The Steenrod algebra and the automorphism group of additive formal group law

By

Masateru INOUE*

1. Introduction

Let H_*H be the Hopf algebra of stable co-operations of the mod 2 ordinary cohomology theory $H^*()$. The structure of H_*H is well known as follows. First J. P. Serre [7] determined the unstable cohomology of the Eilenberg-MacLane complex $K(n, \mathbb{Z}/2)$. He has shown the stable part of $H^*(K(n, \mathbb{Z}/2))$ is generated by iterated Steenrod operations and computed the rank of $H^i(K(n, \mathbb{Z}/2))$ in terms of excess operations. He assumed the existence of Steenrod squares Sq^i but did not use the Adem relations. Using the Adem relations, we see that the algebra S^* generated by Steenrod squares modulo the Adem relations is isomorphic to H^*H . Moreover Milnor [4] determined the Hopf algebra structure of S_* , the dual Steenrod algebra which is the polynomial algebra $\mathbb{F}_2[\xi_1, \xi_2, ...]$ with the coproduct $\psi(\xi_n) = \sum_{i=0}^n \xi_{n-i}^{2^i} \otimes \xi_i$, and therefore we obtain the Hopf algebra structure of H_*H .

Now we recall strict automorphisms of the additive formal group law. Let G_a be the additive formal group law, and $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ the set of strict automorphisms of G_a over a non-negatively graded commutative \mathbb{F}_2 -algebra R_* . An element f(x) in $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is written as a formal power series $x + \sum_{i=1}^{\infty} a_i x^{2^i}$, where $a_i \in R_{2^i-1}$. Here $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor from the category of graded algebras to the category of sets. A product of $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is defined by the composition of power series, and induces the group structure. Therefore $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor to the category of groups, and is represented by the Hopf algebra $A_* = \mathbb{F}_2[\bar{\xi}_1, \bar{\xi}_2, \ldots]$ with the coproduct $\psi(\bar{\xi}_n) = \sum_{i=0}^n \bar{\xi}_{n-i}^{2^i} \otimes \bar{\xi}_i$. In other words, we have a natural group isomorphism

$$\operatorname{Hom}_{\mathbb{F}_2\operatorname{-alg}}(A_*, R_*) \cong \operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*).$$

Comparing S_* with A_* , we see that $S_* \cong A_*$ as a Hopf algebra.

We recall the Dickson algebra. Let V^n be the \mathbb{F}_2 -vector space spanned by elements x_1, \ldots, x_n . In the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n][t]$, consider the

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 55N22, 55S10; Secondary 55P20 Received December 24, 2003

Revised August 11, 2004

^{*}The author was partially supported by JSPS Research Fellowships for Young Scientists

polynomial

$$\prod_{\alpha \in V^n} (t + \alpha) = \sum_{s=0}^n q_{n,s} t^{2^s}, \quad \text{with } q_{n,n} = 1.$$

Then $q_{n,s}$ is invariant under the usual action of $GL_n(\mathbb{F}_2)$ and Dickson [2] has shown that

$$\mathbb{F}_{2}[x_{1},\ldots,x_{n}]^{GL_{n}(\mathbb{F}_{2})} = \mathbb{F}_{2}[q_{n,0},\ldots,q_{n,n-1}].$$

Formally putting deg $x_i = 1$, we have deg $q_{n,s} = 2^n - 2^s$. Let Σ_{2^n} be the symmetric group of degree 2^n ,

$$P_n: H^*(X) \longrightarrow H^{2^n*}(E\Sigma_{2^n} \times_{\Sigma_{2^n}} X^{2^n})$$

the extended power operations of Steenrod [8], and $d_n : B\Sigma_{2^n} \times X \to E\Sigma_{2^n} \times_{\Sigma_{2^n}} X^{2^n}$ the diagonal map. We regard Σ_{2^n} as the group of set automorphisms of E^n , and we obtain the regular embedding $i : E^n \subset \Sigma_{2^n}$ which takes $g \in E^n$ to the permutation induced by $h \mapsto g + h$. Identify V^n by the dual of E^n over \mathbb{F}_2 . Then we have canonical isomorphisms $H^1(BE^n) \cong V^n$, and $H^*(BE^n) \cong \mathbb{F}_2[x_1, \ldots, x_n]$. Furthermore Mùi [6] has proved $\operatorname{Im} i^* = \mathbb{F}_2[q_{n,0}, \ldots, q_{n,n-1}]$. Now consider the restriction of $d_n^* P_n$

$$H^*(X) \xrightarrow{d_n^* P_n} H^*(B\Sigma_{2^n}) \otimes H^*(X) \xrightarrow{i^* \otimes 1} H^*(BE^n) \otimes H^*(X),$$

which is written by the same symbol $d_n^*P_n$. Actually $\operatorname{Im} d_n^*P_n \subset \mathbb{F}_2[q_{n,0},\ldots,q_{n,n-1}] \otimes H^*(X)$, and we can define an operation $S_n : H^*(X) \to \mathbb{F}_2[q_{n,0}^{\pm},\ldots,q_{n,n-1}] \otimes H^*(X)$ by $S_n(x) = q_{n,0}^{-\deg x} d_n^*P_n(x)$. We set $\xi_i[n] = q_{n,i}/q_{n,0}$ and $D[n]_* = \mathbb{F}_2[\xi_1[n],\ldots,\xi_n[n]] \subset \mathbb{F}_2[q_{n,0}^{\pm},\ldots,q_{n,n-1}]$. Then by [6] we see S_n takes value in $D[n]_* \otimes H^*(X)$.

Now we have four algebras H_*H , S_* , A_* and $D[n]_*$. The purpose of this paper is to give a new proof of theorem of Milnor. In other words, we have showed directly that there exists a Hopf algebra isomorphism

$$\chi_{\psi}: A_* \longrightarrow H_*H$$

without the usage of S_* . Since the Hopf algebra structure of A_* is easily seen, we can obtain that of H_*H . Hence we have $S_* \cong H_*H$ as a corollary. The key idea to relate those algebras is the notion of unstable multiplicative operations based on a graded ring R_*

$$H^*(X) \longrightarrow H^*(X) \otimes R_*.$$

A multiplicative operation $\omega : H^*(X) \longrightarrow H^*(X) \otimes R_*$ induces the graded algebra homomorphism $\chi_{\omega} : A_* \to R_*$. Moreover we have the universal multiplicative operation $\psi : H^*(X) \to H^*(X) \otimes H_*H$. Namely, there exists a unique algebra homomorphism $\bar{\omega} : H_*H \to R_*$ which satisfies $(1 \otimes \bar{\omega}) \circ \psi = \omega$

for a multiplicative operation ω . For the above multiplicative operation S_n : $H^*(X) \to H^*(X) \otimes D[n]_*$, we can get the following diagram:

Here χ_{S_n} is an isomorphism in low dimensional range for sufficiently large n. Therefore χ_{ψ} is injective and we see that χ_{ψ} is an isomorphism by Serre's result [7]. Furthermore we can show that the algebra homomorphism χ_{ψ} is actually a Hopf algebra homomorphism.

