $H_{*} H$ is equal to $\prod_{i=1}^{\infty} 1 /\left(1-t^{2^{i}-1}\right)$, which is the same as that of $A_{*}$. Hence $\chi_{\psi}$ is bijective.

Next we prove $\chi_{\psi}$ is a Hopf algebra homomorphism. Since $\psi$ is an $H_{*} H$ comodule map, the following operation is multiplicative:

$$
(\psi \otimes 1) \circ \psi=(1 \otimes \delta) \circ \psi: H^{*}(X) \rightarrow H^{*}(X) \otimes H_{*} H \otimes H_{*} H
$$

Since $(\psi \otimes 1) \circ \psi$ is two iteration of $\psi$, we see $\chi_{(\psi \otimes 1) \circ \psi}=\left(\chi_{\psi} \otimes \chi_{\psi}\right) \circ \Delta$. Moreover we obtain $\chi_{(1 \otimes \delta) \circ \psi}=\delta \circ \chi_{\psi}$. Since $(\psi \otimes 1) \circ \psi=(1 \otimes \delta) \circ \psi$, we have the following commutative diagram:


## 5. Appendix

Let $D_{*, *}$ be the bigraded algebra $\prod_{n \geq 0} D[n]_{*}$ with $D_{m, n}=D[n]_{m}$. In this appendix, we define a coproduct of some elements in $D_{*, *}$, and construct algebra homomorphisms $\chi_{D}: A_{*} \rightarrow D_{*, *}$ and $\bar{S}: H_{*} H \rightarrow D_{*, *}$ which preserve coproducts.

First we study a coproduct of $D[n]_{*}$. Define an algebra homomorphism $\delta_{m, n}: \Delta_{n+m} \rightarrow \Delta_{m} \otimes \Delta_{n}$ by

$$
\delta_{m, n}\left(w_{i}\right)= \begin{cases}w_{i} \otimes 1 & \text { if } 0 \leq i \leq m \\ 1 \otimes w_{i-m} & \text { if } m+1 \leq i \leq n+m\end{cases}
$$

Lemma 5.1. $\quad \delta_{m, n}\left(\xi_{j}[n+m]\right)=\sum_{0 \leq j \leq i} \xi_{i-j}^{2^{j}}[m] \otimes \xi_{j}[n] . \quad$ Especially $\delta_{m, n}\left(D[n+m]_{*}\right) \subset D[m]_{*} \otimes D[n]_{*}$.

Proof. We prove the lemma by induction on $n+m$. For $n+m=1$, it is trivial. We now assume that the lemma is true for $n+m \leq k$. For $n+m=k+1$, we consider only the map $\delta_{n, k-n+1}$ because the map $\delta_{k+1,0}$ is trivial. From Theorem 3.3 and $q_{n, 0}=v_{1} \cdots v_{n}$,

$$
\begin{aligned}
\xi_{j}[n] & =q_{n, 0}^{-1}\left(q_{n-1, j} v_{n}+q_{n-1, j-1}^{2}\right) \\
& =\frac{q_{n-1, j} v_{n}+q_{n-1, j-1}^{2}}{v_{1} v_{2} \cdots v_{n}} \\
& =\xi_{j}[n-1]+\xi_{j-1}[n-1]^{2} w_{n}^{-1} .
\end{aligned}
$$

By this equality, we have

$$
\begin{aligned}
& \delta_{n, k-n+1}\left(\xi_{j}[k+1]\right) \\
& \quad=\delta_{n, k-n+1}\left(\xi_{j}[k]+\xi_{j-1}[k]^{2} w_{k+1}^{-1}\right) \\
& \quad=\delta_{n, k-n}\left(\xi_{j}[k]\right)+\delta_{n, k-n}\left(\xi_{j-1}[k]\right)^{2} \delta_{n, k-n+1}\left(w_{k+1}\right)^{-1}
\end{aligned}
$$

By the induction hypothesis, this is equal to

$$
\begin{aligned}
& \sum_{0 \leq i \leq j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n]+\sum_{0 \leq i^{\prime} \leq j-1} \xi_{j-1-i^{\prime}}^{2^{i^{\prime}+1}}[n+1] \otimes \xi_{i^{\prime}}^{2}[k-n] w_{k-n+1}^{-1} \\
& \quad=\sum_{0 \leq i \leq j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n]+\sum_{0 \leq i^{\prime \prime} \leq j} \xi_{j-i^{\prime \prime}}^{i^{\prime \prime}}[n] \otimes \xi_{i^{\prime \prime}-1}^{2}[k-n] w_{k-n+1}^{-1} \\
& \quad=\sum_{0 \leq i \leq j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n+1] .
\end{aligned}
$$

Therefore we have the lemma.
From Lemma 5.1, we have obtained the coproduct $\delta_{m, n}: D[n+m]_{*} \rightarrow$ $D[m]_{*} \otimes D[n]_{*}$. Next we investigate the multiplicative operation $S_{n}: H^{*}(X) \rightarrow$ $H^{*}(X) \otimes D[n]_{*}$.

