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I N T R O D U C T I O N  

Co~NEs has defined "cyclic homology groups" H C , ( A )  for any associative algebra A over a 
field K of characteristic zero [-3] E4]. His construction has been studied and generalized by a 
number of  authors [ 1] [5] [10] [ 11] I-15]. Although Connes' original interest was in the case 
when A is a C* algebra it is clear by now that cyclic homology is destined to be an important 
tool in many kinds of  ring theory. 

Our main purpose here is to introduce into cyclic homology theory a principle analogous 
to the homotopy-invariance of  de Rham cohomology. To explain the result and the analogy 
we must recall two elements of the theory. A good reference for both is [11]. All rings and 
algebras considered here will be with unit. 

(1) The groups H C , ( A )  are related to the Hochschild homology groups H , ( A )  by a 
natural long exact sequence 

--~ HCp (A) ~ HCp-  2 (A) B.~ Hp_ 1 (A) ---~... . . . ~ Hp(A) I s 

(2) If  V is a smooth affine algebraic variety over a field K of characteristic zero and A 
ffi K [ V ] is its coordinate ring then, denoting by f~P(V) the module of  "algebraic p-forms" 
(i.e. the p-th exterior power over A of the module of  differentials flair), we have 

(a) Hp(A) ~ t iP(V) 

(b) B°I: Hp(A) ~ Hp+ 1 (A) corresponds to the exterior derivative 

d: t iP(V) ~ tiP+ 1( V) 

(c) HCp(A) ~- f F ( V ) / d f ~ p - I ( V ) ~ H P ~ 2 ( V ) ~ H P ~ 4 ( V ) ~ .  . . 

lim 
(d) ,,- HCp+ 2k(A) -~ (~ H~dR(V). 

k (im pmod 2) 

(The inverse limit is with respect to the map S of  (1).) 
Now returning to the general situation any derivation D of A (over K) determines 

endomorphisms of  H ,  (A)and H C ,  (A) (see §I1.4 below)and in fact of  the whole sequence (1). 
We prove three slightly different statements (Corollaries II.4.3, II.4.4, and 11.4.6 below), each 
one of  which reduces, ifA = K[V]  as above, to the fact that D acts trivially on H*~(V). These 
statements say respectively that D acts trivially on Ker(B o I ) / I m ( B  o I), on Hc~,e'(A) (which 

lira 
we define more or less as ~ H C ,  +2k (A)----actually there is a lira I term as well), and on the 

k 

image of S: H C  , + 2 (A) ---, HC , (A). 
We are really less interested in algebras than in chain algebras (i.e. differential graded 

algebras (A, d) with deg(d) = - 1). We therefore develop a theory of  "hyperhomology"-- 
both cyclic (HC,  CA, d)) and Hochschild (H,(A, d)). (This has also been done in [1].) We 
extend the "homotopy-invariance" principle to this differential graded setting (Corollaries 
111.4.2-I11.4.4). 

The homotopy-invariance implies a "Poincar6 Lemma" for graded algebras (proof of  
Claim 1 in proof  of  Proposition II.5.2), and this in turn implies our main result (Theorem 
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IV.2.1): The groups HC~,er(A,d) (cyclic-hyperhomology-made-periodic) depend only on 
Ao/dA 1 if the ground ring K contains the rational numbers. 

We have good reason to believe that this result will be useful in obtaining a computation, 
in terms of cyclic (hyper) homology, of relative rational algebraic K-theory K. ( f )  ® Q for 
any one-connected map of simplicial rings f: R ~ S. (In the special case S = Z such 
computations were made by Hsiang and Staffeldt ([8] [9]) except that their answers were not 
in terms of cyclic homology since the latter had not been invented yet. The main result of [1] 
is a reformulation of their work in the light of Connes' theory and the work of Loday and 
Quillen. [15] is also relevant here; it represents a first step beyond the case S = Z.) 

As a more immediate application we prove a theorem in topology: Localized rational 
SO(2)-equivariant cohomology of the free loop space of X depends only on nl (X). The proof 
of this requires, besides our main result, the fact that the equivariant homology of the free 
loopspace of a path-connected space X: 

Hs,°(2)(AX) = H,(AX x ESO(2)) 
def SO(2) 

can be identified with the cyclic hyperhomology of the singular chains on the (Moore) 
loopspace of X: 

HC,  S,(MX). 

Such identifications have also been obtained by Burghelea, Dwyer, and others. 
The paper is organized as follows. 
In §I we recall Connes' notion of"cyclic object in a category" (a cyclic object is a simplicial 

object with some additional structure) and establish notation for dealing with such objects. 
In §II we develop from scratch the theory of cyclic homology for flat associative algebras 

over a commutative ring K and prove the "homotopy invariance". §II.1 and §II.2 contain 
nothing new. We follow the treatment in [11] pretty closely except that we take a more 
general point of view as in [5]: we define cyclic homology as a functor of cyclic K-modules 
( = cyclic objects in the category of K-modules) and in particular define the cyclic homology 
of a fiat K-algebra ,4 to be that of a certain cyclic K-module ZA. In §II.3 we make the fairly 
obvious definition of the periodic theory; by taking an inverse limit on the chain level we 
invert the "periodicity map" 

HC, +2(A) s HC,iA) 

p er  to get groups HC,, (A) depending only on n mod 2. It is not until §II.4 that a new idea 
appears: we make a derivation of A act on everything in sight and prove the three versions of 
homotopy-invariance mentioned above. In §II.5 this leads to the theorem: 

(3) A -+ A/I induces isomorphisms HC~er(A) -+ HCPer(A/I) if I c A is a nilpotent ideal 
and K is a field of characteristic zero. 

In §III we extend the definitions and results of §II to the differential graded setting. That 
is, what we have already done for flat algebras (and more generally cyclic modules) we now do 
for flat chain algebras (and more generally cyclic chain complexes of modules). In particular 
we prove an analogue of (3) in which the role of"nilpotent ideal" is played by a homogeneous 
differential ideal which has no nontrivial elements of degree zero. 

In §IV we use free resolutions of chain algebras to extend our results in routine ways. In 
particular we obtain the main result: HCP, e~(̀ 4, d) depends only on `4o/d`41 if K ~ Q. 

§V describes the application to the free loopspace. Thus it is mainly concerned with 
proving the isomorphism (valid for any pointed path-connected space X and any coefficient 
ring K) 

Hs,°t2~(AX; K) _~ HC,  S, (MX; K). 

Finally, here are two remarks on notation. 
(i) In our construction of a chain complex for cyclic homology (in §II.2) we call t, what is 

called ( - 1)" ÷ I t. in [ 113. 
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(ii) We think of  a cyclic object as a contravariant  functor with domain A, since a simplicial 
object is a contravariant functor with domain A c A. This differs from the convention used in 
[5], but in view of  the isomorphism A - A ° (Lemma 1 of  [5]) it should cause no alarm. 

§I. CYCLIC OBJECTS IN A CATEGORY 

Following Connes [5] we define the notion of  cyclic object  in an arbitrary category C. A 
cyclic object is a simplicial object together with some extra structure. Namely, in addition to 
C-objects X. (n _> 0) and face and degeneracy maps 

t?i: X .  --* X . _  I, 0 <- i <_ n, n ~ 1 

si: X .  --* X . +  l, 0 ~ i < n, n >- 0 

satisfying the usual identities, there is an action of a cyclic group of  order n + 1 on X. for each 
n > 0. Denote a preferred generator of  this group by t .  + ~. Then in order to define a cyclic 
object the group actions are required to satisfy 

= ~ t . S i - i  0 < i -<  n 
(I.1) ~it.+l [ #. i = 0 

( t .+2s~- i  0 < i <_ n 
2 (I.2) si t ,+1 = [ t .+2s ,  i = 0  

and of  course 

(I.3) o.+,"+11 = 1. 

Of  course one can also express this by saying that a cyclic object is a contravariant functor 
from A to C, where A is a certain category that contains the category A of  simplicial theory 
(See Connes [5] for an explicit definition of  A.) 

§II. CYCLIC HOMOLOGY AND DERIVATIONS 

1. The  Cycl ic  M o d u l e  Associated to an Algebra 

This is the main source of examples of  cyclic objects. Let K be a commutative ring with 
identity. By an algebra over K we will always mean an associative algebra with unit, and until 
further notice we assume that every algebra is a fiat K-module. To any K-algebra A we 
associate a cyclic K-module, in other words a cyclic object in the category of  K-modules. We 
denote it by Z A  (in Connes' notation Z A  = Atq). Namely for each n > 0 define 

Z . A  = A®n+l,  

the tensor product over K of n + 1 copies of A. Define face maps, degeneracy maps, and cyclic 
group actions by 

f ( a o  . . . . .  alai+l . . . . .  a,), 0 _< i < n 
(II.1.1) ~ i ( ao , . . .  ,an) 

)~. (a.a o, a I . . . .  , a ._  1), i = n 

(II.1.2) si(ao, . . . , a.) = (ao, • • •, ai, 1, ai+ l, • • • ,  a.), 0 <_ i <_ n 

(II.1.3) t ,+l (a  o . . . . .  a.) = (a., ao, . . . , a._l).  

It is easy to verify the necessary identities (simplicial identities and 1.1 - 1.3) that make this a 
cyclic K-module. 

