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Abstract. Homotopy functors (for example, from spaces to spaces) are called analytic if, when evaluated 
on certain n-cubical diagrams, they satisfy certain connectivity estimates. Tools for verifying these 
estimates include certain generalizations of the triad connectivity theorem. Waldhausen's fnnctor A is 
analytic. Analyticity has strong consequences, when combined with the concept 'derivative of a 
homotopy fnnctor' that was introduced in the previous article in this series. In particular, any analytic 
functor with derivative zero is, in a sense, locally constant. 
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Introduction 

The calculus of functors is a method for proving certain kinds of statements in 
homotopy theory. This article is concerned more with developing the general 
method than with making specific applications, but it is motivated largely by 
applications to A(X), Waldhausen's algebraic K-theory of spaces. In particular, 
some results proved here are used in [2]. 

In [5], we began explaining the theory of 'calculus' by introducing the concept 
'first derivative of a homotopy functor'. We also laid some of the groundwork for 
applications to K-theory, by 'calculating' the derivative OxA(X) of Waldhausen's 
functor A at any based space (X, x). 

Here we show how such calculations can be used; we show that (very roughly 
speaking) the derivative of an analytic functor determines the functor, up to a 
constant. A little more precisely (for exact statements, see (5.3) below and its 
variants (5.7)-(5.10)), we have the following first-derivative criterion: If F(X) and 
G(X) are p-analytic functors of the space X, and if there is a natural map 
F(X) ~G(X) such that for every (X, x) the induced map OxF(X ) ~axG(X) is a 
weak homotopy equivalence, then the homotopy fiber of F(X) --* G(X) is a locally 
constant functor of X, in the sense that its weak homotopy type depends only on 
the p-homotopy type of X for some number p. This criterion is used in [2], with 
F = A  a n d p = l .  

A functor from spaces to spaces (or to spectra) is analytic if it preserves weak 
homotopy equivalences, and if it satisfies certain connectivity estimates related to 
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commutative diagrams in the shape of n-dimensional cubes, for all n 1> 2. An 
analytic functor is always p-analytic for some number p, which is smaller or larger 
according as the estimates are stronger or weaker. 

Our chief aims here are to explain what is meant by analyticity, to show that the 
functor A is 1-analytic, and to prove the first-derivative criterion. 

Section 1 is concerned with some simple facts about cubical diagrams of spaces. 
We claim no originality here. 

Section 2 offers some more serious statements about cubical diagrams - general- 
izations of the Blakers-Massey triad connectivity theorem from triads (or square 
diagrams) to (n + 1)-ads (or n-cubical diagrams). These results, Theorems 2.3 
through 2.6, are the basic tools for proving that functors are analytic. The first of 
them has also been obtained by Ellis and Steiner [4], and in the special case of 
1-connected spaces it goes back to Barratt and Whitehead [1]. 

In Section 4 we define 'p-analytic' and prove that Waldhausen's A is 1-analytic. 
Section 5 is about the first-derivative criterion. 
Section 3 introduces, and begins to examine, the concept of  'nth order excision'. 

It is not a logical prerequisite for Sections 4 and 5 and, in a way, it belongs more 
to [6] than to the present work. We have included it here since 'nth order excision' 
is a concept related to, but more elementary than, 'analyticity'. 

An appendix is devoted to strengthening a result from [5]. (The strengthened 
version is needed in [2].) Theorem 2.1 of [5] identified the first derivative of the 
functor Q(AX+ ), stable homotopy of the free loopspace, up to natural weak 
homotopy equivalence. The stronger version takes into account the action of the 
self-maps of the circle on AX, and identifies the corresponding action of these on 
the derivative. 

0. Prerequisites and Points of View 

We make the following conventions: o# is the category of unbased spaces. 9- is 
the category of based spaces. 6 a is the category of spectra. These are what were 
called prespectra in [5]; thus a spectrum is a sequence {E(n)[n ~>0} of  based 
spaces, equipped with based maps E(n) ~ f~E(n + 1). A morphism D --> E in 6e 
is a sequence of based maps D(n) --', E(n) strictly respecting these structure maps. 
The homotopy groups of  a spectrum are defined by zci(E)=colimrci+,,E(n) 
for i e Z .  

The following remarks may help orient the reader to a point of view which is 
adopted both here and in [5] and [6]: 

We have to work with various categories in which there is a class of maps called 
'equivalences'. In the category ~ ,  a map is called an equivalence if it is a weak 
homotopy equivalence in the usual sense (it induces a bijection on ~z 0 and, for every 
basepoint in the domain, a bijection on all lri, i > 0). In ~- a map is an equivalence 
if the forgetful functor ~--~ ~ takes it to an equivalence. In 5" a map is an 
equivalence if it induces isomorphisms on spectrum homotopy groups. 
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Much of our work involves homotopy functors, by which we always mean those 
functors (from one given category to another) which take equivalences (whatever 
that might mean) to equivalences. The homotopy functors from, for example, 5 to 
~-, are the objects of a category whose morphisms are the natural maps. 

We will often have to work with a category ~ of functors (g -o N in a situation 
where the category N has a class of maps called equivalences. (For example, 
might be the category of all homotopy functors from 0g to ~-, or it might be the 
category of all functors from some small category to spectra.) The morphisms of 
are then all of the natural maps between these functors, and such a map is called 
an equivalence in ~ if it is an equivalence 'pointwise', that is, for every object of ~. 

I f  a category (g has a chosen class of morphisms w (called 'equivalences'), then by 
formally inverting these, we obtain the homotopy category w-leg. It has the same 
objects as cg. It is the target category of the universal functor ~ ~ N taking all 
elements of w to invertible morphisms. 

The conscientious reader will note that, in general, a set-theoretic difficulty arises 
in defining w-~Cg if (g is not small. There are well-known ways around this in many 
cases, for example if (g is equivalent to a small category, or if cg admits a closed 
model structure with w as the weak equivalences. (In particular, w-l~-- exists and 
is equivalent to the usual category of based CW complexes and homotopy classes 
of maps.) In any case, these difficulties need not concern us here, as we will not be 
using homotopy categories outside of these introductory remarks. 

Note that a homotopy functor from J-  to 5- is much more than a functor 
w - l Y  ~ w - ~ Y ,  although of course it determines one. Functors from w - l J  to 
w-~J-  are relatively useless. 

We frequently use homotopy limits ( =  homotopy inverse limits) and homotopy 
colimits ( = homotopy direct limits) of diagrams of spaces. These are defined just as 
in Bousfield-Kan [3], except that 'space' here means 'topological space' rather than 
'simplicial set'. We now review the definitions and state some standard facts, all of 
which are either easy consequences of analogous results in [3] or else more or less 
immediate from the definitions. 

First consider diagrams of unbased spaces, that is, functors 5f : cg ~ o-g, where cg 
is a small category. The diagram is said to be indexed by cB. 

The homotopy limit is denoted holim(W); we also sometimes use notation like 
holim{X(C) :C ~ cg}, leaving the morphisms in ~ implicit. (Bousfield and Kan 
write 'homotopy inverse limit' and use the symbol holim.) The space holim(X) is 
the cosimplicial realization (= 'To t ' )  of a certain cosimplicial space, the 'cosimpli- 
cial replacement' of ~r ([3], XI.5.1). The latter has as its p th  space (p ~> 0) the 
product, over all p-simplices Co ~ "  �9 �9 ~ Cp in the nerve of cg, of Y(Cp). 

Thus, from the definition of cosimplicial realization, a point in holim(Sf) can be 
described as a collection of continuous maps AP~.9?(Cp), one for each choice of 
p + 1 objects and p morphisms C o ~ . . . - - .  Cp, subject to certain compatibility 
conditions. This description can be reformulated as (0.1) below. If  C is an object of 
(g, let cg $ C be the category whose objects are maps in ~f with target C, and in 
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which a map from f ' : C ' - - r C  to f " : C " ~ C  is a map g : C ' ~ C "  such that 
f '  = f "  o g. The space [U $ C I (realization of the nerve) is a functor of C. It is easy 
to verify the following proposition. 

0.1. PROPOSITION. For any diagram X : U ~ ~ holim(X) is homeomorphic to the 
space of  all natural maps [U ~ C I ~ X(C), topologized as a subspace of  a product of  
(compact-open) function spaces. 

There is a canonical map lim(X) ~ holim(X) from the (categorical) limit of  X to 
the homotopy limit; in fact, lim(X) is the equalizer of the two coface maps from 0 
to 1 in the cosimplicial replacement of X. In terms of (0.1), lim(X) is the subspace 
of holim(X) given by constant  maps. ' 

Any (natural) map X ~ qr of  U-diagrams induces a map ho l im(X)~  holim(qr 
the latter is a (weak homotopy) equivalence if for each object C e U the map 
X(C)--* ~(C) was an equivalence. That is, 'holim' is a homotopy functor from 
U-diagrams of spaces to spaces. 

Homotopy limit is functorial in the indexing category U; in particular, if ~ c U 
is a subcategory, then there is a restriction map from holim(X) to holim(X I~) .  
This is always a (Serre) fibration, as one easily checks. There is a useful sufficient 
condition ([3], XI.9.2) for a functor ~ ~ U to induce an equivalence from holim of 
a U-diagram to holim of the composed ~-diagram. The condition is called 'left 
cofinality' in [3]; it says that for every object in U the fiber product category 

x e (U $ C) has contractible nerve. (In other words, it is the hypothesis of 
Quillen's 'Theorem A' for the opposite categories.) For us, a typical use will involve 
a pair of  posets ~ c U such that for every C e U the set {D ~ ~ : D ~< C} has a final 
element. A simple but important case deserves special mention: if the object D is 
initial in U, then the restriction map holim(X)--* W(D) is an equivalence. In this 
case, lim(X) is X(D) and the canonical map lim(W) ~ holim(X) is an equivalence, a 
section of the restriction map. 

Suppose that a small category d is covered by two subcategories d l  and d 2  in 
the sense that the nerve of ~r is the union of their nerves. This is the case, for 
example, when a poset zr is the union of subsets which are either both concave 
(every element of ~r which is greater than an element of ~'i  is in ~r or both 
convex (every element of  zr which is less than an element of ~r is in d i ) .  The 
following proposition is clear: 

0.2. PROPOSITION. l f  ~/ is covered by z~r and ~r as above, then for any functor 
F: ~r ~ o-g, the diagram of  fibrations 

holim(F) ~ holim(F I ~r 

l l 
holim(F I d 2 )  , holim(F I ~1  c~ d 2 )  

is a pullback square. 
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Let us examine the holim of a diagram of the form 

f g 
X ~Y< Z. 

In this case, the homotopy limit can be identified (using (0.1)) with the space of all 
triples (x, ~0, z), x e X, q~ : I--+ Y, z ~ Z, ~0(0) =f (x) ,  q~(1) = g(z). The categorical 
limit is the fiber product of X and Z over Y. We recall the standard fact: 

0.3. PROPOSITION. I f  either f o r  g is a fibration, then the canonical map from lim 
to holim is an equivalence. 

As an important special case, when Z is a point we have the homotopy fiber of 
f ,  the homotopy inverse limit of the diagram 

f 
X ~Y< *. 

The homotopy fiber of f :  X--+ Y is defined as soon as Y is based; it is based itself 
if X and Y are both based and f is a based map. We will sometimes write 'fiber' for 
homotopy fiber, and on those occasions when we need to refer to a fiber in the strict 
sense (the preimage of a point), we will say so explicitly. 

Dually, the homotopy colimit of a diagram ~ indexed by <g is denoted hocolim(Y') 
or hocolim{Y'(C) : C ~ <g). (Bousfield and Kan write 'homotopy direct limit' and 
use the symbol holim.) It is the realization of a certain simplicial space, the 'simplicial 
replacement' of Y" ([3], XII.5.1). The latter has as its p th  space (p t> 0) the disjoint 
union, over all p-simplices Co --+" �9 �9 --+ Cp in the nerve of <g, of Y'(Co). 

The hocolim construction is again a homotopy functor from <g-diagrams of 
spaces to spaces. It has properties dual to those of holim: There is a canonical map 
from the hocolim to the (categorical) colimit of a diagram. It is an equivalence if 
<g has a final object. A functor ~ --+ <g induces a map to hocolim of a <g-diagram 
from hocolim of the composed ~-diagram. This is an equivalence if ~ --+ <g satisfies 
a right cofinality condition (for every object C, the fiber product category 

• ~ (C J, <g) has contractible nerve). It is a cofibration if ~ --+ <g is the inclusion of 
a subcategory, and in the situation of (0.2) the diagram of cofibrations 

hocolim(F ]ag 1 c~ &42) , hocolim(F I ar 

1 1 
hocolim(F I d l )  , hocolim(F) 

is a pushout square. 
The hocolim of a diagram of the form 

f g 
X~ Y , Z  

is the quotient of XI_[ (Y x 1)I_[ Z by (y, 0) ~ f ( y )  and (y, 1) ~ g(y). It is equiva- 
lent to the categorical colimit (pushout) if either f or g is a cofibration. I f  Z is a 
point, we obtain the homotopy cofiber ('cofiber' for short) of a map Y ~ X, also 
known as the mapping cone. 
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We also need homotopy limits and colimits for diagrams of based  spaces. 
Here the correct definition of  hocolim involves a based version of simplicial 
replacement, with wedge instead of disjoint union. This makes the hocolim a based 
space. I f  this construction is to take (pointwise) equivalences of diagrams to 
equivalences, then it should only be applied to diagrams of nondegenerately based 
spaces. 

