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Abstract. Let ~ (X)  be the (stable, smooth) pseudoisotopy space of the space X. For any map f :  Y--* X 
of spaces, we identify the homotopy type of the fiber of ~ ( f )  : ~(Y)  --* ~(X)  in a stable range, roughly 
twice the connectivity of the map Y ~ X. We establish some language for discussing and manipulating 
such stable-range relative calculations for any homotopy functor. The theorem about ~ has a corollary 
about Waldhausen's A. 
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O. Introduction 

Let ~(X) be the (stable, smooth) pseudoisotopy space of the space X. Any 
k-connected map Y ~ X  induces a ( k -  2)-connected map ~(Y)--*~(X). We 
describe the (2k - 3)-homotopy type of the fiber of ~(Y) ~ ~(X). This stable-range 
calculation of relative P-theory implies a corresponding result about relative 
A-theory, where A(X) is the Waldhausen K-theory of X. 

The theorem is proved in Section 3. In Section 1, we establish some language for 
systematically discussing stable-range calculations, and in Section 2 we work out an 
important class of examples. 

Here is a sketch of the contents of Section 1: 
A homotopy functor F from spaces to spaces is called excisive if it takes 

(homotopy-)co-Cartesian square diagrams to (homotopy-)Cartesian square dia- 
grams. In this case the reduced functor if(Y), the fiber of F(Y) ~ F ( , )  (where �9 is 
a one-point space), behaves like a homology theory: the spaces if(S t) form a 
spectrum and the homotopy groups of if(Y) are the homology groups of Y with 
coefficients in that spectrum, at least if Y is a finite complex. If F is reduced (F(,) --~ ,) 
and excisive then it is said to be linear and {F(S;)} is called its coefficient spectrum. 

If F is not excisive, then the spaces ff(S i) still form a prespectrum. The associated 
spectrum is written 8F(*) and called the derivative of F at ,. The differential of F 
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at *, written D,F,  is the functor taking Y to the (homotopy co-)limit of 

F(Y) -~ ~P(Sr')  ~ ~2ff(S2 Y) - , . . .  

Most homotopy functors F occurring in nature are stably excisive in the sense 
that when the maps X ~ XI and X ~ X2 in the co-Cartesian diagram 

X--) X~ 

I 1 

are, respectively, kl-connected and k2-connected, then F gives a (k 1 + k  2 - c ) -  

Cartesian diagram. (Here, c is some constant depending on F, and we may have to 
assume that the ki are not too small.) Stable excision for F implies that D , F  is linear 
and that OF(,) is its coefficient spectrum. It also implies that P and D , F  agree to 
first order at �9 in the sense that there is a natural map F( Y) - ,  (D , F)( Y) whose 
connectivity is about twice that of  Y. In fact, D , F i s  the only linear functor agreeing 
with ff to first order. It may be thought of as the best linear approximation to F. 
(In the notation of  [71 and [81, (D,F)(Y)  would be Fs(y+ ).) 

We generalize the construction above by replacing �9 by any space X. The derivative 
of  F at the based space (X, x) is defined to be the spectrum OxF(X) associated to the 
pre-spectrum 

i ~ fiber(F(X v S i) --*F(X)). 

The differential DxF is a certain functor from spaces over X to spaces. It is the 'best 
linear approximation' to the functor Y ~ fiber(F(Y) --~ F(X)). 

Our conclusion about A(X) is that its derivative is (naturally equivalent to) the 
unreduced suspension spectrum of the loop space: 

oO 

OxA(X) ~ Y (n.X+). 

Knowledge of the derivative of a functor becomes truly useful if the functor is 
analytic. This is explained in the sequel [4], where the ideas of Section I are extended 
from square to cubical diagrams. Diagrams in the shape of (n + l)-dimensional cubes 
yield the concepts n-excisive and stably n-excisive. Analytic means stably n-excisive 
for all n, more or less. 

Analyticity has strong consequences. For example, with suitable analyticity the 
statement d~F(X) ,,, �9 for all (X, x) implies that F is  'locally constant': F(X) depends 
only on the p-homotopy type of X for some small number 19. (This principle has been 
successfully applied when F is the fiber of a natural map between analytic functors. 
See [4] for references.) 