2. Cycl ic  H o m o l o g y  

Now let X = { X., di, si, t. + 1 } be a cyclic object in an abelian category C (for example, X 
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= ZA, C = K-modules). We associate to it a two-quadrant double complex of C-objects 

4-- C2p, j(X) 4~ C2p+l,j(X) N C2p+2, j (X) ,_  

as follows: 

Cij(X) = Xj, for i ~ Z  a n d j  _> 0. 

The maps b and b' from Xj to X j_ i are defined using the face maps: 

J 
b = Y~ (--1)kak 

k = 0  

j - 1  

b' = Y~ ( -  1)k~k. 
k = 0  

The maps e and N from Xj to Xj are defined using the group action: 

e = 1 - ( -  1,)Jtj+ 1 

j + l  

N = E ((-- 1)JtJ +l)k" 
k=l 

One can verify, as in ([11], Lemma 1.1) that C**(X) is indeed a double complex, i.e., 

b 2 = 0 =b '2 

eN = 0 = Ne 

be - eb' = 0 

Nb - b'N = O. 

The complex which occurs as every even-numbered column of C** (X) is called Ch, (X), the 
Hochschild complex of X: 

Xo ~ XI ~ X2 *- . . . .  

Its homology is called H ,  (X), the Hochschild homology of X. In the case of an algebra A we 
write H ,  (A) for H ,  (ZA); these are indeed isomorphic to the Hochschild homology groups of 
A ([6], Ch. IX, ~6.) 

The other complex 

Xo ~ Xl ~1 X 2 ' - . . .  

is called C~ ~X); its homology is zero because if we write 

(II.2.1) u = (-1)Jsi:  Xj - - ,X j+I  

then b' u + ub' = 1 .  

From the first quadrant of C** (X) we can make a chain complex C,(X) in the usual way: 

c . ( x )  = ~ c , , ._ , (x)  
i > O  

b + N  inC2p, j(X) 
b o u n d a r y m a p =  - b '  +e inC2v+l.j(X)" 

The homology of C,(X) is by definition HC,(X) ,  the cyclic homology of X. In the case of an 
algebra we write HC, (A)  for HC,(ZA) .  
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The double complex C**(X) has a periodicity 
$ 

Ci, j (S)  ..~ Ci_ 2, j(X), 

and this gives a short exact sequence of complexes 

0 ~ ker(s) --* C,(X) & C,_2(X) ~ O. 

On the other hand there is a short exact sequence 

0 - ,  Ch,(X) ~ ker(s) --, C~_1 (X) ~ 0. 

since ker(s) is made out of the 0-th and 1-st columns of C,,(X).  This yields the long exact 
sequence of Connes: 

(I1.2.2) --~ H,(X)  ~ HC,(X)  2. HC,_2(X) ~ H,_I (X)  - - , . . .  

By composing two maps in this sequence we get a map 

H,(X)  ~ H,+I(X) 

satisfying B o B = 0; the complex (H,(X), B) is the de Rham complex and its cohomology is 
the de Rham homology of X, H~(X).  We write H,dR(A) for H d,a(ZA). (See [11], Proposition 
2.2, for an explanation of this terminology.) 

A slightly different approach to the relationship between H,(X) and HC, (X) is to filter 
C, (X) by subcomplexes 

(II.2.3) (~ Ci, ,_~(X), p > 0. 
0<i<2p 

This yields a spectral sequence 

(II.2.4) Ep l, ~ = [ 0 otherwise HC,(X). 

i . Hq_p(X).1, H~-p+I(X) is the map B above. The differential dp, a. 
It is sometimes convenient to use another double complex B** (X) instead of C**(X). 

Roughly speaking one just eliminates the acyclic odd-numbered columns from C** (X). Let 

~X~_p, q > p. 
Bp.~(X)=C2~.~-.(X)= [ 0,q<p 

Define differentials by letting b: Bp, ~(X)--, Bp. q_ 1 (X) be the map b already defined, and 
defining B: B~. q(X) --, Bp_ 1. ~(X) to be the composite 

C2p_ 2,q_p+ l (X ) ~- C2p_ l,q_p+ l (X ) 

C~p-l.q-p(X) ~ C2p,~-p(X). 

(Here u is the chain homotopy of (II.2.1).) Then B**(X) is a double complex, i.e. 

b 2 ffi 0 (we already know this) 

B 2 - -0  (s inceNe=0) 

bB + Bb = beuN + euNb 

= e(b'u + ub')N = eN = O. 
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Collect the first quadrant of B** (X) into a single complex: 

B,(X)= @ B,,lx~ 
p + q = *  

p > O  

with differential b + B. 

PROPOSITION 11.2.5. H,(B,(X))  ~- HC,(X) 

Proof Define a chain map B,(X)  ~ C,(X) by 

B,. gx )  --. c~,. ,_,(x) @c~,_ ~, ,_.+, (x) 

x ~ (x, uNx). 

(Exercise: It is a chain map.) Filter B, (X) by columns of B** (X) and filter C, (X) as in 11.2.3. 
Then ~b becomes a map of filtered complexes. It induces an isomorphism of E 1-terms, so also 
an isomorphism H,(B, (X) )  ~ H,(C,(X)).  [] 

Note• Our two uses of "B" to denote homomorphisms are now seen to be compatible: 
The map B: Xj--* X j+ x which is the "horizontal" differential in B**(X) induces the d x 
differential in the spectral sequence for B, (X), which can be identified with the map B in the 
de Rham complex by the remark following II.2.4. 

The complex B**(X) can be replaced by a "reduced" complex B**(X). Set 

n - I  

i = 0  

e p ,  q ~ X q - p  • 

One checks that b and B descend to maps of the quotients 

~., . (x)  Z ~ _  1, ~(x) 

so that B**(X) is a double complex• Set 

p>--O 

Thus B,(X)  can be viewed as a quotient complex of B,(X). 

PROPOSmON II.2.6. H,(B,(X)) ~ HC,(X). 

Proof Filter both B, (X) and B, (X) according to columns of the double complexes• The 
quotient map B , ( X ) o - B , ( X )  induces a map of spectral sequences which is an E 1- 
isomorphism, that is, the quotient map from the Hochschild complex to the "reduced 
Hochschild complex" induces an isomorphism in homology. [] 

Finally we make the obvious remark: 

PROPOSITION II.2.7. A short exact sequence of cyclic objects 

O-* X"-* X ~ X " ~ O  

gives rise to long exact sequences 

• . .  ~ H . ( X ' )  ~ H . ( X )  ~ H . ( X " )  ~ H . _ ,  ( X ' )  . . . .  
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and 
. . .  --, HC.(X ' )  - ,  HC.(X)  --* HC. (X")  --, H C . _ I ( X '  ) --* . . . .  

Proof There are short exact sequences of complexes 

0 -~ C~,(X ') -* C~,(X) -* C~,(X '') --, 0 

o - .  c , ( x ' )  - .  c , ( x )  - .  c , ( x " )  --, o. [ ]  

3. Periodic Homology 

By "inverting the map s" we will define a 2-periodic variant of HC,  (X) provided the 
abelian category C admits exact infinite products. Let -B~e'(x) be the complex obtained from 
the whole of B**(X) rather than just the first quadrant (we could have used B**(X) or 
C**(X) instead of B**(X) with the same result): 

~,"(x)  = I-[ ~,. ,_,(x)  
i E Z  

~ ~- ~ (x) m. * + 2 k  • 
k 

(The inverse limit is with respect to the surjcctive map s: B, + 2 (X) ~ B,  (X) induced by the 
obvious isomorphism s: Bp .q (X)~  Bp-I .q- I (X) . )  The homology of B~' , (X)  is called 
periodic homology and denoted HC~,¢'(X), or if X = Z A  HCP,~'(A). One has isomorphisms 

s: B T " t x )  --, ~_'~(x)  
(11.3.1) 

s: HC~,~'(X) - .  H C ~ _ 2 ( X )  

and short exact sequences 

lira I ,,-, lira 
(II.3.2) 0 - ,  ~ Ht~,+I+2.(X)-*HCge'(X)--* - , H C , + 2 . ( X ) ~ O .  

n n 

(For this last, use a short exact sequence of complexes 

0 - ~ e ' ( x ) - * l - I  ~,(X)-* I-I ~,(X)-*0.) 
k > 0  k ~ 0  

We also have: 

PROPOSITION II.3.3. Proposition 11.2.7 applies to HC pe" as well as H ,  and HC, .  

Proof Clear. [] 

4. Derivations 

The key idea here is that a derivation D: A ~ A of an algebra acts on the associated cyclic 
module ZA, and that the induced action on "de Rham homology" is zero. 

Let A be a (flat associative unital) K-algebra and D a derivation of A, i.e. a K-linear map 
A ~ A satisfying D (ab) = (Da)b + aDb. 

DEFINITION II.4.1. LD: ZA --* ZA is the endomorphism 

L~(ao . . . .  , a.) = ~ (ao . . . . .  Dai . . . . .  a.). 
i = O  

One checks easily that this is indeed a map of cyclic K-modules, i.e., Lot? i = t~ i Lv, Lvs i 
= siLo, and Lot.+ 1 = tn+lL D. 

TOP 24 :2 -F  
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THEOREM II.4.2. Given A and D there are natural K-linear maps 

eo: Z . A  ~ Z ._  1 A 

Eo: Z . A  ~ Z.+ I A 

which descend to maps 

and satisfy 

eo: Z , A  ~ 2 , _ I A  

Eo: Z,A ~ 2,+1A 

(i) leo, b ] = 0  i n Z ,  A 

(ii) I-eo, B] + [Eo, b] = Lo in Z , A  

(iii) [Eo, B] = 0 in Z ,A .  