A warning: homotopy limits and homotopy colimits are not  categorical limits and 
colimits in some homotopy category. For example, the weak homotopy type of the 
hocolim of ~ : qr ---> q / i s  not  determined by the composed functor cg __> w -  lq/, and 
colimits in w - l q / d o  not in general exist. (On the other hand, although we will not 
use this, it is true that on the level of homotopy categories 'holim' and 'hocolim' 
have certain universal properties. See [3], XI.8.1 and XII.2.4.) 

1. Cubical Diagrams 

We will be using (commutative) diagrams in the shape of cubes. Formally these are 
functors • : ~(S)  ~ c~, where S is a finite set, ~ (S)  is the poset of all subsets of  S, 
and c~ is some category (usually a category of spaces or spectra). We call ~ an 
S-cube or, if the cardinality IsI is n, an n-cube. Often S will be the standard set 

= { 1  . . . .  ,n}. 
Thus,  0-cubes correspond to objects of ~r and 1-cubes to morphisms. There is 

evidently a category whose objects are n-cubes and whose morphisms are (n + 1)- 
cubes. An n-cube can be viewed as a map of (n - 1)-cubes in n essentially distinct 
ways. A T-cube of U-cubes can be viewed as an S-cube, if S is the disjoint union 
of T and U. 

Generalizing the homotopy fiber of a map of based spaces, we have the t o t a l f i b e r  

f ~  of an n-cube Y" of based spaces. This is a based space. It can be defined by 
induction: View ~ as a map Yl--->~ of ( n -  1)-cubes, and define fSE as the 
(homotopy) fiber of f Y/--*f~. To begin the induction, set fY" = Y'(O)= Y" for a 
O-cube. 

It is useful to have other descriptions of the total fiber. We take the following one 
as a definition: 

1.1. DEFINITION. Let 5f be an S-cube of based spaces. A point �9 ~ f Y  is a 
collection of continuous maps ~ r :  I r ~  X(T), one for each subset T c S, satisfying 
(i) and (ii) below. (The space I r is a topological cube, the product of  T copies of  
L) As a topological space, 3rf is a subset of a product of compact-open function 
spaces. 

(i) �9 is natural with respect to T. That is, for U c T = S the diagram commutes: 

I v ~ I r 

W(U) , f ( T )  
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where the upper arrow is the map which takes a function U ~ I and extends 
it to a function T--* I by making it zero on T -  U. 

(ii) For each T c S ,  r takes the set ( I r ) l  = {u e l r : ~ s ~  r us = 1} to the base- 
point in X(T). 

It is easy to see that (1.1) agrees with the inductive description o f f X ,  up to 
natural homeomorphism. One advantage of (1.1) is that it gives f X  more structure: 
it makes it functorial with respect to bijections in the 'S'  variable. 

There is an alternative definition using homotopy (inverse) limits. The homotopy 
limit of X : N(S) ~ f itself is homotopy equivalent to X(0), because 0 is initial in 
N(S). Let No(S) c N(S) be the poset consisting of all nonempty T ~ S, and let 
h0(~ r) be holim(X ]No(S)), the homotopy limit of  the composed functor 
No(S) ~ N(S) ~ f .  The restriction map 

holim(X) , ho(X ) 

is a fibration. 

1.1 a. ALTERNATIVE DESCRIPTION.  The total fiber f X  is the fiber in the strict 
sense (not the homotopy fiber) of this restriction map 

holim(W) ~ ho(X). 

To see that (1.1) and (1. l a) are really the same (up to natural homeomorphism), 
we use (0.1): Observe that the topological pair ( IN(S)~ T[,[No(S)$ T I )=  
(]N(T)I , INo(T)]) is, as a functor of T, isomorphic to (I r, ( I t ) l ) .  Thus, holim(X) is 
identified with the space of all collections {~r} satisfying (i) above (but not 
necessarily (ii)), and ho(X) is identified with the space of  all collections 
{q)r: (IT)I ~ .~f(T) : T c S} satisfying (i). The strict fiber of  the restriction map can 
be identified with fX.  

We offer yet another description o f f X .  This involves a map 

a(X): X(0) , ho(~r). 

1.2. DEFINITION.  If X is a cubical diagram of spaces, then a(X) is the composi- 
tion from upper left to lower right in the canonical diagram: 

X(0) = lim X , holim X 

l l 
lim(~r [No(S)) , holim(XlNo(S)) = ho(X) 

(The upper and right-hand maps here are the homotopy equivalence and the 
fibration mentioned in the discussion preceding (1.1a).) 

1.lb. ALTERNATIVE DESCRIPTION.  f X  is homeomorphic to the homotopy 
fiber of  a(:Y). 

To see that ( l . lb )  is the same as (1.1), think of a point in the homotopy fiber of 
a(X) as consisting of a point x e :Y(0) and a collection of  paths t ~ ~r,, (0 ~< t ~< 1) 
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of maps u ~ @r,,(u) from (IT)I to X(T), compatible as in (i), such that @r,o(U) is 
the image of x in 5r(T) for all u and @r,1 (u) is always the basepoint. This yields a 
point @ inprX (as defined in (1.1)), by putting @z(tu) = @T,t(u). 

Of course, Definition (1.2) makes sense even if X is a cube of unbased spaces. We 
leave for the reader to check that a(X) has an alternative, inductive, definition 
which begins with the case of a 2-cube: 

1.2a. ALTERNATIVE DESCRIPTION. If  the n-cube X is the map of (n - 1)- 
cubes ~r ~ ,  then a(Sf) is 'a '  for the 2-cube 

a(~ ~ I a(~--~e) 
ho(~) , ho(~) 

1.3. DEFINITION. The cubical diagram ~ is Cartesian if a(Sf) is a weak homo- 
topy equivalence. It is k-Cartesian if a(X) is a k-connected map. 

(A map of spaces is called k-connected if each of its homotopy fibers is 
( k -  1)-connected. The convention here is that every space is ( -2)-connected,  
nonempty spaces are ( -  1)-connected, path-connected spaces are 0-connected . . . .  ) 

For any n-cubical diagram 2~ of based spaces we can define =i(X) = rci-n(fX), 
although we will have little or no occasion to use this definition. Note that for a 
map X ~ ~r of n-cubes viewed as an (n + 1)-cube, there is a long exact sequence 

" ' "  ' ~i(~;)  ' = i ( ~ )  ' = i (9;  ' ~ )  ' ~ i -  l ( ~ r )  , . . .  

ending in the based set rcn(~r If  X is k-Cartesian, then rci (X) is trivial for i < k + n. 
This implication is not quite reversible in general because of difficulty with re0; if it 
were reversible, then some proofs below could be shortened. 

We call a map X ~ ~/ of n-cubes an equivalence i f ,  for every T, the map 
X(T) ~ ( T )  of spaces is a (weak homotopy) equivalence. This implies (but of  
course is not implied by) the statement that the (n + 1)-cube &r ~ r  is Cartesian. 
An equivalence X --* ~r induces an equivalence )rW __.)rqr because holim is a homo- 
topy functor. For the same reason, any cube which admits an equivalence to or 
from a k-Cartesian cube is itself k-Cartesian. 

The discussion above can be 'dualized'. The main point is to introduce the poset 
~ l  (S) c ~(S)  of all T N S, and the map 

b(~): hl(~) , ~(S), 

composition from upper left to lower right in the canonical diagram: 

hi (X) = hocolim(X [ ~1 (S)) > colim(X [ ~1 (S)) 

l [ 
hocolim(X) , colim(X) = X(S) 

(The lower map is a homotopy equivalence and the left-hand map is a cofibration.) 
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1.4. DEFINITION. The total cofiber ~YC is the homotopy cofiber of b(X).  The 
cube X is co-Cartesian if b(X)  is a weak homotopy equivalence. It is k-co-Cartesian 

if b(X)  is a k-connected map. 

One can define the homology of a cubical diagram to be the reduced homology 
of the total cofiber, H i X  = / ~  (~r). Then, any map of cubes gives an exact sequence 

�9 . .  ,11,. (X)  , Hi ( ~ )  , Hi (~Y , ~ )  , H i_  1 (X)  , . . .  

If  Y" is k-co-Cartesian, then H,.Y" = 0 for i ~< k. This implication is reversible if, for 
example, all of the spaces X ( T )  are 1-connected. 

The following is an easy exercise (and more or less well-known): 

1.5. PROPOSITION. For any maps o f  spaces X ~ Y ~ Z:  

(i) X ~ Z is k-connected i f  X ~ Y and Y ~ Z are both k-connected. 

(ii) X ~ Y is k-connected i f  Y ~ Z is (k  + 1)-connected and X ~ Z is k-connected. 

(iii) Y ~ Z is k-connected i f  X ~ Z is k-connected and X ~ Y is (k  - 1)-connected. 

It implies: 

1.6. PROPOSITION. For any map X ~ r  o f  cubes: 

(i) 5V is k-Cartesian i f  ~1 is k-Cartesian and X ~ ~ is k-Cartesian. 

(ii) X --* qt is k-Cartesian i f  X is k-Cartesian and ql is (k  + 1)-Cartesian. 

Proof. If  Y" and ~ are S-cubes, let Y' be the (S u , ) - cube  X ~ 1 .  Thus 
X ( T )  = ~ ( T )  and ~ ' ( T ) = ~ ( T w , )  for T c S .  Write ~ o ( S u * )  as the union of 
d = { T c S u * [ T c~ S ~ 0) and ~ = { T ~ S ~3 �9 [ �9 ~ T}. Consider the diagram 

a(~) 

Y'(0) , ho(~) , hol im(~ I ~r ~ '  hol im(~ ] ~o(S)) = ho(X) 

[ 1 
~(0) _ ,  hol im(~ N) , hol im(~ I d c~ N) 

in which all arrows except the two on the left are restriction maps from holim 
indexed by a poset to holim indexed by a smaller poset. The arrows marked ",-,' are 
equivalences, because r is left cofinal in d and * is initial in N. The 
composition in the lower row is a(q/). The square is a pullback square of fibrations, 
by (0.2), so that the composed map a ' :ho(~ . ) - -*ho(X)  is at least as highly 
connected as a(~). 

To obtain the conclusion, apply (1.5) to the maps 
a(~) a" 

x( r  ~ ho(~)  , ho(X) 

and note that a 'o  a (~)  = a(Y'). 

The reason why (1.6) has no part (iii) is that a '  can be more highly connected 
than a(~r (The space ho(~r might not be 0-connected.) U] 
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There is also a dual statement, with a dual proof which we omit: 

1.7. PROPOSITION. For any map Yf ~ Y / o f  cubes: 

(i) ~r is k-co-Cartesian i f  ~f ~ ~ is k-co-Cartesian and YE is k-co-Cartesian. 

(ii) 5f ~Yr is k-co-Cartesian i f  YC is ( k -  1)-co-Cartesian and ~ is k-co- 

Cartesian. 

Some parts of (1.5) generalize to cubes: 

1.8. PROPOSITION. For maps o f  cubes of  spaces Yf ~ ~ ~ ~ :  

(i) Y" ~ ~ is k-Cartesian i f  YC ~ qt and ~t ~ 3~ are k-Cartesian. 
(ii) &r ~ ~ is k-co-Cartesian i f  YC ~ ~ and ~t ~ ~ are k-co-Cartesian. 

(iii) ~Y~r is k-Cartesian i f  Y C ~  is k-Cartesian and ~ J ~  is ( k + l ) -  
Cartesian. 

(iv) Y / ~  is k-co-Cartesian i f  YC ~ /  is ( k -  1)-co-Cartesian and Y~ ~ is 
k-co -Cartesian. 

Proof. For (i) apply (1.6) twice to 

X ~Yr 

I l 
= 

First view the square as (5~ ~ r  ~ )  and apply (1.6.ii); then view it as 
(5f ~ )  ~ ( ~ / ~ )  and apply (1.6.i). 

The proofs of the other statements are similar. [] 

The next result generalizes (0.2). Suppose that a small category d is covered by 
a finite collection of subcategories {ds  :s ~ S} in the sense that (1) the union 
Us Nt i s  of their nerves is the nerve N~r and (2) for each subset T c S the union 
0 s ~ r N d s  is the nerve of a subcategory d r =  ( J s ~ r d s .  This is the case, for 
example, when a poset d is the union of subsets g s  which are either all concave 
or all convex. 

