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CYCLIC HOMOLOGY, DERIVATIONS, AND THE FREE
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INTRODUCTION

ConnEs has defined “cyclic homology groups” HC,(A) for any associative algebra A over a
field K of characteristic zero [3] [4]. His construction has been studied and generalized by a
number of authors [1] [5] [10] [11] [15]. Although Connes’ original interest was in the case
when A4 is a C* algebra it is clear by now that cyclic homology is destined to be an important
tool in many kinds of ring theory.

Our main purpose here is to introduce into cyclic homology theory a principle analogous
to the homotopy-invariance of de Rham cohomology. To explain the result and the analogy
we must recall two elements of the theory. A good reference for both is [11]. All rings and
algebras considered here will be with unit.

(1) The groups HC_(A) are related to the Hochschild homology groups H,(A) by a
natural long exact sequence

. = H,(A) > HC,(A) S HC,_,(A) 3 H,_,(4)~. ..

(2) If V is a smooth affine algebraic variety over a field K of characteristic zero and A
= K[ V] is its coordinate ring then, denoting by Q°(¥') the module of “algebraic p-forms”
(i.e. the p-th exterior power over A of the module of differentials Q ), we have

@) H,(A)=Q*(V)

(b) Bel: H,(A)— H, ., ,(A) corresponds to the exterior derivative
d: (V) - QYY)

(€) HC,(4) = Q?(V)/dQ*~ (V) DHR (V) DHR*(V)® - . .

d) CHC,,n(A)= @ HixV).
k (i =pmod2)

(The inverse limit is with respect to the map S of (1).)

Now returning to the general situation any derivation D of A (over K) determines
endomorphisms of H,(4)and HC, (A) (see §11.4 below)and in fact of the whole sequence (1).
We prove three slightly different statements (Corollaries 11.4.3, I11.4.4, and I1.4.6 below), each
one of which reduces, if 4 = K[ V] asabove, to the fact that D acts trivially on H¥,(V). These
statements say respectively that D acts trivially on Ker(B o I)/Im(B ° I), on HCE(A) (which

lim
we define more or less as « HC, , . (A)y—actually there is a lim! term as well), and on the

image of S: HC . ,(A) - HC_(A).

We are really less interested in algebras than in chain algebras (i.e. differential graded
algebras (A, d) with deg(d) = —1). We therefore develop a theory of “hyperhomology”—
both cyclic (HC, (4, d)) and Hochschild (H, (A, 4)). (This has also been done in [1].) We
extend the “homotopy-invariance” principle to this differential graded setting (Corollaries
I11.4.2-111.4.4).

The homotopy-invariance implies a “Poincaré¢ Lemma” for graded algebras (proof of
Claim 1 in proof of Proposition I1.5.2), and this in turn implies our main result (Theorem
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IV.2.1): The groups HC%" (A4,d) (cyclic-hyperhomology-made-periodic) depend only on
Ay/dA, if the ground ring K contains the rational numbers.

We have good reason to believe that this result will be useful in obtaining a computation,
in terms of cyclic (hyper) homology, of relative rational algebraic K-theory K, (f) &® Q for
any one-connected map of simplicial rings f: R — S. (In the special case S = Z such
computations were made by Hsiang and Staffeldt ([8] [9]) except that their answers were not
in terms of cyclic homology since the latter had not been invented yet. The main result of [1]
is a reformulation of their work in the light of Connes’ theory and the work of Loday and
Quillen. [15] is also relevant here; it represents a first step beyond the case S = Z.)

As a more immediate application we prove a theorem in topology: Localized rational
S0(2)-equivariant cohomology of the free loop space of X depends only on 7, (X). The proof
of this requires, besides our main result, the fact that the equivariant homology of the free
loopspace of a path-connected space X:

HP3AX) = H,(AX x ESO(2)
def 50(2)
can be identified with the cyclic hyperhomology of the singular chains on the (Moore)
loopspace of X:

HC, S, (MX).

Such identifications have also been obtained by Burghelea, Dwyer, and others.

The paper is organized as follows.

In §I we recall Connes’ notion of “cyclic object in a category” (a cyclic object is a simplicial
object with some additional structure) and establish notation for dealing with such objects.

In §1I we develop from scratch the theory of cyclic homology for flat associative algebras
over a commutative ring K and prove the “homotopy invariance”. §I1.1 and §I1.2 contain
nothing new. We follow the treatment in [11] pretty closely except that we take a more
general point of view as in [5]: we define cyclic homology as a functor of cyclic K-modules
(= cyclic objects in the category of K-modules) and in particular define the cyclic homology
of a flat K-algebra A to be that of a certain cyclic K-module ZA. In §11.3 we make the fairly
obvious definition of the periodic theory; by taking an inverse limit on the chain level we
invert the “periodicity map”

HC, , (4)> HC,(4)

to get groups HC?% (A) depending only on n mod 2. It is not until §11.4 that a new idea
appears: we make a derivation of A act on everything in sight and prove the three versions of
homotopy-invariance mentioned above. In §I1.5 this leads to the theorem:

(3) A — A/I induces isomorphisms HC5 (4) - HCL(A/I)if I < A is a nilpotent ideal
and K is a field of characteristic zero.

In §I1I we extend the definitions and results of §I1I to the differential graded setting. That
is, what we have already done for flat algebras (and more generally cyclic modules) we now do
for flat chain algebras (and more generally cyclic chain complexes of modules). In particular
we prove an analogue of (3) in which the role of “nilpotent ideal” is played by a homogeneous
differential ideal which has no nontrivial elements of degree zero.

In §IV we use free resolutions of chain algebras to extend our results in routine ways. In
particular we obtain the main result: HC%” (4, d) depends only on 4,/dA4, if K = Q.

§V describes the application to the free loopspace. Thus it is mainly concerned with
proving the isomorphism (valid for any pointed path-connected space X and any coefficient

ring K)
H3°9(AX;K)=HC,S,(MX; K).
Finally, here are two remarks on notation.

(i) In our construction of a chain complex for cyclic homology (in §11.2) we call ¢, what is
called (—1)** ¢, in [11].
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(ii) We think of a cyclic object as a contravariant functor with domain A, since a simplicial
object is a contravariant functor with domain A < A. This differs from the convention used in
[5], but in view of the isomorphism A = A® (Lemma 1 of [5]) it should cause no alarm.

§I. CYCLIC OBJECTS IN A CATEGORY

Following Connes [5] we define the notion of cyclic object in an arbitrary category C. A
cyclic object is a simplicial object together with some extra structure. Namely, in addition to
C-objects X, (n = 0) and face and degeneracy maps

0:X,»X,_,0£i<nnz21
5:X,2X,,,08i<nnz20
satisfying the usual identities, there is an action of a cyclic group of order n+ 1 on X, for each

n 2 0. Denote a preferred generator of this group by ¢, . ,. Then in order to define a cyclic
object the group actions are required to satisfy

t,0;_, 0O<i<n

L) Oitye, = {

oy i=0
Lot 2Si-1 O<i<n
(12) sitys, = {tf”sn i=0

and of course
(13) tl=1.

Of course one can also express this by saying that a cyclic object is a contravariant functor
from A to C, where A is a certain category that contains the category A of simplicial theory
(See Connes [5] for an explicit definition of A.)

$II. CYCLIC HOMOLOGY AND DERIVATIONS
1. The Cyclic Module Associated to an Algebra

This is the main source of examples of cyclic objects. Let K be a commutative ring with
identity. By an algebra over K we will always mean an associative algebra with unit, and until
further notice we assume that every algebra is a flat K-module. To any K-algebra A we
associate a cyclic K-module, in other words a cyclic object in the category of K-modules. We
denote it by ZA (in Connes’ notation ZA = Ah). Namely for each n = 0 define

Z, A= A®"t1

the tensor product over K of n + 1 copies of A. Define face maps, degeneracy maps, and cyclic
group actions by

a. <i
(ALLY) 8(ap, ... a) =40 > @Gisr -8, 0=i<n
(@anaqg,ay, . ..,a,_4), i=n
(I1.1.2) s;(ag,...,a,)=(ag,...,a;,1,a,4,,,...,a,),0<i<n
(I1.1.3) t,+1(a0, .. .,a,) = (@ns gy -+ - 5 Ay q )

It is easy to verify the necessary identities (simplicial identities and 1.1 — I.3) that make this a
cyclic K-module.