("Natural" refers to the category of pairs (A, D), in which a morphism (A, D) ~ (A', D') is an 
algebra homomorphismf: A ~ A' such that D3f = fD. The brackets are graded commutators 
[eo, b] =eob + beo, etc., since b, B, eo, and Eo all have odd degree.) Before proving the 
theorem we deduce three corollaries. 

COROLLARY 11.4.3. Lo acts like zero on Hd, R(A). 

Proof. The maps Lo, B and (by (i)) eo are chain endomorphisms of the Hochschild 
complex Ch. (A) of degrees 0, 1, and - 1 respectively. Denote their respective actions on H .  (A) 
by the same three symbols again. Then viewing Eoas a chain homotopy we see from (ii) that 

I-eo, B] = Lo in H.(A) .  

Now view eo as a cochain homotopy to complete the proof. [] 

COROLLARY I1.4.4. Lv acts like zero on HC~'(A). 

Proof. Combine (i), (ii), and (iii) into: 

(I1.4.5) [eo+Eo, b + B ]  = Lo inB**(A); 

here eo, Eo, b, and B have bidegrees (1,0), (0,1), (0, - 1), and ( -  1, 0) respectively. Interpret 
(11.4.5) as an equation in B~e'(A), and view eo+ Eo as a chain homotopy. [] 

COROLLARY II.4.6. LD o S = O: H C , A  -" HC,_2A.  

Proof. Note that (I1.4.5) does not make sense in the quotient complex B.  (A) of Bp.e'(A), 
because the map e o does not preserve the kernel of the quotient map. However, if s: ~p.e,(A) 

-BE'-2(A) is the isomorphism of (II.3.1) then the equation 

(11.4.7) [eoos+Eoos ,  b + B ]  = Lnos,  

which follows from (II.4.5), does make sense (and is true) in the quotient. The result then 
follows like the preceding one. [] 

Proof of the Theorem: Define eo: Z , A  ~ Z ._  1 A by the formula: 

(11.4.8) eo(ao . . . . .  a,) = ( -  1) "+ 1 ((Da.)ao, a I . . . . .  a,_ 1). 

The reader can verify (i). 
Instead of defining Eo: Z . A  ~ Z . . ~ A  by an explicit formula we will construct it by 

something like the "acyclic models" method of algebraic topology. 
We begin by thinking generally about natural K-linear maps F~: Z . A  ~ Z m A  (natural 

with respect to (A, D)). Of course these correspond exactly to K-multilinear natural maps 
from A n+l to Z m A .  Without the multilinearity condition such maps correspond exactly to 
elements xeZmA(n) ,  where A(n) is the tensor algebra over K in variables a o . . . .  ,a . ,  
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Dao . . . . .  Da., D2ao . . . . .  D2a . . . . . .  The multilinearity of Fa means that x should have 
multidegree ( 1 , . . . ,  1) in the multigrading of Z .  A (n) = A (n) ®m + ~ induced by the multigrad- 
ing of A(n) which assigns to each generator Dkai the multidegree 

(0 . . . .  , 1  . . . .  O) 

t 
i-th place 

In other words, any natural map Fo must be given by a formula, and the allowable 
formulae are the K-linear combinations of the expressions 

Fo(a o . . . . .  a,,) = (Mo, . . . , Mm), 

where each M r is a (noncommutative) monomial in the expressions Dkai and 

(II.4.9) for each i(0 < i < n) the total number of occurrences of  all the Dkai in all the M r is 1. 

Notice that if m = n + 1 then any such Fo necessarily descends to a map Z.A ~ Z,.+ ~ A: 
Assume (without loss of  generality) that the formula for Fois a single term (M0, •. •, M.÷ ~ ) 
as above. By II.4.9 there are only two possibilities: Case 1. For  somej  > 0 M j  = 1. Then the 
composed map 

FD 
Z . A  ~ Z , + I A  -~ Z , + I A  

is zero. (Fo(ao, . . . , a.) is in the image of  the degeneracy s r_ 1: Z .  A ~ Z .  ÷ 1A.) Case 2. The 
formula is F o ( a o , . . . ,  a.) = (1, Dkoao~> . . . . .  Dk.ao~.~), where k i > 0 and a is a permutation 
of {0 . . . . .  n}. The kernel of  Z . A  --. Z , A  is generated by the elements (ao . . . .  , a.) where 
some ai (1 < i <_ n) equals 1. But i ra  i = 1 then Dko-'~oai = 1 or 0, so Fo(a o, . . . ,  a.) goes to 
zero in Z .  + 1 A. 

Similarly if m = n + 2 then any natural K-linear map from Z . A  to Z~,A (for example, 
lEo,  B]  ) descends to the zero map Z.A ~ ZmA. (Case 1 always holds.) Thus (iii) will take care 
of itself. It only remains to find a natural Eo satisfying (ii). 

Assume that Eo has already been defined in Z o A , . . . ,  Z . _  ~ A ,  and that so far (ii) holds. 
Our task is to find x e Z . +  1A(n) having multidegree ( 1 , . . . ,  1) and satisfying 

bx = ( L o - l e o ,  B ] - E o b ) ( a o  . . . .  , a . ) ~ Z . A ( n ) .  (II.4.10) 

We have: 

b ( L o -  leo,B] - Eob) (ao, • • • , a.) = 

( L o -  leo,B] - [Eo b])b(ao  . . . .  , a.) = O~Z._ 1A(n) 

by induction on n. Thus we will be done if in Z.  A (n) the kernel ofb  equals the image of  b. (The 
multidegree condition is no trouble because the maps Lo, b, B, eo and the previously 
constructed Eo's all preserve multidegree, so that the right-hand side of II.4.10 has 
multidegree (1 . . . .  ,1)). That is, we need to know that the n-th Hochschild homology of  a 
tensor algebra is zero. This is true if n > 2, by [11], Lemma 5.2. 

To begin the induction we need formulae for E~ in Z o A  and Z~A.  In Z o A  we have 

( L o -  [eo, B] )  (ao) = (Dao) - eo( (ao, 1) + (1, ao)) 

= ( D a o )  - 0 - ( D a o )  = O, 

so we define 

(II.4.11) Eo(ao) = O. 
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In Zx A we have 

( L o -  leo, B] - Ebb)  (ao, al ) = (Dao, al ) + (ao, Dal ) 

- e o (  - (ao ,  a l ,  1) + ( a l ,  a o,  1) + (1, ao, a 1 ) 

- (1,al,ao)) 

- B( (Da a)ao) 

- 0  

= (Dao, al ) + (ao, Dal ) 

+ (Dal, ao) - (Dao, al)  

- ( (Dal)ao, 1) - (1, (Dal)ao) 

= b(1,Da 1 , a o ) -  b(1, (Dal)ao, 1), 
so we define 

(II.4.12) Eo(ao,a l )  = ( 1 , D a l , a o ) -  (1,(Dal)ao, 1). 

With a little extra care the theorem can be refined: 

[] 

Addendum 11.4.13. The maps eo and Eo can be chosen to depend linearly on D. 

Proof  Note that we have defined La to satisfy this requirement. That is, the letter "D" 
occurs exactly once in each term of the right-hand side of 11.4.1. The same is true of eo (by 
11.4.8) and of E o in dimensions < 1 (by 11.4.11) and II.4.12). The inductive construction of E 
can be carried out so that this holds for Eo in all dimensions: Just refine the multigrading of 
A(n) by adding one new grading in which the generator Dka~ has degree k. The induced 
grading of  ZMA(n) is such that the maps b and B have degree zero and Loand eo have degree 
one. We can inductively arrange for Eo to have degree one as well. [] 

We also record the following for future reference: 

PROPOSITION I1.4.14. I f  A: A ~ A is another derivation and [A, D] = 0 then leo, L a] = 0 
= lEo, LA]. 

Proof  In fact any natural K-linear map Fo: Z , A  ~ Z s A  commutes with LA if D 
commutes with A: Without loss of generality Fo(ao , . .  •,  a,) = (Mo . . . . .  M s )  satisfying 
(11.4.9). Say 

M j "~ D k ( j J )  - ~  a i ( j , l )  , 
l = l  

where in the collection { i(j, l)10 < j < m, 1 < 1 < r(j)} each i (0 < i < n)occurs exactly once. 
Then 

LAFo(ao . . . .  , a,) = LA(Mo . . . . .  Ms) 

= ~., (Mo . . . . .  A M j  . . . .  , M m )  
j = O  

r( j)  
(Mo . . . .  D k(j'x) n*(J.,O)) ,, , a i l j ,  1)  • • • A D k ( j ' l ) a i ( j , l )  . . . . .  i ( j , r ( j ) ) ,  

j =O l =  1 

. . . .  M~) 

r l  j )  
= ~ (Mo, . ,  Dk(j. 1) DkO.t)Aa,j.i) . Dk(J.,(j)) • • a i r  j ,  1 ) . . . . .  a i ( j ,  r ( j )  ) ,  

j = O l = l  

. . . .  M . )  

= ~ F o ( a o , . . . , A a i , . . . , a . )  
i = 0  

= FoL~(ao . . . .  , a.). [] 
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5. An Application 

THEOREM II.5.1. Let K be a field of characteristic zero, A a K-aloebra, and I c A a 
nilpotent ideal. Then the quotient map A ~ A/I  induces isomarphisms 

HC~ ~" (A) ~ nc~f" (All). 