As another example, an analytic functor has a 'Taylor series' in the following 
sense: To each map Y ~ X o f  spaces is associated a tower { (PnF)(Y~X)} .  At the 
bottom is PoF "~ F(X), and if Y ~ X is (p + l)-connected then the tower converges 
to F(Y)I As a functor of Y for fixed X, PnF is n-excisive. The first layer (fiber of the 
map from P~F to PoF) is the differential DxF defined here. In many cases the nth 
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layer (the fiber of PnF ~ Pn_ 1F, which as a functor of Y is homogeneous of degree n) 
can be identified. In many interesting examples the 'radius of  convergence' p is 1. 
For  all of  this see [4]. 

CONVENTIONS. A space is a compactly generated topological space and products 
and function spaces are formed in that category in the usual way. Basepoints are always 
nondegenerate unless we say otherwise. An equivalence of (based or unbased) spaces 
is a weak homotopy equivalence. 

Homotopy limits and colimits of diagrams are defined as in [ 1], except that we work 
with diagrams of topological spaces rather than diagrams of simplicial sets. Thus, 
for a diagram ct ~ X(0t) of  spaces (i.e. a functor from a small category A to spaces) 
the hocolim is the realization of a simplicial space whose space of p-simplices is the 
coproduct, over all p-simplices % ~ .  �9 �9 ~ 0tp in the nerve of A, of X(%). 'Coproduct '  
may be disjoint union or wedge, according as the spaces are unbased or based. The 
holim is the realization ( 'Tot ')  of  a cosimplicial space whose space of p-simplices is 
the product over % ~ . . - ~  % of X(ctp). 

Aprespectrum is a sequence of based spaces {Ci I i >~ 0} and based maps Ci ~ f~C~ + 1. 
A map of prespectra is a collection of maps C; ~ D,. strictly respecting the structure 
maps. A spectrum is a prespectrum in which the structure maps are equivalences. The 
associated spectrum of a prespectrum {C~ } is {hocolim: fgCj +, }. (Homotopy colimit 
is needed here instead of colimit because we have placed no special conditions on 
the structure maps of a prespectrum.) An equivalence of spectra is a map which gives 
an equivalence of  spaces for each i. An equivalence of prespectra is a map which 
induces an equivalence of the associated spectra. 

It will sometimes happen, when trying to make a (pre)spectrum out of some based 
spaces Cj, that instead of maps C s ~ f~Cj+ 1 we only have diagrams 

in which the backwards map is an equivalence. This situation can be rectified in the 
following way" 

(0.1) Let Fj be the homotopy limit (not colimit) of the diagram: 

C:--+D: ~ E:---+~Cs+I--+~D:+I ~ UEj+I--+O2C:+2--+ ... . 

Then Fj is equivalent to C: and the {Fj } form a prespectrum. 

1. Differentiation of Functors 

We will define the differential, at any space X, of any suitable functor F : q/--* 9-" from 
spaces to based spaces. This will be a 'linear' functor DxF : qlx ~ ~-- from the category 
of spaces over X to the category of based spaces. 

An object in q/x is a pair ( Y , f )  where f :  Y ~ X i s  a map in q/. A map from ( Y , f )  
to (Y ' , f ' )  is a map Y ~  Y" in q/whose composition w i t h f '  isf.  When no confusion 
can result, we will sometimes omit to mention the structure map f ,  and just say 'Y 
is an object of  q/x' or 'Y is a space over X'. 
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We always assume that F is a homotopy functor in the sense that it takes (weak 
homotopy) equivalences to (weak homotopy) equivalences. 

1.1. DEFINITION. A functor L : q/x ~ ~-- is linear if it satisfies the following three 
conditions: 

(i) It is a homotopy functor. This means that it preserves equivalences. By 
definition, a map ( Y , f ) ~  (Y ' , f ' )  in ~//x is an equivalence if the underlying 
map Y ~ Y' of spaces is an equivalence. 

(ii) It is excisive. This means that F takes every co-Cartesian square diagram in 
q/x to a Cartesian square diagram in 9--. 

(iii) It is reduced. This means that it 'vanishes' at the final object X =  
(X, 1 : X--, X) e q/x, in the sense that L(X) is a (weakly) contractible space. 