2. Cyclic Homology
Nowlet X = {X,, ;, s;, t,+, } beacyclic object in an abelian category C (for example, X



190 Thomas G. Goodwillie

= ZA, C = K-modules). We associate to it a two-quadrant double complex of C-objects

'_CZP,J'(X)‘E_ Clp‘rl,j(X)",i C2p+2,j(X)‘—

b b b
« Cyp,j-1(X) & Copri,j-1(X) L Crpiz,j-1(X) «

as follows:
Ci;(X)=X;, forieZ and j = 0.

The maps b and b’ from X; to X;_, are defined using the face maps:
j
b= Y (~1f,

b=Y (1),

k=0
The maps ¢ and N from X; to X are defined using the group action:

e=1— (=1,

jt1 )
N = Z (- 1)th+ 1)"-
k=1
One can verify, as in ([11], Lemma I.1) that C,,(X) is indeed a double complex, i.e.,
b2 =0=b"
eN =0 = Neg
be —eb' =0
Nb—b'N =0.

The complex which occurs as every even-numbered column of C,, , (X)is called C% (X), the
Hochschild complex of X:

Xo o X, € X, ...

Its homology is called H, (X), the Hochschild homology of X. In the case of an algebra 4 we
write H,, (A) for H,(Z A); these are indeed isomorphic to the Hochschild homology groups of
A ([6], Ch. IX, §6.)

The other complex

b br
Xo - X, &£ X6

is called C%(X); its homology is zero because if we write
(AL21) u=(—1)s;: X;~> X4,

then b'u+ub’ = 1.
From the first quadrant of C,, (X) we can make a chain complex C, (X)in the usual way:

C.(X)= ®C; ,:i(X)

iz0
b+N inC,, ;(X)
—b+e inCypyy (X)

The homology of C,(X) is by definition HC, (X), the cyclic homology of X. In the case of an
algebra we write HC, (A) for HC_(ZA).

boundary map = {
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The double complex C,,(X) has a periodicity
C. (X) -: Ci-, ;(X),
and this gives a short exact sequence of complexes
0 > ker(s) » Co(X) S C, _,(X)—0.

On the other hand there is a short exact sequencé

0 Ch(X)—>ker(s) = Cy _,(X)—0.
since ker(s) is made out of the 0-th and 1-st columns of C,,, (X). This yields the long exact
sequence of Connes:

(I122) - H (X)=>HC,(X) = HC, ,(X)->H,_(X)=...
By composing two maps in this sequence we get a map '
H, (X) 5 H,\ (X)

satisfying B © B = 0; the complex (H,(X), B)is the de Rham complex and its cohomology is
the de Rham homology of X, HIX(X). We write H $X(A) for H $}(Z A). (See [11], Proposition
2.2, for an explanation of this terminology.)

A slightly different approach to the relationship between H, (X) and HC,(X) is to filter
C,(X) by subcomplexes

(23 @ C ,.-i(X), p=20.
0Sis2y
This yields a spectral sequence
H, ,(X),q2p20

(124) E,, = { 0 otherwise

}» HC,(X).

The differential d} ,: H,_,(X) - H, - ,+,(X) is the map B above.

It is sometimes convenient to use another double complex B, , (X) instead of C,, (X).
Roughly speaking one just eliminates the acyclic odd-numbered columns from C,, (X). Let
X,-ppq2p

Bp,q(X)=CZp,q-p(X)= { 0 q <p

Define differentials by letting b: B, ,(X) - B,, ,—;(X) be the map b already defined, and
defining B: B, ,(X)— B, ,(X) to be the composite

Czp—z,q—p+1(x) ‘ﬁ Czp—l,q—p+1(x)
u
Cap-1,4-p(X) & Cap gy X).

(Here u is the chain homotopy of (I1.2.1).) Then B, (X) is a double complex, i.e.

b?> =0 (we already know this)
B? =0 (since Ne¢=0)
bB + Bb = beuN + euNb
= e(b'u+ub')N = ¢N =0.
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Collect the first quadrant of B, (X) into a single complex:

B, (X)= @ 5.

prqg==x
p20

with differential b + B.

ProrosiTioN 11.2.5. H (B, (X)) = HC_(X)

Proof. Define a chain map B, (X) A C.(X) by

BP-‘?(X) - CZP‘ q—p(X) ®C2p— 1,q—p+1 (X)
x — (x, uNx).
(Exercise: It is a chain map.) Filter B, (X) by columns of B, (X) and filter C(X)asin 11.2.3.

Then ¢ becomes a map of filtered complexes. It induces an isomorphism of E!-terms, so also
an isomorphism H (B, (X)) - H,(C,(X)). O

Note. Our two uses of “B” to denote homomorphisms are now seen to be compatible:
The map B: X;— X;,, which is the “horizontal” differential in B, (X) induces the d'
differential in the spectral sequence for B, (X), which can be identified with the map B in the
de Rham complex by the remark following 11.2.4.

The complex B, (X) can be replaced by a “reduced” complex B, (X). Set

n—1
Xn = Xn/ z san—l
i=0
B,,= X—q-p'
One checks that b and B descend to maps of the quotients

B, (X) 5 B, , .(X)

B, (X) > B, ;. (X)

so that B, (X) is a double complex. Set

E,,(X)=( @ >B,,.q<X>.
Fr%0

Thus E*(X ) can be viewed as a quotient complex of B, (X).
ProvosiTioN 11.2.6. H, (B, (X)) = HC,(X).

Proof. Filter both B, (X)and E* (X) according to columns of the double complexes. The
quotient map B (X )-+§*(X ) induces a map of spectral sequences which is an E'-
isomorphism, that is, the quotient map from the Hochschild complex to the “reduced
Hochschild complex” induces an isomorphism in homology. O

Finally we make the obvious remark:

ProrosiTiON 11.2.7. A short exact sequence of cyclic objects
0-X' -X->X"-0
gives rise to long exact sequences

= H(X)> H(X)> H(X") = H,.,(X)~. ..
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and
. HC(X)-» HC,(X)-» HC(X")=> HC,_((X')> ....
Proof. There are short exact sequences of complexes
0-Ch(X)-»Ch(X)>CL(X") >0
0-C, (X)) C(X)=C (X")—0. |

3. Periodic Homology

By “inverting the map s” we will define a 2-periodic variant of HC,(X) provided the
abelian category C admits exact infinite products. Let B""(X ) be the complex obtained from
the whole of B"(X ) rather than just the first quadrant (we could have used B, (X) or

C .+ (X) instead of B,,(X) with the same result):

By (X) = [1B; ,_i(X)
ieZ
= By .n(X),
(The inverse limit is with respect to the surjective map s: B,, +2(X)> B +(X) induced by the

obvious isomorphism s: B, (X )—»B —1,4-1(X).) The homology of B"e’ (X) is called
periodic homology and denoted HCY¥'(X), orif X = ZA HC%”(A). One has isomorphisms

. Eper(x) Bperz(X)
s: HCZ"(X) - HC?" ,(X)

and short exact sequences

(I1.3.1)

(L32) 0- B HC,,,,;.(X)— HC?(X)> "HC, 1, (X) 0.

(For this last, use a short exact sequence of complexes

0- Bz (X)-[] B,(X)~ H B,(X)—0)
k20

We also have:

ProposiTioN 11.3.3. Proposition 11.2.7 applies to HC%" as well as H, and HC,,.

Proof. Clear. O

4. Derivations

The key idea here is that a derivation D: A — A of an algebra acts on the associated cyclic
module ZA, and that the induced action on “de Rham homology” is zero.

Let A be a (flat associative unital) K-algebra and D a derivation of 4, i.e. a K-linear map
A — A satisfying D (ab) = (Da)b + aDb.

DeFINITION 11.4.1. Lp: ZA — Z A is the endomorphism

Lpag,...,a)= Y (ap,...,Da,...,a,).

i=0

One checks easily that this is indeed a map of cyclic K-modules, ie., Lyd;, = 8; Ly, Lps,
=s;Lp, and Lpt,sy =t,, Lp.