This paper is constructed as follows. We define a multiplicative operation and construct the universal multiplicative operation ψ in Section 2. In Section 3, we recall the definition of the reduced power operation in Steenrod and Epstein [8] and Mùi's results [5] [6], and introduce the multiplicative operation S_n . In Section 4, we construct A_* and $\chi_{\omega} : A_* \to R_*$ from a multiplicative operation ω over R_* . We prove main theorem (Theorem 4.2). In appendix, we determine a coproduct of certain elements in the algebra $D_{*,*} = \prod_n D[n]_*$, and consider relations to A_* and H_*H .

This paper is written under the supervision of Professor Goro Nishida. I am grateful to him for his extraordinary patience, generous help and inspiring guidance.

2. Multiplicative operation

We assume that X and Y are spaces, and denote by $H^*(X)$ the mod 2 ordinary cohomology of X in this paper.

Definition 2.1. Let R_* be a non-negatively graded commutative algebra over \mathbb{F}_2 , namely $R_* = 0$ for * < 0. We consider a graded module in which the cohomological degree k-part is $\prod_{n\geq 0} H^{k+n}(X) \otimes R_n$. By abuse of notation we denote the graded module by $H^*(X) \otimes R_*$. We call a natural operation $\beta: H^*(X) \to H^*(X) \otimes R_*$ with cohomological degree preserving multiplicative when β satisfies the following conditions:

(i) The diagram

$$\begin{array}{cccc} H^{*}(X) \otimes H^{*}(Y) & \xrightarrow{\times} & H^{*}(X \times Y) \\ & & & \downarrow^{\beta} \\ H^{*}(X) \otimes R_{*} & & \downarrow^{\beta} \\ & & \otimes H^{*}(Y) \otimes R_{*} \end{array} \xrightarrow{1 \otimes \mu \otimes 1} H^{*}(X) \otimes H^{*}(Y) \otimes R_{*} \otimes R_{*} \xrightarrow{(\times) \otimes m} H^{*}(X \times Y) \otimes R_{*}$$

is commutative, where \times is the cross product, μ interchanges the first and second factors, and m is the multiplication on R_* .

(ii) $\beta(u) = u \otimes 1$ where u is the generator of $H^1(S^1)$.

Let $\widetilde{H}^*()$ be the reduced cohomology. We consider the following diagram:

with the horizontal sequences exact. Then we can define the reduced operation $\tilde{\beta} : \tilde{H}^*(X) \to \tilde{H}^*(X) \otimes R_*$ such that the above diagram is commutative. Obviously $\tilde{\beta}$ is natural and the following diagram is commutative:

where \wedge is the smash product.

Lemma 2.2. For a multiplicative operation β , $\tilde{\beta}$ is stable. That is, the following diagram is commutative:

where σ is the suspension isomorphism.

Proof. By the commutative diagram (1), we have the following commutative diagram:

For any element x in $\widetilde{H}^*(X)$,

$$\begin{split} \tilde{\beta}(x \wedge u) &= (\wedge \otimes m) \circ (1 \otimes \mu \otimes 1) \circ (\tilde{\beta}(x) \otimes \tilde{\beta}(u)) \\ &= (\wedge \otimes m) \circ (1 \otimes \mu \otimes 1) (\tilde{\beta}(x) \otimes u \otimes 1) \\ &= \tilde{\beta}(x) \wedge u, \end{split}$$

where $\tilde{\beta}(x) \wedge u = \sum_{n} (y_n \wedge u) \otimes \alpha_n$ for $\tilde{\beta}(x) = \sum_{n} y_n \otimes \alpha_n$. This implies that $\tilde{\beta}$ is a stable operation.

Let *H* be the mod 2 Eilenberg-MacLane spectrum, and H_*H be $\pi_*(H \wedge H)$. We want to introduce a multiplicative operation $\psi : H^*(X) \to H^*(X) \otimes H_*H$. We define a map

$$\overline{\psi}: H^*(X) = [X, H]^* \longrightarrow [X, H \wedge H]^*$$

by $\bar{\psi}(f) = i \wedge f \in [S^0 \wedge X, \ H \wedge H]^*$, where $i: S^0 \to H$ is the unit map. Let κ be the map

$$\kappa: H^*(X) \otimes H_*H \longrightarrow [X, H \wedge H]^*$$

induced by $H \wedge (H \wedge H) \xrightarrow{m \wedge 1} H \wedge H$, where *m* is the multiplication on *H*.

Lemma 2.3. κ is an isomorphism.

Proof. If $X = S^n$, κ is an isomorphism. Therefore if $H^*(X) \otimes H_*H$ is a cohomology, κ is a cohomology operation. Because H_nH is finite dimensional, we have the result.

Therefore $\kappa^{-1}\bar{\psi}: H^*(X) \to H^*(X) \otimes H_*H$ is well-defined and it is denoted by ψ .

Theorem 2.4. The operation $\psi : H^*(X) \longrightarrow H^*(X) \otimes H_*H$ is multiplicative.

Proof. The map $i \wedge 1 : S^0 \wedge H \to H \wedge H$ is a ring spectra map. Therefore $\bar{\psi} : H^*(X) \to (H \wedge H)^*(X)$ preserves the external product. Since the multiplication $m : H \wedge H \to H$ is a ring spectra map, $m \wedge 1 : H \wedge H \wedge H \to H \wedge H$ is so. Therefore we see that $\kappa : H^*(X) \otimes H_*H \to (H \wedge H)^*(X)$ preserves the external product. Hence ψ satisfies Definition 2.1 (i).

Next we prove that ψ satisfies Definition 2.1 (ii). It is enough to prove for $u = \Sigma i$. Since $\Sigma i \wedge i = i \wedge \Sigma i$ in $[S^1, \Sigma(H \wedge H)]$, we see

$$\psi(\Sigma i) = \kappa^{-1} \circ \bar{\psi}(\Sigma i) = \kappa^{-1}(i \wedge \Sigma i) = \kappa^{-1}(\Sigma i \wedge i) = u \otimes 1.$$

From now on, we assume any graded algebra R_* is of finite type, that is R_n is finite dimensional for each n. We define $Op(R_*)$ by the set of all multiplicative operations over R_* . This is a covariant functor from the category of graded algebras over \mathbb{F}_2 to the category of sets. We now construct a natural transformation

$$\lambda : \operatorname{Op}(R_*) \longrightarrow \operatorname{Hom}_{\mathbb{F}_2}(H_*H, R_*),$$

where $\operatorname{Hom}_{\mathbb{F}_2}(,)$ is the set of all graded linear homomorphisms.

