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Abstract. We discuss certain calculations in the 2-complete motivic stable
homotopy category over an algebraically closed field of characteristic 0. Specif-
ically, we prove the convergence of motivic analogues of the Adams and Adams-
Novikov spectral sequences, and as one application, discuss the 2-complete
version of the complex motivic J-homomorphism.

1. Introduction

The purpose of this paper is to point out some aspects of the 2-complete stable
motivic homotopy category over algebraically closed fields K of characteristic 0. By
this we mean the category of P1-motivic spectra, Bousfield localized at the push-
forward of the Moore spectrum MZ/2. This is, in some sense, the part of motivic
stable homotopy theory which is the closest to ordinary topology, although even
here, the theory one obtains, as we shall note, contains interesting new phenomena.
We shall work in this category throughout this paper, unless specified otherwise.
We shall follow the notational convention from [10] (analogous to Real-oriented ho-
motopy theory), which means that for a motivic (generalized) cohomology theory,
we write

Ek+`α(X) = Ek+`,`X,

and similarly for homology.

One can then define BPGL and a motivic analog of the Adams-Novikov spectral
sequence converging to the 2-completed motivic stable homotopy theory πMot

∗ . The
E2-term is equal to the topological E2-term, but with dimensions shifted by twists,
and tensored with Z[θ] where θ is the “Tate twist” (see below). The differentials
mimic the topological differentials, but there is a difference in twist.

To give an example of peculiarities this can cause, recall [22] that in topology,
we have generators

αi ∈ Ext1,2i
BP∗BP (BP∗, BP∗)

(in the notation of [22], our α4k’s are ᾱ4k’s, and our α4k+2’s are α4k+2/3’s). The
elements α4k+2, α4k+3 support a d3 differential, and those are the only differentials
the α-elements are involved in. The element α1 represents the non-zero element in
the first stable 2-stem (=2-completed stable homotopy group), called η. The Z[η]-
submodule of stable 2-stems generated by the α-elements consists of the elements
“related to the J-homomorphism” in the sense of Adams [4] (most are in the image
of J).

In the Motivic Adams-Novikov spectral sequence, we have similar elements

(1) αi ∈ Ext1,i(1+α)
BP∗BP (BP∗, BP∗)⇒ π∗((S0

Mot)
∧
2 ).

1
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Theorem 1. Over an algebraically closed field K of characteristic 0, the element
θ is a permanent cycle in the p = 2-motivic Adams spectral sequence. Further,
inside the α-family, the elements (1) for i ≡ 0, 1 mod 4 are permanent cycles
in the motivic Adams-Novikov spectral sequence at p = 2, representing elements
a4k ∈ πMot

4k−1+4kα((S0
Mot)

∧
2 ), resp. a4k+1 ∈ πMot

4k+(4k+1)α((S0
Mot)

∧
2 ). Write η = α1 ∈

πα((S0)∧2 ).
Then

a4kη
m 6= 0, a4k+1η

m 6= 0
for any positive integer k, m, while

a4kη
3θ = a4k+1η

3θ = η4θ = 0.

Outside the α-family, the element α2
1η3/2 ∈ Ext

5,15(1+α)
BPGL∗

represents a non-zero ele-
ment

x ∈ πMot
10+15α((S0

Mot)
∧
2 )

which maps to 0 in etale homotopy theory, and satisfies

θx = 0.

Remark: Note that computing Morel’s Milnor-Witt ring [18], one easily sees
that ηm 6= 0.

Comment: We will see (Lemma 2) that in each twist, the homotopy groups of
the 2-completion of the motivic sphere spectrum are in fact the homotopy groups of
the 2-completion of an (ordinary topological) bounded below spectrum, whose ho-
motopy groups are the homotopy groups of the motivic sphere spectrum. Therefore,
by Bousfield [5], we indeed have a short exact sequence

(2)
0→ Ext1(Z/2∞, πm+nα(S0

Mot))→ πm+nα((S0
Mot)

∧
2 )

→ Hom(Z/2∞, πm−1+n(α)(S0
Mot))→ 0.

2-adic etale stable homotopy theory over an algebraically closed field turns out to
be just topological stable homotopy theory ⊗Z[θ, θ−1]. Because of this, Theorem
1 gives an example where motivic stable homotopy groups of spheres substantially
deviate from the topological case, by producing an element which “forgets” to 0.

Prompted by a suggestion of Dan Isaksen [12], we also investigate the “complex”
motivic J-homomorphism in the present context. We may consider the A1-space
of stable self-equivalences of S0

Mot. This space can be constructed as follows: ? ∧
Sn(1+α) on the category of based A1-spaces has a right Quillen adjoint, which we
denote by Ωn(1+α). Then we have

QMotS
0 = hocolim

→
Ωn(1+α)Sn(1+α).

Note by Morel [18] that
π0(QMotS

0) = GW (K).
The right hand side, which is called the Grothendieck-Witt ring, is Z when K is
algebraically closed. Now while in general there is no map from an A1-space X to
π0(X) (think about X = Gm), there is a degree map from QMotS

0 to the motivic
Eilenberg-MacLane space representing 0’th integral cohomology, which is equivalent
to Z. Therefore, for our purposes we may define FMot simply as the fiber of the
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map deg : QMotS
0 → Z over the subset {+1,−1}. Let GLMot be the direct limit

of the group schemes GLn. Then, as in topology, we similarly have a map

(3) J : GLMot → FMot

Now let us pass to homotopy groups. The (m + nα)’th homotopy group of the
right hand side of (3) is the stable homotopy group πm+nαS

0
Mot for m > 0. On the

other hand, the (m+ nα)’th homotopy group of the left hand side is the algebraic
Km−n+1-group of the ground field K. Obviously, this can be non-zero only when
m − n > 0, and additionally we must have m,n ≥ 0. After reindexing, we get a
map for all k, ` ≥ 0,

(4) J : Kk(K)→ π(k−1)+`(1+α)S
0.

This is (the “complex version”) of the motivic J-homomorphism. To put this in our
context, we would like a “2-complete version” of the map (4). One complication is
that it is at present not known how to realize (3) as a map of (P1-stable) spectra,
since FMot should be the infinite loop space associated with the multiplicative
spectrum of the sphere spectrum, but no infinite loop space machine is known
for P1-stable spectra, so this is not known. For the moment, we recall [18] that
there is a canonical pushforward functor PF from the category simplicial sets to
the category of Morel-Voevodsky A1-spaces, which possesses a right adjoint, which
we shall denote by FP . Further, PF obviously preserves cofibrations and acyclic
cofibrations, so this is a Quillen adjunction. There is a similar Quillen adjoint
pair PFs, FPs between the category of spectra and P1-stable motivic spectra.
Since PFs turns shift desuspensions of suspension spectra to shift desuspension of
suspension spectra on PF , by commutation of adjoints, we have, for a P1-stable
motivic spectrum E, and an integer n,

(5) FPs(E)n ' FP (En).

Now we can “2-complete” (3) by applying FPΩ`α to both sides and then 2-complete
in the category of spaces (=simplicial sets). We claim that for k+ ` > 1, this gives
a map

(6) πk(Kalg(K)∧2 )→ π(k−1)+`(1+α)((S0
Mot)

∧
2 ).

Indeed, since the 2-completion of the 0-connected component of the infinite loop
space of a spectrum (in the category spaces) is the 0-component of the infinite loop
space of the 2-completion of the spectrum, it suffices to prove the following

Lemma 2. The functor FPs preserves 2-completion on the level of homotopy cat-
egories.

We will prove this in section 5 below. Now it is also known by a calculation of
Suslin [23] that the left hand side of (6) is Z2 when k is even and 0 otherwise. On
the other hand, as we shall see below, the image of (6) only depends on k+ 2`− 1.
In Section 5, we shall prove the following result

Theorem 3. The image of (6) is isomorphic to the 2-primary component of the
image of the (ordinary complex) J-homomorphism in dimension k + 2`− 1.