TOP 24:2-F
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THEOREM 11.4.2. Given A and D there are natural K-linear maps
en:Z,A—>Z,_ A
Ep Z,A>Z,, A
which descend to maps _ _
ep: Z,A—Z,_ A
Ep Z,A->Z,, A
and satisfy
(1) [ep,b]=0 inZ,A
(ll) [eD, B]+[ED, b] = LD in ZnA
(i) [Ep.B]=0 inZ,A.
(“Natural” refers to the category of pairs (A4, D), in which a morphism (4, D) - (4’, D')isan
algebra homomorphism f: A — A’ such that D’f = fD. The brackets are graded commutators

[eob] = epb + bep, etc., since b, B, ep, and Ep all have odd degree.) Before proving the
theorem we deduce three corollaries.

CoroLLArY 11.4.3. Lj acts like zero on HR(A).

Proof. The maps L, B and (by (i)) e, are chain endomorphisms of the Hochschild
complex C’ (4) of degrees 0, 1,and — 1 respectively. Denote their respective actions on H «(A4)
by the same three symbols again. Then viewing E pas a chain homotopy we see from (ii) that

[ep, B] = Lp inH,(A).

Now view ep as a cochain homotopy to complete the proof. a
CoroLLARY I1.4.4. Lp acts like zero on HCE”(A).

Proof. Combine (i), (ii), and (iii) into:
(114.5) [ep+Epb+B]=L, inB,,(A);

here ep, Ep, b, and B have bidegrees (1,0), (0,1), (0, — 1), and (— 1, 0) respectively. Interpret
(IL.4.5) as an equation in B£”"(A), and view ep+ E, as a chain homotopy. O

CoOROLLARY 114.6. Lp°s=0: HC,A—- HC,_,A.

Proof. Note that (I1.4.5) does not make sense in the quotient complex B, (4) of B2 (4),
because the map e, does not preserve the kernel of the quotient map. However, if s: B2 (A)
— B2 ,(A) is the isomorphism of (I1.3.1) then the equation

(114.7) [epos+Epos,b+B] = Lpes,

which follows from (11.4.5), does make sense (and is true) in the quotient. The result then
follows like the preceding one. O

Proof of the Theorem: Define ep: Z,A - Z,_, A by the formula:
(1148) eD(aOa s an) = (_ 1)n+1 ((Dan)ao’ Ay, oo vy, an—l)'

The reader can verify (i).

Instead of defining Ep: Z,A — Z,, , A by an explicit formula we will construct it by
something like the “acyclic models” method of algebraic topology.

We begin by thinking generally about natural K-linear maps Fp: Z,4 —» Z, A (natural
with respect to (A, D)). Of course these correspond exactly to K-multilinear natural maps
from A"*! to Z,,A. Without the multilinearity condition such maps correspond exactly to
elements xe Z, A(n), where A(n) is the tensor algebra over K in vanables a,, ..., a,,
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Day, ..., Da, D?%a,,..., D%a,, ....The multilinearity of F, means that x should have
multidegree (1, . . ., 1)in the multigrading of Z,, A(n) = A(n)®™*'induced by the multigrad-
ing of A(n) which assigns to each generator D*a; the multidegree

©,...,1,...0)

!

i-th place

In other words, any natural map F, must be given by a formula, and the allowable
formulae are the K-linear combinations of the expressions

Fp(ao,...,an)=(Mo,...,Mm),

where each M is a (noncommutative) monomial in the expressions D*a; and

(1149) foreachi(0 < i < n)the total number of occurrences of all the D*a; in all the M jis L

Notice that if m = n+ 1 then any such F , necessarily descends to amap Z,4 - Z, , , A:
Assume (without loss of generality) that the formula for Fpis a single term (M,, ..., M, )
as above. By I1.4.9 there are only two possibilities: Case 1. For some j > 0 M; = 1. Then the
composed map

Fp _
ZnA —’Zn+lA_’Zn+1A

is zero. (Fp(ay, . . . , a,) is in the image of the degeneracy s;_,: Z,4 » Z,,, A) Case 2. The
formulais Fp(ao, - . ., ,) = (1, D¥ea,,, . . ., D*a,,), where k; > 0 and ¢ is a permutation
of {0,...,n}. The kernel of Z,A — Z, A is generated by the elements (ay, . . ., a,) where
some g; (1 < i < n)equals 1. Butif a; = 1 then D*s'wa; = 1 or 0, so Fy(ay, . . . , a,) goes to
zero in Z,, , A.

Similarly if m = n+ 2 then any natural K-linear map from Z,A to Z,,A (for example,
[Ep, B])descends to the zero map Z, A - Z,, A. (Case 1 always holds.) Thus (iii) will take care
of itself. It only remains to find a natural E satisfying (ii).

Assume that Ep has already been defined in Z, 4, . . ., Z,_, A, and that so far (ii) holds.
Our task is to find xe Z,,, A(n) having multidegree (1, . . ., 1) and satisfying

(IL4.10) bx = (Lp—[ep B]—Epb)(ao, ..., a,)eZ,A(n).
We have:
b(LD_ [eD,B] _EDb)(aO, reey an) =
(Lo—[epB]1—[Epb])b(ay, ..., a,)=0€Z,_ ; A(n)

by induction on n. Thus we will be done if in Z, 4 (n) the kernel of b equals the image of b. (The
multidegree condition is no trouble because the maps Ly b, B, ep and the previously
constructed Ejp’s all preserve multidegree, so that the right-hand side of 11.4.10 has
multidegree (1, . . ., 1)). That is, we need to know that the n-th Hochschild homology of a

tensor algebra is zero. This is true if n > 2, by [11], Lemma 5.2.
To begin the induction we need formulae for Ein Z,A4 and Z, A. In Z,A we have

(Lp—T[ep, B])(ao) = (Day) — ep((ao, 1)+ (1, ap))
= (Dag)—0—(Day) = 0,
so we define

(IL4.11) Ep(ae) = 0.
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In Z, A we have
(Lp—[ep,B] — Epb)(ay,a,) = (Day,a,)+ (ay, Day)
—ep(—(ag,a;,1)+(ay,a0,1)+ (1,0a¢,a,)
—(1,a19a0))
— B((Da,)a,)
-0
= (Day,a,)+ (ap,Da,)
+ (Dal’ao) - (D009a1)
—((Day)ag,1)— (1, (Da,)a,)
= b(lyDalsaO)—b(19(Dal)a0’ 1)’
so we define
(IL412) Eolao,a,) = (1,Day,a,) — (1, (Day)ag, 1). -

With a little extra care the theorem can be refined:
Addendum 11.4.13. The maps e, and Ej can be chosen to depend linearly on D.

Proof. Note that we have defined L, to satisfy this requirement. That is, the letter “D”
occurs exactly once in each term of the right-hand side of 11.4.1. The same is true of ¢, (by
11.4.8) and of Epin dimensions < 1 (by I1.4.11) and 11.4.12). The inductive construction of E,
can be carried out so that this holds for Ein all dimensions: Just refine the multigrading of
A(n) by adding one new grading in which the generator D*a; has degree k. The induced
grading of Z,, A(n) is such that the maps b and B have degree zero and Lpand ephave degree
one. We can inductively arrange for Ej to have degree one as well. O

We also record the following for future reference:

ProrosiTION 11.4.14. If A: A — A is another derivation and [A,D] = O then [ep, L] =0
=[Ep, L,].

Proof. In fact any natural K-linear map Fp: Z,4A—> Z,A commutes with L, if D
commutes with A: Without loss of generality Fp(a,,. . ., a,) = (Mg, .. ., M,,) satisfying

(1L4.9). Say )
M; = - DV ay;y,

where in the collection {i(j,!)|0 <j < m,1 <1 <r(j)} eachi (0 < i < n) occurs exactly once.
Then

LiFp(ay, ..., a,)=La(My,..., M,)

m
— k(j, 1) k(j, D) k(j, r(j))
= Z (Mg,...,D a1y .- - AD¥ Va0 D i)y

m
- k(s 1 k(j. D) ki, rG))
=Y (Mo, ..., D" Va; .. . DDAq, .. DM D) gy
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5. An Application

TueoreM I1.5.1. Let K be a field of characteristic zero, A a K-algebra, and 1 c A a
nilpotent ideal. Then the quotient map A — A/I induces isomorphisms

HCP*" (4) - HCE*" (A/I).

Proof. Filter A by the powers of I
A=I°>I'>5P*> ... o"> " =0.