Since $H^*(X) \otimes R_*$ is a cohomology theory in the same way as the proof of Lemma 2.3, we denote the spectrum which represents the cohomology $H^*() \otimes$

 R_* by HR_* . Obviously HR_* is a commutative ring spectrum and an *H*-module spectrum induced by the products

$$H^*(X) \otimes R_* \otimes H^*(Y) \otimes R_* \longrightarrow H^*(X \times Y) \otimes R_*,$$
$$(x \otimes r \otimes y \otimes r' \mapsto (x \times y) \otimes r \cdot r'),$$

and

$$H^*(X) \otimes (H^*(Y) \otimes R_*) \longrightarrow H^*(X \times Y) \otimes R_*$$
$$(x \otimes y \otimes r \mapsto (x \times y) \otimes r).$$

Under these conditions, we have

$$\bar{\lambda}: (HR_*)^*H \xrightarrow{\cong} \operatorname{Hom}_{\mathbb{F}_2}^*(H_*H, R_*),$$

from [1, III, 13.5]. This map is defined by $H \wedge H \xrightarrow{1 \wedge x} H \wedge HR_* \xrightarrow{\tau} HR_*$, where $x \in [H, HR_*]$ and the *H*-module map $\tau : H \wedge HR_* \to HR_*$. For an element α in $(HR_*)^*H$, we write $\bar{\lambda}(\alpha)$ as $\bar{\alpha}$.

Let $\beta : H^*(X) \to H^*(X) \otimes R_*$ be a multiplicative operation. Since $\tilde{\beta}$ is stable by Lemma 2.2, we can identify β as a stable cohomology operation. Therefore $\operatorname{Op}(R_*)$ is a subset in $(HR_*)^0 H$. β satisfies the following commutative diagram:

$$\begin{array}{ccc} H^*(X) & \stackrel{\psi}{\longrightarrow} & H^*(X) \otimes H_*H \\ & & & & & \downarrow 1 \otimes \bar{\beta} \\ & & & & & \downarrow 1 \otimes \bar{\beta} \\ & & & & & H^*(X) \otimes R_* \end{array}$$

from the commutative diagram:

$$\begin{array}{cccc} S^0 \wedge H & \stackrel{i \wedge 1}{\longrightarrow} & H \wedge H \\ & x \\ & x \\ HR_* & \stackrel{\tau}{\longleftarrow} & H \wedge HR_*. \end{array}$$

Here x is a spectra map which represents β . We define λ by the restriction of $\overline{\lambda}$ to $\operatorname{Op}(R_*)$. Since $\operatorname{Op}(R_*) \subset (HR_*)^0 H$, the image of λ is actually included in $\operatorname{Hom}_{\mathbb{F}_2}(H_*H, R_*)$.

Theorem 2.5. Let $\operatorname{Hom}_{\mathbb{F}_2\text{-alg}}(,)$ be the set of all graded algebra homomorphisms. Then there is an one to one correspondence

$$\lambda : \operatorname{Op}(R_*) \longrightarrow \operatorname{Hom}_{\mathbb{F}_2\text{-alg}}(H_*H, R_*)$$

which is natural in R_* .

Proof. We now prove $\lambda(\operatorname{Op}(R_*)) \subset \operatorname{Hom}_{\mathbb{F}_2-\operatorname{alg}}(H_*H, R_*)$. It is enough to prove that the following diagram is commutative:

$$(2) \qquad \begin{array}{c} H \wedge H \wedge H & \xrightarrow{(m \wedge m) \circ (1 \wedge \mu \wedge 1)} & H \wedge H \\ & & \downarrow 1 \wedge x \\ (2) & H \wedge HR_* \wedge H \wedge HR_* & \xrightarrow{(m \wedge m_{R_*}) \circ (1 \wedge \mu \wedge 1)} & H \wedge HR_* \\ & & & & \downarrow \tau \\ & & & & \downarrow \tau \\ & & & & \downarrow \tau \\ & & & & HR_* & \xrightarrow{m_{R_*}} & HR_*, \end{array}$$

where β is a multiplicative operation, x represents β , and m_{R_*} is the multiplication on HR_* . Because β is a multiplicative operation, the following diagram is commutative:

$$\begin{array}{cccc} H \wedge H & \xrightarrow{x \wedge x} & HR_* \wedge HR_* \\ m & & & & \downarrow^{m_{R_*}} \\ H & \xrightarrow{x} & HR_*. \end{array}$$

Therefore the upper square in the diagram (2) is commutative. The lower square in (2) is commutative since HR_* is a commutative ring spectrum and $m_{R_*}: HR_* \wedge HR_* \to HR_*$ is an *H*-module spectra map.

For any r in $\operatorname{Hom}_{\mathbb{F}_2-\operatorname{alg}}(H_*H, R_*)$, the operation

$$(1 \otimes r) \circ \psi : H^*(X) \longrightarrow H^*(X) \otimes H_*H \longrightarrow H^*(X) \otimes R_*$$

is multiplicative. This shows $\lambda(\operatorname{Op}(R_*)) = \operatorname{Hom}_{\mathbb{F}_2-\operatorname{alg}}(H_*H, R_*)$.

3. Construction of the reduced power

Let G be a subgroup of the symmetric group Σ_m of degree m. For a space X, G acts on X^m as a permutation. Steenrod defined the extended power operation

$$P_G: H^q(X) \to H^{mq}(E_G(X)),$$

where $E_G(X)$ is defined by $EG \times_G X^m$ [8, VII]. From the diagonal map $d_G : BG \times X \to E_G(X)$, we have the natural map $d_G^* P_G : H^q(X) \to H^{mq}(BG \times X)$.

Let E^n be the elementary abelian 2-group with dimension n and we write $E^n = E_1 \times \cdots \times E_n$, where $E_i = \mathbb{Z}/2$. Then we can identify $\operatorname{Aut}_{\operatorname{Set}}(E^n)$, the set of all permutations of the set E^n , as Σ_{2^n} . Since E^n acts on itself as a vector space, there is the regular embedding $E^n \subset \Sigma_{2^n}$. The wreath product $E_1 \int \cdots \int E_n$ is a 2-sylow subgroup of Σ_{2^n} , and it is denoted by $\Sigma_{2^n,2}$. Obviously, $\Sigma_{2^n,2}$ contains E^n . We define an inclusion $E^{n-1} \subset E^n$ by $E^{n-1} \cong \{0\} \times E_2 \times \cdots \times E_n \subset E^n$. Then it induces the inclusion $\Sigma_{2^{n-1},2} \subset E_1 \int \Sigma_{2^{n-1},2} = \Sigma_{2^n,2}$.