Proof Filter A by the powers  of  I: 

A = i O ~ l  t ~ i 2 ~  . . .  ~ i= ~ l , ,+ t  = 0 .  

The quotients  or k (A) = lk/I  ~+1 fo rm an algebra 

y r ( A )  = (~ grk(A ). 
k>O 

Filter the vector  spaces Z , A  by: 

E 
ko+... +k,=k 

l k o ® .  . . ® I  k . c  A ~ , + I  = Z , A .  

The structure maps  ~9 i, si, t,  + t o f  ZA preserve the filtration, so we actually have a cyclic vector  
space F ~ for  each k > 0, with 

ZA = F ° D F t ~ F 2 ~ . . . 

PROPOSITION 11.5.2. Z gr(A) ~- (~ Fk/F k+ 1 as cyclic vector spaces. 
k>O 

Proof Easy exercise. [ ]  
We have to show that  HCP, e'(F °) ~ HCP, e'(F°/F 1) is an i somorphism,  i.e. (Proposition 

II.3.3) that  HCP,*'(F 1) = O. We will do this by using II.3.2 and showing that  the m a p  

si 
HC,+2k(F t) ~ H C , ( F  1) 

is zero for  k > m ( ,  + 1). This follows f rom two facts: 

s~ 
Claim 1. The m a p  HC,+2k(Ft/F k+l) ~ H C , ( F t / F  k+l) is zero for  all , .  

k _ _  1 for  • < (and hence HC,  (F t) ~ HC,  (F t /F k+l ) is injcct- 
m 

Claim 2. H C , ( F  k) = 0 

k + l  
ive for • < - -  - 1). 

m 

Proof of Claim 1: It  will suffice to show that  s = 0 in HC,  (Ft/F k + t) for  k > 0. The  graded 
algebra or(A) has a derivation D defined by 

Da = ka for  a~erk(A). 

Clearly the e n d o m o r p h i s m  LD of  Zgr(A)  acts like k on the s u m m a n d  F~/F k+l (see 
Propos i t ion  II.5.2). Therefore  by Corol lary II.4.6 we have 

ks = LDos = 0 on HC,(Fk/Fk+t). 
1 

S i n c e  ~ E K w e  a r e  d o n e .  [ ]  

Proof of Claim 2: F r o m  the definition o f  F~ and the fact that  I k' -- 0 for  k' > m we have 
k k 

F~ = 0 for  n < - -  - 1. Thus  CIj(F k) = 0 for  j < - -  - 1, and the complex C, (F  ~) has no 
m m 

k 
nonzero  chains below dimension - -  - 1. [ ]  

m 
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§III. CYCLIC HYPERHOMOLOGY AND DERIVATIONS 

We indicate how the definitions and results of Section II can be extended to the case of 
chain algebras. We will be brief, because we have set up the theory in Section II so as to make 
this extension as easy as possible. 

Again let K be a commutative ring with 1. 

DEFINITION. A chain algebra (A,d) over K is a nonnegatively graded associative K-algebra 
A with identity, equipped with a K-linear map d: A ~ A of degree - i satisfying 

d(ab) = (da)b + ( - 1)lal adb 

d 2 = 0 

Throughout Section III we will continue to work only with flat algebras. We will relax this 
condition in Section IV. 

1. The Cyclic Chain Complex Associated to a Chain Algebra 

If (A, d) is a chain algebra over K and flat as a K-module then we define a cyclic object 
Z(A, d) in the category of chain complexes (of K-modules, nonnegatively graded). Set 

Zn(A,d) = (A,d)~,+l.  

This is a tensor product of chain complexes. Thus its differential (which we call "d") is given 
by: 

d(ao . . . . .  an) = ~ ( - 1 )  la°l+ "" +la,-ll(ao . . . . .  da i . . . . .  an). 
i=0 

Face and degeneracy maps and cyclic group actions are again given by 11.1.1-11.1.3, except 
that 

(III.1.1) In the formulae for t~ n and tn+l we insert the customary sign ( - 1) la,lIlaol+ ' "  + l a . - ~ l ) .  

The maps 

Zn(A,d)-~ Zn_ l (A,d) 

Zn(A,d) Zn+l(A,d) 

Zn(A,d)t-L~ Zn(A,d) 

are then chain maps, and the identities 1.1-I.3 hold, so we have a cyclic chain complex. 

2. Cyclic Hyperhomology 

We consider cyclic chain complexes (X, d) in general and Z(A, d) in particular. (Chain 
complexes are always nonnegatively graded chain complexes of K-modules unless the 
contrary is explicitly stated.) The construction of complexes Ch.(X,d), C~(X,d), C.  (X,d), 
B.(X,d) ,  and B.(X,d)  goes through as in II.2 because there we worked in an arbitrary 
abelian category. However, these complexes are now complexes of complexes, i.e. hyper- 
complexes, so it makes good sense to replace them by single complexes (their total complexes) 
and then take homology. 

For example, the Hochschild complex C~(X,d) 
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is really a hypercomplex: 

Xol & Xll & X21'--.-. 
d~ d~ d~ 

Xoo L Xlo L X2 0 4.- . . . .  

(db = bd) 

Its total complex Tot(Ch,(X,d)) is (~ X,., _, with differential b = b + ( - 1)'d in X,.k. The 
n > 0  

Hochschild hyperhomology is by definition 

H.  (X, d) = H.  (Tot(C~(X, d))). 

Likewise cyclic hyperhomology is 

HC. (X, d) = H.  (Tot (C, (X, d))). 

Just as in II.2 one can prove that H.  (Tot(C.(X, d))) = 0 and deduce: 
(III.2.2) A natural long exact sequence 

. . .  ~ H . ( X , d ) ~  H C . ( X , d ) - ~  H C . _ z ( X , d ) ~  H . _ I  ( X , d ) ~  . . . 

(111.2.3) A natural spectral sequence 

otherwise = > HC, (X, d) 

with d 1 = B = composition of two maps in 111.2.2. 
One also has as before: 

(111.2.4) HC, (X, d) ~ n ,  (Tot(B, (X, d) ) ) 

H,  (Tot (B, (S, d ) ) ) 

and 
(111.2.5) A short exact sequence of cyclic chain complexes gives rise to long exact 

sequences in H ,  and HC,. 
For what it's worth one can define Hd, R(X, d), "de Rham hyperhomology" of (X, d), to be 

the cohomology of the complex 

Ho(X, s s d)--, H: (X,d)  ~ H2(X,d  ) --. . . . .  

If ( X , d ) = Z ( A , d )  then we write H.(A,d), HC.(A ,d) ,  Hd.R(A,d) for H.(X,d), 
H C . ( X , d ) ,  Hd.R (X,d). 

DEFINITION 1II.2.6 A map (X, d) --* ( Y, d) of cyclic chain complexes is an equivalence if for 
each n > 0 the chain map ( X , , d ) ~  (Y~,d) is a. quasi-isomorphism (QI), i.e. induces 
isomorphisms in homology. 

PROPOSITION Ill.2.7. An equivalence induces isomorphisms in H , ,  H C , ,  and Hd, s. 

Proof. For H,  filter the complex Tot C~ by columns of the hypercomplex C~ and use a 
comparison of spectral sequences. For HC, use 111.2.2 or 111.2.3. For Hd, s use the definition. 

[] 

DEFINITION 111.2.8. A map (A,d) ~ (B,d) of chain algebras is an equivalence if as a chain 
map it is QI. 
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PROPOSITION 111.2.9. Any equivalence f: (A,d)--* (B,d) of flat chain algebras induces 
isomorphisms of H , ,  HC, ,  and H~, a. 

Proof. By 111.2.7 it will suffice to know that the map Z(f): Z ( A , d ) ~ Z ( B , d )  is an 
equivalence, i.e. that for each n > 0 the chain map 

f®n+l: (A,d)®n+l _.. (B,d)®n+l 

is QI. This can be proved by induction with respect to n by factoring f® n+l = ( f®"®l)  o 
(1 ® f )  and using flatness. [] 

It will be convenient to have long exact sequences as in 111.2.5 for any map of cyclic chain 
complexes f :  (X, d)--* (Y, d). We therefore define relative groups H .  (f)  and HC.  (f)  as 
follows: Construct a new cyclic chain complex M: by setting 

M, s = algebraic mapping cone of the chain map f,: (X.,d) ~ (Y,,d). 

There are obvious chain maps 8i, si, and t, + 1 making the { M. y } into a cyclic chain complex 
M:, simply because "algebraic mapping cone" is a functor from chain maps to chain 
complexes. Set H .  (f) = H .  (M:), and likewise for HC. .  One obtains a natural diagram, in 
which the row is exact, the triangle commutes, and the vertical map is an equivalence: 

O ~ ( X , d ) - ~  Y ' ~  M: ~O 

Here Y' is the algebraic mapping cylinder of f .  Using 1II.2.5 and III.2.7 this yields exact 
sequences 

( i i i .2.10) . . .  --, H , ( X , d )  --, H , i ¥ , d )  --, H , i f )  - ,  H , _ ,  (X,d)  - - , . . .  

• . .  --, HC,(X,d)  --, ItC,(Y,d) -~ HC,(f ) - -*  HC,_  l(X,d)--, . . . 