The quotients gr, (A) = I*/I**? form an algebra

gr(d)= @ gr,(A).
k20
Filter the vector spaces Z,A by:

Fre Y Teo®... @I c A®+l=Z 4
Ko+ ...tk =k

The structure maps 0;, s;,¢, + ; of ZA preserve the filtration, so we actually have a cyclic vector
space F* for each k = 0, with

ZA=F’>F'oF?> .,

ProposiTioN I1.5.2. Z gr(d)= @ F*/F**! as cyclic vector spaces.
k20

Proof. Easy exercise. ]
We have to show that HCZ (F°) — HC2" (F°/F') is an isomorphism, i.e. (Proposition
11.3.3) that HC2*(F') = 0. We will do this by using 11.3.2 and showing that the map

s
HC*+2k(F1) - HC*(Fl)
is zero for k = m(x + 1). This follows from two facts:
&
Claim 1. The map HC, , 5, (F!/F**'y—> HC, (F*/F**1) is zero for all .

. k
Claim?2. HC,(F*)=0 for* < p—— 1 (and hence HC, (F') - HC, (F!/F**!) s inject-

ive for » < kj— 1).
m

Proof of Claim 1: It will suffice to show that s = 0in HC,, (F*/F**!)for k > 0. The graded
algebra gr(A) has a derivation D defined by
Da =ka for aegr,(A).

Clearly the endomorphism L, of Zgr(A) acts like k on the summand F*/F**! (see
Proposition 11.5.2). Therefore by Corollary 11.4.6 we have

ks = Lpes =0 on HC,(F*/F***).

. 1
Since EG K we are done. 0O

Proof of Claim 2: From the definition of F* and the fact that I¥ = 0 for k¥’ > m we have
k
Fk=0 for n< —= 1. Thus C;(F*) =0 for j <$—— 1, and the complex C, (F*) has no

. ) .k
nonzero chains below dimension — — 1. O
m
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§1II. CYCLIC HYPERHOMOLOGY AND DERIVATIONS

We indicate how the definitions and results of Section II can be extended to the case of
chain algebras. We will be brief, because we have set up the theory in Section II so as to make
this extension as easy as possible.

Again let K be a commutative ring with 1.

DEFINITION. A chain algebra (A,d) over K is a nonnegatively graded associative K-algebra
A with identity, equipped with a K-linear map d: A — A of degree — 1 satisfying

d(ab) = (da)b + (— 1) adb
d* =0

Throughout Section III we will continue to work only with flat algebras. We will relax this
condition in Section IV.

1. The Cyclic Chain Complex Associated to a Chain Algebra

If (A,d) is a chain algebra over K and flat as a K-module then we define a cyclic object
Z(A,d) in the category of chain complexes (of K-modules, nonnegatively graded). Set

Z,(4,d) = (A,d)®n+1,
This is a tensor product of chain complexes. Thus its differential (which we call “d”) is given
by:

day,...,a,) =) (=1)al+...+la-l@g, ...  da,...,a,.

i

i

Face and degeneracy maps and cyclic group actions are again given by I11.1.1-11.1.3, except
that

(I11.1.1) In the formulae for 6, and t,,, we insert the customary sign (— 1)!%!(dol+ . +la,.),

The maps
z,4.d) %z, (4,d)

Z,(A,d)$2Z,,,(4,d)

Z,(A4,d)"4 7 (4,d)

are then chain maps, and the identities 1.1-1.3 hold, so we have a cyclic chain complex.

2. Cyclic Hyperhomology

We consider cyclic chain complexes (X,d) in general and Z (4, d) in particular. (Chain
complexes are always nonnegatively graded chain complexes of K-modules unless the
contrary is explicitly stated.) The construction of complexes Ch(X,d), Ci(X,d), C (X,d),
B,(X,d), and -B_* (X,d) goes through as in I1.2 because there we worked in an arbitrary
abelian category. However, these complexes are now complexes of complexes, i.e. hyper-
complexes, so it makes good sense to replace them by single complexes (their total complexes)
and then take homology.

For example, the Hochschild complex Ci(X,d)

Xo*b—Xl‘l')"Xz‘—...
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is really a hypercomplex:

Lo }

b b
Xooe= X« Xp+ ... (db = bd)
4y, 4y, dy

b b
Xoo‘— Xlo‘— Xzo('"... .

Its total complex Tot(Ci(X,d))is nGZ—)O X, . -» With differential b= b+ (—1)"din X, ,. The
Hochschild hyperhomology is by definition
H,(X,d) = H,(Tot(C}(X,d))).
Likewise cyclic hyperhomology is
HC,(X,d) = H, (Tot(C,(X,d))).
Just as in IL.2 one can prove that H, (Tot(C5(X,d))) = 0 and deduce:
(II1.2.2) A natural long exact sequence

.—»>H,(X,d)>HC,(X,d)>HC, _,(X,d)»H,_,(X,d)> ...

(IT1.2.3) A natural spectral sequence

El {Hq_p(X,d), g2p=20
p.q

= d
0  otherwise } > HC, (X, 4)

with d! = B = composition of two maps in I11.2.2.
One also has as before:

(Il124) HC,(X,d)= H,(Tot(B,(X,d)))
~ H,(Tot(B, (X,d)))

and

(ITIL.2.5) A short exact sequence of cyclic chain complexes gives rise to long exact
sequences in H, and HC,,.

For what it’s worth one can define HiX(X, d), “de Rham hyperhomology” of (X,d), to be
the cohomology of the complex

Ho(X,d)5 H, (X,d) 3 Hy(X,d)—> ... .

If (X,d)=Z(A,d) then we write H,(A4,d), HC,(4,d), HZ{*(A,d) for H,(X,d),
HC,(X,d), H&(X,d).

DerFNITIONII1.2.6 A map (X,d) — (Y, d) of cyclic chain complexes is an equivalence if for
each n 20 the chain map (X,,d)— (Y,,d) is a quasi-isomorphism (QI), ie. induces
isomorphisms in homology.

ProPosITION I11.2.7. An equivalence induces isomorphisms in H « HC,,and HR

Proof. For H, filter the complex Tot C’ by columns of the hypercomplex Chand use a
comparison of spectral sequences. For HC, use II1.2.2 or I11.2.3. For Hé® use the definition.
a

DeFINITION I11.2.8. A map (A,d) — (B,d) of chain algebras is an equivalence if as a chain
map it is Q1.
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ProposiTioN 111.2.9. Any equivalence f: (A,d) — (B,d) of flat chain algebras induces
isomorphisms of H,, HC,, and HX.

Proof. By 111.2.7 it will suffice to know that the map Z(f). Z(4,d)— Z(B,d) is an
equivalence, i.e. that for each n = 0 the chain map

f®n+l: (A,d)®"+1—+ (B,d)®"+1

is QL This can be proved by induction with respect to n by factoring f®"+! = (f@nR1) o
(1® f) and using flatness. O

It will be convenient to have long exact sequences as in I11.2.5 for any map of cyclic chain
complexes f: (X,d)— (Y,d). We therefore define relative groups H, (f) and HC,_(f) as
follows: Construct a new cyclic chain complex M7 by setting

M = algebraic mapping cone of the chain map f,: (X,,d) — (Y,,d).

There are obvious chain maps é,, s;, and ¢, , ; making the { M/ } into a cyclic chain complex
M/, simply because “algebraic mapping cone” is a functor from chain maps to chain
complexes. Set H, (f) = H, (M”), and likewise for HC,, . One obtains a natural diagram, in
which the row is exact, the triangle commutes, and the vertical map is an equivalence:

0-(X,d)y-Y>M' >0

~

p =
(Y,d)
Here Y is the algebraic mapping cylinder of f. Using 111.2.5 and II1.2.7 this yields exact

sequences
(I12.10) ... »H,(X,d)-»H,(Y,d)»H,(f) =~ H, (X,d)— ...

. = HC,(X,d)~»HC,(Y,d)~»HC,(f)»HC, ,(X,d)— ...

Iff: (4,d) — (B,d)is a map of flat chain algebras then we write H,, (f) (resp. HC, (f)) for
H, (Z(f)) (resp. HC,(Z(f))), where Z(f). Z(A,d) = Z(B,d) is induced by f.