From $i_{G,G'}: G' \subset G$, we have three maps $BG' \to BG$, $E_{G'}(X) \to E_G(X)$, and $BG' \times X \to BG \times X$. They induce $H^*(BG) \to H^*(BG')$, $H^*(E_G(X)) \to H^*(BG')$. Masateru Inoue

 $H^*(E_{G'}(X))$ and $H^*(BG \times X) \to H^*(BG' \times X)$, which are denoted by the same symbol $i^*_{G,G'}$. Since we see $i^*_{G,G'}P_G = P_{G'}$ by [8, VII, 2.5], we obtain

(3)
$$i_{\Sigma_{2^n}, E^n}^* d_{\Sigma_{2^n}}^* P_{\Sigma_{2^n}} = i_{\Sigma_{2^n, 2}, E^n}^* d_{\Sigma_{2^n, 2}}^* P_{\Sigma_{2^n, 2}} = d_n^* P_n : H^q(X) \to H^{2^n q}(BE^n \times X),$$

where $d_n = d_{E^n}$ and $P_n = P_{E^n}$. We can identify $P_{E_1} P_{\Sigma_{2^{n-1},2}}$ with $P_{\Sigma_{2^n,2}}$ from the following commutative diagram:

$$\begin{array}{cccc} H^*(X) & \xrightarrow{P_{\Sigma_{2^{n},2}}} & H^*(E_{\Sigma_{2^{n},2}}(X)) \\ & & & \downarrow \cong \\ \\ H^*(E_{2^{n-1},2}(X)) & \xrightarrow{P_1} & H^*(E_{E_1}(E_{\Sigma_{2^{n-1},2}}(X))) \cong H^*(E_{E_1 \int \Sigma_{2^{n-1},2}}(X)). \end{array}$$

By the naturality of P, the following diagram is commutative:

$$\begin{array}{c} H^{*}(X) \\ P_{\Sigma_{2^{n-1},2}} \\ H^{*}(E_{\Sigma_{2^{n-1},2}}(X)) & \xrightarrow{d_{n-1}^{*}} & H^{*}(BE^{n-1} \times X) \\ P_{1} \\ & & \downarrow P_{1} \\ H^{*}(E_{E_{1}}(E_{\Sigma_{2^{n-1},2}}(X))) & \xrightarrow{E_{E_{1}}(d_{n-1})^{*}} & H^{*}(E_{E_{1}}(BE^{n-1} \times X)) \\ & & d_{1}^{*} \\ H^{*}(BE_{1} \times E_{\Sigma_{2^{n-1},2}}(X)) & \xrightarrow{(1 \times d_{n-1})^{*}} & H^{*}(BE^{n} \times X). \end{array}$$

Hence we see the following lemma:

Lemma 3.1 ([8]). We have

$$d_n^* P_n = d_1^* P_1 d_{n-1}^* P_{n-1}.$$

Given the diagonal maps

$$\lambda : EE^n \times_{E^n} (X \times Y)^{2^n} \longrightarrow EE^n \times EE^n \times_{E^n \times E^n} X^{2^n} \times Y^{2^n},$$

and $d' : BE^n \times X \times Y \longrightarrow BE^n \times BE^n \times X \times Y,$

we obtain the following maps:

$$H^{*}(X) \otimes H^{*}(Y) \xrightarrow{P_{n} \times P_{n}} H^{*}(EE^{n} \times_{E^{n}} X^{2^{n}}) \otimes H^{*}(EE^{n} \times_{E^{n}} Y^{2^{n}})$$
$$\xrightarrow{\times} H^{*}(EE^{n} \times EE^{n} \times_{E^{n} \times E^{n}} X^{2^{n}} \times Y^{2^{n}}) \xrightarrow{\lambda^{*}} H^{*}(EE^{n} \times_{E^{n}} (X \times Y)^{2^{n}}),$$

and

$$H^{*}(X) \otimes H^{*}(Y) \xrightarrow{P_{n} \times P_{n}} H^{*}(EE^{n} \times_{E^{n}} X^{2^{n}}) \otimes H^{*}(EE^{n} \times_{E^{n}} Y^{2^{n}})$$
$$\xrightarrow{d_{n}^{*} \times d_{n}^{*}} H^{*}(BE^{n} \times BE^{n} \times X \times Y) \xrightarrow{d'} H^{*}(BE^{n} \times X \times Y).$$

The Steenrod algebra and the automorphism group of additive formal group law 47

Lemma 3.2. We have

 $d_n^* P_n(u \times v) = d'^*(d_n^* \times d_n^*)(P_n u \times P_n v) : H^*(X) \otimes H^*(Y) \longrightarrow H^*(BE^n \times X \times Y).$

Proof. By Steenrod and Epstein [8, VII, Lemma 2.6], we obtain $\lambda^*(P_n u \times P_n v) = P_n(u \times v)$, where $u \in H^*(X)$ and $v \in H^*(Y)$. The commutative diagram

$$\begin{array}{cccc} BE^n \times X \times Y & \xrightarrow{d_n} & EE^n \times_{E^n} (X \times Y)^{2^n} \\ & \downarrow^{\lambda} & & \downarrow^{\lambda} \end{array}$$

 $BE^n \times BE^n \times X \times Y \xrightarrow{d_n \times d_n} EE^n \times EE^n \times EE^n \times X^{2^n} \times Y^{2^n}$

induces

$$H^*(BE^n \times X \times Y) \qquad \xleftarrow{d_n^*} \qquad H^*(EE^n \times_{E^n} (X \times Y)^{2^n})$$
$$d'^* \uparrow \qquad \qquad \uparrow \lambda^*$$

 $H^*(BE^n \times BE^n \times X \times Y) \xleftarrow{d_n^* \times d_n^*} H^*(EE^n \times EE^n \times_{E^n \times E^n} X^{2^n} \times Y^{2^n}).$

Therefore

$$d_n^* P_n(u \times v) = d_n^* \lambda^* (P_n u \times P_n v) = d'^* (d_n^* \times d_n^*) (P_n u \times P_n v).$$

We recall that $H^*(BE^n) = \mathbb{F}_2[x_1, \ldots, x_n]$, where each x_i is of degree 1. It is well known by Mùi [5] that

(4)
$$\operatorname{Im}(i_{\Sigma_{2^n}, E^n}^*) = \mathbb{F}_2[x_1, \dots, x_n]^{GL_n(\mathbb{F}_2)}, \quad \operatorname{Im}(i_{\Sigma_{2^n, 2^n}, E^n}^*) = \mathbb{F}_2[x_1, \dots, x_n]^{T_n},$$

where T_n the upper triangular subgroup of $GL_n(\mathbb{F}_2)$. We define v_{k+1} by

$$v_{k+1} = \prod \left(\sum_{i=1}^k \lambda_i x_i + x_{k+1} \right),$$

and $q_{n,i}$ by

(5)
$$\prod_{\alpha \in E^n} (x + \alpha) = \sum_{s=0}^n q_{n,s} x^{2^s} \quad \text{with } q_{n,n} = 1$$

Obviously deg $q_{n,i} = 2^n - 2^i$. Dickson [2] and Mùi [5] have shown

$$\mathbb{F}_{2}[x_{1},\ldots,x_{n}]^{GL_{n}(\mathbb{F}_{2})} \cong \mathbb{F}_{2}[q_{n,0},q_{n,1},\ldots,q_{n,n-1}],\\ \mathbb{F}_{2}[x_{1},\ldots,x_{n}]^{T_{n}} \cong \mathbb{F}_{2}[v_{1},\ldots,v_{n}].$$

Furthermore the following relations between $q_{n,i}$ and v_i are known.