1.9. LEMMA. Let (~1, {d~}) be as above and let F be a functor from ~r to spaces. 

Then the S-cube defined by 

8 ~ holim(F) 

is Cartesian. 
Proof. In the case of  only two subcategories {all ,  ~r the assertion is (0.2). The 

general case follows by induction: Write S as T u 0 and consider the diagram 
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holim(F) 

[ 
holim(F I d r )  

h~176  
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holim(F I ~r 

[ 
, holim(F I ~ r C ~ d o )  

where the spaces in the two lowest corners are holims indexed by U e No(T). The 
upper square is Cartesian by (0.2). The marked arrows are equivalences by 
induction. Thus, by (1.8.i), the outer square is Cartesian. This is the assertion to be 
proved, in view of (1.2.a). [] 

1.10. LEMMA. Let ( d ,  {ds}) be as above and let F be a functor from d to spaces. 
Then the S-cube defined by 

T~--~hocolim(F[ ( - ] s~s_r~) ,  

S ~ hocolim(F) 

is co-Cartesian. 
Proof Dual to the proof of (1.9). [] 

1,11. Remark. Any functor X from N0(S) to spaces determines a Cartesian S-cube 
qr such that ~ ( 0 ) =  holim(Y'), and such that for T r O there is an equivalence, 
natural in T, from X(T) to ~ Namely, define ql(T) as the homotopy limit 
of the restriction of X to {W:0  ~ W =  T} c N0(S). There is an obvious equiva- 
lence e: X(T)~qC(T) for T e N0(S), since T is the initial W; and e is natural in 
T. The cube qr is Cartesian by (1.9). This remark has a dual which we will not 
write out. 

1.12. Notation. For an S-cube X and subsets U c T c S, 0 r X  is the (T - U)-cube 
{V~--~ YC(Vw U):V c T - U } .  We call these cubes the faces of X. We abbreviate 
0~X by 0rY" and O s x  by OuX. 

1.13. DEFINITION. The S-cube of spaces X is a fibration cube if for every U ~ S 
the restriction map Y'(U) = lim{X(T) : U c T c S} --*lim{X(T) : U N T ~ S} is a 
fibration. It is a cofibration cube if for every T ~ S the map c01im{X(U) : U N T} 

colim{X(U) : U c T} = X(T) is a cofibration. 

1.14. Remark. Any S-cube X of spaces is equivalent to a fibration S-cube qr for 
example the one given by ~r  The canonical map from 
X(U) = lim(OuX) to qC(U) is an equivalence, natural in U, and the restriction map 
~(U)  --* lim{~(T) : U ~ T c S, U ~ T} is a fibration because it is isomorphic to the 
restriction map from a holim indexed by N ( S -  U) to a holim indexed by 
N o ( S -  U). Dually, X is equivalent to the cofibration cube T ~-~ hocolim(0rY'). 
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1.15. PROPOSITION. When X is a fibration cube, then the canonical map 
lim(X ] ~o(S))  ~ ho(X) is an equivalence. Thus, a fibration cube X is k-Cartesian i f  
and only i f  X(0) ~ lim(X 1 ~o(S)) is a k-connected map. 

Proof This is by induction on the cardinality IS[. We use the evident fact that the 
subcubes O ~X are also fibration cubes. 

When IS I ~< 1 the map is a homeomorphism. 
When IS[ = 2 the assertion follows from (0.3). 
I f  [S[ > 2 write X as a map of T-cubes ~ / ~ ;  the assertion is then that the 

diagram 

lim(~r ] ~o(T)) , lim(Lr ] ~ o ( T ) ) ,  ~ ( r  

I i i, 
holim(~r ] *o(T)) ) hol im(~ ] *o(T)) ~ W.(O) 

induces an equivalence from lim of the top row to holim of the bottom row. But 
tim(top) ~ho l im( top )~ho l im(bo t tom)  are both equivalences, the latter because 
the vertical maps are (by induction) equivalences, the former by (0.3) again because 
the upper right map is a fibration. [] 

1.16. PROPOSITION. When X is a cofibration cube then the canonical map 
hl(~)  ~co l im(X [~1(S)) is an equivalence. Thus, a eofibration cube X is k-co- 
Cartesian i f  and only i f  colim(X I ~1 (S)) ~ ~(S)  is a k-connected map. 

Proof Dual to the proof of (1.15). [] 

1.17. Remark. The concept of n-cubical diagram is of course related to the concept 
of (n + 1)-ad. An (n + 1)-ad (X; {Xs}s~ s) consists of a space and n subspaces, and 
it determines an S-cube of spaces X by putting X ( S ) = i V ,  X ( S - s )  = X  s, 
X ( S  - T) = (]s ~ T Xs. Thus, an (n - 1)-ad corresponds to an S-cube X of a special 
kind, namely one in which (1) all of the maps X ( T ) ~ Y C ( S )  are inclusions of  
subspaces, and (2) X(Tc~ U) = X(T)c~X(U) .  The cofibration n-cubes are the same 
(up to homeomorphism) as those (n + 1)-ads in which "every inclusion map that 
you can think of"  is a cofibration. In particular, the cofibration cubes include the 
cubes determined by 'CW (n + 1)-ads', that is, those for which X is a CW complex 
and each X~ is a subcomplex. The next statement is about a different class of  
(n + 0-ads, those for which each Xs is open in X. These do not correspond to 
cofibration cubes, but they still satisfy the conclusion of (1.16): 

1.16a. PROPOSITION. The conclusion of(1.16) also holds when the cube X has the 
following form: For each T c S, X ( T )  --+ f ( S )  is the inclusion of an open subset of  
X(S) ,  and for each T and U, ~Y(Tc~ U) = X ( T )  c~X(U). 

Proof The general case can be obtained from the case IS[ = 2 by an induction 
which we leave to the reader. In the case IS] = 2 the statement is that if A and B are 
open subsets of a spac~e, then the natural map from hocolim(A ~ A c~B ~ B) to 
colim(A ~ A n B ~ B) = A w B is an equivalence. Replacing A, B, A c~ B, and A u B 
by the realizations of their singular complexes IS(A)I . . . . .  and using the fact that 
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IS( )1 takes inclusions to cofibrations, and also using (1.16), we reduce to showing 
that the inclusion IS(A) I u IS(B) I --- IS(A) u S(B)[ ~ IS(A u B) I is an equivalence. 
This follows from the Seifert-van-Kampen theorem and the excision property of 
singular homology (which both depend on the openness). [] 

The next result is useful in getting around some of the confusion that can 
surround basepoints and no in this subject. The proof uses the following obvious 
remark: In a map (E ~ B) ~ (E' ~ B') of fibrations, if the map B ~ B'  of bases is 
an equivalence, then the map E ~ E'  of total spaces is k-connected if and only if, 
for every point in B, the map of (strict) fibers is k-connected. 

Note that if 57 -~ ~ is a map of n-cubes of spaces then, for each point y e ~(0), 
the spaces 

~ y ( T )  = homotopy fiber of 57(T) > ~ (T)  

form another n-cube. 

1.18. PROPOSITION. A map 57--.~l o f  n-cubes o f  spaces is k-Cartesian (as an 
(n + 1)-cube) i f  and only if, for  every y e ~(0), the n-cube ~ y  as defined above is 
k-Cartesian. 

Proof. Call the (n + 1)-cube Lr, and consider the square diagram 
a(~')> 

~(0) ho(~) 

1 1 
~(0) , h o l i m ( ~ )  

The lower map is the canonical equivalence. The right-hand map is a fibration, the 
restriction to holim indexed by a subcategory. From the diagram in the proof of 
(1.6), its fiber (not homotopy fiber) over the image of any y e ~(0) is h0(~y). 
Without loss of generality, the map on the left is also a fibration. Then the upper 
map a(~ e) is k-connected if and only if, for every y, the square induces a 
k-connected map of strict fibers of vertical maps. For any y, the map of fibers is 
isomorphic to the composition 

a ( ~ y  ) . . . .  
[strict fiber of 57(0) , ~/(0)] ~ ~y(O) ~ hO(~y), 

of a (~y)  with the inclusion of the strict fiber in the homotopy fiber. Thus it is 
k-connected if and only if a (~y)  is. [] 

1.19. Remark. Most of the results above, about cubical diagrams of spaces, carry 
over to cubical diagrams of spectra if we make the following conventions: For a 
cube T ~ 57(T) = {57(T, n)} of spectra, the total fiber f57 is a spectrum whose nth 
space is the total fiber of T ~ 57(T, n). (Structure maps are defined because 'fl '  
commutes with f..) The total cofiber ~57 is a spectrum whose nth space is the total 
cofiber of T ~ 57(T, n). (Structure maps are defined because '~'  commutes with ~.) 
Cubes of spectra have all the good properties of cubes of spaces, and more: A map 
of spectra is an equivalence if and only if its (homotopy) fiber is equivalent to a 
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point, and if and only if its (homotopy) cofiber is equivalent to a point. Moreover, 
fiber is naturally equivalent to f~(cofiber), so 'Cartesian'= 'co-Cartesian' and 
'k-Cartesian'= '(k + n - 1)-co-Cartesian' for n-cubes. 

Furthermore, the suspension spectrum functor X ~-~ E~X from (good) based 
spaces to spectra preserves k-co-Cartesian cubes, and the functor E ~ f l~E from 
spectra to based spaces (taking a spectrum to the 0th space of an equivalent 
f~-spectrum) preserves k-Cartesian cubes. In particular, the composed functor 
Q = f]~Z ~176 from spaces to spaces takes k-co-Cartesian n-cubes to (k + 1 - n ) -  
Cartesian n-cubes. 

The next four results will be needed in [6]. 

1.20. PROPOSITION. Let X be an S-cube {U~--~X(U)} of  T-cubes X ( U ) =  
{V ~-~ X(U, V)} of spaces. Assume that YC, viewed as (S I I  T)-cube, is k-Cartesian 
and that for each U r  the T-cube X(U) is (k +[Ul-1)-Cartesian. Then the 
T-cube X(O) is k-Cartesian. 

Proof Induction with respect to IS[, using (1.6). [] 

1.21. PROPOSITION. Let X be an S-cube {U ~ 5f(U)} of T-cubes ~ ( U ) =  
{ V ~--~ X(U, V)} of spaces. Assume that X, viewed as (S_L[ T)-cube, is k-co-Carte- 
sian and that for each U ~ S in S, the T-cube 3f(U) is (k + 1 + IUI - ISI)-co-Carte- 
sian. Then the T-cube X(S) is k-co-Cartesian. 

Proof Induction with respect to IS[, using (1.7). [] 

1.22. PROPOSITION. Let X be a functor from ~0(S) to T-cubes of  spaces (or 
spectra), and write X(U, V) = (~(U))(V). (So X(U, V) is defined for 0 ~ U c S and 
V ~ T.) Assume that for all U ~ O the T-cube X(U) is kv-Cartesian. Then the T-cube 
V ~ holim(U ~ X(U, V)) is k-Cartesian with k = rain{1 - IU]  + ku}. 

Proof Apply (1.11) to each of the functors U~-*X(U, V) to make an S-cube 
U~--~/(U, V). Apply (1.20) to the resulting ( S l l T ) - c u b e  ~r (Each cube 
V ~ ~/(U, V) is kv-Cartesian, being equivalent to X(U). The entire (SJA T)-cube 
is Cartesian because each cube U ~ ~r V) is so.) [] 

1.23. PROPOSITION. Let X be a functor from ~l (S)  to T-cubes of  spaces 
(or spectra), and write X(U, V ) =  (X(U))(V). (So X(U, V) is defined for U ~ S 
and V c T.) Assume that for all U ~ S the T-cube ~?(U) is ku-co-Cartesian. 
Then the T-cube V ~-~ hocolim(U ~-~ X(U, V)) is k-co-Cartesian with k = 
min{IS ] - I u I -  1 + k v }. 

Proof Dual to the proof of (1.22). [] 

2. Pushouts, Pullbacks, and Connectivity 

We now compare the properties 'k-Cartesian' and 'k-co-Cartesian' for an n-cubical 
diagram of spaces. 
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For a 1-cube ( = m a p )  of spaces, the two notions coincide. (They both mean 
'k-connected'.) 

For a 2-cube, they do not coincide but, according to the 'triad connectivity 
theorem' or 'homotopy excision theorem' of Blakers and Massey, they coincide in 
a stable range: Any square 

fl 
, 

, x ( 1 ,  2) 
g l  

which is co-Cartesian, and in which the map f~. is kx-connected for s = 1, 2, is 
(kl + k2 - l)-Cartesian. There is also a dual statement, as we shall see: Any square 
which is Cartesian, and in which the map g~ is ks-connected for s = 1, 2, is 
(kl + ka + 1)-co-Cartesian. 