Finally, there are spectral sequences arising from the filtrations of Tot(C}(X,d)) and
Tot(C, (X,d)) by rows of Ci(X,d) and C,(X,d):

E'=H,(X,0)=H,(X,d)
E! = HC,(X,0)=HC, (X,d).

More precisely, (X,0) is a cyclic graded K-module, and as such it has Hochschild (resp.
cyclic) homology groups which are themselves graded K-modules. Denote the k-th graded
part of the n-th group by H,(X,0), (resp. HC,(x,0),). Then this is E, ,.

Warning. In the case (X,d) = Z(A,d), so (X,0) = Z(A4,0), the graded module H,(A4,0)
does not have for its underlying module H,(A). The same warning applies to HC,. The reason
is that the underlying cyclic module of the cyclic graded module Z(4,0) is not isomorphic to
Z(A), because of the signs in 111.1.1.

3. Periodic Hyperhomology

We continue to work with a cyclic object (X, d) in the category of nonnegatively graded
chain complexes over k.
Define a complex (graded by all of Z)

Bz (X,d) = lim Tot(B, . 5, (X,d))
X
(lim is with respect to the surjection

3 _ _
s: TotB, . ,(X,d) - Tot B, (X,d)
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induced by the surjection of hypercomplexes
s §*+2(Xsd) I E*(X’d))

Define periodic hyperhomology by HC?® (X,d) = H,B"* (X,d). We write HC?*"(4,d) if
(X,d) = Z(A,d). Again, as in I1.3, s gives a periodicity isomorphism

(I11.3.1) HCE” (X,d)—~> HCET, (X,d)
and again there is an exact sequence

(I113.2) 0—1lim!' HC, 4 4+,(X,d) > HCE"(X,d) > 1lim HC, ,,, (X, D) - 0.
k k
Note also that II1.2.5 holds for HCE™.

4. Derivations

We now adapt the definitions and results of I1.4 to the setting of chain algebras.

Consider graded derivations D: (4,d) - (4,d). We may as well allow D to have arbitrary
integer degree |D|, although we will only use the case |[D| = 0. Thus D is a K-linear map
A, — A, p. Itis a derivation if it satisfies

D(ab) = (Da)b + (— 1)l g Db,
We also require it to be a graded chain map, ie.,
[D,d]=Dd-(-1)"dD = 0.
Define Lp: Z(A,d)— Z(A,d) by
Lplag...,a,)= .io (— 1)\Dlgol+ ... +laab (g Da,,. ..,a,)
Thus Lpisagraded map Z,(4,d) - Z,(A,d) of degree |D| for each n. One can check that it is
a (graded) chain map:
[Lp,d] = Lpd—~(—1)PdL,=0.
(In other notation this says [Lp, L,] = 0.) Also Lpis a map of cyclic objects, i.e.
Lp6;=06,Lp
Lps;=s;Lp

Lptysy =t,4 1 Lp
just as in 114,

THeoOReMIIL.4.1. Given a chain algebra(A,d)and derivation D as above, there exist natural
chain maps (of degree |D|)

ep: Z,(A,d)y—> Z,_,(A,d)

Ep. Z,(A,d)>Z,,,(A,d)
which descend to chain maps

ep: Z,(A,d) > Z,_,(A,d)

EpZ,(A,d)>Z,,,(4,d)

and satisfy:
() [en,b]=0inZ,(A,d)
(i) [ep,B]+[Ep,b]l=LyinZ,(A,d)
(iii) [Ep,B]=0inZ,(A,d).
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(“Natural” refers to the category of chain-algebras-with-derivation (4,d, D). The brackets are
graded commutators with respect to total degree, e.g.,

[ep,b] = epb—(—1)!Pl-1bey,.

(Total degree of a chain map Z, — Z,, is m—n+ (degree as a chain map).))

Proof. Define ¢j by inserting an appropriate sign in formula 11.4.8. Thus
eD(aO, L] an) = (_ 1)n+1 (_ 1)(!an|)(|a0'+ T -Ha"_l“ ((Dan)ao’al’ LA ] an—l)

The sign rule that we have used in extending to the graded case the definitions of the maps
0;, i, ta+ 1, Lp, and now epis this: Each letter (a; or D) appearing as an argument on the left-
hand side of the defining equation has a degree associated with it, and a factor of —1 is
introduced on the right-hand side each time a pair of letters on the left-hand side, both of odd
degree, appears in reverse order on the right-hand side. In order for this rule to make sense it
is essential that every letter on the left-hand side should appear exactly once on the right-hand
side. This is the case in the definitions of &, s;, and ¢,,,; (I1.1.1-11.1.3), L, (IL.4.1), and e,
(11.4.8). Thanks to Addendum I1.4.13 it is also the case with Ep. Thus we may extend the
definition of E, to the graded setting by the same sign rule.

Having defined epand E , we ask whether they satisfy (i)-(iii). The answer is yes; there is a
general principle at work here, which guarantees, for example, that the graded formula for
epb can be arrived at by applying the sign rule to the ungraded formula for epb. The same
principle applies to bep, epB, . . ., and allows (i), (ii) and (iii) to be deduced from their
counterparts in Theorem 11.4.2.

We must also check that ep,and E pare chain maps. This is what Proposition 11.4.14 is for:
It implies its graded analogue, which we then use with A = d. ]

The theorem has three corollaries exactly analogous to those of Theorem 11.4.2.

COROLLARY I11.4.2. L acts like zero on HR (A,4d).

Proof. Mimic the proof of Corollary 11.4.3. Thus L, B, and epare chain endomorphisms

of TotC% (4,d), of degrees |D|, 1,and —|D| —1 ... . (One needs here that (i) and (ii) still
hold when b is replaced by b = b+ (—1)"d, the total differential of Tot C" (A, d). They do,
because [ep,d] =0 = [Ep,d].) |

CoROLLARY 111.4.3. L acts like zero on HCE" (A,d).

Proof. Mimic the proof of Corollary 11.4.4. Thus I1.4.5 is replaced by
[eD+ED,b+B] = LD

which is then interpreted as an equation in Eﬁ‘” (4,d). O
CoroLLARY 111.4.4. Lj o s acts like zero on HC (A, d).

Proof. Clear, by now. O

S. An Application
In close analogy with Theorem I1.5.1 we have
TueoreM I11.5.1. Let (A, d) be a chain algebra over a field K of characteristic zero, and let

I = A be a chain ideal, i.e., a graded ideal satisfying dI < 1. Assume I, = 0. Then the quotient
map (A,d) — (A/I,d) induces an isomorphism

HC2 (4,d) - HCZ (A/1,d).
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Proof. This is just like the proof of I1.5.1. Set
gr(4,d)= @ I*/I**'.

k20

This is a chain algebra. (The grading by k is an additional grading, with respect to which the
differential d has degree 0, not — 1.) Filter each chain complex Z,(A4,d) by subcomplexes

Fk = Y Io® ... @Ik
kot ... +k,=k
Identify the two cyclic chain complexes:
(1I1L5.2) Zgr(A,d)~ @ FYF*%
k=20
It is enough to prove that the map

HC, ... (F') 5 HC, (F!)

is zero for * < k, and this follows from two claims:
Claim 1. HC, , 5 (F'/F** 1) 5 HC, (F'/F**1) is zero for all ».

Proof. Just as in the proof of I1.5.1, but using Corollary I11.4.4 instead of Corollary
11.4.6. O

Claim 2. HC, (F*) =0 for * < k.

Proof. The complex Tot(C, (F*)) has no nonzero chains in dimensions < k, since the
same is true of each complex F%. 0o

§IV. GENERALIZATIONS

By systematically replacing chain algebras with equivalent ones (in the sense of 111.2.8) we
can generalize some definitions and results of Section III. As usual, all algebras are over a
fixed commutative ring K. We no longer assume that all algebras are flat K-modules.

We denote the n-th homology of the underlying chain complex of a chain algebra (A4, d) by
h,(A, d). Of course h, (A, d) is a graded algebra.

As usual, we call a chain complex n-connected if its homology groups vanish in
dimensions < n. We call a chain map n-connected if it induces homology isomorphisms in
dimensions < n and a surjection in dimension n, and we call a map of chain algebras
n-connected if it is n-connected as a chain map.

1. The Non-Flat Case
We extend the definition of cyclic hyperhomology to the case of chain algebras which are
not necessarily flat.