Theorem 3.3 ([5]). We have

$$q_{n,j} = q_{n-1,j}v_n + q_{n-1,j-1}^2,$$

where $q_{n,j} = 0$ for j < 0 or n < j.

We need the following definition and theorem in [8].

Definition 3.4 ([8] VII 3.2). Suppose $H^*(BE^1) = \mathbb{F}_2[x]$ and $u \in H^q(X)$. Then we can write $d_1^*P_1(u) = \sum_k x^k \times Sq^{q-k}(u)$, where

$$Sq^k: H^q(X) \longrightarrow H^{q+k}(X).$$

Theorem 3.5 ([8] VII 4.3, 4.4, 3.4). For each k, Sq^k is a homomorphism. If $u \in H^q(X)$, then $Sq^k(u) = 0$ for k < 0, $Sq^0(u) = u$ and $Sq^q(u) = u^2$.

We now consider

(6)
$$d_1^* P_1 : H^*(BE^n) \to H^*(BE^1 \times BE^n).$$

Obviously $BE^1 \times BE^n = BE^{n+1}$. Since

$$E^{n} \cong \{0\} \times E_{2} \times \cdots \times E_{n+1} \subset E^{n+1} = E_{1} \times \cdots \times E_{n+1},$$

we identify BE^1 as BE_1 and BE^n as $B(E_2 \times \cdots \times E_{n+1})$ in (6).

Theorem 3.6 ([6] Theorem 1.5). Define an element v'_n by

$$v'_{n} = \prod_{\lambda_{i}=0,1} \left(\sum_{i=2}^{n} \lambda_{i} x_{i} + x_{n+1} \right)$$
 in $H^{*}(BE^{n}) = \mathbb{F}_{2}[x_{2}, \dots, x_{n+1}].$

Then we have

$$d_1^* P_1(v_n') = v_{n+1}, \text{ in } H^*(BE^{n+1}).$$

Especially

$$d_n^* P_n x_{n+1} = v_{n+1},$$

where $H^*(BE_{n+1}) = \mathbb{F}_2[x_{n+1}]$ and $d_n^*P_n : H^*(BE_{n+1}) \to H^*(B(E_1 \times \cdots \times E_n) \times BE_{n+1}).$

Proof. By Theorem 3.5, we have $d_1^*P_1(u) = 1 \times u^2 + x_1 \times u$ for $u \in H^1(X)$. By Lemma 3.2, we have

$$d_{1}^{*}P_{1}(v_{n}') = \prod_{\lambda_{i}=0,1} d_{1}^{*}P_{1}\left(\sum_{i=2}^{n} \lambda_{i}x_{i} + x_{n+1}\right)$$
$$= \prod_{\lambda_{i}=0,1} \left(\sum_{i=2}^{n} \lambda_{i}x_{i} + x_{n+1}\right) \left(x_{1} + \sum_{i=2}^{n} \lambda_{i}x_{i} + x_{n+1}\right)$$
$$= v_{n+1}.$$

The second claim is obvious by Lemma 3.1.

From (3) and (4), the image of $d_n^* P_n$ is included in $\mathbb{F}_2[x_1, \ldots, x_n]^{GL_n(\mathbb{F}_2)} \otimes H^*(X)$. For any $u \in H^q(X)$, we can denote $d_n^* P_n u$ by

(7)
$$d_n^* P_n u = \sum_{R = (r_0, \dots, r_{n-1})} q_{n,0}^{r_0} q_{n,1}^{r_1} \cdots q_{n,n-1}^{r_{n-1}} \otimes \mathcal{D}_R u,$$

where $\mathcal{D}_R : H^q(X) \to H^{2^q - |R|}(X)$ with $|R| = \sum_{s=0}^{n-1} r_s (2^n - 2^s).$

Lemma 3.7 ([6], Lemma 2.3). $\mathcal{D}_R u = 0$ if $q < r_0 + r_1 + \dots + r_{n-1}$.

Proof. We now prove by the induction on n. In the case of n = 1, it is obvious by Definition 3.4 and Theorem 3.5. We assume that the lemma is true for n = k - 1. We consider the case of n = k. By Lemma 3.1 we have

$$d_k^* P_k(u) = d_1^* P_1 d_{k-1}^* P_{k-1} u = \sum_{i=0}^{2^{k-1}q} x_1^{2^{k-1}q-i} Sq^i (d_{k-1}^* P_{k-1} u)$$

So the degree of $d_k^* P_k(u)$ in x_1 is equal to $2^{k-1}q$. From Theorem 3.3, $\deg_{x_1} q_{k,s} = \deg_{x_k} q_{k,s} = 2^{k-1}$. From the equality (7), we must have

$$2^{k-1}(r_1 + \dots + r_{k-1}) \le 2^{k-1}q$$

Therefore the lemma is true.

Let $P_n = \mathbb{F}_2[x_1, \ldots, x_n] (= H^*(BE^n))$, $e_n = \prod(\sum_{i=1}^n \lambda_i x_i) \in P_n$, $(\lambda_i = 0 \text{ or } 1, \sum \lambda_i > 0)$, and $\Phi_n = P_n[e_n^{-1}]$. Then there exists the natural action of $GL_n(\mathbb{F}_2)$ on P_n and Φ_n . Define $\Delta_n = \Phi_n^{T_n}$ and $\Gamma_n = \Phi_n^{GL_n}$, where Φ_n^K is the subalgebra of the invariants of K in Φ_n for $K = T_n$ or GL_n . We set $w_{k+1} = v_{k+1}/e_k$. It is easily seen that

$$\Delta_n = \mathbb{F}_2[v_1^{\pm 1}, \dots, v_n^{\pm 1}] \cong \mathbb{F}_2[w_1^{\pm 1}, \dots, w_n^{\pm 1}], \ \Gamma_n = \mathbb{F}_2[q_{n,0}^{\pm 1}, q_{n,1}, \dots, q_{n,n-1}].$$

Let $S_n : H^*(X) \to \Phi_n \otimes H^*(X)$ be the map which sends x to $q_{n,0}^{-\deg(x)} d_n^* P_n(x)$. From the definition, S_n preserves cohomological degree. It is the same as the definition of S_n by Lomonaco [3] substantially.