Lemma 5.2. For $u \in H^{q}(X)$, we have

$$
d_{n}^{*} P_{n}(u)=\sum_{i_{1}, i_{2}, \ldots, i_{n}} v_{1}^{c_{1}} v_{2}^{c_{2}} \cdots v_{n}^{c_{n}} \times S q^{i_{1}} \cdots S q^{i_{n}}(u)
$$

where $0 \leq i_{k} \leq q+\sum_{j=k+1}^{n} i_{j}$ and $c_{k}=q-i_{k}+\sum_{j=k+1}^{n} i_{j}$ for any $1 \leq k \leq n$.
Proof. We prove by induction on $n$. For $n=1$, it is trivial by the definition of $d_{1}^{*} P_{1}$. We now assume that the lemma is true for $n \leq k$. For $k+1$, we use the equality $d_{k+1}^{*} P_{k+1}=d_{1}^{*} P_{1} d_{k}^{*} P_{k}$ by Lemma 3.1. Then we have

$$
\begin{aligned}
& d_{1}^{*} P_{1} d_{k}^{*} P_{k}(u) \\
& =d_{1}^{*} P_{1}\left(\sum_{i_{2}, i_{3}, \ldots, i_{k+1}} v_{1}^{c_{2}} v_{2}^{c_{3}} \cdots v_{k}^{c_{k+1}} \times S q^{i_{2}} \cdots S q^{i_{k+1}}(u)\right) \\
& =\sum_{i_{2}, \ldots, i_{k+1}} d_{1}^{*} P_{1}\left(v_{1}^{\prime}\right)^{c_{2}} \cdots d_{1}^{*} P_{1}\left(v_{k}^{\prime}\right)^{c_{k+1}} \times d_{1}^{*} P_{1}\left(S q^{i_{2}} \cdots S q^{i_{k+1}}(u)\right) \\
& =\sum_{i_{2}, \ldots, i_{k+1}}\left(v_{2}\right)^{c_{2}} \cdots\left(v_{k+1}\right)^{c_{k+1}}\left(\sum_{i_{1}} v_{1}^{q+i_{2}+\cdots+i_{k+1}-i_{1}} \times S q^{i_{1}}\left(S q^{i_{2}} \cdots S q^{i_{k+1}}(u)\right)\right) .
\end{aligned}
$$

We have the first equality by the induction hypothesis, the second equality by Steenrod and Epstein [8, VII, 2.6] and the naturality of $d_{1}$, and the third equality by Theorem 3.6. By $\left.\operatorname{deg}\left(S q^{i_{2}} \cdots S q^{i_{k+1}}(u)\right)\right)=q+\sum_{j=2}^{k+1} i_{j}$, we have $0 \leq i_{1} \leq q+\sum_{j=2}^{k+1} i_{j}$.

Corollary 5.3. For $u \in H^{q}(X)$, we have

$$
S_{n}(u)=\sum_{i_{1}, i_{2}, \ldots, i_{n}} S q^{i_{1}} S q^{i_{2}} \cdots S q^{i_{n}}(u) \times w_{1}^{-i_{1}} w_{2}^{-i_{2}} \cdots w_{n}^{-i_{n}}
$$

where $0 \leq i_{k} \leq q+\sum_{j=k+1}^{n} i_{j}$ for any $0 \leq k \leq n$.

Proof. By the definition of $S_{n}$ and Lemma 5.2, we see

$$
\begin{aligned}
S_{n}(u) & =q_{n, 0}^{-q} d_{n}^{*} P_{n}(u) \\
& =\left(v_{1} \cdots v_{n}\right)^{-q} \sum_{i_{1}, i_{2}, \ldots, i_{n}} v_{1}^{c_{1}} v_{2}^{c_{2}} \cdots v_{n}^{c_{n}} \times S q^{i_{1}} \cdots S q^{i_{n}}(u) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{n}} w_{1}^{-i_{1}} \cdots w_{n}^{-i_{n}} \times S q^{i_{1}} \cdots S q^{i_{n}}(u) .
\end{aligned}
$$

Here is a theorem which describes a relation between two iteration of $S_{n}$ and $\delta_{m, n}$.