Theorem 2.3 below is a generalization of the Blakers-Massey theorem from 
2-cubes (or triads) to n-cubes (or (n + 1)-ads), and (2.4) is a statement dual to 
(2.3). 

In order to state the results, we make a definition: 

2.1. DEFINITION. An S-cube Y" of spaces is strongly (co-)Cartesian if each face 
of dimension >/2, i.e. each cube 0~X, U ~ T = S, ]T - U 1/> 2, is (co-)Cartesian. 

For X to be strongly co-Cartesian, it is enough (by (l.7.ii)) if every two-dimen- 
sional face is co-Cartesian. Alternatively, it is enough (by (1.7.i)) if every face 
0TSf, ITI >~ 2, is co-Cartesian. Dually, for X to be strongly Cartesian it is enough if 
either every two-dimensional face or every face 0uX, IS - U I >12, is Cartesian. 

An example of a strongly co-Cartesian S-cube is any collection {X(T) : T c S} of 
subcomplexes of a CW complex such that X ( T w U ) = X ( T ) u Y C ( U )  and 
X ( T n  U) = X(T) n ~ ( U )  for all T = S and U = S. In the language of (1.17), such 
cubes are determined by certain CW (n + 1)-ads. The additional condition 
X ( T w  U)=X(T)uYC(U)  on the cube means that the corresponding (n + 1)-ad 
(X, {Xs }3 ~ s) satisfies X = X~ u Xt for every distinct s and t in S. 

More generally, given a space Y'(r and spaces {Y'(s) :s ~ S} and a cofibration 
X(0) ~Y'(s) for each s, one can make a strongly co-Cartesian S-cube by letting 
X(T)  be the union of the {X(s) :s ~ T} along X(0). Call such a cube Y" a pushout 
cube. 

Dually, given a space ~(S)  and spaces {Y'(S - s) : s ~ S} and a Serre fibration 
X(S - s) ~ X(S) for each s, one can make a strongly Cartesian S-cube by letting 
X(T) be the fiber product of the {X(S - s) : s ~ S - T} over X(S). Call such a cube 
X a pullback cube. 

2.2. PROPOSITION. Every strongly co-Cartesian cube of spaces admits an equiva- 
lence from a pushout cube. Every strongly Cartesian cube of spaces admits an 
equivalence to a pullback cube. 
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(Recall that a map X --+ ~ of  cubes is called an equivalence if for every T the map 
X(T)--+ ql(T) of spaces is a (weak) equivalence.) 

Proof. Suppose that q / i s  strongly co-Cartesian. Let X(0) be qr Factor the 
map q/(r -+ q/(s) as a cofibration followed by an equivalence, and call the interme- 
diate space X(s): 

~(r = • ( r  is w~ 
, ~r(s )  , ~ ( s ) .  

Let X be the pushout cube built from the cofibrations f , .  Then X has a map to q/, 
uniquely specified by choosing the identity as the map X(0) --+ ~(0)  and w~ as the 
map Y'(s) --+ gt(s). By construction, the map X ( T )  -+ qJ(T) is an equivalence for all 
T c S with Izl <, l. The same is true for general T c S, by induction on Izl, using 
the fact that both Y" and q /a re  strongly co-Cartesian. 

The proof of the dual statement is similar. [] 

An obvious variation on the proof of (2.2) allows us to choose the pushout cube 
to be of the special CW type mentioned above: 

2.2a. PROPOSITION. Any strongly co-Cartesian S-cube q/ of  spaces admits an 
equivalence X--+q/ from a pushout cube which is based on cellular inclusions 
Y((O) --+ YC(s). I f  the map ql(O) ~q/ (s )  is k~-connected then we can arrange for all cells 

in Y((s) 7-YC(O) to have dimension >,ks + 1. 

2.3. THEOREM (Ellis-Steiner, [4]). I f  X is a strongly co-Cartesian S-cube with 

ISl = n >>. 1, and i f  for each s ~ S the map Yf(O) --+ X(s) is k~-connected, then Yf is 

k-Cartesian with k = 1 - n + Z~ ~ s ks. 

2.4. THEOREM. I f  ~ is a strongly Cartesian S-cube with IS I = n >~ 1, and i f  for 
each s ~ S the map X ( S  - s) --+ X (S )  is k~-connected, then YC is k-co-Cartesian with 

k = n -  1 + Z ~ s k  ~. 

Before beginning the proofs, we will state some related results. 
Recall that the Blakers-Massey theorem has consequences even for squares that 

are not co-Cartesian: If  the square 

X(O) , X(1) 

[ [ 
~r(2) , ~r(1, 2) 

is g-co-Cartesian for some g, and if the map X ( 0 ) ~ X ( s )  is k~-connected for 
s e {1, 2}, then the same square is k-Cartesian where k = min(k~ + kz - 1, f -  1). 
This--fact has the following generalization for n-cubes: 

2.5. THEOREM. Let X be an S-cube with ISI = n >i 1. Suppose that 

(i) for each nonempty T ~ S  the T-cube OrX (as defined in (1.12)) is k(T)-co- 

Cartesian, and 
(ii) k(U) <. k(T),  whenever U c T. 



CALCULUS II: ANALYTIC FUNCTORS 311 

Then • is k-Cartesian, where k is the minimum of ( 1 - n )  + Y.~k(T,) over all 

partitions { T~ } of  S by nonempty sets. 

For example, if S = { 1 , 2 , 3 }  then k + 2  is the minimum of k(1,2,3) ,  
k(1, 2) + k(3), k(1, 3) + k(2), k(2, 3) + k(1), and k(1) +k (2 )  + k(3). 

There is a dual statement: 

2.6. T H E O R E M .  Let ~ be an S-cube with ISI = n >1 1. Suppose that 

(i) for each T v L O, the T-cube as_ r~r is k(T)-Cartesian and 
(ii) k(U) <~ k(T)  whenever U c T. 

Then ~ is k-co-Cartesian, where k is the minimum of n -  1 + E, k(T~) over all 
partitions {T~} of S by nonempty sets. 

In (2.5) and (2.6), each k(T) may be either an integer or + oo. Note that (2.5) 
[respectively, (2.6)] contains (2.3) [respectively, (2.4)] as a special case, namely the 
case in which k(T)  = +oo  for all T such that ITI 1> 2. 

Theorem 2.3, under the restriction that the numbers ks are all at least 2, is due to 
Barratt and J. H. C. Whitehead [1]. The more general version stated here was 
proved by Ellis and Steiner [4]. A weak version of  Theorem 2.5 was deduced from 
[1] in [7]. 

The main theorem of [1] or [4] is stronger than our Theorem 2.3; in addition to 
giving the range in which the homotopy groups n ,  (Y') o f  a suitable cube must 
vanish, it computes the first nonvanishing group of  such a cube in terms of the first 
nonvanishing groups of  the maps ~ ( 0 ) ~  ~r(s). 

We will give a different proof  of (2.3), using a method which does not involve the 
computation of any nontrivial homotopy groups. The pattern of the argument is a 
bit complicated; it proceeds by induction on n and requires introducing the more 
general statement (2.5). We need (2.5) in any case, and those readers who have seen 
(2.3) proved in [4] will find (2.5) deduced from it below. 

We begin with a lemma. The proof  of the lemma contains some geometry 
(specifically, a transversality argument); the rest of  the proof  of  (2.3) and (2.5) is 
quite formal. 

For the lemma we suppose that Y" is a pushout n-cube of spaces, formed by 
attaching cells e~, 1 ~<s ~<n, to a space X = E'(0). That is, Y'(T) = X u { e s : s  ~ T} 
for each T ~ n, for some choice of  attaching maps Oes ~ X, 1 ~< s ~< n. 

2.7. LEMMA. Let YC be as above, and let d~ be the dimension of the cell e s. Choose 
a point x~9?(n) ,  and for T c n - 1 - - - { 1  . . . . .  n - l }  let ~ ( T )  be fiber 
(9?(T)~YE(Tun)) ,  the homotopy fiber over x. Then the (n -1 ) -cube  ~ is 
( - 1 + E~ ~ s(ds - 1))-co-Cartesian. 

Proof. Choose an interior point p~ e es in each cell, taking Pn # x. (We ignore the 
trivial case d, = 0.) 
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The space Y'(T) is equivalent to the larger space Y ' * ( T ) = Y ' ~ ) -  
(p, Is 6 n - T}. Thus, we may replace the cube X by the cube ~r,,  and replace 
~-(T) by ~- *(T) = fiber(Y'*(T) ~ f * ( T  w n)). 

Let C be the contractible space C =fiber(Y'*(n - 1)~Y'*(n - 1). For any 
T c n -  1, the inclusion ~ - * ( T ) c  C w ~  *(T) is an equivalence by (1.16a), since 
both C and C c ~  * ( T ) =  fiber(Y'*(T)~Y'*(T)) are contractible. Therefore, we 
may replace the cube ~-* by the cube C w f f  *. 

By (1.16a) again, applied now to the cube C w f f  *, it suffices to show that the pair 
(A, B) = (C w ~- *(n - 1), C w ( Us ~ *(n - 1 - s))) is ( - 1 + zs (d~ - 1))-connected. 
(The union is indexed by all s ~ n - 1 . )  This means showing that, for 
f < E,(d, - 1), every map of pairs 

�9 : (D e, OD e) , (A, B) 

is homotopic to a map (D e, t3D e) ~ ( B ,  B). 
The map ~b corresponds, by adjointness, to a map 

~ :  I x D e ~ 5f(n_) 

satisfying the boundary conditions 

(i)  Yz ~ D l,  ~P(O, z) = x,  
(ii)  Vz ~ D e, qff 1, z)  # p , .  

(iii) Vz ~ 3D e 3s ~ _n Vt ~ / ,  ~( t ,  z) ~ p ,  

We need to change ~ ,  by a homotopy preserving these conditions, into a map 
satisfying the stronger condition 

(iv) Vz ~ D e 3s ~ n Vt e I W(t, z) # p, .  

This can be done in two successive homotopies, by general-position arguments. It 
is convenient, before doing so, to extend W to [0, 1 + e) • De, the product of  a 
longer interval and a larger open disk, in order to avoid dealing with boundaries 
and corners. 

The first homotopy makes W smooth near the preimage of the point Ps, and 
transverse to p~, for all s ~ n. (This has meaning, since ~'(n) is a manifold near ps.) 
Now the sets N~ = W - l ( p , )  are disjoint submanifolds of (0, 1 + e ) x  De with 
dim(N~) = E + 1 -- d,. 

The second homotopy is defined by considering the map 

I-I N~ , ( (0 ,  l --1- 8) X D e )  n , ( D e )  n 
l<~s<~n 

(inclusion followed by projection). A small isotopy of [0, 1 + e) x D~ will arrange 
for this map to be transverse to the diagonal copy of De. Make a homotopy of 
by composing ~F with this isotopy. By hypothesis Y~ dim(N,) < (n - 1)d, so that the 
diagonal is in fact not hit at all; and this is what is required by (iv). 

The homotopies can be chosen so as to preserve (i), and if they are uniformly 
small enough then they will preserve (ii) and (iii). [] 
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We now prove (2.3) and (2.5) together, by induction on n. They are both trivial 
for l-cubes. 

Proof of (2.3) for n-cubes (n >t 2), assuming (2.5) (and, in particular, (2.3)) for 
(n - 1)-cubes: 

Let :~ be a strongly co-Cartesian S-cube, ISI = n, let the map X(0)--.X(s) be 
k~-connected for each s e S, and put k = (1 - n) + Zks. The plan is to reduce to the 
situation of (2.7) and to use (1.18). 

There is no harm in assuming that k, t> 1 for all s. In fact, suppose ki <~ O. Write 
as a map off ~ ~ of (S - 0-cubes. Note that, by (2.3) for (n - 1)-cubes, both q/ 

and s are (k + l)-Cartesian, since 

1 - ( n - 1 ) +  ~ 

By (1.6.ii), X is k-Cartesian. 
By (2.2.a) we may assume that X is a pushout cube, and that for each s e S the 

pair (X(S), ~(0)) is a relative CW complex whose cells have dimension ~> k, + 1. By 
a direct-limit argument we may assume that the number of these cells for each s is 
finite. By an induction using (1.8.i), we may assume that there is only one such cell 
for each s. 