In order to prove Theorem 1, we need to know the structure of algebraic cobor-
dism over an algebraically closed field. This in turn needs the Adams spectral
sequence, which needs the algebra of bistable operations in motivic cohomology
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(the motivic Steenrod algebra). This calculation was done by Voevodsky in the
late 90’s, but not published at the time of the writing of this note. 1 To make the
present note self-contained, we give the computation here in the case of an alge-
braically closed field (although the method works in greater generality). Namely,
by investigating the structure of symmetric products, we prove

Theorem 4. (Voevodsky) Let K be an algebraically closed field of characteristic
0. Denoting by HMot the HZ/2-motivic (co)homology spectrum over K, and by θ
Tate twist (of cohomological dimension α − 1), the algebra of bistable operations
HMot∗HMot is generated as a Z/2[θ]-module by reduced power operations P s (of
dimension s(1 + α)) and the Bockstein (of dimension 1).

By [25], we therefore have

Corollary 5. The dual motivic Steenrod algebra over an algebraically closed field
K is given by

HMot
∗ HMot = Z/2[θ, τ0, τ1, τ2...ξ1, ξ2, ...]/(τ2

i = ξi+1θ)

where the dimensions of ξi, τi, θ are (2i − 1)(1 + α), (2i − 1)(1 + α) + 1, 1 − α,
respectively.

Let a cell spectrum of finite type in the P1-stable motivic category be a spec-
trum which can be obtained by successively attaching cells (=cones on spheres) in
dimensions m + nα, m,n ≥ 0, with only finitely many cells in dimension m + nα
for each given m.

Theorem 6. Over an algebraically closed field, the Adams spectral sequence

ExtHMot
∗ HMot(HMot

∗ (X),HMot
∗ )⇒ π∗(X∧2 )

converges for any cell spectrum X of finite type.

The proof will be given in the Appendix (Section 6).
The algebraic cobordism spectrum is a positive cell spectrum of finite type (using

Schubert cells). Using this, we can calculate the 2-completed algebraic cobordism
groups:

Theorem 7. Over an algebraically closed field K, the 2-completed algebraic cobor-
dism groups are given by

(MGL∧2 )∗ = Z2[θ, v1, v2, ..., ui | i 6= 2n − 1]

where vn has dimension (2n − 1)(1 + α) and the ui have dimension i(1 + α).

Completed at 2, one can next construct BPGL by mimicking, again, the con-
struction from topology. Using this, we can then conclude

Theorem 8. There exists a convergent Adams-Novikov spectral sequence

ExtBPGL∗BPGL(BPGL∗, BPGL∗)⇒ π∗((S0
Mot)

∧
2 ).

1After this note was written, [26] appeared on the K-theory archive. That manuscript was not
available when the first version of the present note was written, which is why we were compelled
to obtain an independent proof.
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�

The present note is organized as follows: In Section 2, we discuss the main
technical tool of our approach to Voevodsky’s result, the motivic transfer. In Section
3, we apply this technique to analyzing the motivic cohomology of the symmetric
smash-powers of spheres. In Section 4, we prove our main theorems and discuss the
motivic Adams-Novikov spectral sequence. The Proof of Theorem 3 will be done
in Section 5.

Acknowledgements: Since the first version of this paper was posted on the K-
theory archive, the paper [8], the results of which partially (but not fully) overlap
with ours, appeared on arXiv. We thank Dan Dugger for a subsequent discussion,
which prompted us to make some clarifications in the present version. We also wish
to thank Fabien Morel and Mike Hopkins for valuable discussions.

2. The motivic Elmendorf construction

In this paper, we discuss symmetric products of varieties, which are generally
not smooth, so we work with the cd-h topology in finite schemes over a field k.

Definition: A 1-point compactification X∗ of a quasiprojective variety X embed-
ded into a projective variety X is X/(X −X).

Example: Sn(1+α) is a 1-point compactification of An. QuotΣd

∧
d

Sn(1+α) is a

1-point compactification of QuotΣd
And. Here on the right hand side, QuotG is the

functor which on a G-equivariant scheme X takes the value X/G in the category
of schemes, and commutes with direct limits.

We should note that if X is smooth and X −X = D1 ∪ ... ∪Dm where Di are
divisors with normal crossings, then denoting by Q the poset of non-empty subsets
of {1, ...,m} with respect to inclusion, the natural map

hocolim
S∈Q

⋂
i∈S

Di → X −X

is an equivalence (by iterated use of the cdh-diagram), which gives a model of the
1-point compactification in the smooth category with Nisnievich topology.

Lemma 9. Let X∗ be a 1-point compactification of a smooth quasiprojective variety
X of dimension n. Then, in the A1-stable category,

X∗ ' Σn(1+α)D(Xξ)

where D denotes Spanier-Whitehead dual and Xξ denotes the Thom spectrum of X
with respect to its virtual normal bundle of dimension 0.

Proof: This is an example of a purity result. It can be proved, for example, by the
methods of [11]. �
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Now the main point of this section is to consider “smooth models” of quotients
of smooth varieties by finite groups G. In topology, there is the following method,
known as the Elmendorf construction: The orbit category O is the category of G-
orbits and G-equivariant maps. Equivalently, it is the category of subgroups and
outer subconjugacies (i.e. subconjugacies modulo inner conjugacies in the target
group). Then the fixed points X? of a space X under subgroups of G form a
contravariant functor

O→ Spaces.

An example of a covariant functor on the orbit category is G/?. Another example
of a covariant functor is EF? where EFH is a G-CW complex characterized up to
G-homotopy equivalence by the property that

(7) (EFH)K '
{
∗ for K subconjugate to H
∅ else.

One can make EF? into a covariant functor on the orbit category, for example by
taking the 2-sided bar construction

(8) EF? = B(∗,O,O/?).
(Here O/H denotes the contravariant functor which assigns to K the set of mor-
phisms K → H in O.) The notation EFH is explained by noting that the set FH

of subgroups subconjugate to H is an example of a family, i.e. a set of subgroups
of G closed under subconjugacy. Analogously to (7), one can define the classifying
space of any family. Then, in topology, the natural map

(9) EF? ×O X? → X/G

is an equivalence for any G-CW complex X.

In A1-homotopy, (7) does not characterize EFH up to G-A1-equivalence, and
the construction (8) is usually wrong for the purposes of (9). An alternative con-
struction which will work in the case we are interested in (the symmetric products)
is obtained as follows: Let G act effectively on d = {1, ..., d}. Then set

(10) EFH = Ad∞ −
⋃

K /∈FH

(Ad∞)K .

In fact, we also want to adapt (9) to take the form

(11) EF? ×(O) X
? → QuotG(X).

Denote
N(H,K) = {g ∈ G|g−1Hg ⊆ K}.

Then on the left hand side of (11), we mean the obvious coequalizer
(12) ∐

(H),(K)

QuotWG(H)

∐
N(H,K)/H

(EFH ×XK) →→
∐
(H)

QuotWG(H)(EFH ×XH)

where WG(H) denotes the Weyl group of H in G, and the coproducts on the right
(resp. left) side of (12) are over conjugacy classes of subgroups (resp. subconjugate
pairs of conjugacy classes of subgroups of G). The key point is that one can
construct inductively the subspace YF of the construction (12) on a family F of
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subgroups of G: for H /∈ F , such that every proper subgroup of H is in F , to
construct YF∪(H), one attaches the subspace

EFH × (
⋃
XK)

to YF according to the prescribed identification given by (12).When F is the family
of all subgroups of G, YF is the left hand side of (12).

For any construction of EFH , one then has (by induction on the strata)

Lemma 10. Let X>H =
⋃

K /∈FH

XK . If the collapse map

(13) EFH+ ∧ (XH/X>H)→ XH/X>H

is an H-A1-equivalence, then (11) is an A1-equivalence. In fact, more generally,
for any subgroup Γ ⊆ G, the natural map

(14) (Γ\G/?× EF?)×(O) X
? → QuotΓ(X)

is a Γ-A1-equivalence.