ProposiTiON 1V.1.1. Every chain algebra (A, d) admits a natural equivalence ¢ ,: (R 4, d)
—» (A, d) from a chain algebra whose underlying graded algebra R 4 is a graded tensor algebra.
Proof: The method is a standard one; inductively define maps
4 (Ra(n), d) = (4, d)

such that R,(n) is a graded tensor algebra and ¢, is n-connected. Given R, (n—1) the
construction of R 4(n) is as follows. Adjoin an element x of degree n to R 4(n — 1) for each pair
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(»,z), yeRy(n—1),_,, ze A, such that
e4(y)=dz and dy=0.
Extend ¢, and d from R 4(n— 1) to R 4(n) by setting
dx=y and g;x=12z

To start the induction take R ,(— 1) = K with d = 0 and ¢, the unit map: K — A. Finally, let
R be the union | J R 4(n). O

Note that if A is flat then ¢, induces isomorphisms of Hochschild, cyclic, periodic, and de
Rham hyperhomology, by 111.2.9 and 111.3.2.

DErFINITION 1V.1.2. If (A4,d) is any chain algebra then HC,(A,d) = HC, (R, d), and
likewise for H,, HC%*", and HiR

This is the “right” definition because it coincides with the old one in the flat case (as we
have just seen) and is “homotopy invariant”:

ProrosiTiON 1V.1.3. Proposition 111.2.9 now holds in the general (non-flat) case.
Proof: Use the commutative diagram

Rl
(R4, d) > (Rp, d)

\L_’ SA l/_) SB

0 (4,d) - (B, d)

2. One-Connected Maps of Chain Algebras
The following theorem says that in characteristic zero periodic homology of (4, d)
depends only on hq (A, d). Notice that Theorem IIL.5.1 was a special case of this.
THEOREM 1V.2.1. Any one-connected map (A, d) — (B, d) of chain algebras over a field K
of characteristic zero induces isomorphisms
HCE" (A, d)— HCY (B, d).

Proof: We reduce to the case already treated (in I11.5.1) by the device of replacing chain
algebras by equivalent ones. There are two steps:

LeMMA IV.2.2. Any zero-connected map of chain algebras can be factored as an
equivalence followed by a surjection.

LeMMA IV.2.3. For any one-connected surjection (A, d) — (A/J, d) of chain algebras there
is a commutative diagram

(T,d) — (4,d)

(T/1,d) - (A/J, d)

of chain algebras such that the horizontal maps are equivalences, T is a tensor algebra, the chain
ideal I is generated_as an ideal by a subset of a tensor basis, and 1, = 0.

Proof of IV.2.2. Let f: (A,d)— (B,d) be zero-connected. It will be enough if we
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construct a chain algebra (B/, d) with equivalences

A Po
(B,d)— (B',d)— (B,d)
Py
satisfying
(IV.2.4) po OA = 1 = pl OA
(IV.2.5) The map B! - B, @B,

W = (PoW, P1W)
is surjective if n > 0 and has image
{(x,z)eB, ®By|x—zedB,} if n=0.

If so, then we factor f = g oh as follows. Let (A’, d) be the fiber product

A, d) %, (BLd)
i Po , ‘L Po
4,d) L (B, d)

The diagram

4,d) % (B a)

ll l Po

(4,d) —fv (B, d)

yields h: (4,d) - (A, d) and we make g the composite
I 1
(4',d) 5 (B, d) 5(8, a).

To see that h is an equivalence observe that its left inverse pj is a pullback of the surjective
equivalence p, and so is an equivalence. Surjectivity of g follows from 1V.2.5 and the zero-
connectedness of f.

Define B’ as follows.

Bl B,®B,.,®B, if n>0
" {(x),2)€B, @B, ®B,ldy =z~x} if n=0.

(x, y,2)(x', y', 2') = (xx', xy’ + (= 1)Iyz’, z2)
for (x,y,z)e B! and (x,y’,2’)eB].
d(x,y,z) = (dx, (— 1)'x +dy — (— 1)"z, dz)
for (x, y, z)e B

One easily checks that this is a chain algebra and that the maps

A(x) = (x, 0, x)
po(X, Y, Z) =X
pl (X, Vs Z) =2z

are chain algebra maps satisfying 1V.2.4 and IV.2.5. To see that A, p,, and p, are equivalences
use a chain homotopy between A °p, and 1:

(1—Apo)(x, y,2) = (dH + Hd)(x, y, 2)
where H: Bl - B/, | is defined by
H(xy))’z)= (090,(_1)"y) D
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Proof of IV.2.3. This is in the same spirit as the proof of IV.1.1. We inductively construct
commutative diagrams

(T(n), @) > (4, d)

oo

(T(n)/1(n),d) > (A}J, d)

such that ¢ and the map of kernels
(U (n), d)> (J,d)

are both n-connected (and hence so is ). The inductive construction from n — 1 to nis in two
steps.

Step 1: Given (T (n— 1), d) with chain ideal I (n — 1) and map ¢ satisfying the conditions
above for n — 1, define a graded algebra T’ (n) by adjoining to T'(n — 1) an element x’ in degree
nforeach (y', z),y' €T (n—1),_,,z € A,,suchthatey’ = dz’anddy’ = 0. Extend d and ¢ from
T(n—1)to T'(n) by setting dx’ = y' and ex’ = z’, and let I (n) be the ideal in 7" (n) generated
by I(n~—1). This yields

(T'(n), d) > (4, d)

l l

(T ()1 (n), d) > (4/J, d)
such that ¢ and ¢’ are both n-connected and hence

(I'(n),d) S (J, d)

is (n — 1)-connected.

Step 2: Define T(n) by adjoining to 7'(n) an element x in degree n for each (y, z),
yel'(n),_,,z€J,,suchthat ¢y = dzand dy = 0. Extend d and ¢ from T"'(n) to T (n) by setting
dx = y and ex = z, and let I{n) be the ideal in T'(n) generated by I'(n — 1) and the x’s. This
yields

(T(n), d) > (4, )

b

(T(n)/1(n), d) > (4/J, d)
with both ¢ and
I(n),d) > (J,d)

n-connected.
To start the induction take 7(—1) = K and I(—1) =
This would complete the proof by taking T = U T(n),I = U I(n), except that we have not

arranged that I, = 0. We can do this by omitting the step in Wthh T(0) is constructed from

T'(0) and instead taking T(0) = T’(0), I(0) = I'(0). This is permissible because (I'(0), d)

- (J, d) is automatically zero-connected. (By assumption hy(J, d) = 0.) O
1t is clear that the two lemmas imply Theorem I1V.2.1; using the first we reduce to the case

of a surjection (4, d) = (4/J, d), and using the second we reduce further to the case in which

Jo = 0, which is handled by IIL.5.1. O
The best result that can be proved by these methods seems to be the following.
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THEOREM IV.2.6. Let f: (A, d) — (B, d) be a one-connected map of chain algebras (over an
arbitrary commutative ring K). The map

HC, . (f) X5 HC, (f)

is zero for x < k.

Proof. Use Lemmas IV.2.2 and 1V.2.3 (they are valid for any K) to reduce to the case of
a map

(T,4d) —fv (T/1,4d)

where T is a tensor algebra, I is generated by a subset of a tensor basis, and I, = 0. Define a
filtration { F*} of Z (A, d) as in the proof of I1L5.1. The graded K-modules I"/I"*! are free,
and this means that even though K is not a field it is still possible to identify I*® - - - @ I*»
with a submodule of A® - - - ® A4 and to prove I11.5.2. Identify HC, (f) with HC, _, (F").

Claim 1 and Claim 2 from the proof of I11.5.1 then finish the proof, except that in Claim 1
we must substitute k!s* for s* since we only have

ks = 0: HC, 4, (F*/F**!) > HC (F*/F**1). O

§V. THE FREE LOOPSPACE

We prove that the SO(2)-equivariant homology of the free loopspace A X of a space X is
naturally isomorphic to the cyclic hyperhomology of the chains on the based loopspace of X.
Then applying IV.2.6 we conclude that the localized rational equivariant cohomology of A X
depends only on #,(X).