Let $D[n]_*$ be the subalgebra generated by $\xi_1[n], \xi_2[n], \ldots, \xi_n[n]$ in Φ_n , where $\xi_i[n] = q_{n,i}/q_{n,0}$. It is easily seen that $\xi_i[n]$ is an element in $D[n]_{2^{i-1}}$ and $D[n]_* = \mathbb{F}_2[\xi_1[n], \ldots, \xi_n[n]].$

Corollary 3.8. Suppose $H^*(B\mathbb{Z}/2) = \mathbb{F}_2[x]$. Then we have

$$S_n(x) = \sum_{s=0}^n \xi_s[n] x^{2^s}.$$

Proof. From the definition of v_n and the equality (5), we have $v_{n+1} = \sum_{s=0}^{n} q_{n,s} x_{n+1}^{2^s}$. By Theorem 3.6 and the definition of S_n , we have $S_n(x) = \sum_{s=0}^{n} \xi_s[n] x^{2^s}$.

Lemma 3.9. $\operatorname{Im}(S_n) \subset D[n]_* \otimes H^*(X).$

Proof. Trivial by Lemma 3.7.

We consider the operation $H^*(X) \xrightarrow{S_n} D[n]_* \otimes H^*(X) \to H^*(X) \otimes D[n]_*$, where the second map interchanges the first and second factors, and denote it by the same symbol S_n .

Lemma 3.10. The cohomology operation S_n is multiplicative. That is, the following diagram is commutative:

$$\begin{array}{cccc} H^*(X) \otimes H^*(Y) & & \longrightarrow & H^*(X \times Y) \\ s_n \otimes s_n \downarrow & & \downarrow s_n \\ H^*(X) \otimes D[n]_* & & & \downarrow s_n \\ \otimes H^*(Y) \otimes D[n]_* & & \underbrace{1 \otimes \mu \otimes 1}_{\otimes D[n]_* \otimes D[n]_*} & \xrightarrow{\times \otimes m} & H^*(X \times Y) \otimes D[n]_*. \end{array}$$

Proof. By Lemma 3.2, it is obvious.

4. The relation between
$$H_*H$$
 and $\operatorname{Aut}_{\mathbb{F}_2} G_a$

Let G_a be the additive formal group law and $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ the set of all strict automorphisms of G_a over a graded \mathbb{F}_2 -algebra R_* . Then $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor from the category of graded algebras to the category of sets. An element in $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is a power series $f(x) \in R_*[[x]]$ satisfying the following three conditions: (i) f(x+y) = f(x) + f(y); (ii) the coefficient of xin f(x) is equal to 1; (iii) that of x^k is an element in R_{k-1} . Therefore for $f(x) \in \operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ we have

$$f(x) = x + a_1 x^2 + a_2 x^4 + \dots + a_m x^{2^m} + \dots$$
, where $a_i \in R_{2^i - 1}$.

Let A_* be the graded polynomial algebra generated by $\{\bar{\xi}_1, \ldots, \bar{\xi}_n, \ldots\}$ with $\bar{\xi}_i \in A_{2^i-1}$. Such a power series is represented by a graded \mathbb{F}_2 -algebra homomorphism

$$\chi: A_* = \mathbb{F}_2[\bar{\xi_1}, \bar{\xi_2}, \dots] \longrightarrow R_*$$

defined by $\chi(\bar{\xi}_i) = a_i$, and we have the natural isomorphism

(8)
$$\operatorname{Hom}_{\mathbb{F}_{2}\operatorname{-alg}}(A_{*}, R_{*}) \cong \operatorname{Aut}_{\mathbb{F}_{2}}(G_{a})(R_{*}), \qquad \chi \mapsto \sum_{i=0}^{\infty} \chi(\xi_{i}) x^{2^{i}},$$

where $\xi_0 = 1$. A product of $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is defined by $(g \cdot f)(x) = f(g(x))$. Then $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is a group, and thereby $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor to the category of groups. This induces the coproduct map $\Delta : A_* \to A_* \otimes A_*$. It is easy to check $\Delta(\bar{\xi}_n) = \sum_{i=0}^n \bar{\xi}_{n-i}^{2^i} \otimes \bar{\xi}_i$. Consider a multiplicative operation $\beta : H^*(X) \to H^*(X) \otimes R_*$. The

Consider a multiplicative operation $\beta : H^*(X) \to H^*(X) \otimes R_*$. The classifying space $B\mathbb{Z}/2$ is an *H*-space and the Hopf algebra $H^*(B\mathbb{Z}/2) \cong \mathbb{F}_2[x]$ is nothing but the additive formal group. We can identify $\beta(x)$ as an element in $R_*[[x]]$ and write it by $f_\beta(x)$.

50

Lemma 4.1. $f_{\beta}(x)$ is an element in $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$.

Proof. The product map $a: B\mathbb{Z}/2 \times B\mathbb{Z}/2 \to B\mathbb{Z}/2$ induces the commutative diagram:

$$\begin{array}{cccc} H^*(B\mathbb{Z}/2) \otimes H^*(B\mathbb{Z}/2) & \xrightarrow{\beta \times \beta} & H^*(B\mathbb{Z}/2) \otimes R_* \otimes H^*(B\mathbb{Z}/2) \otimes R_* \\ & \times & & \downarrow & & \downarrow (\times) \times mo(1 \times \mu \times 1) \\ H^*(B\mathbb{Z}/2 \times B\mathbb{Z}/2) & \xrightarrow{\beta} & H^*(B\mathbb{Z}/2 \times B\mathbb{Z}/2) \otimes R_* \\ & & a^* \uparrow & & \uparrow a^* \\ & & H^*(B\mathbb{Z}/2) & \xrightarrow{\beta} & H^*(B\mathbb{Z}/2) \otimes R_*. \end{array}$$

Therefore we see

$$\beta(x \times 1 + 1 \times x) = a^* \circ \beta(x) = \beta \circ a^*(x) = \beta(x \times 1) + \beta(1 \times x) = \beta(x) \times 1 + 1 \times \beta(x).$$

Let $\chi_{\beta} : A_* \to R_*$ be the algebra homomorphism corresponding to $f_{\beta}(x)$ in (8). For the multiplicative operations ψ in Section 2 and S_n in Section 3, we obtain the algebra homomorphisms $\chi_{\psi} : A_* \to H_*H$ and $\chi_{S_n} : A_* \to D[n]_*$.