## Theorem 5.4.

$\left(S_{m} \otimes i d_{D[n]_{*}}\right) \circ S_{n}=\left(i d_{H^{*}(X)} \otimes \delta_{m, n}\right) \circ S_{n+m}: H^{*}(X) \rightarrow H^{*}(X) \otimes D[m]_{*} \otimes D[n]_{*}$.
Proof. Let $u$ be an element in $H^{q}(X)$. From the definitions of $S_{n}$ and $\delta_{m, n}$, and Corollary 5.3, we obtain

$$
\begin{aligned}
& \left(S_{m} \otimes i d_{D[n]_{*}}\right) \circ S_{n}(u) \\
= & \left.\left(S_{m} \otimes i d_{D[n]_{*}}\right) \sum_{i_{1}, i_{2}, \ldots, i_{n}} S q^{i_{1}} \cdots S q^{i_{n}}(u)\right) \times w_{1}^{-i_{1}} w_{2}^{-i_{2}} \cdots w_{n}^{-i_{n}} \\
= & \sum_{i_{1}, i_{2}, \ldots, i_{n}} S_{m}\left(S q^{i_{1}} \cdots S q^{i_{n}}(u)\right) \times w_{1}^{-i_{1}} w_{2}^{-i_{2}} \cdots w_{n}^{-i_{n}} \\
= & \sum_{i_{1}, i_{2}, \ldots, i_{n}}\left[\left(\sum_{j_{1}, \ldots, j_{m}} S q^{j_{1}} \cdots S q^{j_{m}} S q^{i_{1}} \cdots S q^{i_{n}}(u)\right) \times w_{1}^{-j_{1}} \cdots w_{m}^{-j_{m}}\right. \\
& \left.\times w_{1}^{-i_{1}} w_{2}^{-i_{2}} \cdots w_{n}^{-i_{n}}\right]
\end{aligned}
$$

Since

$$
\begin{gathered}
S_{n+m}(u)=\sum_{i_{1}, \ldots, i_{n+m}} S q^{i_{1}} \cdots S q^{i_{n+m}}(u) \times w_{1}^{-i_{1}} \cdots w_{m+n}^{-i_{m+n}}, \\
\delta_{m, n}\left(w_{1}^{-i_{1}} w_{2}^{-i_{2}} \cdots w_{n+m}^{-i_{n+m}}\right)=w_{1}^{-i_{1}} \cdots w_{m}^{-i_{m}} \otimes w_{1}^{-i_{m+1}} \cdots w_{n}^{-i_{m+n}},
\end{gathered}
$$

we have the result.
In the same way as the proof of Theorem 4.2, we have the following two commutative diagrams:


We define an element $\xi_{k}$ in $D_{*, *}$ by $\sum_{k \geq 0} \xi_{k}[n]$, where $\xi_{k}[n]=0$ for $n<k$. Then we obtain the coproduct $\xi_{n} \rightarrow \sum_{i=0}^{n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}$ of $\xi_{n}$ induced by $\delta_{m, n}$. We define $\chi_{S}: A_{*} \rightarrow D_{*, *}$ by $\prod_{n} \chi_{S_{n}}$, and $\bar{S}: H_{*} H \rightarrow D_{*, *}$ by $\prod_{n} \bar{S}_{n}$. Then $\chi_{S}$ and $\bar{S}$ preserve coproducts. Since $\chi_{\psi}: A_{*} \rightarrow H_{*} H$ is a Hopf algebra homomorphism, we get the commutative diagram of formal Hopf algebra homomorphisms


Remark. Since $D_{*, *}$ is not actually a Hopf algebra, $\chi_{S}$ and $\bar{S}$ are not Hopf algebra homomorphisms.

> Department of Mathematics
> Graduate School of Science
> Kyoto University
> Kyoto 606-8502, Japan
> e-mail: masateru@kusm.kyoto-u.ac.jp

## References

[1] J. F. Adams, Stable homotopy and generalised homology, The Univ. of Chicago Press, Chicago, 1974.
[2] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98.
[3] L. Lomonaco, The iterated total squaring operation, Proc. Amer. Math. Soc. 115 (1992), 1149-1155.
[4] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
[5] H. Mùi, Modular Invariant theory and the cohomology algebras of symmetric spaces, J. Fac. Sci. Univ. Tokyo 22 (1975), 319-369.
[6] H. Mùi, Dickson invariants and the Milnor basis of the Steenrod algebra, Topology and applications, Colloq. Math. Soc. János Bolyai 41 (1983), 345-355.
[7] J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198-232.
[8] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Math. Studies No. 50, Princeton University Press, 1962.


[^0]:    2000 Mathematics Subject Classification(s). Primary 55N22, 55S10; Secondary 55P20
    Received December 24, 2003
    Revised August 11, 2004
    *The author was partially supported by JSPS Research Fellowships for Young Scientists