�

Corollary 11. Under the assumptions of Lemma 10, let H(X) denote Bloch’s Chow
chain complex on X (resp. its natural extension to G-A1-spaces). Then the transfer
maps associated with free group action for each subgroup H

t : H(QuotW (H)EF? ×X?)→ H(QuotW (H)(Γ\G/?× EF?)×X?)

multiplied by the multiplicity factors

|πH(Γ ∩N(H))|

where πH : N(H) → W (H) = N(H)/H is the projection fit together via (14) to
define a transfer map in the stable category

t : H(QuotG(X))→ H(QuotΓ(X)).

Further, there exists a finite filtration on H(QuotΓ(X)) such that the associated
graded map of the composition

H(QuotΓX)→ H(QuotGX)→ H(QuotΓX)

is multiplication by |G/H|.

In the last sentence of the Corollary, the filtration is supplied by totally ordering
the poset of subconjugacy classes of G, and could probably be eliminated by more
careful consideration, but it does not matter for our purposes.
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3. Symmetric products

In this section, we will investigate the following example:

(15) X =
∧
d

Sn(1+α)

where Σd acts by permutation of coordinates. We are essentially interested in
mimicking the computation of the cohomology of symmetric products of spheres
by Nakaoka [20] in the motivic situation. We claim that condition (13) is satisfied
when we set (10) with Σd acting on d by the standard permutation representation.

First of all, we note that the strata XH/X>H are only non-trivial when

(16) H = Σd1 × ...× Σdk
,

d1 + ...+ dk = d where Σdi acts on di by the standard permutation representation.
Then XH/X>H is the 1-point compactification of the pure stratum

(17) XH −X>H = Ank −∆

where ∆ is the big diagonal (the union of elements with 2 or more coordinates
coinciding). Using (10) and (17), we can then define an A1-homotopy inverse

(18) ι : Ank −∆→ EFH × (Ank −∆)

of the natural projection

(19) p : EFH × (Ank −∆)→ Ank −∆

(p collapses the first coordinate to a point). To define ι, use Id for the second
coordinate in the target of (18). For the first coordinate, we need a map

Ank −∆→ Ad∞ −
⋃

K /∈FH

(Ad∞)K .

But this is obvious: simply send

((x11, ..., xn1), ..., (x1k, ..., xnk))
7→ ((x11, ...xn1, 0, 0, ...)d1 , ..., (x1k, ..., xnk, 0, 0, ...)dk) ∈ (A∞)d.

By definition, (19) is strictly left inverse to (18). To construct an A1-homotopy

(20) ip ' Id,
first recall that we have the “Milnor trick” homotopy

kt : A∞ → A∞,
kt(x1, x2, ...) = (1− t)(x1, x2, ...) + t(0, ..., 0, x1, 0, ..., 0, x2, ...)

(n 0’s inserted before each coordinate). Clearly, (kt)d restricts to an H-homotopy

`t : EFH → EFH

where `0 = Id, `1 ⊆ (0 × 0 × ...0 × A × 0 × ... × 0 × A × ...)d. (20) then follows if
we can construct a homotopy

ip ' `1.
But for this purpose, we may now simply use

t(ip) + (1− t)`1,
which completes the proof of our claim.
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Now we see that an A1-homotopy inverse for the map in the assumption of
Lemma 10 is in our case obtained simply by 1-point compactifying (18), (20) in the
Ank −∆ coordinate. We obtain

Proposition 12. Let S ⊂ Σd be the 2-Sylow subgroup obtained by the standard
permutation representation of a product of wreath products of copies of Z/2. Then
there exists for X in (15) a transfer map

τ : H(QuotΣd
(X))→ H(X ′ = QuotS(

∧
d

Sn(1+α)))

such that if we denote by p : H(X ′) → H(QuotΣd
(X)) the natural projection, then

τp is a 2-complete equivalence.

Proof: By Corollary 11, there is a filtration such that on the associated graded
pieces, τp is the multiplication by the odd number |Σd/S|. �

Because of Proposition 12, it now makes sense to examine the motivic (co)homology
of X ′ in what we call the stable range. This means that for any given constant k,
we may choose n sufficiently large, and consider dimensions

i+ jα

where (2n ≤)i+ j ≤ 2n + k. Let us denote X ′ by X ′(n) when we wish to express
dependence on n.

Definition: By a stratification of an A1-space we mean an increasing filtration
FiX such that F0X = ∅, FNX = X, such that for each i there exists a smooth
quasiprojective variety Vi such that FiX/Fi−1X is a one point compactification of
Vi. We refer to the Vi’s as the pure strata.

Proposition 13. There exists a stratification of X ′(n) where there are canonical
injections from the set of pure strata of X ′(n) to the set of pure strata of X ′(n+1),
and all sequences of pure strata related by these injections are of one of the following
forms:

(21) (Gm)×` × An+k, k independent of n,

or

(22) An Am-bundle V on a smooth variety Y where m
tends to ∞ as n does.

Furthermore, strata of the form (21) do not occur unless d = 2k for some integer
k.

Proof: Induction. It suffices to consider d = 2k, since otherwise X ′ is the smash-
product of the cases for 2ki where ki are places of the 1’s in the binary expansion
of k.

Now the case k = 1 is obvious, so consider

(23) X ′ = QuotZ/2(X ′′ ∧X ′′)
whereX ′′ is stratified as in the statement of the Proposition. In the rest of the proof,
all quotients are taken in the category of schemes, so we dispense with the Quot
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notation accordingly. So first, we take the stratification of X ′′ ∧X ′′ by the smash-
product of two copies of the stratification of X ′′, and then take a Z/2-quotient. If
the pure strata of X ′′ are A1, ..., AN , then this gives pure strata of (23) of the form

(24) Ai ×Aj , i < j,

(25) (Ai ×Ai)/(Z/2)

((25) is taken in the scheme theoretical sense, so it is really QuotZ/2(Ai × Ai)).
The strata (24) are clearly of the form (22), the strata (25) may need to be further
stratified.

More concretely, if Ai is of the form (22), we may stratify (25) by taking the
bundle Sym2(V ) on Y , and then the Z/2-quotient of the bundle induced from V ×V
on (Y × Y )− Y . Both are clearly of the form (22).

Suppose, then, that Ai is of the form (21). Once again, then, we have the pure
stratum

(26) ((Gm)×` × (Gm)×`)− ((Gm)×`)×Z/2 (An+k × An+k),

which is of the form (22). What we are left with is

(27) (Gm)×` × Sym2(An+k).

We stratify the second coordinate of (27) by taking as the j’th stratum the Z/2-
quotient of the subspace of

An+k × An+k

consisting of pairs of points whose respective coordinates coincide except the first j.
Assuming the characteristic of the ground field is not 2, the bottom pure stratum
is

(28) An+k,

the higher strata are

(29) Gm × An+k+i,

leading to strata of (27) of type (21), as claimed. �

The relationship between symmetric products and the motivic cohomology spec-
trum is proved in [24]. Essentially, we have a filtration on the motivic Eilenberg-Mac
Lane spaces in dimension n(1 +α) such that the associated graded pieces are (15).
We derive here one more consequence of the above methods which will be useful
later.

Proposition 14. There motivic Eilenberg-Mac Lane spectrum HZ/2Mot is cell (i.e.
can be obtained by successivelly attaching cones to k + `α-dimensional homotopy
classes, see the Appendix).

Proof: Since the motivic Eilenberg-Mac Lane spectrum is equivalent to the homo-
topy direct limit of the motivic (bistable) suspension spectra of n(1+α)-dimensional
Eilenberg-MacLane spaces, which in turn can be constructed by successively attach-
ing symmetric products of the form (15), it suffices to prove the statement for the
direct limit under n of the suspension spectra of the symmetric quotients of the
spaces (15). By further filtering with respect to fixed point, we can next pass to
1-point compactifications of the unordered configuration spaces of d points in An.
Since HZ/2Mot = HZ ∧MZ/2 is 2-complete (note that [Z,MZ/2 ∧X] coincides,
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up to suspension, with [Z ∧MZ/2, X]), we can additionally work in the 2-complete
motivic category, so we can take advantage of transfer in (motivic) stable homo-
topy and work with the suspension spectra of the 1-point compactification Φ of
the quotient of the ordered configuration space of d points in An by a product P
of iterated wreath products of copies of Z/2, which is a 2-Sylow subgroup of Σd.
(Recall that, up to equivalence, a wedge summand of a cell spectrum is cell by the
“Eilenberg swindle”, although such a claim is false for finite cell objects.)