1. The Free Loopspace and Cyclic Homology

For any space X let AX be the free loopspace of X, i.e. the space of all continuous maps
from S' to X (with compact-open topology). The rotation group G = SO(2) acts on S* and
hence on AX. Form the homotopy orbit space (or associated bundle) AX x EG. Its

G
{(co)homology with coefficients in K is called equivariant (co)homology of A X and denoted
HS(AX; K) (resp. HE(AX; K)).

THEOREM V.1.1. For any path-connected pointed space X and ring K we have
H$(AX;K)=HC,(S,(MX; K)),
where S, (MX; K) is the algebra of singular chains on the Moore loopspace of X.

Proof. At the heart of the proof is a comparison of two cyclic spaces ZM X and X 5' x4,
which we now define.

Let M X be the Moore loopspace of X. Thus M X has a strictly associative multiplication
with unit and is homotopy-equivalent to the ordinary loopspace QX. By ZM X we mean the
cyclic space given on objects by

Z,MX = (MX)*1

and on morphisms by formulae (I1.1.1)}—(I1.1.3). This is the obvious nonlinear analogue of the
construction in I1.1 by which an algebra A yields a cyclic module Z A; for any discrete (resp.
topological, resp. simplicial) monoid M it yields a cyclic object ZM in the category of sets
(resp. spaces, resp. simplicial sets).

The other cyclic space X *' *#'is defined using a cocyclic space S* x A. A cocyclic space is a
covariant functor from A (see §I) to spaces, i.e., a sequence of spaces related by structure maps
which satisfy the cosimplicial identities and the duals of the identities (I.1)—(1.3). The cocyclic
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space S* x A" will by definition consist of the spaces S! x A", n > 0, and the maps
0nSIxA" ' 5 S!xA"0<i<nn=1
s ST AL LS AN 0<i<n
Loy SEX A" > ST x A"

given by
@, up, . . Uy 1)0; = (O, ug, ... u_;,0,u;,...u,_4)
O ug, .o -y )s; = (O, ug, . o Ui U Uy, - Uy )
O, ug, .. Uty = (0 —ug, Uy, ... U, g).
Here 0 is the coordinate in S* = R/Z and (u,, . . . u,) are barycentric coordinates in A". We

have written 9;, 5;,and ¢, .. , on the right so that the identities (I.1)-(1.3) apply without change.
It is straightforward to check that those identities hold, so that this is in fact a cocyclic space.
Notice that its underlying cosimplicial space U(S*' x A’) is the product of the constant
cosimplicial space S* and the standard cosimplicial space A" which plays a fundamental role
in simplicial theory. (It seems that §* x A" should play an analogous role in “cyclic theory”.)
Now for any space X let X ' *2 be the cyclic space given by the spaces X 5 *4" n > 0 (function
spaces with compact-open topology) and maps

3,()(6, u) =f((6,wd;) ]
5:()(8, u) = f((6, ws,) feX5 ¥ (0, u)eS! x A"

tar 1 ()6, w) = f((0, Wi, 1)
Let X be a pointed space. It is straightforward if tedious to check that the following is a
map of cyclic spaces.

ZMX 5 x5 s

(MX)n+l XS‘xA"
A(ﬁ)! .- f;|+1 (0 Ug, - -« un)=
(fo-- -JC.)(G PRI AREDY uilj}l)-
j=0

0<i<jsn

Here the f are elements of M X, f, ... f, is their product in M X, | f| denotes the “length” of a
Moore loop f, i.e., the length of the interval which parametrizes it, and 8 is chosen so that the

argument of f, . .. f, lies in the correct interval [0, Yk l:|.
i=0

Now, any cyclic space gives rise to a cyclic chain complex of K-modules by means of the
functor S, (singular chains with coefficients in K). The proof of Theorem V.1.1 is in three
parts:

Lemma V.12, HC (ZS,(MX)) = HC,_(S,(ZMX)).
LemMa V.1.3. A induces an isomorphism HC,(S,(ZMX)) - HC (S, (X 5*%))
Lemma V.14, HC, (S, (X5 *%) = HS(AX).

Proof of V.1.2. Here M X could be replaced by any topological monoid M. By 111.2.7 it
will be enough to write down a map of cyclic chain complexes
ZS, . (M)— S, (ZM)
which is an equivalence (in the sense of I11.2.6). This is easy. Recall the standard chain
equivalence

S (A)®S,(B) 3 5,(4x B)
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for spaces A and B, given by the “shuffle product”. The multiplication in S, (M) is by
definition the composition

S, (M)®S,(M)5 S, (M x M) 5, (M),

where the second map is induced by the multiplication in M. The obvious diagrams all
commute:
$°(¢®1)
S, A®S B)®S,C—S,((AxB)x()

~ =

$°(1®¢)
S,A®(S,B®S,C)———>85,(4 x (BxC))

S,A®S,B5 S, (4xB)

= =

S,B®S,A -¢>S*(B x A)

¢
$,(4A)®S, (point) > S, (4 x point)

S, (:4)®K = §,.(4)

and this easily implies that the chain equivalences

S*(M)®"+l — S‘(M"'H)
given by iterating ¢ n times constitute a map of cyclic chain complexes
O ZS M-S, ZM.

Proof of V.1.3. In view of I1.2.4 a comparison of spectral sequences reduces us to proving
that A induces an isomorphism

H,S,(ZMX)-H,S, (X5 *4).
This is a statement about the map of underlying simplicial spaces
UZMXUis U(XS'*4),
In fact from the definitions it is clear that for any cyclic space Z we have
(V.L5) H,S,(2)=H,(IUZ]),

the homology of the realization of UZ in the sense of [14].

The simplicial space UZM X is isomorphic to the “cyclic bar construction” on MX (cf.
[16]). The simplicial space U (X' *#) is (A X)¥, the “topological total singular complex” of
the space AX. We will be done if we can show that the map

1wy .
IUZMX | — |(AX)*]

is a weak homotopy-equivalence. (In other words we have to explain a Moore loop space
version of an example given in [16, p. 368, last full paragraph].) We will do this by
algebraically mimicking the fibration sequence

(V.1.6) QX +»AX - X.

{The second map is evaluation at 0eR/Z.)
We will use the following fact, which is essentially the main result of [12].

LemMMA V.1.7. Let E — B be a map of simplicial spaces such that
(i) all homotopy fibers of E, — B, have the homotopy type of a fixed space F, and

TOP 24:2~G
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(i) each face or degeneracy diagram
E'l - Em

v
B,~ B,

yields a homotopy equivalence from E, to the homotopy pullback of B, — B,, — E,,.
Then |E|| - | B\ also has all homotopy fibers equivalent to F, and the inclusions

E, s [IE]
Y v
B, 5 | Bl

induce an equivalence of homotopy fibers.
Now consider the diagram of simplicial spaces

MXx 5 @x)s

Lo

Ui
(V.1.8) UZMX — (AX)¥

l

BMX 5 X%

The right hand column here is induced by V.1.6. M X is the Moore loopspace considered as a
{constant) simplicial space. BM X is the bar construction on the topological monoid MX:

B,MX = (MXY
(fis-- - fifisrs- £), O<i<n
(fl’ .. 'ﬁl—l)v i=n

ss(fiy - B)=UL . S Lfiv - £)0<i<n
The map UZMX — BMX is
(Jos - - - J) = (hs - - fo).

The map v is defined to make the lower square in V.1.8 commute:

V(fh---f:.)(“o,---un):(fl~~fn)< z ui'j}l)'

1<j<i<n

MX isincluded in UZMX as the space in simplicial degree zero, and p is defined to make the
upper square commute:

n(No, - .. w )@ =fClf]), 0=t=1

Call a sequence of spaces A — B — C a fibration sequence if the composition A — C is
constant and the map from A to the homotopy fiber of B — C is a weak equivalence.1f A - B
— C is a sequence of simplicial spaces, call it a fibration sequence if || A|| — | Bl - [|C| is one.
Call a map A — B of simplicial spaces an equivalence if |A|| - | B|} is a weak equivalence.

Certainly V.1.6 is a fibration sequence, and it follows easily that the right-hand column of
V.1.8 is one. The left-hand column is also a fibration sequence, by V.1.7. Therefore to prove
that U4 is an equivalence it will suffice to show that yx and v are,

For p this is clear; u is essentially the standard equivalence between Moore loops and
ordinary loops.