We are now in the situation of (2.7), with d~ >~ ks + 1/> 2. (We may as well take 
S = n.) Choose any basepoint in X(n). We apply (2.5) to the (n - 1)-cube ~ given 
by ~ ( T )  = fiber(5~(T) --*(Tun)). By (2.7), ~ is ( -  1 + El <~<n k~)-co-Cartesian 
and more generally each face ~ r ~ ,  0 ~ T ~ n - 1, is k(T)-co-Cartesian, where 

k ( T ) = - l + k , , +  ~ k~. 
s ~ T  

These numbers k(T) satisfy hypothesis (ii) of (2.5), because k~ >i 0 for all s. The 
sum Z~ k(T~) is minimized by the one-set partition of n - l, because k, >~ 1. Thus 
(2.5) makes ~- k-Cartesian: 

( 1 - ( n -  1)) + ( - 1  +kn + ~sen_l k~)=(1-n)+~k,=k.~_ 

The conclusion follows by (1.18). [] 

Proof of (2.5) for n-cubes, assuming (2.3) for n-cubes and (2.5) for cubes of 
lower dimension: 

Using (1.14), take :~ to be a cofibration cube. Now hypothesis (i) of (2.5) can be 
restated, using (1.16): for each nonempty T c S, the cofibration 

colim(X I ~I (T))  , X(T) 

is k(T)-connected. 
In the course of the argument, we will be forming colimits of s indexed by 

various convex subsets ~r ~ P(S). ('Convex' was defined just before (0.2).) Write 
X ( d )  for colim(X I d ) .  
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This is a functor; if N ~ d are convex sets in 3a(S), then there is an obvious map 
Y'(N)--+Y'(d). In particular, X(~,(T))--+Y'(t~(T)) is the k(T)-connected cofibra- 
tion above. 

2.8. Claim. 

(i) For each inclusion ~ c d  of  convex subsets of ~(S),  the map 
5f(~)--+ ~ ( d )  is a cofibration. 

(ii) For any convex subsets ~ and cg of  ~(S),  the diagram 

~ ( ~  c~ ~e) , ~(~e) 

l l 
~r(~) , ~r(~ u ~ )  

of cofibrations is a pushout. 

Proof of (2.8). That the square is a pushout follows from the convexity of N and 
~f. We prove (i). Since a composition of cofibrations is again a cofibration, it 
suffices to consider the case when d - N has just one element A (which must then 
be maximal in d ) .  In that case, d is the union of the convex sets N = d - A and 
~(A), and ~I(A) is the intersection. The square 

~r(~l(A)) , ~r(~(A)) 

l 1 
s  - A) , s  

shows that the map Y ' (d  - A) -* Y'(d)  is a cofibration, as it is obtained by pushout 
from the cofibration ~C(~ 1 (.4)) ~ s [] 

The preceding argument also implies: 

(2.9) If  A is maximal in d ,  then the cofibration 5 ( ( d  w A) ~ s  is k(A)- 
connected. 

Now, for each convex set d c ~(S),  define a new S-cube 5~, by ~ d ( T ) =  
2~(d c ~ ( T ) ) .  Note that 

(2.10) colim(Sf~, ]NI(T)) = 5 f ( d  n#1(T) ) .  

We will show that 5fd is k-Cartesian, for all d between dmi ,  = { T ~ S:  IT I ~< 1} 
and dmax = N(S), by induction, beginning with drain- Since Y" = 5f~,m, x, that will 
complete the proof of (2.5). 

Before beginning the argument, we observe that the cube 5f~, shares some 
properties with 5f: By (2.8.i) and (2.10), it is a cofibration cube. By (2.9), (2.10), 
and (1.16), the face 0rY'~, is k(T)-co-Cartesian if T e d and co-Cartesian other- 
wise, so in any case k(T)-co-Cartesian, This implies the more general statement: 

(2.11) For every V ~ T ~ S, the cube g r 0 ~  is 
k( T - V)-co-Cartesian. 

The proof is by induction on [V[: (2.11) for (T, V) follows from (2.11) for 
(T, V - v) and for (T - v, V - v), by (1.7.0 and hypothesis (ii) of (2.5). 
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We now show that the cubes s d are k-Cartesian (where k is as in (2.5)). 
When ~r = dmin, X~r is strongly co-Cartesian (it is a pushout cube, by (2.8.ii)), 

so that (2.3) applies. The map X d ( 0 ) - ~ r  is the map X(0)~8r and so 
is k(s)-connected. By (2.3), X~r is ( 1 - n  +Xk(s))-Cartesian and, therefore, k- 
Cartesian. 

It remains to handle the induction with respect to d ,  by proving: 

2.12. Claim. Suppose d c # (S)  convex, A e d maximal, and IAI >~ 2. Let ~ = 
d - A .  If  X~ is k-Cartesian, then X d  is k-Cartesian. 

Proof of (2.12). Consider the map of cubes s _~ s The most interesting part 
of this is the map 3AX~ "~ 3as162 because: 

(2.13) X~(U) = ~ d ( U )  if U does not contain A. 

Indeed, in this case ~ n # ( U )  = d n ~ ( U ) .  In the other cases (2.8.ii) yields: 

(2.14) For A ~ U ~ T, the following square is a pushout: 

~,~(u) , ~ , ( u )  

1 1 
X~(T) , X~c(T). 

Regard dASf~ ~ dAX~r as an ( ( S -  A ) u  �9 )-cube, and call it qr 

~/(U) = X~(A u U), U c S - A ,  

qI(Uw , )=X~c(AwU) ,  U ~ S - A .  

Apply (2.5) to ~/; this is allowed, by induction on n, since ](S - A) w * [ < t s l  = n 
We verify hypothesis (i) of (2.5) with the numbers: 

~(U)=k(U), O ~ U ~ S - A ,  
~( �9 ) = k ( A ) ,  

d ( U u  *) = +oG O # U c S - A .  

This means checking, for each nonempty V ~ ( S -  A)w , ,  that ~vqr is d(V)-co- 
Cartesian. There are three cases: 

For V c S -  A, the cube ~J~ vX~ is k(V)-co-Cartesian, by (2,11). 
For V =  { �9 }, the map X~(A) ~X~,(A) is k(A)-connected, by (2.9). 
For V =  U u  , ,  0 5  U c S - A ,  the map OJ'~vX~OA'~OX~, is a co-Cartesian 

cube, by (2.14) and (1.7.ii). 

We conclude that ~/ is (k + I A I -  1)-Cartesian, because the sum Xpd(Va) for a 
partition of (S - -A)  w ,  is always either +o% or the sum Z~k(T~) for some 
partition of S (in which some T~ is A). 

We next prove that 

(2.15) O T ~  ~COTX~ is a (k + ITI- 1)-Cartesian (n - I T I  + l)-cube, for every 
T c A .  
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We have proved it for T =  A. We argue by downward induction on IZl. To 
go from T to T - - t ,  write the map t~r_tSV ~ ~t3r_t&rd as a square (of  (n - IT] ) -  
cubes) 

~ s - , ~  s -~  T - ,  ~ ~ r162 

1 l 

The upper arrow is an isomorphism, by (2.13), and the lower arrow is (k + IT I - 1)- 
Cartesian. Therefore, by (1.6.ii), the square is (k + I T -  t l -  1)-Cartesian. 

To prove that ~ r  is k-Cartesian, choose an element a ~ A and use (2.15) with 
T = {a}. Consider (as S-cubes) the two maps of  (S - a)-cubes and their composi- 
tion: 

The second is k-Cartesian, by (2.15). The first is 5f~, and so is k-Cartesian. The 
composition (which, by (2.13), is 3V~,), is therefore k-Cartesian, by (1.8.i). This 
completes the proof  of  (2.12), and of  (2.5). [] 

2.16. Remark. Hypothesis (ii) in (2.5) cannot be eliminated in general, but when 
n = 2 it can be eliminated and, in general, it can be weakened. When n = 3, it is 
enough if k(U) <~ k (T)  for a suitable set of  pairs (T, U); for example, the pairs 
({1, 2}, {1}), ({1, 2}, {2}), and ({1, 3}, {1}) would suffice. We will not pursue such 
refinements here. A similar remark applies to (2.6). 

The proof  of  (2.4) is a bit simpler than that of  (2.3); in particular it is not mixed 
up with the proof  of  (2.6). It requires a lemma about  quasifibrations. 

A map f :  Y ~ X of spaces is called a quasifibration if, for each point x in 2(, the 
canonical map from the fiber of  f to the homotopy fiber is a (weak homotopy) 
equivalence. It is clear that every fibration has the following property (P), and that 
every map f :  Y ~  X having property (P) is a quasifibration. 

(P) For every continuous map D ~ X ,  D a closed disk of  any dimension, the 
projection D x x Y- - rD is a quasifibration. (That is, for every point �9 e D, 
the inclusion �9 x x Y --* D x x Y is an equivalence.) 

2.17. LEMMA. Let ~r be any S-cube o f  spaces such that for  each T c S the map 

W(T)  ~ W(S) is a fibration. Then the map b(~?) : hlCY) ~ :Y(S) (as defined in (1.4)) is 
a quasifibration. 

Proof. It is enough if property (P) for the maps ~r(T) ~ W(S) implies property 
(P) for b(Sf). We show more generally that, if T ~-~ W(T) is any functor from a 
small category to the category of  spaces over a space X, then property (P) for all 
the maps ~ ( T )  ~ X implies property (P) for the resulting map hocolim(~(T)) ~ 5(. 

The key point is that, for every map D--*X from a disk, the fiber product 
D •  hocolim(&r(T)) is naturally homeomorphic to hocolim(D •  (This 
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uses the fact that product with a compact space commutes with geometric realiza- 
tion.) Thus, for any �9 e D we have a diagram 

hocolim( �9 • x Y'(T)) 

1 
�9 x x hocolim(X(T)) 

, hocolim(D x x 5f(T)) 

l 
, D x x hocolim(X(r)) 

in which the vertical maps are homeomorphisms. The lower map is then an 
equivalence, because by hypothesis the upper map is a hocolim of equiva- 
lences. [] 

Proof of (2.4). We may assume, by (2.2), that 5f is a pullback cube made from 
a collection of fibrations ~ ( S -  s ) ~  X(S). In the present proof, 'fiber' means 
preimage of a point, not homotopy fiber. Fix any point in 5f(S), and let Fs be the 
fiber of X ( S -  s ) ~ X ( S ) .  Thus, the fiber of the fibration 5V(T)~X(S) is the 
product 

F(T)= i~ Fs. 
s e S - - T  

The map b(X): h, (Sf) ~ ~Y(S) is a quasifibration, by (2.17). The fber  of b(X) is the 
hocolim of the diagram T ~ F(T) indexed by T e N1 (S). This is the join of the 
spaces F~, as one sees by induction, beginning with the fact that the join X * Y of 
two spaces is the hocolim of X ~ X  x Y--. Y. By hypothesis, F~ is (ks - 1)-con- 
nected. The join of a p-connected space and a q-connected space is (p + q + 2)- 
connected (recall that by convention the empty set is ( -  2)-connected), so that the 
fiber, hence, also the homotopy fiber, of b(X) is (n - 2 + Eks)-connected. Since this 
is true for every point in X(S), 5f is (n - 1 + Y&~)-co-Cartesian. [] 

Proof of (2.6). We outline the argument, which is precisely dual to the proof of 
(2.5) from (2.3). Assume (2.6) for smaller values of n. 

We may assume that X is a fibration cube. 
We use limits of 5f indexed by concave subsets d c N(S), writing X(~r for 

lim(X [ d ) .  
If  ~ c d ,  then there is an obvious map 5f(d)  -~ Y'(~). It is a fibration, and for 

any concave sets M and cg we have a pullback square: 

If  A is minimal in d ,  then the fibration X ( d ) ~  ~Y(~r - A )  is k ( S -  A)-con- 
nected. 

For each concave set d c ~ ( S ) ,  define a new S-cube X d by X d ( T ) =  
X({U e d : T c U}). Like 5Y, this is a fibration cube. The face dvX ~' is k(S - U)- 
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Cartesian. More generally, for every U S  V ~  S, the cube ~ r ~  is k ( V - U ) -  
Cartesian. 

We show that W~ is k-co-Cartesian, where k is as in (2.6), for all ~ between 

~min ~--" {T ~ S : Is  - T[ ~< 1} and d~ma x ~--- ~(S) ,  by induction, beginning with dmin. 
When ~r = drain, W~' is strongly Cartesian (it is a pullback cube), so that (2.4) 

applies. The map X d ( S - - s ) ~ f d ( S )  is the map Y ( S - s ) ~ Y ( S ) ,  and so is 
k(s)-connected. By (2.4), X ~ is (n - 1 + Ek(s))-co-Cartesian and, therefore, k-co- 
Cartesian. 

The analogue of  (2.12) is this: Suppose d c ~ ( S )  concave, A ~ d minimal, 
and I S -  A I ~> 2. Let ~ = d -  A. I f  ~r~ is k-co-Cartesian, then 5( ~ is k-co- 
Cartesian. 

To prove it, consider the map of  cubes 0fg__.W~. We have 

5f~(U) = W~(U), if U is not contained in A, 

while, for U ~ T c A, the following square is a pullback: 

~ ' ~ ( u )  , ~ ~ ( u )  

1 l 
~ d ( T )  , X ~ ( T ) .  

Regard ~ A ~  as an (A u �9 )-cube, and call it ~ :  

~ ( u )  = ~r~ ' (u) ,  u ~ A 

~ ( U  u �9 ) = ~ '~ (U) ,  U ~ A. 