To describe the motivic transfer in more detail, there are many versions, but for
the present purpose, the following will do. The ordered configuration space X of d
points in An is an affine variety (otherwise, one would use the ‘affinization’). We
are trying to construct a transfer map

(30) ΣN(1+α)((X/Σd)∗)→ ΣN(1+α)((X/P )∗)

for N >> 0. To this end, choose a closed embedding

j : X/P → AN .

Consider then the closed embedding

j × p : X/P → AN ×X/Σd.

Then consider the induced map

(31) (AN ×X/Σd)∗ → (AN ×X/Σd)∗/(AN ×X/Σd − Im(j × p))∗.

In the general case, we would invoke purity here to identify the right hand side of
(31) with the based Thom space on (X/P )∗, but in the present case, it is actually
easy to see that the canonical map

(AN ×X/P )→ AN ×X/Σd

given by (a, x) 7→ (a+ j(x), p(x)) induces an isomorphism from

(32) (An ×X/P )∗/(AN − {0} ×X/P )∗

to the right hand side of (31). Using this isomorphism, (31) becomes (30).

But by the general principle that a finite union is a homotopy direct limit of the
diagram of intersections, Φ is further a homotopy direct limit of spaces of the form
X ′ in Proposition 12. For such spaces, in turn, the suspension spectrum is cell by
the proof of Proposition 13.

Note that strata of the form (22) may be neglected stably - it is easy to see that
the stabilization maps of Proposition 13 on these strata are 0 (because m → ∞).
Note also that any considerations using the cdh-category here can be modelled in
the smooth category using the comment under the Example in the beginning of
Section 2. �

4. Proofs of the theorems and the motivic Adams-Novikov spectral
sequence

Now although the statement of Proposition 13 is precisely as needed for the
induction, note that the proof actually precisely accounts for the strata of type
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(21), showing that the motivic Z/2-cohomology

(33) H∗Mot(X
′,Z/2), X ′ = QuotS(

∧
d

Sn(1+α)),

in the stable range is the subspace of Z/2-valued etale cohomology which is the
tensor product over Z/2 of Z/2[θ] with the Z/2-module with basis

(34) Qk...Q1α

where α is the characteristic class of dimension n(1+α), and Qi is either of the form
P s or βP s where P s is of dimension s(1 + α), and β is of dimension 1. Now recall
Proposition 12. Passing from the free Z/2-module on (34) to the cohomology of X
amounts to taking a certain direct summand. Passing to etale cohomology amounts
to inverting θ, but also in the etale cohomology one knows that the cohomology
is the same as in the topological situation, tensored with Z/2[θ, θ−1]. Thus, in
etale cohomology, the direct summand is obtained by imposing the Adem relations.
But the Adem relations respect twist, and so we see that the summand of (33)
corresponding to the cohomology of X (in the stable range) is generated, as a
Z/2[θ]-module, by admissible words of the form (34). Dimensional accounting ([25])
shows that the elements P s, βP s we constructed must, in fact, be the reduced
power operations and their Bocksteins. Thus, we have proved Theorem 4, and
hence Corollary 5.

Let us now turn to Theorem 7. By Theorem 4 and [17], we know that the
motivic Adams spectral sequence in our situation converges to the homotopy of
MGL (consider finite Thom spectra and pass to direct limit - convergence follows
from the fact that the homotopy will eventually stabilize, i.e. remain constant, in
dimensions k + `α with k + ` < N , N increasing).

Now (recall that we are over an algebraically closed field) one has ([6])

(35) HZ/2Mot
∗ MGL = Z/2[ξ21 , ξ

2
2 , ...]⊗ Z/2[mi|i 6= 2k − 1]

as a comodule over HZ/2Mot
∗ HZ/2Mot (mi are primitive, i 6= 2k−1), by arguments

which parallel exactly the topological case. Now using the Adams spectral sequence,
Theorem 7 follows.

Therefore, over an algebraically closed field K of characteristic 0, we have formal
group law theory for algebraically oriented spectra, which parallels the topological
case (see also [14, 15, 16]). In particular, we have the Quillen idempotent, and
MGL∧2 is a wedge of suspensions of copies of a spectrum BPGL where

BPGL∗ = Z2[θ, v1, v2, ...], dim(vk) = (2k − 1)(1 + α).

Following arguments of Adams [1], we then see that the motivic analogue of the
Adams-Novikov spectral sequence also converges to 2-completed stable homotopy
groups. One also has an isomorphism of Hopf algebroids

(BPGL∗, BPGL∗BPGL) ∼= (BP∗, BP∗BP )⊗Z2 Z2[θ]

where the Tate twist is primitive. Therefore, an analogous relation is true for the
ANSS E2-terms:

(36) Ext
s,t(1+α)+n(1−α)
BPGL∗

=
{
Exts,2t

BP∗
for n ≥ 0

0 for n < 0.
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Now to prove Theorem 1, we need a device for comparing differentials to the
topological case. In characteristic 0, we know that maps of algebraically closed
fields induce isomorphisms of 2-completed (not rational!) stable homotopy theory,
(see the Appendix), and in the case of k = C, we have a topological realization map
[19], which induces a map of Adams-Novikov spectral sequences

(37) φ : Es,m+nα
Mot,r → Es,m+n

r

where the left (resp. right) hand side of (37) denotes the Motivic (resp. topological)
Adams-Novikov spectral sequence r-terms. It is useful to note the following

Lemma 15. EMot,r is of the form

G[θ]/H[θ]

where G is spanned (as an abelian group) by elements

xi ∈ Esi,ni(1+α)
Mot,r

and H is spanned (as an abelian group) by elements

(38) yj ∈ E
qj ,mj(1+α)+kj(1−α)
Mot,r , 0 ≤ kj ≤ b

r − 2
2
c.

Further, for any element x ∈ EMot,r−1,

(39) dr−1(φ(x)) = 0⇒ dr−1(x) = 0.

Proof: Induction on r. For r = 2, the statement is observed above (we have
H = 0). Suppose the statement is true for a given r. Then by (38), the following
map is an isomorphism:

θk : Esi+r,ni(1+α)+r−1
Mot,r → E

si+r,ni(1+α)+r−1+k(1−α)
Mot,r .

(This is because r−1
2 ≥ b

r−2
2 c.) Thus,

φ : Esi+r,ni(1+α)+r−1
r,Mot → Esi+r+2ni+r−1

r

is iso, and hence

(40) drφ(xi) = 0⇒ drxi = 0

(which, among other things, proves (39) with r replaced by r+1). This means that

drθ
kxi = 0⇒ drxi = 0,

and the statement about generators of Er+1 follows. Regarding relations, the new
relations are dr(xi), which are in

E
si+r,ni(1+α)+r−1
Mot,r+1 .

We have
ni(1 + α) + r − 1 = (ni +

r − 1
2

)(1 + α) +
r − 1

2
(1− α),

r − 1
2

= br − 1
2
c.

(If the differential is nonzero, then by (40) and sparsity, r−1 has to be even.) This
completes the induction step. �

Proof of Theorem 1: The proof of the fact that θ is a permanent cycle is relegated
to Lemma 23 in the Appendix.
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Now in topology, the first non-trivial differential in the ANSS at p = 2 outside
the α-family is

(41) d3 : Ext2,28
BP∗
→ Ext5,30

BP∗
.

By the comparison, then, in the motivic case over an algebraically closed field, we
must have a non-trivial

(42) d3 : Ext2,14(1+α)
BPGL∗

→ Ext
5,14(1+α)+2
BPGL∗

.