If f :  (A, d) ~ (B, d ) is a map of flat chain algebras then we write H ,  (f) (resp. HC,  (f)) for 
H , ( Z ( f ) )  (resp. HC,(Z( f ) ) ) ,  where Z(f) :  Z(A,d)--, Z(B,d,) is induced byf.  

Finally, there are spectral sequences arising from the filtrations of Tot (Ch,(X, d)) and 
Tot(C,(X,d))  by rows of Ch,(X,d) and C,(X,d): 

E 1 = H, (X,  0 ) ~ H , { X , d )  

E 1 = HC,(X,  0) =~ HC,(X,d) .  

More precisely, (X, 0) is a cyclic graded K-module, and as such it has Hochschild (resp. 
cyclic) homology groups which are themselves graded K-modules• Denote the k-th graded 
part of the n-th group by H,(X,0)k (resp. HC,(x, Ok). Then this is E.Xk. 

Warning. In the case (X,d) = Z(A,d), so (X,0) = Z(A,0), the graded module H.(A,0) 
does not have for its underlying module H,  (A). The same warning applies to HC,. The reason 
is that the underlying cyclic module of the cyclic graded module Z(A, 0) is not isomorphic to 
Z(A), because of the signs in III.1.1. 

3. Periodic Hyperhomology 

We continue to work with a cyclic object (X, d) in the category of nonnegatively graded 
chain complexes over k. 

Define a complex (graded by all of Z) 

per  B. (X,d) = lim Tot(B.÷2k(X,d)) 

(lim is with respect to the surjection 

s: Tot B.÷2 (X,d) ~ Tot B.(X,d)  
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induced by the surjection of hypercomplexes 

s: ~,+~(X,d)-~ ~,(X,d).) 
Define periodic hyperhomolooy by HC~ e' (X, d) = H,B m (X, d). We write HC~ e' (A, d) if 
(X,d)  = Z(A,d) .  Again, as in 11.3, s gives a periodicity isomorphism 

s 

__. pe, (X,d) (III.3.1) l-lCP.~'(X,d)~ n c , _  2 

and again there is an exact sequence 

(III.3.2) 0 --* lim t HC,  +2k+ t (X, d) ~ HCP,~'(X, d) ~ lim HC,  +2k(X, D) -~ 0. 

Note also that III.2.5 holds for HCP, e'. 

4. Derivations 

We now adapt the definitions and results of II.4 to the setting of chain algebras. 
Consider graded derivations D: (A, d) --, (A, d). We may as well allow D to have arbitrary 

integer degree I D I, although we will only use the case I DI = 0. Thus D is a K-linear map 
A,  ~ A,  ÷ tol. It is a derivation if it satisfies 

D(ab) = (Da)b + ( -  1)t°llalaDb. 

We also require it to be a graded chain map, i.e., 

[D,d]  = Dd - ( -  1)L°tdD = 0. 

Define Lo: Z ( A , d ) ~  Z (A ,d )  by 

Lo(a o . . . ,  a,) = ~ ( -  1) I°l(l~l+''' +la,-.I)(ao . . . .  , Da i . . . . .  a,). 
i=O 

Thus Lois a graded map Zn (A, d) ~ Zn (A, d) of degree I DI for each n. One can check that it is 
a (graded) chain map: 

[ Lo, d] = L D d -  ( -  1)l°ldLo = O. 

(In other notation this says [Lo, Ld] = 0.) Also Lo is a map of cyclic objects, i.e. 

Lot3 i ---- t~iL o 

Los i --- siL o 

Lot,+ t = t,+ l Lo 

just as in I1.4. 

THEOREMIII.4.1. Given a chain al#ebra ( A, d ) and derivation D as above, there exist natural 
chain maps (of decree IDI) 

eo: Z , (A ,d )  ~ Z~_ 1 (A,d) 

Eo: Z~(A,d) --. Zn+ i (A,d) 

which descend to chain maps 

and satisfy: 

e~: 2,(A,d)--* Zn_~(A,d ) 

E0: Zn(A,d) ~ Z,+ I (A,d) 

(i) [eo, b] = 0 in Z . (A ,d )  

(ii) [eo, B]+EEo,  b ] --- Lo in Z . (A ,d )  

(iii) [Eo, B] = 0 in Z.(A,d). 
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("Natural" refers to the category of chain-algebras-with-derivation (A, d, D). The brackets are 
graded commutators with respect to total degree, e.g., 

[eo, b ] = e o b -  ( - 1) Iol-I beo. 

(Total degree of a chain map Z n ~ Z,, is m - n + (degree as a chain map).)) 

Proof  Define eo by inserting an appropriate sign in formula 11.4.8. Thus 

eo(ao . . . . .  an) - ( -  1) n+ 1 ( _  l)([a.I)(laol+ ... +la,-~l) ( (Da , )ao ,a l  . . . . .  a , - 1 )  

The sign rule that we have used in extending to the graded case the definitions of the maps 
~i, s~, tn+ 1, Lo, and now eois this: Each letter (a~ or D) appearing as an argument on the left- 
hand side of the defining equation has a degree associated with it, and a factor of - 1 is 
introduced on the right-hand side each time a pair of  letters on the left-hand side, both of odd 
degree, appears in reverse order on the right-hand side. In order for this rule to make sense it 
is essential that every letter on the left-hand side should appear exactly once on the right-hand 
side. This is the case in the definitions of c~, s~, and tn+l (II.1.1-II.1.3), Lo (II.4.1), and eo 
(11.4.8). Thanks to Addendum I1.4.13 it is also the case with Eo. Thus we may extend the 
definition of Eo to the graded setting by the same sign rule. 

Having defined eo and Eo we ask whether they satisfy (i)-(iii). The answer is yes; there is a 
general principle at work here, which guarantees, for example, that the graded formula for 
ebb can be arrived at by applying the sign rule to the ungraded formula for eob. The same 
principle applies to beD, eoB . . . . .  and allows (i), (ii) and (iii) to be deduced from their 
counterparts in Theorem II.4.2. 

We must also check that eoand Eoare chain maps. This is what Proposition II.4.14 is for: 
It implies its graded analogue, which we then use with A = d. []  

The theorem has three corollaries exactly analogous to those of Theorem 11.4.2. 

COROLLARY 111.4.2. Lo acts like zero on Hd, R (A,d). 

Proof  Mimic the proof  of Corollary I1.4.3. Thus Lo, B, and eoare chain endomorphisms 
of  Tot  Ch, (A, d), of degrees IDI, 1, and - ID[ - 1 . . . .  (One needs here that (i) and (ii) still 
hold when b is replaced by b = b + ( - 1)nd, the total differential of Tot Ch, (A, d). They do, 

because [eo, d]  = 0 = lEo,  d].) [] 

COROLLARY II1.4.3. Lo acts like zero on HC~, er (A, d). 

Proof  Mimic the proof  of Corollary II.4.4. Thus 11.4.5 is replaced by 

[ e o +  Eo, b +  B] = Lo 

which is then interpreted as an equation in --,~Per (A, d ). [] 

COROLLARY Ili.4.4. Lo o s acts like zero on H C,  (A,d). 

Proof  Clear, by now. [] 

5. An Application 

In close analogy with Theorem 11.5.1 we have 

THEOREM 111.5.1. Let ( A, d) be a chain algebra over afield K of  characteristic zero, and let 
I = A be a chain ideal, i.e., a graded ideal satisfying dl  c I. Assume I o = O. Then the quotient 
map (A, d) --* (A/I,  d) induces an isomorphism 

per  per n c ,  (A, d) --, H e ,  IA/t, d). 
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Proof This is just like the proof of II.5.1. Set 

gr(A,d) = ~ I~/I k+l. 
k > O  

This is a chain algebra. (The grading by k is an additional grading, with respect to which the 
differential d has degree 0, not - 1.) Filter each chain complex Z,  (A, d) by subcomplexes 

£ 
k o + . . .  + k . = k  

Identify the two cyclic chain complexes: 

I k o ( ~ .  . . ( ~ I k . .  

(111.5.2) Zgr(A,d )~- ~ Fk/F k+1 
(k > o) 

It is enough to prove that the map 

HC,  +2k (F l) ~ H C , ( F  1) 

is zero for • < k, and this follows from two claims: 

Claim 1. HC.+2k(F1/F k+l) ~ HC.(FI /F  k+l) is zero for all *. 

Proof Just as in the proof of II.5.1, but using Corollary III.4.4 instead of Corollary 
11.4.6. [] 

Claim 2. HC,  (F ~) = 0 for • < k. 

Proof The complex Tot (C, (F k)) has no nonzero chains in dimensions < k, since the 
same is true of each complex F~. [][-q 

§IV. GENERALIZATIONS 

By systematically replacing chain algebras with equivalent ones (in the sense of III.2.8) we 
can generalize some definitions and results of Section III. As usual, all algebras are over a 
fixed commutative ring K. We no longer assume that all algebras are flat K-modules. 

We denote the n-th homology of the underlying chain complex of a chain algebra (A, d) by 
h,(A, d). Of course h, (A, d) is a graded algebra. 

As usual, we call a chain complex n-connected if its homology groups vanish in 
dimensions _< n. We call a chain map n-connected if it induces homology isomorphisms in 
dimensions < n and a surjection in dimension n, and we call a map of chain algebras 
n-connected if it is n-connected as a chain map. 

1. The Non-Flat Case 

We extend the definition of cyclic hyperhomology to the case of chain algebras which are 
not necessarily flat. 