The map $H \wedge S^0 \wedge H \xrightarrow{1 \wedge i \wedge 1} H \wedge H \wedge H$ induces

$$\delta: H_*H = [S^0, \ H \wedge H]_* \longrightarrow [S^0, \ H \wedge H \wedge H]_* \cong H_*H \otimes H_*H,$$

and H_*H is a Hopf algebra. Then $H^*(X)$ is an H_*H -comodule with $\psi : H^*(X) \to H^*(X) \otimes H_*H$.

Theorem 4.2. $\chi_{\psi}: A_* \longrightarrow H_*H$ is a Hopf algebra isomorphism.

Proof. From Theorem 2.5, there exists a unique algebra homomorphism $\bar{S}_n: H_*H \to D[n]_*$ with the commutative diagram

It induces the following commutative diagram:

$$\begin{array}{ccc} A_* & \xrightarrow{\chi_{\psi}} & H_*H \\ & & & & \downarrow_{S_n} \\ & & & & D[n]_*. \end{array}$$

From Corollary 3.8, χ_{S_n} is defined by $\chi_{S_n}(\bar{\xi}_i) = \xi_i[n]$. For sufficiently large m, there exists a number n such that $\chi_{S_n}: H_*H \to D[n]_*$ is an isomorphism on

* $\leq m$. Therefore χ_{ψ} is injective. Serre [7, §18, Théorème 3] has shown that the Poincaré series of H^*H and H_*H is equal to $\prod_{i=1}^{\infty} 1/(1-t^{2^i-1})$, which is the same as that of A_* . Hence χ_{ψ} is bijective.

Next we prove χ_{ψ} is a Hopf algebra homomorphism. Since ψ is an H_*H comodule map, the following operation is multiplicative:

$$(\psi \otimes 1) \circ \psi = (1 \otimes \delta) \circ \psi : H^*(X) \to H^*(X) \otimes H_*H \otimes H_*H.$$

Since $(\psi \otimes 1) \circ \psi$ is two iteration of ψ , we see $\chi_{(\psi \otimes 1)\circ\psi} = (\chi_{\psi} \otimes \chi_{\psi}) \circ \Delta$. Moreover we obtain $\chi_{(1\otimes\delta)\circ\psi} = \delta \circ \chi_{\psi}$. Since $(\psi \otimes 1) \circ \psi = (1\otimes\delta) \circ \psi$, we have the following commutative diagram:

$$\begin{array}{cccc} A_* & \xrightarrow{\Delta} & A_* \otimes A_* \\ \chi_{\psi} & & & & \downarrow \chi_{\psi} \otimes \chi_{\psi} \\ H_*H & \xrightarrow{\delta} & H_*H \otimes H_*H. \end{array}$$

5. Appendix

Let $D_{*,*}$ be the bigraded algebra $\prod_{n\geq 0} D[n]_*$ with $D_{m,n} = D[n]_m$. In this appendix, we define a coproduct of some elements in $D_{*,*}$, and construct algebra homomorphisms $\chi_D: A_* \to D_{*,*}$ and $\overline{S}: H_*H \to D_{*,*}$ which preserve coproducts.

First we study a coproduct of $D[n]_*$. Define an algebra homomorphism $\delta_{m,n}: \Delta_{n+m} \to \Delta_m \otimes \Delta_n$ by

$$\delta_{m,n}(w_i) = \begin{cases} w_i \otimes 1 & \text{if } 0 \le i \le m, \\ 1 \otimes w_{i-m} & \text{if } m+1 \le i \le n+m \end{cases}$$

Lemma 5.1. $\delta_{m,n}(\xi_j[n+m]) = \sum_{0 \le j \le i} \xi_{i-j}^{2^j}[m] \otimes \xi_j[n]$. Especially $\delta_{m,n}(D[n+m]_*) \subset D[m]_* \otimes D[n]_*$.

Proof. We prove the lemma by induction on n + m. For n + m = 1, it is trivial. We now assume that the lemma is true for $n + m \leq k$. For n + m = k + 1, we consider only the map $\delta_{n,k-n+1}$ because the map $\delta_{k+1,0}$ is trivial. From Theorem 3.3 and $q_{n,0} = v_1 \cdots v_n$,

$$\begin{aligned} \xi_j[n] &= q_{n,0}^{-1}(q_{n-1,j}v_n + q_{n-1,j-1}^2) \\ &= \frac{q_{n-1,j}v_n + q_{n-1,j-1}^2}{v_1v_2\cdots v_n} \\ &= \xi_j[n-1] + \xi_{j-1}[n-1]^2 w_n^{-1}. \end{aligned}$$

By this equality, we have

$$\begin{split} \delta_{n,k-n+1}(\xi_j[k+1]) \\ &= \delta_{n,k-n+1}(\xi_j[k] + \xi_{j-1}[k]^2 w_{k+1}^{-1}) \\ &= \delta_{n,k-n}(\xi_j[k]) + \delta_{n,k-n}(\xi_{j-1}[k])^2 \delta_{n,k-n+1}(w_{k+1})^{-1}. \end{split}$$

By the induction hypothesis, this is equal to

$$\sum_{0 \le i \le j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n] + \sum_{0 \le i' \le j-1} \xi_{j-1-i'}^{2^{i'+1}}[n+1] \otimes \xi_{i'}^{2}[k-n]w_{k-n+1}^{-1}$$
$$= \sum_{0 \le i \le j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n] + \sum_{0 \le i'' \le j} \xi_{j-i''}^{2^{i''}}[n] \otimes \xi_{i''-1}^{2}[k-n]w_{k-n+1}^{-1}$$
$$= \sum_{0 \le i \le j} \xi_{j-i}^{2^{i}}[n] \otimes \xi_{i}[k-n+1].$$

Therefore we have the lemma.

From Lemma 5.1, we have obtained the coproduct $\delta_{m,n} : D[n+m]_* \to D[m]_* \otimes D[n]_*$. Next we investigate the multiplicative operation $S_n : H^*(X) \to H^*(X) \otimes D[n]_*$.

Lemma 5.2. For $u \in H^q(X)$, we have

$$d_n^* P_n(u) = \sum_{i_1, i_2, \dots, i_n} v_1^{c_1} v_2^{c_2} \cdots v_n^{c_n} \times Sq^{i_1} \cdots Sq^{i_n}(u),$$

where $0 \le i_k \le q + \sum_{j=k+1}^n i_j$ and $c_k = q - i_k + \sum_{j=k+1}^n i_j$ for any $1 \le k \le n$.