We see that the target of (42) is θ times the generator of Ext5,15(1+α)
BPGL∗

corresponding
to the target α2

1η3/2 of (41). The examples in the α family are treated analogously,
using the differentials originating in α4k+2, α4k+3. Note that by Lemma 15, any
nonzero differential in the motivic ANSS must have non-zero images in the topo-
logical ANSS. Thus, in particular, we can conclude that α4k, α4k+1 are permanent
cycles, and θ-torsion elements are not hit by differentials. This concludes the proof
of Theorem 1. �

5. The 2-complete J-homomorphism

Proof of Lemma 2: First we note that on the level of homotopy categories,
PFs and FPs both preserve 2-equivalences. To this end, a 2-equivalence is the
same thing as an equivalence after smashing with MZ/2, which is the same as an
equivalence on the level of cofibers of the map 2. But since PFs and FPs preserve
cofibrations and 2, they preserve 2-equivalences.

Thus, we know that for a motivic spectrum X, the canonical map

FPs(X)→ FPs(X∧2 )

is a 2-equivalence. On the other hand, if Y → Z is a 2-equivalence, then

PFsY → PFsZ

is a 2-equivalence, so the induced map on homotopy classes

(43) [PFsZ,X
∧
2 ]→ [PFsY,X

∧
2 ]

is an isomorphism. But by adjunction, (43) is the same thing as

(44) [Z,FPs(X∧2 )]→ [Y, FPs(X∧2 )],

so FPs(X∧2 ) is 2-complete. �

Now similarly as the J-homomorphism calculation in the topological case, the
proof of Theorem 3 has two different parts, detection and vanishing. For both
parts we must use a certain ingenuity to mimic the corresponding arguments in
topology. To tackle the detection part first, it is tempting to use the version of the
ANSS described above, mimicking the Thom spectra approach outlined in Ravenel
[22]. The difficulty is however that the element in ImJC in dimension 1 mod 8 is
detected in Ext3, so the Thom space construction does not work immediately, and
a more elaborate argument is needed there.

For an inclusion of fields iOp : K ⊂ L, (the reason of the notation is that we are
formally thinking of i : Spec(L) → Spec(K), although this is not in the motivic
category), we have the base change functor i∗ from A1-spaces over K to A1-spaces
over L which commutes with pushforward. (Similarly for spectra.) Clearly, i∗ has
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a right adjoint, which we will denote by i∗, and preserves cofibrations and cofi-
bration equivalences, so it is a Quillen adjunction, and on the homotopy category,
i∗ commutes with FP . A similar argument also applies to the MZ/2-localized
P1-stable categories. Now on MZ/2-localized P1-stable categories, when both K,
L are algebraically closed, i∗ induces iso in mod 2 motivic homology, and hence
by our spectral sequence on mod 2 homotopy of finite homotopy colimits of va-
rieties. Hence, by a colimit argument, i∗ induces an iso on homotopy groups in
the MZ/2-localized P1-stable categories, but so does i∗ (by the commutation with
FP ). Thus, i∗ and i∗ are inverse equivalences of MZ/2-localized P1-stable cate-
gories. This means that we may change fields to work in an algebraically closed
field of our choice, say, C.

But then we have the ordinary topological realization functor |?|, under which
the map (3) becomes just the ordinary complex J-homomorphism (at least when
we compose with the canonical map |FMot| → F ). Furthermore, clearly we have a
natural equivalence

(45) X
'−→ |PF (X)|.

Now consider the diagram

(46)

PF (FP (GLMot))
PF (FP (J ))//

��

PF (FP (FMot))

��
GLMot

J // FMot

where the vertical maps are adjunction counits. Applying topological realization
to (46), we then get

(47)

FP (GLMot)
FP (J ) //

��

FP (FMot)

��
GL // F

where the bottom row is the ordinary topological J-map. Thus, if we know that
the left vertical arrow of (47) is an iso in homotopy after 2-completion, we are done
by comparison with the ordinary topological J-homomorphism.

The key point is that we analogously have a natural map

FP (E)→ |E|

for a P1-spectrum E, and since taking the 0-space of a spectrum obviously commutes
with topological realization, the left vertical arrow of (47) coincides with the map
obtained by passing to −1-spaces of the natural map

(48) FP (KMot)→ |KMot|.

But this map is just the usual map from algebraic to topological K-theory spectra.
In effect, on 0-components of the 0-spaces, if we let

(49) BGLdisc → FPBGLMot

be the +-construction (GLdisc is just the direct limit of the general linear groups
of the ground field, considered as a discrete group), it is the adjoint of the obvious
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map
PFBGLdisc → BGLMot.

This follows by reinterpreting the proof of Proposition 3.9 of [19]. Now applying
|PF?| to (49), we get a commutative diagram

BGLdisc
+ //

''OOOOOOOOOOO FPBGLMot

��
BGL

so the vertical map is the right map by universality of the +-construction.
By Suslin [23], (48) is an equivalence after 2-completion.

To prove that the elements not detected in the topological realization actually
vanish in the motivic J-homomorphism, we mimic the method of Adams [3] in the
A1-homotopy category. First, let W = (S1+α)×n. Let also V = Sn(1+α). Then
there is a natural projection

(50) p : W → V.

Lemma 16. The suspension of the natural map from V to the cofiber of p is null-
homotopic.

Proof: First, it is a well known fact that when Y has a point (a trivial assumption
in spaces, but not in A1-spaces), we have

(51) X ∗ Y ' X ∧ Σ̃Y

where Σ̃ denotes the unreduced suspension and ∗ denotes the join. The obvious
inclusion X ∗ Y → Σ(X × Y ) along with (51) then gives a splitting (=right inverse
up to homotopy) of the collapse map

(52) Σ(X × Y )→ (ΣX ∧ Y ).

Therefore, for n based spaces X1,...,Xn, each of the collapse maps

Σ(X1 × ...×Xn)→ X1 ∧ Σ(X2 × ...×Xn)→ ...→ X1 ∧ ... ∧ ΣXn

has a right inverse up to homotopy, and hence so does their composition. �

Now consider the diagram

(53)

πs
n(1+α)−1S

0
Mot

// [W,BFMot]

K0
MotS

n(1+α)

OO

// K0
MotW

OO

Recall from [19] that in the homotopy motivic category, B is inverse to Ω in group-
like monoids. The proof there extends in a standard fashion to delooping E∞-spaces
an arbitrary finite number of times. (What we miss in the A1-category is a device
which would guarantee delooping with respect to copies of Sα.) FMot, by mimicking
the construction from topology, is still a group-like E∞ space, and hence can be
delooped an arbitrary finite number of times. This allows us to rewrite the motivic
J-homomorphism on K0

Mot as

K0
MotS

n(1+α) → πs
n(1+α)BFMot,
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which in turn can be rewritten as the left hand vertical arrow of (53). The right
hand vertical arrow is the analogous map with Sn(1+α) replaced by W .

Lemma 17. The horizontal arrows of (53) are injective.

Proof: The arrows in question are induced by the map of A1-spaces (50). Since
however the space we map into in each case can be delooped, the maps in question
can be rewritten as induced by the suspension of (50). By Lemma 16, however, this
suspension is a homotopy retraction. �

Lemma 18. For the generator z ∈ K̃0
MotS

n(1+α) ∼= Z, (ψ3 − 1)z maps to 0 in the
2-completed motivic J-homomorphism (where ψ denotes the Adams operations).

Proof: We wish to completely mimic the proof of Adams [3]. By Lemma 17,
we may pass to W , where z is a sum of copies of the tautological line bundle ξ
over the individual copies of S1+α = P1. We obviously have a fiberwise degree 3
map from the associated spherical bundle (with fiber S1+α) of ξ to the associated
sphere bundle of ξ3, simply by taking fiberwise the completion of the map P1 → P1

extending the 3’rd power map Gm → Gm. On the other hand, there is also a
fiberwise degree 3 map from the associated sphere bundle of ξ+1 (with fiber S2(1+α))
to itself: simply take the identity, and add it to itself three times fiberwise using the
suspension coordinate. Thus, we would like to say that there is a fiberwise degree
3 map from the associated sphere bundle of the virtual bundle ξ − ξ3 to the trivial
sphere bundle. We can make precise sense of this by passing to an affinization P1′ of
the base space P1; then there exists a number N such that η = N + ξ′− ξ′3 (where
ξ′ is the pullback of ξ) is realized by an actual vector bundle, and we then have a
fiberwise degree 3 map from the associated sphere bundle (with fiber SN(1+α)) to
the trivial sphere bundle P1′ × SN(1+α). (Note that the Grothendieck-Witt ring of
an algebraically closed field is Z, so we may operate with the degree in the same
way as in topology.)