PROPOSITION IV.l.1. Every chain algebra (A, d) admits a natural equivalence ca: (RA, d) 
-* (A, d) from a chain algebra whose underlying graded algebra R a is a graded tensor algebra. 

Proof: The method is a standard one; inductively define maps 

eA: (RA(n), d) - ,  (A, d) 

such that RA(n) is a graded tensor algebra and eA is n-connected. Given RA(n-  1) the 
construction of RA(n) is as follows. Adjoin an element x of degree n to RA(n -- 1) for each pair 
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(y, z), yeRA(n  -- 1),_1, z e A ,  such that 

eA(y )=dz  and d y = 0 .  

Extend eA and d from RA(n -- 1) tO RA(n) by setting 

d x = y  and eAX=Z. 

TO start the induction take R A ( -  1) = K with d = 0 and eA the unit map: K ~ A. Finally, let 
RA be the union URA(n). [] 

n 

Note that if A is fiat then eA induces isomorphisms of Hochschild, cyclic, periodic, and de 
Rham hyperhomology, by Ili.2.9 and 111.3.2. 

DEFINITION IV.l.2. I f  (A, d) is any chain algebra then H C , ( A , d ) =  HC,(RA,  d), and 
likewise for H , ,  ..~,I4 tTper, and Hd, R. 

This is the "right" definition because it coincides with the old one in the flat ease (as we 
have just seen) and is "homotopy invariant": 

PROPOSITION IV.1.3. Proposition 111.2.9 now holds in the general (non-fiat) case. 

[] 

Proof'. Use the commutative diagram 

(RA, d) ~ (Ra, d) 

(A, d) ~ (B, e) 

2. One-Connected Maps of Chain Aloebras 

The following theorem says that in characteristic zero periodic homology of (A, d) 
depends only on h0 (A, d). Notice that Theorem III.5.1 was a special ease of this. 

THEOREM IV.2.1. Any one-connected map (A, d) --* (B, d) of chain algebras over afield K 
of characteristic zero induces isomorphisms 

HC•" (A, d) --. H C T '  (B, d). 

Proof: We reduce to the case already treated (in 111.5.1) by the device of replacing chain 
algebras by equivalent ones. There are two steps: 

LEMMA IV.2.2. Any zero-connected map of chain algebras can be factored as an 
equivalence followed by a surjection. 

LEMMA IV.2.3. For any one-connected surjection (A, d) ~ (A/J, d) of chain algebras there 
is a commutative diagram 

(T, d) ~ (A, d) 

1 J, 
(r/I ,  d) --, (A/J, d) 

of chain algebras such that the horizontal maps are equivalences, T is a tensor algebra, the chain 
ideal I is generated as an ideal by a subset of a tensor basis, and I o = O. 

Proof of I V.2.2. Let f: (A, d) ~ (B, d) be zero-connected. It will be enough if we 
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construct a chain algebra (B ~, d) with equivalences 

A Po 
(B, d) --. (B ~, d) --. (B, d) 

Pl 
satisfying 

(IV.2.4) 

(IV.2.5) 

p o ° A =  1 = p t ° A  

The map B~ -~ B. @B,  

w ~ (pow, plw) 
is surjective if n > 0 and has image 

{(x ,z )EBo@Bolx-z6dB1}  if n = 0 .  

If  so, then we factor f = g o h as follows. Let (A', d) be the fiber product 

The diagram 

(A', d) ~ (~', ~) 
p'o *po 

(A, d) ~ (B, d) 

aof i 
(A, d) --, (B,  d) 

11 lpo 

(A, d) L {~, d) 

yields h: (A, d) --, (A', d) and we make # the composite 

, f '  Pt 
(A, d) ---, (B', d) --,(B, d). 

To see that h is an equivalence observe that its left inverse p~ is a pullback of the surjective 
equivalence Po and so is an equivalence. Surjectivity of g follows from IV.2.5 and the zero- 
connectedness of  f. 

Define B t as follows. 

IB.~B.+I~B. if n > 0  

B ~ = [ { ( x , y , z ) e B o ~ B l ~ B o l d y = z - x }  if n=O. 

(x, y, z)(x', y', z') = (xx', xy' + ( -  1)Jyz ', zz') 

for (x,y,z)eB[ and (x',y',z')~BJ. 

d(x, y, z) = (dx, ( -  1)"x +dy - ( -  1)"z, dz) 

for (x, y, z) ~ B~. 

One easily checks that this is a chain algebra and that the maps 

A(x) = (x, 0, x) 

Po (x, y, z) = x 

Pl (x, y, z) = z 

are chain algebra maps satisfying IV.2.4 and IV.2.5. To see that A, Po, and Pt are equivalences 
use a chain homotopy between A o Po and 1: 

(1 - Apo)(X, y, z) = (dH + Hd)(x, y, z) 
where H: B~ + B~+ x is defined by 
H(x, y, z) = (0, O, ( -  1)"y). [] 
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Proof of I V.2.3. This is in the same spirit as the proof  of IV. 1.1. We inductively construct 
commutative diagrams 

£ 

(T(n), (d) ~ (A, d) 

(T(n)/I (n), d) --, ( A/J, d) 

such that e' and the map of  kernels 

£ -  

(I(n), d) ~ (J, d) 

are both n-connected (and hence so is e). The inductive construction from n - 1 to n is in two 
steps. 

Step 1: Given (T(n - 1), d) with chain ideal I ( n -  1) and map e satisfying the conditions 
above for n - 1, define a graded algebra T'(n) by adjoining to T (n - 1) an element x' in degree 
n for each (y', z'), y' eT(n - 1),_ 1, z' ~ A,, such that ey' = dz' and dy' = 0. Extend d and e from 
T(n - 1) to T'(n) by setting dx' = y' and ex' = z', and let l'(n) be the ideal in T'(n) generated 
by I ( n -  1). This yields 

(T'(n), d) --* (A, d, 

( T' (n)/ l' (n), d) L (A / J, d) 

such that e and e' are both n-connected and hence 

is (n - 1)-connected. 

(r(n), d) L (J, d) 

Step 2: Define T(n) by adjoining to T'(n) an element x in degree n for each (y, z), 
y ~ I '  (n),_ 1, z e J , ,  such that ey = dz and dy = 0. Extend d and e from T'(n) to T (n) by setting 
dx = y and ex = z, and let l(n) be the ideal in T(n) generated by I'(n - 1) and the x's. This 
yields 

£ 

(T(n), d) ~ (A, d) 

E' 

(T(n)/I (n), d) --, (A/J, d) 

with both e' and 
£t, 

(1(n), d) -~ (J, d) 

n-connected. 
To start the induction take T ( -  1) = K and  I ( -  1) = 0. 
This would complete the proof  by taking T = [.3 T(n), I = U I (n), except that we have not 

n n 

arranged that I 0 = 0. We can do this by omitting the step in which T(0) is constructed from 
T'(0) and instead taking T ( 0 ) =  T'(0), I ( 0 ) =  I'(0). This is permissible because (I'(0), d) 

(J, d) is automatically zero-connected. (By assumption ho(J, d) = 0.) [] 
It is clear that the two lemmas imply Theorem IV.2.1; using the first we reduce to the case 

o f a  surjection (A, d) --, (A/J, d), and using the second we reduce further to the case in which 
Jo = 0, which is handled by III.5.1. []  

The best result that can be proved by these methods seems to be the following. 
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THEOREM IV.2.6. Let f: (A, d) ~ (B, d) be a one-connected map of chain algebras (over an 
arbitrary commutative ring K). The map 

HC, +2k(f) k!sk> HC, ( f )  

is zero for * < k. 

Proof. Use Lemmas IV.2.2 and IV.2.3 (they are valid for any K) to reduce to the case of 
a map 

z *  

(T, d) L (T/I, d) 

where T is a tensor algebra, I is generated by a subset of a tensor basis, and Iv = 0. Define a 
filtration { F k} of Z (A, d) as in the proof of II1.5.1. The graded K-modules 1"/I" + 1 are free, 
and this means that even though K is not a field it is still possible to identify Ik°® "" "® I k" 
with a submodule of A ® . . .  ® A and to prove 111.5.2. Identify H C ,  ( f )  with H C , _  1 (F 1). 

Claim 1 and Claim 2 from the proof of 111.5.1 then finish the proof, except that in Claim 1 
we must substitute k!s k for s k since we only have 

ks = 0: H C ,  +2 (Fk/Fk+ 1) _., HC, (Fk/F k+ 1). [] 

§V. THE FREE LOOPSPACE 

We prove that the SO (2)-equivariant homology of the free loopspace A X of a space X is 
naturally isomorphic to the cyclic hyperhomology of the chains on the based loopspace of X. 
Then applying IV.2.6 we conclude that the localized rational equivariant cohomology of A X 
depends only on nl (X). 

1. The Free Loopspace and Cyclic Homology 

For any space X let AX be the free loopspace of X, i.e. the space of all continuous maps 
from S 1 to X (with compact-open topology). The rotation group G = SO(2) acts on S 1 and 
hence on AX. Form the homotopy orbit space (or associated bundle) AX x EG. Its 

6 
(co)homology with coefficients in K is called equivariant (co)homology of AX and denoted 
B,C(AX; K) (resp. H*(AX; K)). 

THEOREM V.I.1. For any path-connected pointed space X and ring K we have 

H,G(AX; K) ~- HC, (S , (MX;  K)), 

where S, (MX; K) is the algebra of singular chains on the Moore loopspace of X. 