For v one can play the same game again using the contractible path space

PX = {p: ([0, 1],0) - (X, basepoint)}
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instead of AX. One has
MX 5 @x)

EMX 5 (PX)?

I

BMX > X4

where EMX is the contractible simplicial space
EMX = (MX)*!

6,-(}3,...f,,)={(fo,...ﬁj§+,,...j:,), 0<i<n
(fo, - - - fim1), i=n

si{(foo - K)=(os - o Lfisns- - f), OZisn
and the map to BMX is (fy, ... f,) = (fi, . . - f,) and = is given by

n j—1
(fo, - - - L) (uo, - - - ) = (Sos - - ﬁ,)( =0max(O,t— ';o ui>|]}|).

Since p and & are equivalences so is v.

Proof of V.1.4. We must somehow relate the category A to the topological group G. We
do this by embedding them both in a larger topological category L. For us a topological
category C will be a small category C with a topology on each morphism set C (X, Y) such that
the composition law

C(X,Y)xC(Y,Z)-»C(X, Z)

is continuous for all objects X, ¥, and Z. A functor C — D between topological categories is
continuous if it maps morphism spaces continuously.

Let L be the following subcategory of the category T of spaces: the objects are the spaces
S! x A" (n 2 0) and the maps are the maps of degree one. Give L(S! x A™, §! x A") the
compact-open topology. Thus L is a topological category.

View A as a topological category by giving each morphism set the discrete topology.

View the group G as a category in the usual way (one object; one morphism for each group
element). Since G was a topological group it becomes a topological category.

Define continuous functors

a B
A-Le<G

as follows. The composition A 3L o T is the cocyclic space S! x A". The usual action of
G = S0(2) on S x A® = S! defines B. We defer the proof of the following result until the
next section.

LEmMA V.1.9. The continuous functors o and f induce equivalences of nerves.
If ®: C - T is any functor from a topological category to spaces such that

the evaluation maps
C(A, B) x ®(4) > ®(B)
(fi ) = @(N) (D)

are all continuous

(v.1.10)

then we can make a simplicial space LI ®:

mo= I owu)xI]lcu.,,4)
i=1

Ag, . .. A €0OBC
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(If C has the discrete topology then this is essentially the same as the “simplicial replacement”
of a diagram in [2, p. 337].)
Denote by F: L° - T the functor

Stx A"~ X5 8"
(“°” denotes opposite category.) The proof of V.1.4 is in four steps:
HC,S, (Fea®) = H, |LI(F °a®)|
1

~ R

H, |LOF|
fﬂ*llﬂ(F°ﬂ°)I|
=~ HS(AX; K).

Isomorphism 1 holds with any functor ®: A° —» T in place of Foa®. It is the “cyclic”
analogue of V.1.5. To prove it recall the notion [ 7, p. 153] of homology H,, (C; X ) of a small
category C with coefficients in a functor X: C — A to an abelian category (admitting exact
infinite direct sums). This can be defined abstractly as the left derived functor of the direct
limit functor (from the category of all functors from C 1o A, to A) or concretely by means of a
chain complex C_(C; X) with

C(CX)=Co—~> & »C,X(Co)
mcC
In the case C = A° there is a third way:
H, (A% X) = HC (X).
In fact there is a natural quasi-isomorphism
(V.111) C, (A% X)—>C,(X).

(This is implicit in [5, §IV]. The construction of the complex C,(X) for any functor
X: A% — A can be described in terms of a projective resolution which Connes constructs for
the constant cocyclic object

Z: A — {abelian groups}.

In the same way the construction of C,, (C; X') can be described in terms of a certain canonical
projective resolution of the constant functor

Z: C° > {abelian groups}.

Taking C = A° and recalling that projective resolutions are unique up to chain equivalence
one can deduce V.1.11.)

In particular when A is {chain complexes of K-modules} and X is S, (®) for some ® we
see that HC, S, (®) is isomorphic to the hyperhomology of the complex of complexes
C, (A% S, (D)) = S, (I®), which in turn is isomorphic to H, (|| L1®|).

For isomorphisms 2 and 3 we reason as follows. The nerve NC of a topological category C
is a simplicial space which can be defined as LI (x), where * denotes the constant functor C —» 7T
given by a one-point space. For ®: C — T satisfying V.1.10 there is a map of simplicial spaces

e - NC

(induced by the natural map ® — *), and if ® takes all morphisms of C to homotopy
equivalences then V.1.7 applies. In particular, consider

LI(Foa®) —» NA°®
i \LN&"

arF —-NL®
NE°

L(FoB% —NG°
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The arrows on the right are equivalences by V.1.9; using V.1.7 those on the left are, too.

For isomorphism 4 note that
AX x EG = |LI(F°g%)|.
G

Thus it only remains to show that the natural map
ILL(F © B°)|| — |LI(F ° §°)].
is an equivalence. But LI(F o 8°) is “good” (see [14]).
This concludes the proof of Theorem V.1.1, modulo Lemma V.1.9. ]

2. Proof of V.19.

Recall from [5] that [NA|is a K (Z, 2). (For an alternate proof of this apply Quillen’s
Theorem B ([13]) to the inclusion functor E: A° - A°. The “under category” functor

A - Cat
Yo Y\E
is such that the composite
A - Cat ﬁ Simplicial sets _u’ T
is isomorphic to our favorite cocyclic space S! x A") Of course [ NG| is also a K(Z, 2), and
both maps
INA| - |NA|
ING|| - NG|
are equivalences.
To show that NB is an equivalence just factor f as

G—’LoGL

where L, has all the objects of L but the only maps
S!xA™ > S x A"

in L, are those of the form gxf, where g is a rotation and f is continuous. The inclusion N L,
— N Lisanequivalence because this is so in each simplicial degree. (See [14] or use V.1.7.) But
L, is the product (in an obvious sense) of G and another topological category whose nerve is
contractible (it has a final object). Since nerve preserves productsand | || preserves products
up to equivalence (see [14]) we are done.

Now since ||[NA| and |[NL| are K(Z, 2)’s it only remains to show that « induces an
isomorphism

(V2.1) H2*(INL|; Z)—> H*(INAJ; 2).

We will do this by using finite cyclic groups. For each m > 0 there is a diagram of topological
categories and continuous functors

N
N

Z/mz~ "

commuting up to a natural transformation (y, makes Z/mZ act faithfully on the
(m — 1)-st object of A; &, is injective.) Passing to H?(|| N(—)||; Z) we obtain a commutative
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diagram
z
SN
Z Z
Z/mZ

with both maps on the right surjective. It follows that V.2.1 is surjective mod m for all m, so is
an isomorphism. OJ

3. A Corollary

We now work out the joint consequence of Theorems 1V.2.6 and V.1.1. First we need to
extend Theorem V.1.1 in two small ways:

Addendum V.3.1. Under the isomorphism of V.1.1 the map s (of I11.2.2) corresponds to
(plus or minus) the cap product map

Nnu: HS(AX; K)—» HS_,(AX; K)
where ue H4(A X) is the pullback of a generator of H?(BG).

Addendum V.3.2. Theorem V.1.1 holds in the relative case: If f* X — Y is a map of pointed
path-connected spaces then the relative homology with coefficients in K of the map

Afx EG:AX x EG-AYx EG
G G

G

is isomorphic to the relative cyclic hyperhomology

HC, (S, (Mf; K))
of the map of chain algebras

S,(Mf;K): S,(MX;K)—>S,(MY;K)

(in the sense of 111.2).

We will not prove the addenda, it is not hard to extract proofs of them from the proof of
\ARE

Now assume f: X — Y is two-connected. It follows that the map of Moore loop spaces
Mf: MX — MY is one-connected and S, (Mf; K) is a one-connected map of chain algebras
(in the sense of §1V).
Thus by IV.2.6 the map

nktu*: HS 5 (Af; K) — HS(AS; K)

is zero for *» < k.

If K = Q we may omit the “k!” and use the Universal Coefficient Theorem to get that the
cup product map

vk HY(Af; Q) > HE ™ (A£: Q)
is zero. In particular

lim HE¥ *(Af; Q) = 0.
-

) k
That is,

COROLLARY V.3.3. A two-connected map f: X — Y of spaces induces isomorphisms

*+ 2k

lim H:* 2 (AY, Q) > lim H& "> (AX; Q).
- -

k k
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