Now the next step is to note that since we have a “cell decomposition” of P1′,
we can mimic precisely the topological proof of Adams [2, 3] to conclude that
there is a natural number M such that the associated sphere bundle of 3Mη (with
fiber S3M N(1+α)) has a fiberwise degree 1 map to the trivial sphere bundle P1′ ×
S3M N(1+α).

We are then done if we can mimic enough of the theory of classification of
spherical bundles in the A1-category to conclude that

(54)

When τ is a vector bundle on P1′ of dimension m such
that there exists a fiberwise degree 1 map from the associ-
ated sphere bundle of τ to the trivial sphere bundle, then
the image of τ − m under the motivic J-homomorphism
vanishes.

This can be done as follows: by gluing over coordinate patches, one can replace a
spherical bundle by its “associated principal bundle” π with fiber FMot (each fiber
S is replaced by the A1-space of stable based equivalences S → Sm(1+α); of course,
we must first pass to fibrant replacements). Then having a fiberwise degree 1 map
implies that the principal bundle π has a section. But now spherical bundles coming
from vector bundles are classified (i.e. pulled back from the universal bundle) by
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maps into BFMot (since vector bundles of a fixed dimension are classified by maps
into BGLMot). On the level of principal bundles, this means that we have a map
of principal bundles

(55) π → u

where
u : B(FMot, FMot, ∗)→ BFMot

is the universal bundle (the projection). Since B(FMot, FMot, ∗) is contractible, a
principal bundle with a section is then necessarily classified by a map homotopic
to the constant map, thus proving (54), and the Lemma. �

The Adams operations on K̃0
MotS

n(1+α) ∼= Z are computed in the same way
as in ordinary reduced topological K-theory of S2n, and it is well known that
the vanishing of the complex J-homomorphism of ψ3 − 1 in topology is a tight
bound for the order of the image of the J-group in all dimensions except 6 mod 8
(counting the dimensions as in diagram (53)). To translate the argument to the A1-
category, it suffices to note that over an algebraically closed field, multiplying by the
Tate twist induces an isomorphism on homotopy groups of the 2-completion of the
KMot-theory spectrum, and thus the bound can be applied also after multiplying
by powers of the Tate twist.

Actually, commutation with the Tate twist has to be justified. Unstably, Sα =
Gm represents Hα(?,Z). Thus, we cannot quite conclude that the Tate twist is
represented by a map S1 → Sα (in fact, that is usually false), but we can conclude
that this is true after 2-completion. However, (over an algebraically closed field)
we do have

(56) FP (Gm)∧2 ' BZ2 = (S1)∧2 ,

(by comparison of homotopy groups), so for any spectrum E, we can conclude that
the effect of `-fold Tate twist on the n+mα’th homotopy groups of the 2-completion
of E, where m,n− ` ≥ 0, can be computed by the map

(57)

Map(S`α,Ωn+(m−`)αE0)→

Map(
∧
`

FP (Sα)∧2 , FP (Ωn+(m−`)αE0)∧2 ) ' Ω`FP (Ωn+(m−`)αE0)∧2 .

This is entirely an unstable construction, so it commutes with the motivic J-map.

The dimension in which Lemma 18 does not suffice for a tight bound of the image
of JMot is n = 3 mod 4 (as counted in diagram (53)). In topology, this corresponds
to the case of dimension 6 mod 8. In this case, Adams [2] simply argues that the
image of the J homomorphism vanishes because it factors through the image of the
real J-homomorphism, and the corresponding homotopy group of the orthogonal
group vanishes.

We can also mimic this argument in A1-homotopy theory. We may embed

(58) GLn → O2n.

Over an algebraically closed field, we can consider O2n as the automorphism group
of the hyperbolic quadratic form

x1y1 + ...+ xnyn,
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and then GLn embeds by

A 7→
(
A 0
0 (AT )−1.

)
Furthermore, O2n thus described acts on the affine quadric

x1y1 + ...+ xnyn = 1,

which is homotopy equivalent to An(1+α)−{0} ' Sn(1+α)−1 via the projection to the
x-coordinates. This is sufficient to show that (3) factors through OMot, the direct
limit of motivic orthogonal groups. The fact that the 2-complete homotopy groups
of OMot vanish in dimensions 5 mod 8 now follows from the results of Hornbostel
[9], (the definition of the motivic orthogonal spectrum on p. 678, and Definition
4.1 on p. 674), in conjunction with the calculations of Karoubi [13].

6. Appendix: The motivic Adams spectral sequences

The key point is that we focus on (bistable motivic) cell spectra [7], i.e. spectra
equivalent to homotopy colimits of sequences of motivic spectra Kn, where Kn+1

is obtained from Kn by taking the homotopy cofiber of a map

(59)
∨

i∈In

Smi → Kn

where mi is of the form ki + `iα, ki, `i ∈ Z, and Smi here denotes the mi’th
suspension of the motivic sphere spectrum. We call a motivic cell spectrum of
finite type if the ki’s are bounded below and there are only finitely many cells for
each ki.

Definition: We call a motivic spectrum K of weakly finite type if K is a homotopy
colimit of a sequence of motivic spectra K(n) where we have cofibration sequences

A(n) → K(n) → K(n+1)

where A(n) is equivalent to a wedge summand of a cell spectrum B(n) with finitely
many cells, and if we denote by ki + `iα the dimensions of the cells of the cell
spectrum ∨

n

B(n),

then the ki’s are bounded below, and a given k can be equal to ki for only finitely
many values of i.

Lemma 19. Suppose a motivic spectrum X of weakly finite type satisfies 0 = 2N :
X → X, and also 0 = ηN : ΣNαX → X for some N . Then X is of finite type.

Proof: First note that for a motivic cell spectrum X of finite type with no cells of
dimension m′ + n′α, m′ < m, we may form a cofiber sequence

(60) X(m)→ X → X ′

where X(m), X ′ are cell spectra, X(m) has cells of dimension m+nα (with varying
n) only, and X ′ has no cells of dimension m′+nα, m′ ≤ m. Further, the spectrum
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X(m) is unique up to equivalence: this is a formal consequence of the fact that
πm+nαS

0 = 0 for m < 0 (cf. Morel [18]) - we will use this construction again in the
proof of Lemma 24 below.

We note that the construction ?(m) also preserves wedge sums, and hence so
does the construction (?)′. Thus, it suffices to prove the statement for weakly finite
type cell spectra X where X = X(m). Next, note that the property “being a
wedge summand of a cell spectrum with finitely many cells” is clearly stable under
cofibers, so we may assume X = X(m) is a wedge summand of a cell spectrum with
finitely many cells Y . Finally, taking cofibers of 2N and ηN (which yields 4 copies
of X), we may assume by induction on cells that Y can be formed by successively
attaching finitely many copies of Sm+nα/(η, 2) for varying values of n (and the
given m). Then, however, the direct sum of πm+nα(Y ) with varying n (and the
given m) is finite, and hence the same is true for X. Thus, there exists a spectrum
Z obtained by successively attaching copies of Sm+nα for varying n (and the given
m) finitely many times, and a map

(61) X → Z

which induces an isomorphism in πm+∗α. Since both spectra (61) contain only cells
of dimension m + nα with varying n (and the given m), it follows formally that
(61) is an equivalence. �

Corollary 20. HZ/2 is a cell spectrum of finite type.

Proof: A direct consequence of Lemma 19 and the proof of Proposition 14. �

Define very weak equivalence (also known as slice equivalence) of motivic spectra
as a map which induces isomorphism in πk+`α for all k, ` ∈ Z. For formal reasons,
([7]), a very weak equivalence of motivic cell spectra is an equivalence. Also for
formal reasons, we have cell approximation, i.e. for every motivic spectrum X
there exists a very weak equivalence X ′ → X where X ′ is cell. Now we can define
2-localization in the category of cell spectra. For formal reasons, it is the same as
the cell approximation of 2-localization.