Proof. At the heart of the proof is a comparison of two cyclic spaces Z M X  and X s~ x a, 
which we now define. 

Let M X  be the Moore loopspace of X. Thus M X  has a strictly associative multiplication 
with unit and is homotopy-equivalent to the ordinary loopspace fiX. By Z M X  we mean the 
cyclic space given on objects by 

Z, M X  = (MX)" + 1 

and on morphisms by formulae (11.1.1)-(11.1.3). This is the obvious nonlinear analogue of the 
construction in ILl by which an algebra A yields a cyclic module ZA; for any discrete (resp. 
topological, resp. simplicial) monoid M it yields a cyclic object ZM in the category of sets 
(resp. spaces, resp. simplieial sets). 

The other cyclic space X s~ x ~ is defined using a cocyclic space S 1 x A'. A cocyclic space is a 
covariant functor from A (see §I) to spaces, i.e., a sequence of spaces related by structure maps 
which satisfy the cosimplicial identities and the duals of the identities (I. 1)-(I.3). The cocyclic 
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space S x x A' will by definition consist of the spaces S ~ x A n, n _ 0, and the maps 

tgi: S 1 x A  "-1 --,S 1 xAn, 0 < i < n, n _> 1 

si: S i x A  n+i--*S l xAn, 0 < i < n  

t~+l: S 1 x A n--}S 1 x A n 
given by 

(0, Uo . . . .  un_l)c~ i = (0, Uo . . . .  u~_~, O, ui . . . .  un -O 

(0, Uo . . . .  Un+OSi = (0, UO . . . .  Ui- l ,Ui+Ui+l ,  . . .  Un+l) 

( 0 ,  U o . . . .  Un)tn+ 1 = ( O  - -  U o ,  U l ,  . . . Un ,  UO) .  

Here 0 is the coordinate in S 1 = R / Z  and (Uo . . . .  Un) are barycentric coordinates in A n. We 
have written d~, si, and t, + 1 on the right so that the identities (I.1)-(I.3) apply without change. 
It is straightforward to check that those identities hold, so that this is in fact a cocyclic space. 
Notice that its underlying cosimplicial space U(S ~ x A) is the product of the constant 
cosimplicial space S ~ and the standard cosimplicial space A which plays a fundamental role 
in simplicial theory. (It seems that S ~ x A should play an analogous role in "cyclic theory".) 
Now for any space X let X s' x a.be the cyclic space given by the spaces X s' x a', n _ 0 (function 
spaces with compact-open topology) and maps 

a, ( f ) (o ,  u) = f ( ( o ,  u)~,) 

si(f)(O, u) =f( (0 ,  U)Si) ~ f e X  s' ×a', (0, u)6. S 1 x A n 

J tn+ 1 (f)(O, u) =f((O, u)tn+ 1) 

Let X be a pointed space. It is straightforward if tedious to check that the following is a 

map of cyclic spaces. 

,t 
Z M X  --* X s' xA 

( M X ) . + I  ~ XS~×A" 

2(fo . . . .  f,+ l)(O, Uo . . . .  un) = 

( f o . . . L ) ( 0 ~ l f ~ , -  Y~ u, lfj l) .  
j = 0  05gi<j<n 

Here the f~ are elements of M X ,  fo .. • f ,  is their product in M X ,  [ f [  denotes the "length" of a 
Moore loop f, i.e., the length of the interval which parametrizes it, and 0 is chosen so that the 

argument of f o . . . f ~  lies in the correct interval [0, ,=o ~ ISII" 

Now, any cyclic space gives rise to a cyclic chain complex of K-modules by means of the 
functor S ,  (singular chains with coefficients in K). The proof of Theorem V.I.1 is in three 
parts: 

LEMMA V.l.2. H C ,  (ZS,  ( M X ) )  ~ H C ,  (S ,  ( Z M X ) ) .  

LEMMA V.1.3. 2. induces an isomorphism H C ,  (S ,  ( Z M X ) )  ~ H C ,  (S ,  (X  s'xa)) 

LEMMA V.l.4. H C , ( S , ( X  s' xa)) ~_ H,6(AX). 

Proof  of V.1.2. Here M X  could be replaced by any topological monoid M. By 111.2.7 it 
will be enough to write down a map of cyclic chain complexes 

Z S ,  (M) --* S ,  ( Z M )  

which is an equivalence (in the sense of 111.2.6). This is easy. Recall the standard chain 
equivalence 

S , ( A ) Q S , ( B )  ~ S , ( A  x B) 
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for spaces A and B, given by the "shuffle product". The multiplication in S, (M)  is by 
definition the composition 

S,  ( M ) ® S ,  (M) ~ S,  (M x M) -* S,  (M), 

where the second map is induced by the multiplication in M. The obvious diagrams all 
commute: 

¢o(¢@1) 
(S,A ® S , B ) ® S , C  > S,((A x a) x C) 

-~l ,~.(,®,~) ;-- 
S,A®(S,8®S,C) >S,(A x (8 x c)) 

S,A @ S,8 ~ S, (A x 8) 

S, (A) ® $, (point) ~ S, (A x point) 

S, (A) ® K -- S, (A) 

and this easily implies that the chain equivalences 

S, (M) ®" + 1 _. S, (M n + 1) 

given by iterating ~ n times constitute a map of cyclic chain complexes 

[] Z S ,  M -* S, ZM. 

Proof of V.1.3. In view ofII.2.4 a comparison of spectral sequences reduces us to proving 
that 2 induces an isomorphism 

H, S, (ZMX)  --, H ,  S, (X s' x ~). 

This is a statement about the map of underlying simplicial spaces 

U Z M X  v,~ > U (X s' ~ A). 

In fact from the definitions it is clear that for any cyclic space Z we have 

(V.l.5) H,S , (Z)  ~ H,(IIUZII), 
the homology of the realization of UZ in the sense of [14]. 

The simplicial space U Z M X  is isomorphic to the "cyclic bar construction" on M X  (cf. 
[16]). The simplicial space U (X s' x A') is (AX) a, the "topological total singular complex" of 
the space AX. We will be done if we can show that the map 

IIUZMXII nw,> II(AX)~'II 

is a weak homotopy-equivalence. (In other words we have to explain a Moore loop space 
version of an example given in [16, p. 368, last full paragraph].) We will do this by 
algebraically mimicking the fibration sequence 

(V.1.6) f~X ~ AX-- ,  X. 

(The second map is evaluation at 0 e R/Z.) 
We will use the following fact, which is essentially the main result of [12]. 

LEMMA V.1.7. Let E ~ B be a map of simplicial spaces such that 
(i) all homotopy fibers orE, -*  B, have the homotopy type of a fixed space F, and 

TOP 24:2--G 
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(ii) each face or degeneracy diaoram 

E. --* E,, 

B.--* B,. 

yields a homotopy equivalence from E. to the homotopy pullback of B. --* B,. *- Era. 

Then lIEU ~ [[BI[ also has all homotopy fibers equivalent to F, and the inclusions 

Eo ~ II E II 

no ~ II B II 

induce an equivalence of homotopyfibers. 
Now consider the diagram of  simplicial spaces 

M X  L ( n X )  A" 

(v.1.8) 
U2 

U Z M X  _ _  (AX)A' 

,L ; 
¥ 

B M X  ~ X ~" 

The right hand column here is induced by V. 1.6. M X is the Moore loopspace considered as a 
(constant) simplicial space. B M X  is the bar construction on the topological monoid M X :  

B n M X  = ( M X )  ° 

~ , ( A , . . . f , )  = ~  (A . . . .  f,), i = 0 

[ ( f l , . . - f i f / + , , - . . f , ) ,  0 < i < n  

( f t , . . .  f . -  1), i = n  

s , ( A , . . . f , )  = (A  . . . .  f ,  1,f~+ 1 . . . .  f,), o _ i < n. 

The map U Z M X  ~ B M X  is 

(fo . . . .  f,) ~ ( f l , . . .  f,). 

The map v is defined to make the lower square in V.1.8 commute: 

v(f~ . . . .  L)(Uo . . . .  u.) = ( f ~ . . . £ ) (  X u, l f j l )  
l ~ j ~ i < n  

M X  is included in U Z M X  as the space in simplicial degree zero, and/z is defined to make the 
upper square commute: 

~ ( f ) ( u o  . . . .  u.)(t) = f ( t l f l ) ,  0 < t < 1. 

Call a sequence of spaces A ~ B ~ C a fibration sequence if the composition A ~ C is 
constant and the map from A to the homotopy fiber o fB  ~ C is a weak equivalence. I fA ~ B 

C is a sequence of simplicial spaces, call it a fibration sequence if ][ AI[ ~ IIB U --. IIC II is one. 
Call a map A ~ B of  simplicial spaces an equivalence if [] AII ~ IIB II is a weak equivalence. 

Certainly V. 1.6 is a fibration sequence, and it follows easily that the right-hand column of 
V.1.8 is one. The left-hand column is also a fibration sequence, by V.1.7. Therefore to prove 
that U). is an equivalence it will suffice to show that # and .v are. 

For  # this is clear;/~ is essentially the standard equivalence between Moore loops and 
ordinary loops. 