Apply (2.6) to ~ ,  noting that [Aw �9 [ < IS[ = n. Verify hypothesis (i) of  (2.6) with 
the numbers 

f(U) = k(U), 0 # U ~ A, 

~( �9 ) = k ( s  - A ) ,  

f ( U w  * ) =  + ~ ,  O # U c A .  

This means checking, for each nonempty V ~ A u * ,  that O(A~ . ) - v  ~e is d(V)- 
Cartesian. There are three cases 

For  V ~ A, the cube OAA_VSV a is k(V)-Cartesian. 
For  V = { �9 }, the map Y'~'(A) ~ Y'a(A) is k(S - A)-connected. 
For  V = U u  � 9  0 # U = A, the map OA_ Vy-W_+OJ_ us is a Cartesian cube. 

Now (2.6) implies that ~ is (k + 1 -  n + [A])-co-Cartesian, because each sum 
X a f(Va) for a partition of  A u * is either + ~ or a sum Z~ k(T~) for a partition 

of  S (in which some T~ is S - A). 
We next prove that 

(2.18) 3 r W g o e r ~  ~ is a (k + 1 - -n  + [TI)-co-Cartesian (ITI + 0-cube,  for 

every T ~ A. 
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We have proved it for T = A. We argue by upward induction on IT I. To go from 
T to Twt,  write the map Or'~tX~Orutof~ as a square (of T-cubes) 

1 1 
~Tutof d > 0,r"'of ~ 

The lower arrow is an isomorphism, and the upper arrow is (k + I - n + I T])-co- 
Cartesian. Therefore, by (1.7.ii), the square is (k + I - n + ITu  tl)-co-Cartesian. 

To prove that X-" is k-co-Cartesian, choose an element b ~ S - I .  Consider (as 
S-cubes) the two maps of (S - b)-cubes and their composition: 

~S--bofxd  ) o S - - b o f  ..~ , ) O b ~ .  

The first is k-co-Cartesian, by (2.18). The second is of~, and so is k-co-Cartesian. 
The composition (which is of~) is, therefore, k-co-Cartesian. [] 

3. Higher-Order Excision 

We now begin examining the behavior of homotopy functors on cubical diagrams. 
The main point of the present work is to introduce the concept of 'analyticity' of 

a homotopy functor and to demonstrate one of its uses. We digress here to explain 
the concept of 'nth order excision', since analytic functors will by definition be 
those which, for all n, 'almost' satisfy nth order excision. The examples presented 
here may shed some light on the concept of analyticity, but logically this section can 
be skipped; these definitions and results will not be needed until the next article in 
this series. 

We work with functors F: U --, N where @ is unbased spaces (q/) or based spaces 
(~-') or spectra (6 a) and U is either q /o r  ~--. F is always assumed to be a homotopy 
functor; it preserves (weak homotopy) equivalences. 

3.1. DEFINITION. F is n-excisive, or satisfies nth order excision, if for every 
strongly co-Cartesian (n + 1)-cubical diagram of: ~(S)--*U the diagram F(Of)= 
F o of : ~(S)  ~ ~ is Cartesian. 

3.2. PROPOSITION. (n -1)s t -order  excision implies nth order excision. 
Proof. Viewing an (n + 1)-cube of as a map of n-cubes ~ / ~  ~e, we have: 

of strongly co-Cartesian ~ ~ / a n d  ~ strongly co-Cartesian 
F(qr and F(N) Cartesian 
F(X) Cartesian. [] 

Note that first-order excision is excision in the sense of  [5], (1.1.ii), while zeroth 
order excision means that F takes all maps to equivalences. (Every 1-cube is 
strongly co-Cartesian.) 

In (3.5) below, we will use 1-excisive functors to make examples of n-excisive 
functors. 
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3.3. PROPOSITION. I f  F: ~ ~ ~ is n-excisive, then for any strongly co-Cartesian 
m-cube ~t : ~ ( S )  ~ c~ the natural map 

F(Yr , holim{F(~/(U)) : U c S, IS - U I ~< n} 

is an equivalence. 

(The target here is a holim indexed by a subposet of ~(S) .  The map is the 
canonical equivalence F(?r --* holim{F(~C(U)) : U c S} followed by a restriction 

map.) 

Proof  When m = n + 1, this is the definition of'n-excisive'. When m ~< n, the state- 
ment is trivially true. For  the case when m > n + 1, we argue by induction on m. 

Define a cube ~ :  ~ ( S ) ~  by 

Lr(T) = holim{F(~C(U)) : T c U c S, IS - UI ~< n}, T c S. 

There is an obvious map of  cubes F(~r ~ Lr, given by the canonical equivalence 
F(ql(T)) ~ h o l i m { F ( ~ / ( U ) ) : T c  U ~ S} followed by a restriction to ~ ( T ) .  We 
must show that F(Yr ~ ~ ( 0 )  is an equivalence. The inductive hypothesis implies 
that the map F ( Y / ( T ) ) ~  ~ ( T )  is an equivalence for each nonempty T = S. The 
conclusion will therefore follow if both F(Yr and ~ are Cartesian. This is true for 

F(q/) by (3.2) and for ~ by (1.9). [] 

The next result concerns functors ( X 1 , . . . ,  X r ) ~  M(X] . . . .  , Xr) of several 
variables; we assume that M is a homotopy functor in each variable separately. 

3.4. PROPOSITION.  l f  M : cg~__. N is ni-excisive in the ith variable for all 1 <<. i <~ r, 

then the composition with the diagonal inclusion A: cg ~cg~ is n-excisive with 

n = n ] + . . . - - I - n  r. 
Proof  Let ~r : ~ ( S )  ~ cg be any strongly co-Cartesian cube with ISI > n. To show 

that the cube (M o A)(~) is Cartesian, we produce a map from it to another cube 
Lr: 

(Mo A)(~I(T)) = M(~I(T) . . . . .  YC(T)) 

hol im{M(~g(U]) , . . . ,  ~(U~)) : T = Ue = S, IS - U,. I ~< ni} 

=~(73. 

The map can be seen to be an equivalence (for all T) by using (3.3) r times. The 
cube ~ is Cartesian by (1.9), since the poset 

= {(Ul . . . . .  Ur) " V i U i c S, I S -  Vii ~ n i }  

is the union ~ 1  k.)""" t . . )~  r where the concave subset ~r ~ ~r is defined by the 

additional condition Vi j ~ Ui. [] 

As a special case, if the functor M(X~ . . . .  , X , )  of  n variables is excisive 
( =  1-excisive) in each variable separately, then M(X,  . . . .  X )  is an n-excisive 
functor of  X. In particular, we have 
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3.5. EXAMPLE.  For  any spectrum C the functors X ~ _C A (X~_) = C A (X+) ^" 
and X ~-~ _C A X ^" from spaces or based spaces to spectra are n-excisive, as are the 
functors X ~ f2~(_C ^ X~_ ) and X ~ ~ ( C  A X ^ n) from spaces or based spaces to 
based spaces. 

Here the subscript ' + '  adds a disjoint basepoint, and the superscript ' A n '  means 
n th smash power. 

In (4.4), we will see a second method for proving statements like (3.5). 

4. Analytic Functors 

Again let F:  U ~ N be a homotopy functor. 

4.1. DEFINITION.  F is stably n-excisive, or satisfies stable nth order exe&ion, if 
the following is true for some numbers c and x: 

F.n(c, ~): If  ~r: ~ (S )  ~cg  is any strongly co-Cartesian (n + 1)-cube such that for 

all s ~ S the map X(0) ~ X(s) is ks-connected and ks >1 x, then the 
diagram F(X) is ( - c  + Eks)-Cartesian. 

The number c is allowed to be negative, but in interesting examples it is usually 
positive. The smaller c is, the stronger the condition. 

Likewise, the smaller the number ~c, the stronger the condition. If  En(c, x) holds 
for all x (i.e. for x = - 1 ) ,  then we simply say En(c). 

Stable first-order excision was called stable excision in [5], (1.8). 

4.2. DEFINITION.  F is p-analytic if there is some number q such that F satisfies 
En(np - q, p + 1) for all n ~> 1. 

4.3. EXAMPLE.  The identity functor from spaces to spaces is 1-analytic. 
Proof. Theorem 2.3 asserts precisely that the identity functor satisfies En(n) for 

all n. [] 

4.4. EXAMPLE.  The functors X ~--~ E ~ ( X ~ )  from spaces to spectra and X ~--~ 
Q(X~ ) f r o m  spaces to spaces, satisfy En(O) for all n >~0. (This is only new 
information for n < re;for n >>. m these funetors are n-exeisive, by (3.5) and (3.2), and 
so satisfy En(c) for all c.) 

Proof. Let Y' be a strongly co-Cartesian S-cube of  spaces, and assume that the 
map X(0) ~ X ( s )  is ks-connected for all s ~ S. We will show that YCm: T~-~ X(T)  m 
is an (IS] - 1 + Zks)-co-Cartesian S-cube of spaces. By (1.19) it will follow that 
Z ~ ( X ~  ) is a (Eks)-Cartesian S-cube of  spectra, and that Q(X'~ ) is a (Eks)- 
Cartesian S-cube of  spaces. 

Using (2.2.a), we may assume that X(S)  is CW, each X(T)  is a subcomplex, 
X ( T ~  U) = X ( T )  wX(U) ,  X(Tc~ U) = X(T)  n X ( U ) ,  and all cells in X(S)  - 
X ( S  - s) = X(s) - X(0) have dimension >~ks + 1. The cube Xm: T ~ X(T)  m is 
then determined by a CW IS]-ad. In particular, it is a cofibration cube and (1.16) 
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applies. We have to estimate the connectivity of  the CW pair (~ 
Us YC(S - s)m). We do so by examining the dimensions of  cells. A cell of  YC(S) m has 

the form e = el • �9 �9 " x em, where each ej is a cell of  Y'(S). Therefore, for each j, 
either ej is a cell of  ~f(0), or for a unique s; ~ S, e; is a cell of  5f(sj) - Y'(0). If  e is 
not in Us Y ' ( S - s )  m, then every s is s; for at least one j and we have 

dim(e) = Zj dim@j) i> Z~(k s + 1) = IS[ + Z~ ks. This proves that the pair is 
(IS[ - 1 + Z~ k~)-connected. 

Note that when IS[ > m there are no such cells because there are more s's than 
j 's .  This gives a different proof  that the functors are m-excisive. [] 

Let Map(K, X) be the space of  all continuous maps from K to X. 

4.5. EXAMPLE.  For any finite CW complex K, the functors X ~ l~~176 X)+ 
and X ~ Q Map(K, X)+ are p-analytic, where p is the dimension of  K. 

Proof. The case p = 0 was covered in Example 4.4 above. We assume p > 0 and 

show that the functor satisfies En_ 1(rip, 1). 
Let Y" be any strongly co-Cartesian S-cube of  spaces with ISI = n/> 1 and 

W(0) ~ ~(s) k~-connected, k, i> 1, for all s e S. As in (4.4), it will be enough if we 
show that the n-cube Map(K, ~r) is (n - 1 - n p +  Zk~)-co-Cartesian. 

The functor X ~ Map(K, X) takes k-connected maps to (k - p)-connected maps. 
Since it also commutes with holim, it takes k-Cartesian cubes to (k -p ) -Car t e s i an  

cubes. Therefore, by (2.3), the cube Map(K, Y') is ( 1 - n - p + Xk~)-Cartesian. The 
same reasoning applied to the face ~ s - r  X, for each T ~ r in S, shows that the 

T-cube a s _ r M a p ( K , W ) = M a p ( K ,  ds_rYO is k(T)-Cartesian with k ( T ) =  
1--ITI--p+Z,~Tk,. Apply (2.6). For  any partition {T~} the sum of  k(T~) i s  
- n  + Zk~ + E~(1 - p ) .  This is minimized when each T~ has one element, because 
1 - p ~< 0. The minimum is - n p +  Z,k~. We conclude that the S-cube Map(K, 5f)is  

(n - 1 -- np + Zk~)-co-Cartesian. [] 

4.6. THEOREM.  Waldhausen's functor A is 1-analytic. 
Proof. This statement, reasonably interpreted, is true for any of  the various 

versions of  A, but let us be more definite about which one we mean. 
Theorem 2.1.5 of [9] provides a choice of  four naturally equivalent homotopy 

functors from simplicial sets to spaces. We mean any one of  them, say 
X~*f~[hS.Rf(X)[,  composed with the singular complex functor from spaces to 
simplicial sets. Thus, A is a homotopy functor from (unbased) spaces to spaces. We 

claim that it satisfies En - 1 (n - 1, 2). 
Let 5f be a strongly co-Cartesian S-cube of  spaces, with IS[ = n/> 1 and 

~(0)  ~ W(s) k~-connected, k~/> 2, for all s E S. We show that the cube A(W) is 

( 1 - n + Y&~)-Cartesian. 
As an easy consequence of  its definition, A takes finite disjoint union to product, 

and infinite disjoint union to 'weak product '  (=d i r ec t  limit of  finite products). 
Therefore, we can reduce easily to the case in which 3f(S) is path-connected. In this 
case every 5f(T) is path-connected, since the map 5f(T)w~ is 1-connected (in 
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fact, 2-connected). Choosing a point in Y'(0), we can consider Y" as a cube of  based, 
path-connected spaces. 

