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ANNALS OF MATHEMATICS
Vol. 52, No. 2, September, 1950

THE (n + 2)™ HOMOTOPY GROUP OF THE n-SPHERE

By GeEorGe W. WHITEHEAD
(Received May 15, 1950)

In this note we shall prove that m,,2(S™) is cyclic of order two for all n = 2.
This contradicts a result announced by Pontrjagin® in 1938.

The notation used here will follow that of my paper’, hereafter referred to as
GHI. The proof depends on a theorem recently proved by Blakers and Massey®,
together with a slight generalization of some of the results of GHI.

The following facts about m,,2(S") are known’:

(1) m4(S8%) is cyclic of order two;

(2) the suspension homomorphism E: m4(S*) — m5(S°) is onto;

(3) E:mpt2(S™) — mny3(S™™) is an isomorphism onto for n = 3. Hence it is
sufficient to prove that E:my(S?) — m5(S%) is an isomorphism into.

We first note that, . s a consequenec of Theorem 3 of HGT, the homomorphism
Urrimaa (B, B) —» ,0(8 X 8, 8 v 8) of GHI is an isomorphism into if
n < 4r — 4, and therefore, if & is an admissible mapping of S” ' onto E*, he
homomorphism ¥, = ¥,,0 8 o him, (8 ™") — 7, a(E”, E¥) is an isomorph s m
into forn < 4r — 4. Thenifa e 7,(8"), n < 4r — 4, and if Qp.(a) ¢ Image 1, .,

a(S) <22 (S v ) -2 (ST X S, ST (ST

we may define H(a) = ¥;'Qp,(a), and H is a homomorphism of a subgroup of
1. (S7) into m, (8.

Many of the results of §5 of GHI can be extended. We shall need the following
extension of Theorem 5.40.

LemmaA 1. Let h,: S — S be a fibre map with Hopf invariant 1, (r = 2,4, or 8).
Then if n < 4r — 4, a € m(S"Y), B € maa(S™™), then the generalized Hopf invar-
iant of h,(a) + E(B) exists and is equal to a.

This lemma depends on the corresponding extensions of Theorems 5.15 and
5.19 of GHI, the proofs of which are unchanged.

COROLLARY. If ay is the non-zero element of m4(S%), then H(as) exists and is the
non-zero element vs of wy(S°).

We shall prove that E(a:) # 0 by extending Theorem 7.33 of GHI as follows,

1 I have been informed that this result has also been obtained by Pontrjagin. His proof
is unknown to me. Added in proof: Pontrjagin’s proof has been published in C.R. Acad.
Sci. URSS, 70 (1950), pp. 957-959. His proof is entirely different from mine.

2C. R. Acad. Sci. URSS, 19 (1938), pp. 147-149, 361-363.

3 Ann. of Math., 51 (1950), pp. 192-237.

“ Proc. Nat. Acad. Sci. U.S. A, 35 (1949), pp. 322-328. A full exposition will appear in
Ann. Math. This paper will be referred to as HGT.

8 H. FREUDENTHAL, Comp. Math. 5 (1937), pp. 299-314; W. Hurewicz and N. E. STEEN-
roD, Proc. Nat. Acad. Seci. U. 8. A., 27 (1941), pp. 60-64.
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246 GEORGE W. WHITEHEAD

THEOREM. If @ € m,(S") and E(a) = 0, and if H(a) exists, then
{H(a) =0 if risodd andn < 4r — 4;

H(a) € 20,(S™") if r is even and n < 3r — 2.

The proof of this theorem depends on an extension of Theorems 7.8 and 7.28
of GHI. Consider the diagram

’

1:112 /(/):)) 7r"_1_3(‘Sr+1 X Sr+1’ Sr+1 vSr+l) (_‘_I/H'l 1rn+2(82r+1)
0
Al 4 [(~1yEem

r(S) DO (XSS V) Y (Y
The homomorphisms A, A, Ao , Ay were defined in §6 of GHI, and the proofs
of the following facts are unchanged:
(1) Ao ¥, = (=1)¥, 110 (Eo E);
(2) A(; - A(,), =Ao Qo ©Qro A.
In order to show that
3) A = (=1)"Aqg
we need the following extension of Theorem 4.22 of GHI.
LemMa. If £ e Image ¥, , and if n < 4r — 2, then 6,4(8) = (—1)""'¢.
Forifn £ 4r — 2and y e mays(E' X E™, (B X E™)") then
(=1)erp1) o 9y = (—=1) 9y
because dv is a suspension and therefore (3.64) of GHI holds. Thus the proof of
Theorem 4.22 applies without change.
The remainder of the proof of (3) duplicates that of Theorem 7.28 of GHI.
We now prove the theorem. Let o € 7,(S") and suppose E(a) = 0. Then there

is an element ¢ e 47 such that A(¥) = a. Therefore we can combine (2) and
(3) to conclude that

AQp(@) = AQp.A®) = Ao(§) — AT (D)
= [+ (=A@
Now Q¢.(a) = ¥,H(a) because H(a) exists, and therefore
1+ (=1)14(®) = A¥H(a)
= (—1)V,,EEH (a).
If risodd and n < 4r — 4, then ¥, and E o E are isomorphisms into and we

conclude that H(a) = 0. If riseven and n = 3r — 2, then ¥, is an isomorphism
onto and E o E is an isomorphism onto, and therefore

H(a) = 2E'E™N7A0(E) € 2ma(S™7H.

The proof is complete.
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COROLLARY. The suspension of the non-zero element as € 74(S%) s not zero.
For H(an) = ws ¢ 2ms(S°) = 0.
CoroLLARY. The suspension homomorphism maps 74(S%) isomorphically onto
75(S°).
COROLLARY. The groups m(S°) and w3 (S°) are non-zero.
For we may apply our theorem to the non-zero elements ve o v e mo(Sh) and
vs o w15 € m(SY) constructed in §8 of GHI. By Lemma 1, we see that
H(V; o V;) = e 1r10(S7)
and H(vs o vi5) = vis € mo(S™). If v = 2a with & € mo(S"), then & = E’a’ with
o € m(SY). Since v; = E'vy we have
E'Qd — v) = 0.
Since E*:ms(S°) — m10(S7) is an isomorphism, we have
EQd — w) =0

and therefore H(2¢/ — v) = 2H() — H (vs) must belong to 27,(S"). But
H(v) = u¢2m(S), a contradiction. Similarly, »s ¢ 2m22(S").
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