For  v one can play the same game again using the contractible path space 

P X  = {p: ([0, 1], 0) ~ (X, basepoint)} 
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instead of AX. One has 

M X  --, ( f i X )  A 

E M X  --* (PX)  A 

l , l  
B M X  "-* X A 

where E M X  is the contractible simplicial space 

E, M X  = (MX)  "+ 1 

c3i(fo . . . .  f~) -- f ( f o , . . . f i f i + l , . -  .fn), 0 -< i < n 
( f 0 , - . .  f ~ - l ) ,  i = n 

s , ( fo , . . . f~)  --- ( f o , . . . f ,  1,f~+l . . . .  f,), 0 < i "; n 

and the map to B M X  is (fo . . . .  f,) --* (fi . . . .  f~) and n is given by 

(0 , , )  ) n(fo,. . .f~)(Uo . . . .  u,)(t) = (fo . . . .  f~) max , t -  )-' U i Ifjl • 
j i---0 

Since # and n are equivalences so is v. 

Proof of V.1.4. We must somehow relate the category A to the topological group G. We 
do this by embedding them both in a larger topological category L. For us a topological 
category C will be a small category C with a topology on each morphism set C (X, Y) such that 
the composition law 

C(X, Y) x C(Y, Z) - .  C(X, Z) 

is continuous for all objects X, Y, and Z. A functor C ~ D between topological categories is 
continuous if it maps morphism spaces continuously. 

Let L be the following subeategory of the category T of spaces: the objects are the spaces 
S 1 x A" (n > 0) and the maps are the maps of degree one. Give L(S 1 x A =, S 1 x A") the 
compact-open topology. Thus L is a topological category. 

View A as a topological category by giving each morphism set the discrete topology. 
View the group G as a category in the usual way (one object; one morphism for each group 

element). Since G was a topological group it becomes a topological category. 
Define continuous functors 

at 
A--, L ~ G  

as follows. The composition A --, L ~ T is the cocyclic space S 1 x A'. The usual action of 
G = S0(2) on S 1 x A ° = S t defines//. We defer the proof of the following result until the 
next section. 

LEMMA V.1.9. The continuous functors c~ and fl induce equivalences of nerves. 
If ~: C ---, T is any functor from a topological category to spaces such that 

f tbe evaluation maps 
(v . IAO)  C(A, B) x Ca(A) --. O(B) 

(f, P) ---, ~ ( f ) ( p )  
are all continuous 

then we can make a simplicial space H 4): 

L I , * =  LI (I)(Ao) x I~I C(Ai- , ,Ai ) .  
A o . . . .  A ~ e O b C  i = I 
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(If C has the discrete topology then this is essentially the same as the "simplicial replacement" 
of a diagram in [2, p. 337].) 

Denote by F: L ° ~ T the functor 

S 1 x A" --* X sl x,~" 

(,,0,, denotes opposite category.) The proof of V. 1.4 is in four steps: 

H C , S ,  (Fo~0) ~ B ,  II t I  (F o ~°)11 
1 

- H ,  II I I F  II 
2 

--- H ,  III_I (F o/~°)l I 
3 

= ~ H,G(AX; K) 
4 

Isomorphism 1 holds with any functor ¢:  A ° --* T in place of F o ~o. It is the "cyclic" 
analogue of V. 1.5. To prove it recall the notion [7, p. 153] of homology H ,  (C; X ) of a small 
category C with coefficients in a functor X: C --* A to an abelian category (admitting exact 
infinite direct sums). This can be defined abstractly as the left derived functor of the direct 
limit functor (from the category of all functors from C to A, to A) or concretely by means of a 
chain complex C,(C;  X) with 

C . ( C ;  x )  = Co --, • --, c.X(Co) 
in c 

In the case C = A ° there is a third way: 

H ,  (A°; X )  ~ H C , ( X ) .  

In fact there is a natural quasi-isomorphism 

(V.1.11) C,(A°;  X ) - - , C , ( X ) .  

(This is implicit in [5, §IV]. The construction of the complex C,  (X) for any functor 
X: A ° ~ A can be described in terms of a projective resolution which Connes constructs for 
the constant cocyclic object 

Z: A --* {abelian groups}. 

In the same way the construction of C,  (C; X) can be described in terms of a certain canonical 
projective resolution of the constant functor 

Z: C O --* {abelian groups}. 

Taking C = A ° and recalling that projective resolutions are unique up to chain equivalence 
one can deduce V.I.ll.) 

In particular when A is {chain complexes of K-modules} and X is S,  (0) for some ¢ we 
see that H C ,  S, (0) is isomorphic to the hyperhomology of the complex of complexes 
C ,  (A°; S,  (0)) --- S,  (H ¢), which in turn is isomorphic to H ,  (11 t I ¢  II). 

For isomorphisms 2 and 3 we reason as follows. The nerve N C  of a topological category C 
is a simplicial space which can be defined as LI (,), where * denotes the constant functor C ---, T 
given by a one-point space. For ¢:  C --, T satisfying V.I.10 there is a map of simplicial spaces 

H O ~  NC 

(induced by the natural map ¢ ~ ,), and if • takes all morphisms of C to homotopy 
equivalences then V.1.7 applies. In particular, consider 

LI (F o s o) ~ NA ° 

i Nct ° 
H F --* N L  ° 

t T -° 
H(Fofl°) -.., N G ° 
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The arrows on the right are equivalences by V.1.9; using V.1.7 those on the left are, too. 
For isomorphism 4 note that 

A X  x EG ~- IH(Fofl°)l.  
G 

Thus it only remains to show that the natural map 

IILI (F o •°)11 --, ILI (F o/~°)1. 

is an equivalence. But LI(F off °) is "good" (see [14]). 

This concludes the proof of Theorem V.I.1, modulo Lemma V.1.9. []  

2. Proof of V. 1.9. 

Recall from [5] that INAI is a K (Z, 2). (For an alternate proof  of this apply Quillen's 
Theorem B ([13]) to the inclusion functor E: A ° - ,  A °. The "under category" functor 

A - , C a t  

Y ~  Y\E 

is such that the composite 
N I 

A - , C a t  - ,  Simplicial sets - , T  

is isomorphic to our favorite cocyclic space S 1 x A'.) Of  course INGI is also a K(Z,  2), and 
both maps 

IINAII-* INAI 

IINGU--, INGI 

are equivalences. 
To show that Nfl is an equivalence just factor fl as 

G - , L o l L  

where L0 has all the objects of  L but the only maps 

S 1 x Am--, S t xA" 

in Lo are those of  the form gxf, where g is a rotation and f i s  continuous. The inclusion NLo 
- ,  NL  is an equivalence because this is so in each simplicial degree. (See [14] or use V.1.7.) But 
Lo is the product (in an obvious sense) of  G and another topological category whose nerve is 
contractible (it has a final object). Since nerve preserves products and II II preserves products 
up to equivalence (see [14]) we are done. 

Now since IINAll and IINLll are K(Z,  2)'s it only remains to show that a induces an 
isomorphism 

(V.2.1) H2(IINLII; Z ) - ,  n2(lISAll; Z). 

We will do this by using finite cyclic groups. For each m > 0 there is a diagram of topological 
categories and continuous functors 

L 

commuting up to a natural transformation (~= makes Z/mZ act faithfully on the 
( m -  1)-st object of  A; dim is injective.) Passing to H2([[ N(-)I[ ;  Z) we obtain a commutative 
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diagram 

Z 

Z Z 
\ / 

Z / m Z  

with both maps on the right surjective. It follows that V.2.1 is surjective mod m for all m, so is 
an isomorphism. [] 

3. A Corollary 

We now work out the joint consequence of Theorems IV.2.6 and V. 1.1. First we need to 
extend Theorem V.I.1 in two small ways: 

Addendum V.3.1. Under the isomorphism of V.I.I  the map s (of III.2.2) corresponds to 
(plus or minus) the cap product map 

n u :  n,~ (AX; K) -4 n,~_2 (AX; K) 

where u e H 2 (AX) is the pullback of a generator of  H 2 (BG). 

Addendum V.3.2. Theorem V.I.1 holds in the relative case: If  f:  X ~ Y is a map of  pointed 
path-connected spaces then the relative homology with coefficients in K of the map 

A f x  EG: A X  x E G - ~ A Y x  EG 
G G G 

is isomorphic to the relative cyclic hyperhomology 

HC, (S, (Mf; K)) 
of the map of  chain algebras 

S , ( M f ;  K): S , ( M X ;  K) --* S , ( M Y ;  K)  
(in the sense of Ill.2). 

We will not prove the addenda; it is not hard to extract proofs of  them from the proof  of  
V.I.1. 

Now assume f: X --, Y is two-connected. It follows that the map of Moore loop spaces 
M f: M X  ~ M Y is one-connected and S,  (M f; K)  is a one-connected map of chain algebras 
(in the sense of §IV). 
Thus by IV.2.6 the map 

n k! uk: H~, + 2k (Af; K) ~ H ,  ~ (Af; K) 
is zero for * < k. 

I f K  = Q we may omit the "k!" and use the Universal Coefficient Theorem to get that the 

cup product map 

uuR: H*(Af; Q) ~ H*+2k(Af; Q) 

is zero. In particular 

That is, 

it_it* + 2 k  i A  ¢'. lim , ,  ~ t,,J, Q) = 0. 

k 

COROLLARY V.3.3. A two-connected map f:  X ~ Y of spaces induces isomorphisms 

I.lr* + 2k IA V Q) _.~ lim H*  + 2k (AX; Q). lim , ,  ~ ~,,, ,  

k k 
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