Now we can switch to a plus-construction definition of A, using [91, Theorems 
2.2.1 and 2.1.5. In fact, for based, path-connected X, A(X) is naturally equivalent 
to the product Z • BJtt~(X) + where 3u (a sort of 'space of  matrices') is a certain 
simplicial monoid which is a functor of  X. Specifically, W(X)  is the direct limit of  
J,~(G(X)), as defned on page 385 of [91 or page 359 of [8], G(X) bring the Kan 
loop group of  the singular complex of  X. It will be enough if the cube BW(Y') + is 
(1 - n  + Eks)-Cartesian. The monoid of components n0W(X) is naturally isomor- 
phic to GL(Z[nlX]).  In particular it is a group, which implies that W(X) is 
equivalent to fBW(X) .  

We will need to replace the spaces B~(Y'(T)) + by their universal covers. The 
group n l ( B ~ ( X )  +) ~-(no~,C~(X))ab~-Kl(Z[nlX]) depends only on niX, and the 
universal cover of  B~,~(X) + is naturally equivalent to B~(X) + where 8(X) c W(X) 
is the union of those components which correspond to elements of  the commutator 
subgroup E c GL. Let c~(X) c r  ~ W(X) be the component of  the identity. As 
a space, ~(X)  is naturally equivalent to the weak product (indexed by a fixed 
infinite countable set t~ • t~) of  copies of the zero component of  Q(G(X)+ ), or 
Q(fX+). (See [81.) 

All of  the spaces Y'(T) have the same fundamental group, since the map 
Y'(T) ~ Y'(S) is 2-connected. Therefore, it will be enough if the cube formed by the 
universal covers or, equivalently, the cube Bg(Y')+, is (1 - -n  + Y&s)-Cartesian. 

We now make a series of  connectivity estimates, applying the theorems of  Section 
2 several times: 

Y" is (1 - n  + Zk~)-Cartesian by (2.3). 
flY" is ( - n  + Y,k~)-Cartesian. 
f y "  is ( - 1  + Ek~)-co-Cartesian by (2.6). (Apply the previous statement to the 

faces of f y ' . )  
Q ( f y ' +  ) is ( - n  + Ek~)-Cartesian by (1.19). 
(g(y') is ( -  n + Eks)-Cartesian. 
8(Y') is ( - n  + Ek~)-Cartesian. This uses the fact that %g(Y'(T)) is independent 

of  T. 
BS(Y') is (1 - n + Ek~)-Cartesian. This is not as obvious as it may look; we prove 

it by induction on n, and begin by noting the consequence that the total fiber 
fBg(Y') is connected, in fact n-connected since - n  + Zk~ ~> n. We want the map 
a(Bg(Y')) : Bg(O) ~ hoBg(y') to be (1 - n + Y~ks)-connected. We know by the previ- 
ous step that it becomes ( - n  + Ek~)-connected after looping, so it is enough if 
hoBg(y') is connected. Write Y" as a map ~ J ~  of  ( n -  1)-cubes, By (1.2.a), 
hoBg(y') fibers over hoBg(Y) with fiber fBg(Lr). Both base and fiber are connected 
by induction on n. 

Bg(Y') is (Eks)-co-Cartesian by (2.6). (Apply the previous statement to the 
faces.) 
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Z~(BS(Sf) +),~ Z~~ is a (Zks)-co-Cartesian cube of  spectra, by (1.19). 
Bg(~r)+ is a (Zk~)-co-Cartesian cube of spaces. (Note that the map 

b(Bg(~) +): hl (Bg(~)  +) ~ B g ( ~ ( S ) )  + is a map of 1-connected spaces, so that the 
vanishing of its relative stable homotopy groups in a range of low dimensions implies 
the vanishing of its relative homotopy groups in the same range.) 

Bg(~)  + is ( 1 -  n + Eks)-Cartesian by (2.4). (Apply the previous statement to 
faces.) [] 

The theorem can be extended to other versions of the theory. For example, let 
A(X) be the spectrum {~2m[hS(m).Rs(X)l} (see [9], 1.3 and 1.5); this is a ( -  1)-con- 
nected spectrum with A(X) , , ,  f~~ The homotopy functor A from spaces to 
spectra again satisfies En _ 1 (n - 1, 2). To prove this, let X be a strongly co-Cartesian 
S-cube of spaces, with IS[ = n  >~ 1 and ~ ( 0 ) ~ f ( s )  ks-connected, ks ~>2, for all 
s e S. We have to show that the total fiberfA(X) is [E(ks - 1)I-connected. By (4.6) 
we know that its homotopy groups vanish in dimensions from 0 through 2(k~ - 1). 
We must also check that it is ( -  1)-connected. This is easy, using induction on n: 
Write ~ as a map ~1 - - . ~  of(n  - 1)-cubes. Thenfh(qr a n d f A ( ~ )  are (n - 1)-con- 
nected by induction, therefore 0-connected, and their fiberfA(Sf) is ( - 1)-connected. 

5. Some Consequences of Analyticity 

We continue to work with homotopy functors from spaces to (based or unbased) 
spaces or spectra. The theme of  this section is that functors which are p-analytic 
tend to behave quite rigidly on the class of p-connected spaces, and more generally 
on the class of all spaces Y having a (p + 1)-connected map to a fixed space X. Here 
is a very easy result in that direction: 

5,1. PROPOSITION (Uniqueness of analytic continuation). Let F and G be p- 
analytic functors, and let ~ : F ~ G be a natural map. Suppose that, for some k, the 
map ~ : F ( Y )  ~ G(Y)  is an equivalence for every Y admitting a k-connected map to 

X. Then this is so for k = p + 1. 

The proof of (5.1) uses the following fiberwise join construction (which will also 
prove very useful in [6]). Let f :  Y ~ X be a map of spaces. I f  T is any finite set, 
define the space Y *x T as the homotopy colimit of Y ~ Y x T ~ X • T. This is the 
union along Y of several copies of  the mapping cylinder o f f ,  one for each element 
of T. (If  T is empty, it is Y). We view - * x  T as a functor from ~ x ,  the category 
of all spaces over X, to itself. 

When T has just one element, then Y *x T is what was called the fiberwise cone 
of Y in [5]. When T has two elements, it is the fiberwise unreduced suspension Sx Y. 
In general, it is equivalent in ~ x  to the union along X of  I T ] -  1 copies of Sx Y. 

Clearly: 

(5.2) If  Y ~ X  is (k-1) -connec ted ,  then Y * x T ~ X  is k-connected for 
nonempty T. 
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The fiberwise join is also a functor of T; as T runs through the subsets of a fixed 

finite set S, it yields an S-cube of  spaces over X, Y *x ~ (S )  : ~ (S )  ~ q/x. This is a 
pushout cube and, therefore, strongly co-Cartesian. 

Proof of (5.1). We may assume k = p + 2. Let q satisfy the requirements of (4.2) 
for both F and G. Let f :  Y ~ X be a (p + 1)-connected map. 

Choose a large finite set S, say with ISI = n + 1, and consider the map of S-cubes 

of spaces 

O: F (Y  *x~(S) )  

In the square diagram 

V(r)  

oi 
ho(F(Y *x ~(S))  

, G(Y *x~(S) )  

+ G(Y) 

, ho(G(g *x ~'(S)) 

the lower map is an equivalence, by (5.2) and the hypothesis. Each of the verti- 
cal maps is ( q - n p + ( n + l ) ( p + l ) ) - c o n n e c t e d ,  since F and G satisfy 
E n ( n p -  q, p + 1). It follows that the upper map is (q + p + n)-connected. This 
tends to + ~ with n, which was arbitrary. [] 

The remaining results in this section use the derivative, the differential, and the 
1-jet of an analytic functor as defined in [5]. We recall roughly what these are: 

The functor F: q / ~  ~ determines, for each space X, a functor PxF (the 1-jet of  
F at X) whose domain is the category q/x of spaces over X. There are natural maps 
F(Y)  ~ ( P x F ) ( Y ) ~ F ( X ) .  Up to homotopy, Px F is the universal example of  an 
excisive functor from q/x to @ that is equipped with a map from F. 

The differential DxF is defined if ~ is spectra or based spaces; it is the homotopy 
fiber of  the canonical map from PxF to the constant functor F(X) on q/x; it is a 
linear ( =  excisive and reduced) functor from q/x to ~ .  

For  a space X and point x e X, the differential DxF yields a linear functor L 
from based spaces to ~ by putting L(Z)  = (DxF)(X v Z). Thus there is a spectrum 
_C such that L(Z)  is naturally equivalent to C ^ X (if @ = 5 0  or f~~ A Z)  (if  

= ~--), at least when Z is finite CW. This spectrum can be made functorial in 
(X, x) and F; it is called the derivative of  F at (X, x) and written OxF(X). 

We may refer to any of  the theorems below as the 'first-derivative criterion'. 

5.3. THEOREM.  Let F and G be p-analytic functors from spaces to spectra. 
Let 0 : F ~ G be a natural map. I f  the induced map DxF ~ DxG is an equivalence 
for all spaces X, then for every (p + 1)-connected map Y ~ X  the diagram is 
Cartesian: 

F( Y) ) G( Y) 

1 1 
F(X) ) G(X) 
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The meaning of the hypothesis on DxF ~ DxG is that for every space Y and map 
Y ~ X  the map (DxF)(Y) ~ (DxG ) (Y  ) is an equivalence. 

In particular, taking G = *, we have: 

5.4. COROLLARY (Functors with 'derivative zero' are locally constant). Let F be 
a p-analytic functor from spaces to spectra. I f  DxF is contractible for all spaces X, 
then F(X) depends only on the p-homotopy type of X: every (p + 1)-connected map 
Y ~ X induces an equivalence F(Y) ~ F(X). 

Proof of (5.3). We actually prove (5.4). This, with 'F '  equal to the homotopy 
fiber of F ~ G ,  yields (5.3), since fiber(DxF-+DxG) is naturally equivalent to 
Dx fiber(F ~ G). By hypothesis, there is some qo such that, for all n ~> 1, F satisfies 

E,(np - qo, P + 1). 
Let Y ~ X be a k-connected map, k > p. Consider the diagram: 

F(Y) > (PxF)(Y) > F(X). 

The hypothesis DxF ~ * means that the second map is an equivalence. Therefore, 
using [5] (1.15.ii), E1(p -qo ,  P + 1) implies 

(5.5) F(Y) ~ F ( X )  is ( q o - P  + 2k)-connected whenever Y ~ X  is k-connected 
and k > p. 

We will show that F satisfies EI(p - q, p + 1) for all q, so that (5.5) becomes the 
statement to be proved. We will do it by proving, inductively with respect to q, that 
F satisfies E,(np - q, p + 1) for all q and all n. 

We assume E,+ l((n + 1)p - ( q  - 1), p + 1) and prove E,(np - q ,  p + 1). 
Let X be a strongly co-Cartesian (n + 1)-cube of spaces. Suppose that, for each 

s, the map ~(0) ~ s is k~-connected, k, > p. Call that map e~. We show that 
F(s is (q - n p  + ~ k,)-Cartesian. 

Without loss of generality, by (2.2), the maps (Co, �9 �9 �9 e,) are cofibrations and 
is a pushout (n + 1)-cube. Let ~ be the pushout (n + 2)-cube defined by the cofibra- 
tions (eo, Co, e~ . . . . .  e,). Then ~ may be viewed as a map from f to another (n + 1)- 
cube ~ .  By ( 1.6.i) it will be enough if F(~r and F (~  e) are (q - n p  + Z, k~)-Cartesian. 

For ~e this follows from the inductive hypothesis E ,+t ( (n  + 1 ) p - ( q - 1 ) ,  

p + 1), since 

q -  1 - ( n  + 1)p + ( 2 k o + k ~  + k 2 + " "  +kn)  

= q  +(k0 - p  - 1) - n p  + (ko + k 1 + . ' - + k n _  l + k n )  

>/q - n p +  (ko + kl + " "  + k , _ l  +kn). 

Notice that ~r is also a pushout cube. The defining cofibrations here are 
(fo,f~ . . . .  ,f~), where f~ is defined by the pushout square: 

e0 

x(0) , ~(0) = , / (0)  
e'l 
~(s) > Y(s) 
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The best we can assert about f~ is that it is still ks-connected, so we seem to have 
made no progress, having simply traded ~ for ~ .  