Now for a spectrum X, the Adams resolution is the semicosimplicial object
(without degeneracies)

(62) X ∧HZ/2Mot ∧ ... ∧HZ/2Mot

where cofaces are given by the unit S → HZ/2Mot. If we are working in a foun-
dational setup where HZ/2 is a rigid ring spectrum, we can make (62) a cosim-
plicial object where the codegeneracies are given by the multiplication HZ/2Mot ∧
HZ/2Mot → HZ/2Mot. However, that is not important to us. There is an obvious
canonical map φ from X to the cosimplicial realization of its Adams resolution
XAd. Recall that throughout this paper, we work over an algebraically closed field
of characteristic 0.

Lemma 21. The canonical map

Ψ : MZ/2→ holim
←

(MZ/2)/ηn

induces an isomorphism in π∗.
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Proof: The homotopy fiber of the map Ψ is the homotopy limit of the inverse
system

(63) ... // Σ(k+1)αMZ/2
η // ΣkαMZ/2 // ... .

We will prove the statement by proving that both the lim←− and the lim←−
1 of the

homotopy groups πm+nα of (63) are 0. First, note that (63) is α-periodic, so it
suffices to consider n = 0. Now we claim that for k > m ∈ Z,

(64) πmΣkαMZ/2 = 0.

Clearly, this implies what we need. To prove (64), note that ΣkαMZ/2 is a pushfor-
ward of an S1-spectrum X: we work here with (A1-local) S1-spectra as considered
in [18] (i.e. where we stabilize only with respect to S1 and not Sα). The integral
motivic homology of its pushforward are Z/2 in dimensions p + qα, p + q = k,
p ≥ 0, and 0 elsewhere. (This is where we use the fact that K is an algebraically
closed field.) Hence, HMot

p X = 0 for p < k, and hence πpX = 0 for p < k by
the Hurewicz theorem 4.3.2 of [18], and hence the same is true with X replaced by
its pushforward ΣkαMZ/2 by Remark 5.3.2 of [18]. This proves (64), and thereby
concludes our argument. �

A cell spectrum X with cells only in dimensions m+nα, n ≥ 0, can be considered
as an S1-spectrum. We will call this a cell S1-spectrum. As observed in [18], HAMot

for an abelian group A can also be considered as an S1-spectrum. Denote homotopy
groups in the category of S1-spectra by πS1

m . There is a stabilization functor from
S1-spectra to motivic spectra which we shall suppress from the notation. Thus, for
an S1-spectrum X, we may speak of homotopy groups πS1

m X and πmX, the latter
of which refer to homotopy groups of the pushforward of X into the category of
motivic spectra.

Lemma 22. Let X be a cell S1-spectrum such that πS1

m (X) = 0 for m < k such
that HMot

m (X) is a finite 2-abelian group for all m ∈ Z. Then the map X → XAd

induces an iso in πm for all m ∈ Z.

Proof: By the Hurewicz theorem [18], Theorem 4.3.2, if we put Ak = πS1

k (X) (a
finite 2-group), then there exists a map

(65) X → ΣkHAk

which induces an isomorphism in πS1

k . Thus the cell approximation Xk+1 of the
fiber in the category of S1-spectra satisfies the hypothesis of the lemma with k
replaced by k + 1. (Note that cell approximation in the S1-category by definition
induces an isomorphism of homotopy groups in integral dimensions, and hence it
induces an isomorphism of homology groups also by the Hurewicz theorem [18],
Theorem 4.3.2.)

By induction, then, we obtain cofiber sequences

Xm → X → Xm,

Xm → Xm−1 → Σm+1HAm

such that πS1

n Xm = 0 for n < m. Then X → holim
←

Xm induces iso in πS1

n , and

hence, by Remark 5.3.2 of [18], also in πn, for all n ∈ Z.
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By commutation of homotopy inverse limits and the long exact sequence of
homotopy groups (of integral dimensions), it now suffices to prove our result for
(HAk)Mot where Ak is a finite 2-group. This is done by direct computation, which,
however, by Corollary 5, is a rehash of the corresponding computation in topology.
�

Example: Let us look at the 2-completion of the α-suspension of the motivic 0-
sphere (Sα)∧2 , which is the inverse limit of the S1-spectra ΣαMZ/(2k). Therefore,
by Lemma 22, commutation of homotopy inverse limits, and Corollary 5, we have
a convergent Adams-like spectral sequence

(66) ExtA∗(Z/2,ΣZ/2)⇒ π∗((Sα)∧2 ).

Here the ∗ denotes integral dimensions only (no twist), A∗ is the ordinary (“topo-
logical”) Steenrod algebra, and Σ is shift up by 1. The E2 term (66) is obtained
by reading off the twist 0 part of the α-suspension of the motivic Steenrod algebra
(and its tensor products with itself).

Now (66) has the same E2-term as the classical Adams spectral sequence (sus-
pended by 1), which we cannot solve, but we know one thing, namely the element
in the lowest dimension has no possible differential targets, and hence has to be a
permanent cycle. We have therefore proved

Lemma 23. The Tate twist element θ ∈ H1−α lifts to a stable homotopy class in
π1−α((SMot)∧2 ).

�

Remark: This proof of constructing an entire “twist 0 version of the motivic
Adams spectral sequence” in order to construct the Tate twist in 2-complete ho-
motopy seemed quite unnatural to us. We were therefore quite happy to find the
following more geometric argument:

Consider a finite extension L of Q containing a 2k’th, but not 2k+1’st, root of
unity. Let ζk be the primitive 2k’th root of unity in L. Then by Morel [18], we have
an element [ζ2k ] ∈ π−αS

0 in L-A1-stable homotopy groups. Note that by Morel
[18], Lemma 6.1.2, 4,

(67) η([−1]η + 2) = 0

and, by [18], Lemma 6.1.2, 2,

(68) [−1]([−1]η + 2) = 0.

Since, additionally, by [18], Lemma 6.1.2, 2, clearly

2k−1[ζ2k ] ≡ [−1] mod η,

(67) and (68) imply

(69) 2k−1([−1]η + 2)[ζ2k ] = 0.

Therefore, ([−1]η + 2)[ζ2k ] is in the image of a class θk ∈ (π/2k−1)1−α under the
Bockstein

(70) β2k−1 : (π/2k−1)1−α
// π−α.
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As we increase k by passing to field extensions, we obtain an inverse system of
classes θk

(71) ... 7→ θk+1 7→ θk 7→ ...

(observe carefully that θk is determined up to addition of a class in π1−α, so any
difference between θk and the image of θk+1 may be corrected by altering θk+1).
The inverse limit of the system (71) then gives a class θ ∈ π1−α((S0)∧2 ), defined
over any extension of Q containing all ζ2k . To identify this class as the Tate twist,
let us compute its image in homology: in homology,

[−1]η + 2 = 2,

so
([−1]η + 2)[ζ2k ] = 2[ζ2k ].

It follows that θk is the mod 2k−1 reduction of the class λ ∈ (H/2k)Mot
1−α
∼= Z/(2k)

whose β2k -image is [ζ2k ]. Since [ζ2k ] generates a Z/2k-summand of H−α = K1
M (L),

λ must be a unit times the Tate twist. Note that this argument is similar to
Quillen’s construction [21] of the Bott class in `-completed algebraic K-theory of
Fp, p 6= `.

Lemma 24. Suppose X is a finite type motivic cell spectrum such that 2N : X →
X, ηN : ΣNαX → X are 0 for some N . Then for each k ∈ Z,

πk+∗α(X) :=
⊕
`∈Z

πk+`α(X)

is finite.

Proof: Suppose X has no cells of dimension m+ nα, m < k. First, we claim that
πk+∗α(X) is finite. In effect, by Morel [18], we have

(72) π∗α((S0)∧2 ) = Z2[η]/2η.