Proof. We prove by induction on n. For n = 1, it is trivial by the definition of $d_1^*P_1$. We now assume that the lemma is true for $n \leq k$. For k + 1, we use the equality $d_{k+1}^*P_{k+1} = d_1^*P_1d_k^*P_k$ by Lemma 3.1. Then we have

$$\begin{aligned} &= d_1^* P_1 d_k^* P_k(u) \\ &= d_1^* P_1 \left(\sum_{i_2, i_3, \dots, i_{k+1}} v_1^{c_2} v_2^{c_3} \cdots v_k^{c_{k+1}} \times Sq^{i_2} \cdots Sq^{i_{k+1}}(u) \right) \\ &= \sum_{i_2, \dots, i_{k+1}} d_1^* P_1(v_1')^{c_2} \cdots d_1^* P_1(v_k')^{c_{k+1}} \times d_1^* P_1(Sq^{i_2} \cdots Sq^{i_{k+1}}(u)) \\ &= \sum_{i_2, \dots, i_{k+1}} (v_2)^{c_2} \cdots (v_{k+1})^{c_{k+1}} \left(\sum_{i_1} v_1^{q+i_2+\dots+i_{k+1}-i_1} \times Sq^{i_1}(Sq^{i_2} \cdots Sq^{i_{k+1}}(u)) \right). \end{aligned}$$

We have the first equality by the induction hypothesis, the second equality by Steenrod and Epstein [8, VII, 2.6] and the naturality of d_1 , and the third equality by Theorem 3.6. By $\deg(Sq^{i_2}\cdots Sq^{i_{k+1}}(u))) = q + \sum_{j=2}^{k+1} i_j$, we have $0 \leq i_1 \leq q + \sum_{j=2}^{k+1} i_j$.

Corollary 5.3. For $u \in H^q(X)$, we have

$$S_n(u) = \sum_{i_1, i_2, \dots, i_n} Sq^{i_1}Sq^{i_2}\cdots Sq^{i_n}(u) \times w_1^{-i_1}w_2^{-i_2}\cdots w_n^{-i_n},$$

where $0 \le i_k \le q + \sum_{j=k+1}^n i_j$ for any $0 \le k \le n$.

Proof. By the definition of S_n and Lemma 5.2, we see

$$S_{n}(u) = q_{n,0}^{-q} d_{n}^{*} P_{n}(u)$$

= $(v_{1} \cdots v_{n})^{-q} \sum_{i_{1}, i_{2}, \dots, i_{n}} v_{1}^{c_{1}} v_{2}^{c_{2}} \cdots v_{n}^{c_{n}} \times Sq^{i_{1}} \cdots Sq^{i_{n}}(u)$
= $\sum_{i_{1}, i_{2}, \dots, i_{n}} w_{1}^{-i_{1}} \cdots w_{n}^{-i_{n}} \times Sq^{i_{1}} \cdots Sq^{i_{n}}(u).$

Here is a theorem which describes a relation between two iteration of S_n and $\delta_{m,n}$.

Theorem 5.4.

$$(S_m \otimes id_{D[n]_*}) \circ S_n = (id_{H^*(X)} \otimes \delta_{m,n}) \circ S_{n+m} : H^*(X) \to H^*(X) \otimes D[m]_* \otimes D[n]_*.$$

Proof. Let u be an element in $H^q(X)$. From the definitions of S_n and $\delta_{m,n}$, and Corollary 5.3, we obtain

$$(S_m \otimes id_{D[n]_*}) \circ S_n(u)$$

$$= (S_m \otimes id_{D[n]_*}) \sum_{i_1, i_2, \dots, i_n} Sq^{i_1} \cdots Sq^{i_n}(u)) \times w_1^{-i_1} w_2^{-i_2} \cdots w_n^{-i_n}$$

$$= \sum_{i_1, i_2, \dots, i_n} S_m(Sq^{i_1} \cdots Sq^{i_n}(u)) \times w_1^{-i_1} w_2^{-i_2} \cdots w_n^{-i_n}$$

$$= \sum_{i_1, i_2, \dots, i_n} \left[\left(\sum_{j_1, \dots, j_m} Sq^{j_1} \cdots Sq^{j_m} Sq^{i_1} \cdots Sq^{i_n}(u) \right) \times w_1^{-j_1} \cdots w_m^{-j_m} \times w_1^{-i_1} w_2^{-i_2} \cdots w_n^{-i_n} \right]$$

Since

$$S_{n+m}(u) = \sum_{i_1,\dots,i_{n+m}} Sq^{i_1} \cdots Sq^{i_{n+m}}(u) \times w_1^{-i_1} \cdots w_{m+n}^{-i_{m+n}},$$

$$\delta_{m,n}(w_1^{-i_1}w_2^{-i_2} \cdots w_{n+m}^{-i_{n+m}}) = w_1^{-i_1} \cdots w_m^{-i_m} \otimes w_1^{-i_{m+1}} \cdots w_n^{-i_{m+n}},$$

we have the result.

In the same way as the proof of Theorem 4.2, we have the following two commutative diagrams:

We define an element ξ_k in $D_{*,*}$ by $\sum_{k\geq 0} \xi_k[n]$, where $\xi_k[n] = 0$ for n < k. Then we obtain the coproduct $\xi_n \to \sum_{i=0}^n \xi_{n-i}^{2^i} \otimes \xi_i$ of ξ_n induced by $\delta_{m,n}$. We define $\chi_S : A_* \to D_{*,*}$ by $\prod_n \chi_{S_n}$, and $\overline{S} : H_*H \to D_{*,*}$ by $\prod_n \overline{S}_n$. Then χ_S and \overline{S} preserve coproducts. Since $\chi_{\psi} : A_* \to H_*H$ is a Hopf algebra homomorphism, we get the commutative diagram of formal Hopf algebra homomorphisms

$$\begin{array}{ccc} A_* & \chi_S \\ \chi_{\psi} \downarrow & & \\ H_*H & \bar{S} \end{array} D_{*,*}.$$

Remark. Since $D_{*,*}$ is not actually a Hopf algebra, χ_S and \overline{S} are not Hopf algebra homomorphisms.

DEPARTMENT OF MATHEMATICS GRADUATE SCHOOL OF SCIENCE KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: masateru@kusm.kyoto-u.ac.jp

References

- J. F. Adams, Stable homotopy and generalised homology, The Univ. of Chicago Press, Chicago, 1974.
- [2] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75–98.
- [3] L. Lomonaco, The iterated total squaring operation, Proc. Amer. Math. Soc. 115 (1992), 1149–1155.
- [4] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150–171.
- [5] H. Mùi, Modular Invariant theory and the cohomology algebras of symmetric spaces, J. Fac. Sci. Univ. Tokyo 22 (1975), 319–369.
- [6] H. Mùi, Dickson invariants and the Milnor basis of the Steenrod algebra, Topology and applications, Colloq. Math. Soc. János Bolyai 41 (1983), 345–355.
- J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198–232.
- [8] N. E. Steenrod and D. B. A. Epstein, *Cohomology Operations*, Annals of Math. Studies No. 50, Princeton University Press, 1962.