However, ~r has a special feature: One of the cofibrationsf~ from which it is built, 
namely fo, has a left inverse g: ~1(0) --*~J(0). It follows that Yr viewed as a map of 
n-cubes, has a left inverse Yr 

02/" 

(5.6) ~ (T)  ) ~ ( T u 0 )  +Y/(T), T = n = { l  . . . .  ,n} 

View Yr as an (n + l)-cube. It is strongly co-Cartesian. The conclusion of 
E n ( n p -  q, p + 1) will hold for the cube Yr if it holds for ~J'. Indeed, g is 
(k0+ D-connected (by (1.5.iii) applied to ~J(0)---}Y/(0)--}Yr and if F(~/') is 
(q - np + (ko + 1) + kl + k: + .  �9 �9 + kn)-Cartesian then F(~t) is (q - np + ko + 

k~ + k2 +"  �9 " + kn)-Cartesian (by (1.8.iii)). 
Now a downward induction with respect to ko (with k ~ , . . . ,  kn fixed) completes 

the argument. To begin the induction, use (5.5). It implies that for each T c n the 
map F ( g f ( T ) ) ~ F ( & r ( T u O ) )  is ( q o - P  + 2ko)-connected, which implies by (1.6.ii) 
that the (n + D-cube F(& r) is ( q o - P - n  +2k0)-Cartesian. For large ko, this 
exceeds q - np + E~ ks. [] 

We indicate some variants of (5.3). 
In trying to extend (5.3) to space-valued functors, we must be careful to avoid a 

fallacy: It is not true that a map is an equivalence [resp., a map of cubes is 
Cartesian] if its fiber is contractible [resp., Cartesian]. Thus we are led to a 
statement involving the map ( P x F ) ( Y )  ~ F(X)  rather than its fiber. We are also led 
to study the map F ~ G itself rather than its fiber; we cannot deduce the new 
version of (5.3) from a new version of (5.4): 

5.7. THEOREM. Let F and G be p-analytic functors from spaces to (based or 

unbased) spaces. Let ~ : F ~ G be a natural map. I f  the square 

( P x F ) ( Y )  ' (PxG)(Y)  

1 1 
F(X)  , G(X)  

is Cartesian for every X and every Y ~ X, then for  every (p + 1)-connected map 
Y --} X, the diagram is Cartesian: 

F ( Y )  , G(Y)  

1 1 
F(X)  , G(X)  

Proof  (sketch). The inductive hypothesis in the proof of (5.3), that F satisfies 
E,(np - q, p + 1) for all n, should be replaced by the statement: 

For every n, for every strongly co-Cartesian (n + 1)-cube of spaces, if the map 
Y'(0) --* 5f(s) is ks-connected, ks > p, for all s, then the (n + 2)-cube F (~ )  --* G(Y') 
is (q - np + Y~ k,)-Cartesian. 
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The analyticity means that both F(W) and G(Sf) are (qo - np + E, k~)-Cartesian 
for some qo (independent of n). This begins the induction with respect to q. 

To go from q - 1 to q, we follow the pattern of the proof of (5.3), reducing to 
proving that F(Sf) ~ G(Y') is (q - np + ~s ks)-Cartesian when k0 is large. This case 
is handled by showing that the outer square in 

F(Y) ) G(Y) 

1 1 
(PxF)(Y)  ' (PxG)(Y)  

l l 
F(X) , a ( x )  

is ( q o - P  + 2ko)-Cartesian when Y-+ X is ko-connected. This is true for the upper 
square by ([5], (1.15.ii)); the lower square is Cartesian by hypothesis. [] 

5.8. THEOREM. For functors to connected, based spaces (5.3) applies exactly as 
written. 

Proof The hypothesis of (5.3) implies that of (5.7) in this case. [] 

Recall from [5] that a homotopy functor F is said to satisfy the limit axiom if for 
every CW complex X, the homotopy groups of F(X)  are colimits of homotopy 
groups of F(X~), indexed by the finite subcomplexes X~ c X. If  the functors F and 
G satisfy the limit axiom, then the hypothesis of (5.3) or (5.8) can be altered so as 
to refer to the derivative instead of the differential: 

5.9. THEOREM. Let F and G be p-analytic functors from spaces to spectra, or to 
connected based spaces. Assume that they satisfy the limit axiom. Let ~ : F ~ G be a 
natural map. I f  the induced map OxF(X) ~ OxG(X) is an equivalence for all based 
spaces (X, x) then for every (p + 1)-connected map Y ~ X the diagram is Cartesian: 

F(Y)  , G(Y) 

l l 
F(X) , G(X) 

Proof See [5], (1.3.v). [] 

Here is the variant needed in [2]. Let p be a prime number. 
Define the p-completion of a spectrum E to be the homotopy limit of the tower 

E ^ M ( p  n) of smash products with Moore spaces. This is the same as the Bousfield 
localization of E with respect to rood p homotopy theory; the canonical map from 
E to its completion induces an isomorphism of mod p homotopy groups, and a map 
of spectra induces an equivalence of p-completions if and only if it induces 
isomorphisms of rood p homotopy groups. Call a spectrum p-complete if the 
canonical map to the p-completion is an equivalence. I f  F is a homotopy functor 
from spaces to p-complete spectra, then we will say that it satisfies the p-limit axiom 
if, for every CW complex X, the mod p homotopy groups of F(X)  are colimits of 
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mod p homotopy groups of F(X~), indexed by the finite subcomplexes X~ c X. For 
example, the p-completion of a functor that satisfies the limit axiom always satisfies 
the p-limit axiom. 

5.10. THEOREM. Let F and G be p-analytic functors from spaces to p-complete 
spectra. Assume that they satisfy the p-limit axiom. Let ~ : F ~ G be a natural map. 

I f  the induced map ~xF(X) ~ axG(X) is an equivalence for all based spaces (X, x), 
then for every (p + 1)-connected map Y ~ X, the square is Cartesian: 

F ( Y )  , G(Y)  

1 1 
F ( Y )  , G(X) 

Proof. Smashing both functors with a mod p Moore space, we obtain functors 
F/p and G/p satisfying the hypotheses of (5.9). By (5.9) we conclude that the square 

(V/p)(Y) , (G/p)(Y) 

1 1 
(F/p)(X) , (G/p)(X) 

is Cartesian, whence the preceding square is Cartesian after p-completion of the 
spectra in it. But they are p-complete. [] 

Appendix: Operators on the Free Loopspace 

In [5], Corollary 2.5, we determined the derivative of the functor X ~ Q(AX+ ), 
stable homotopy of the free loopspace. Here we obtain an improved, equivariant, 
version of that result. The equivariant version is required in [2]. 

According to Corollary 2.5 of [5], the derivative of the functor X ~ Q+ AX is 
given by 

(A.1) #xQ+(AX) ~AE~(f~X). 

The topological monoid of all continuous maps f :  S 1 ~ S  ~ acts (continuously) on 
AX and on Q+ (AX). Because 'differentiation' of functors is functorial, the monoid 
acts on the left-hand side of (A.1) and in fact it acts continuously, as one verifies 
by examining the definitions. In [2], we need to know the corresponding action on 
the right-hand side of (A.1). More precisely, (A.1) is shorthand for a chain of 
natural weak homotopy equivalences between homotopy functors of X, and what 
we need is a continuous action on the right-hand side such that, in the chain of 
equivalences, each functor of X has a natural continuous action and each equiva- 
lence is an equivariant map. 

We only really need this for the submonoid generated by the rotations and the 
power maps. The answer is simple to state in that case. Write S ~ = ~/Z, and define 
the rotations au (u e ~/Z) and the power maps P, (n e Z) by au(t) = t + u and 
Pn(t) = nt. Let P * ' f ~ X - - . f ~ X  be composition with P,. 
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A.2. PROPOSITION. The equivalence (A. 1) respects the action of the rotations and 
power maps if the rotation au acts on A~,~ (f~X) by 2 ~ 2 o au and the power map P, 
acts by 2 ~ [Z~176 ] o 2 o Pn. In other words, to make formula (A.1) equivariantly 
correct, the rotations should act only on the 'A' in AE~(OX), while the power maps 
act both on the 'A' and on the '~'. 

The proof of (A.2) really consists of re-reading the proof of (A.1) with the 
monoid in mind. 

In [5], (A.1) was derived from a more general result (Theorem 2.4) in which S 1 
was replaced by an arbitrary finite complex K. It is no harder, and maybe easier, to 
work out an equivariant version of that more general result. This we now do. 

Theorem 2.4 of [5] identifies the differential and the derivative of the functor 
F(X) = Q+ Map(K, X). For the differential, it gives: 

(A.3) (DxF)(Y-*X)  ,.~ OK(Y-*X).  

(See section 2 of [5] for notation.) Of course F(X) is a functor of K as well as X. 
It is clear in re-examining the proof of (2.4) in [5] that the equivalence (A.3) is 
natural in K. We must verify this, making explicit the way in which OK(Y-*X)  is 
a (contravariant) functor of  K. 

Let Y - * X  be a map of spaces. Any map f : K - * L  determines a 
map |  : |  -* |  as follows: It determines a map f of 
fibrations over K x X: 

(k, g o f )  K • Map(K, X) = E(K, X) , K x X 

Y T' 
(k, g) K x Map(L, X) ~- ( f  x 1) - 'E(L, X) , K x K 

L x Map(L, X) = E(L, X) , L x X 

By pullback with K x  Y ~ K  x X this f determines a map f r :  
( f  • 1)- IEy(L,  X)--*Er(K, X)  of fibrations over K x Y. By fiberwise suspension 
over K, f r  yields for each i ~> 0 a map fi, r : f -  1Ei, r(L, X) -* E~,r(K, X) of fibrations 
over K with distinguished sections. The resulting maps 

FL(E~,r(L, X)) , FK(f-~E~,r(L, X)) , FK(Ei, r(K, X)) 

71 ) f - ' ( 7 )  J >J~,r of-1(7 ) 

of spaces of sections, taken together for all i, give a map of spectra. The associated 
map of ~-spectra is O f ( Y ~ X ) ,  and the resulting map O f ( Y - , X ) :  
OL(Y-* X)--* OK(Y-*X)  corresponds in (2.4) to the map of differentials induced 

functorially by f .  
Having obtained a form of (A.3) which is natural in K, we now restrict to a point 

xre X to obtain a similarly natural form of the formula 

(A.4) 8xQ+Map(K, X) .,~ FK(Ex(K, X)). 
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The map f determines a map Fy:FL(E~(L,X))~I'K(Ex(K,X)) as follows: It 

determines 

(k, g of)  

T 
(k, g) 

a map f~ of fibrations over K: 

K • Map(K, X)  ~ E~(K, X)  , g 

K x Map(L, X)  ~ f -~E~(L ,  X)  , K 

L x Map(L, X)  ~ E~(L, X )  , L 

and this yields for each i ~> 0 a map f~,x:f-lEi,x(L, X)  ~Ei,x(K, X)  of fibrations 
over K with distinguished section. The resulting maps 

(A.5) FL(E;,x(L, X)) , FK(f-IE~,x(L, X)) , F~:(E;,x(K, X)) 

7 i  ) f -1 (7 )1  )J~,x ~ 

of spaces of sections constitute a map of spectra. The resulting map Ff: 
Fr(Ex(L, X))  ~ FK(E~(L, X)) corresponds in (A.4) to the map d~Q+ Map(L, X) 
O~Q+ Map(K, X) induced functorially by f. 

Now specialize to the case K = L = S t = R / 2 ~ .  Identify E~(SI, X ) =  
{(0, g) E S 1 • AX :g(0) = x} with S 1 x f~X by (8, g) ~ (~, h = g o ao), so that the 
fibration E ~ ( S I , X ) ~ S  1 is identified with the trivial bundle S i x  f 2 X ~ S  1. The 
fibration f -~E~(S  1, X)  ~ S 1 can be identified with the same trivial bundle (since it 
is obtained by base change from a trivial bundle). In these coordinates the map fx 
is given by (O,h)~--~(~,f*o(h)) where f ~ s : f 2 X ~ X  is composition with 
f~ =a_f(o)ofoao.  The fibration E~,~(S~ ,X)~S  1 (ith fiberwise suspension of 
Ex(S~,X))  becomes the projection S~• S~(f2X+)-- ,S  1, with J~,x acting by 
(O,z) ~(&S~(j~0+)(z)). Thus, the space of sections Fs~(E~,~(S1, X))  becomes 
Map(S 1, S~(f~X+ )), and the map (A.5) becomes 

ASi(~2J~+ ) ;, ASi(nX+ ) 

~ (0 ~ s~ (~+  )(2(f(o)))). 

Note that whenf is  the rotation a~ or the nth power map P,, we have, respectively, 

fo(t) = a.(t + O) -- a.(O) = t, 

fo ( t )  = P . ( t  + ~) - P . ( 8 )  = Pn(t) .  

This proves (A.2). [] 
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