Now by the connectivity result [18], inductively on stages of construction of the cell
spectum, there is a “cell subspectrum” X(k) consisting of all cells of X of dimension
k + `α. More precisely, we have a cofibration sequence

X(k)→ X → X ′

where X(k) is finite with cells of dimension k + `α and X ′ is of finite type with
cells only of dimensions m+ nα, m > k. Further, by (72), there is a filtration

(73)

0 = F−Nα(X(k))...
fnα // Fnα(X(k))

f(n+1)α // F(n+1)α(X(k))

... // FNα(X(k)) = X(k)

such that the cofiber of fnα is a finite cell spectrum with cells of dimensions k+nα
only. Thus, we obtain a spectral sequence with E1-term a finite sum of k + nα-
suspensions of (72) which converge to πk+∗αX. If 2N and ηN are 0, we see that the
E∞-term must be finite.

Now starting with X, and taking successive fibers of maps into Σk+nαHZ/2Mot

for suitable n’s, we can wipe out πk+∗α after finitely many steps. In other words,
there exists a spectrum H(k) which is constructed from a point by finitely many
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steps of successively taking cofibers into Σk+nαHZ/2Mot’s (and hence is a finite
type cell spectrum with cells only in dimensions m+ nα, m ≥ k), and a map

X → H(k)

which induces an isomorphism in πk+∗α. In asserting this, a key step is to show
that when taking a map f of a spectrum into Σk+nαHZ/2Mot which is onto in
dimension k + nα, the fiber does not pick up any additional homotopy groups in
dimensions k+ ∗α (i.e. the map induced in these dimensions by the canonical map
from the fiber of f to X is injective in these dimensions). This is not trivial, since
HZ/2Mot has a non-trivial homotopy group in dimension 1 − α. The key point,
however, is that by Lemma 23, the map induced in homotopy by f is onto in this
dimension.

Finally, similarly as above, we may form a “sub-cell spectrum” H(k) of H(k)
consisting of all cells of dimensions k + nα for some n. More precisely, again, we
have a cofibration

H(k)→ H(k)→ H(k)′

where H(k) is a finite cell spectrum with cells of dimension k+nα only, and H(k)′ is
a finite type cell spectrum with cells only in dimensions m+nα, m > k. Further, by
connectivity [18] and standard arguments, we must have a homotopy commutative
diagram

X(k) //

��
Φ

X

��
H(k) // H(k).

Then Φ induces an iso in πk+∗α and hence is an equivalence (for X,Y two finite
cell spectra with cells of dimension k + nα only, we have a spectral sequence with
E1-term consisting of πk+nαY -homotopy groups, and converging to [X,Y ]). Thus,
we have a diagram

Xk+1

��

= // Xk+1

��
X(k)

Φ

��

// X

��

// X ′

��
H(k) // H(k) // H(k)′

commutative up to homotopy, where the rows and columns are cofibration se-
quences. We see that the spectrum Xk+1 is a finite type cell spectrum with cells
only of dimensions m + nα, m > k, and whose homotopy groups differ from the
homotopy groups of X only by a finite group in each dimension m + ∗α (again,
for given m, we mean the sum over all the dimensions m + nα). Finally, we see
that certain finite powers of η and 2 vanish on Xk+1, since this is true for X and
HZ/2Mot (and hence H(k)). Thus, Xk+1 satisfies the same hypotheses as X, but
with k replaced by k + 1. The resulting induction completes the proof. �

The following result is standard, but we include it for completeness.
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Lemma 25. Let X be a 2-complete motivic spectrum and assume that πm+nαX 6=
0. Then πm+nα(X/2) 6= 0.

Proof: For any abelian group A, we have

(74) Ext1(Z/2∞, A) ∼= lim←−Ext
1(Z/2N , A) ∼= lim←−Ext

1(Z/2∞, A)/2N .

Here the second isomorphism is by the long exact sequence in Ext associated with
the short exact sequence

(75) 0→ Z/2N → Z/2∞ → Z/2∞ → 0.

The first isomorphism is by the lim1 exact sequence and the fact that the lim1-term
vanishes, since

Ext1(Z/2N+1, A)→ Ext1(Z/2N , A)

is onto by the long exact sequence in Ext associated with the short exact sequence

0→ Z/2N → Z/2N+1 → Z/2→ 0.

Further, by left exactness of Hom, we have

Hom(Z/2∞, A) ∼= lim←−Hom(Z/2N , A)

and on the other hand

Hom(Z/2∞, A)/2N ⊆ Hom(Z/2N , A)

by the long exact sequence in Ext associated with (75), so

(76) Hom(Z/2∞, A) ⊆ lim←−Hom(Z/2∞, A)/2N .

Now obviously, for any abelian group G,

(77) G/2 = 0→ G/2N = 0

(since the premise is equivalent to 2G = G), so from (74), (76), (77) and (2), when
X is 2-complete,

πm+nα(X) 6= 0⇒ πm+nα(X)/2 6= 0,

but the right hand side injects into πm+nα(X/2) by the long exact sequence in
homotopy associated with

X
2 // X // X/2.

�

Theorem 6 now follows from the following

Lemma 26. Let X be the cell approximation of the 2-completion of a cell spectrum
of finite type. Then the map φ : X → XAd is a very weak equivalence.

Proof: In the present situation, we know by Morel [18] that the homotopy groups
πm+nα(X) vanish for m < k and πk+nα(X) are finitely generated Z2-modules,
which further vanish for n < ` with some ` ∈ Z. Further, by Lemmas 21, 24, 25,
for each m there exists an s(m) such that πm+nα(X) vanish for n < s(m).

We will construct, by induction onm, a sequence of spectraXm where πp+qαX
m =

0 for p < m and p = m and q < s(m) for some s(m) ∈ Z, such that (HZ/2Mot)p+qαX
m

is finite for all p, q ∈ Z. Let Ak+`α = πk+`α(X). By the connectivity results of [18],
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we actually have a Hurewicz theorem and universal coefficient theorem, and thus a
map

(78) X → Σk+`α(HAk+`α)Mot

which induces an isomorphism in (k+`α)’th homotopy group. Let Xk+(`+1)α be the
cell approximation of the homotopy fiber of (78). Again, by Lemma 23, this fiber
does not pick up any additional homotopy groups in dimension k+ ∗α, similarly as
in the proof of Lemma 24.

By induction then, we get an inverse system of Xk+nα, n > `, which satisfy
πp+qαXk+nα = 0 for p < k and p = k, q < n, and such that (HZ/2Mot)p+qαXk+nα

is finite in all dimensions p, q. We let

Xk+1 = holim
←

Xk+nα.

We note here two points: The homotopy limit commutes, in this case, withHZ/2Mot-
homology by connectivity and the fact that HZ/2Mot is cell of finite type. For the
same reason, cell approximation always preserves HZ/2Mot-homology. By these
arguments, and the fact that the Steenrod algebra is of finite type, Xk+1 satisfies
the induction hypothesis. lowest Proposition Because of stability, by iterating this
procedure, we obtain cofibration sequences

(79) Xm → X → Xm

(80) Xm → Xm−1 → ΣAm

where the right hand map (79) induces isomorphism on homotopy groups in dimen-
sions p+ nα, p ≤ m, and Xm has only non-trivial homotopy groups in dimensions
p + nα, k ≤ p ≤ m. In (80), Am is the homotopy limit of a tower of motivic
Eilenberg-MacLane spectra in dimensions m+nα, as above. Note that the induced

map from X to holim
←

Xm induces iso in homotopy group, i.e. is a very weak

equivalence.
On the other hand, by commutation of homotopy inverse limits and the long

exact sequence of homotopy groups, it now suffices to prove our result for (HAk)Mot

where Ak is a finite-dimensional Z2-module. This is done by direct computation,
which, however, by Corollary 5, is a rehash of the corresponding computation in
topology, carrying along the generator θ. �

To prove Theorem 8, we may now consider the BPGL-based Adams resolution
of SMot, 2-completing every term. Now replacing every term by its HZ/2Mot based
Adams resolution gives a very weak equivalence by Theorem 6, but at the same
time the induced map from (S0

Mot)
∧
2 to this composite resolution is a very weak

equivalence by the same theorem.
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