(Co)Cartesian is short for homotopy (co)Cartesian. That is, these terms are used 
here in the following sense: 

1.2. DEFINITION. A (commutative) square diagram of spaces 

Y->Y, 

I I 
Y2 ~ Y12 

is Cartesian if the associated map from Y to holim(Y, ~ Y,2 *-- Y2) is an equivalence. 
(The target, the 'homotopy fiber product' of Y~ and Y2 over Y~2, is the fiber product 
of the associated path fibrations.) The diagram is co-Cartesian if the associated map 
from hocolim(Y~ ,-- y - o  I12) to Y,2 is an equivalence. (The source is the union along 
Y of the mapping cylinders of Y ~ Y1 and u u 

('Cartesian' implies that (for every basepoint in Y) the relative homotopy groups 
of Y--> Y~ map isomorphically to those of Y2 ~ Y12. Similarly 'co-Cartesian' implies 
that the relative homology groups of Y ~ Y, map isomorphically to those of Y2 ~ II12.) 

A square diagram of spaces over Xis called (co)Cartesian if the underlying diagram 
of spaces is (co)Cartesian. 

In the case X = , ,  so that q/x = q/, it is well known that a linear functor L : q/--, 
gives rise to a (generalized, reduced) homology theory. Indeed, for any space Y there 
is a co-Cartesian diagram 

Y----> CY 

l 1 
CY ~ S Y  

where CY and SY  are the (unreduced) cone and suspension. By 1.1(ii) this y~elds a 

Cartesian diagram 

L(Y) --* L(CY) 

t 
L(CY)  --> L(SY)  
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Since L(CY) is contractible by 1.1(i) and 1.1(iii), this makes L(Y) equivalent to 
~L(SY). In particular the homotopy groups h ,  Y = z~, + iL(SiY) are independent of 
i as soon as they are defined, i.e. when i > - , .  The axioms for homology follow 
easily from 1.1. 

We will not need the classical fact that every homology theory arises from some 
linear functor of spaces. (This can be deduced easily from the theorem of G. 
Whitehead [l l] which says that every homology theory on based finite CW 
complexes has the form hi(Y) = ~i(C ^ Y) for some spectrum C.) We will, how- 
ever, need some (well known) ideas related to this fact: 

1.3. Remarks (on spectra and linear functors): 

(i) A linear functor L from spaces to based spaces naturally takes values in infinite 
loopspaces. More precisely L(Y) is naturally equivalent to the zeroth space in a 
spectrum L(Y) whose j th  space Lj(Y) is equivalent to L(SJY). (SJY is the j-fold 
unreduced suspension of Y. We need 0.1 here, because there is not literally a map 
from L(Y) to f~L(SY).) The functor Lj is again linear from spaces to based spaces, 
and L is linear from spaces to spectra with the obvious extension of Definition 1.1. 
(A square diagram of spectra is called Cartesian if it consists of Cartesian square 
diagrams of spaces.) 

(ii) Conversely any linear functor L = {Lj } from spaces to spectra can be recovered 
from the functor L0 as in (i). That is, the spectrum {Lj(Y)} and the spectrum 
{Lo(SiY)} are related by a (chain of) natural (weak) equivalence(s). This is proved 
using the bispectrum {Lj(SiY)}. 

(iii) A linear functor L from spaces to based spaces is determined up to equivalence, 
at least on finite complexes, by its coefficient spectrum {L(SQ}. This is a conse- 
quence of the corresponding fact about spectrum-valued functors, namely: 

(iv) A linear functor L from spaces to spectra is determined, on finite complexes Y, 
by the spectrum L(S~ In fact, (a) any spectrum C determines a linear functor Lc, 
and (b) in the case C =L(S  ~ there is a comparison map L c ~ L .  Here are the 
essential details: 

(a) Given C and a based set Y, let Lc(Y) be the spectrum associated to the 
pre-spectrum {Cj ^ Y}, namely {hocolim ~i(Ci+j ^ Y)}. Extend this construction 
to based simplicial sets Y by Lc(Y ) = lit] ~ L c ( r , )  I. Extend it to the unbased 
case by redefining Lc(Y) to be what was formerly the homotopy fiber of 
Lc(Y+) ~Lc(S~ (In the based case, this only changes Lc(Y ) by a natural 
equivalence.) Define it on spaces by evaluating Lc on the singular complex. (In the 
case of the realization of a simplicial set, this only changes it by an equivalence.) 

(b) Now let C be L(S~ For a based set Y there is an obvious map of prespectra 

Cj ^ Y = Lj(S ~ ^ Y ~ Lj(Y)/Lj(*) ~ Lj(Y). 

Passing to the associated spectra yields a (chain of) map(s) Lc (Y) --* L(Y) when Y 
is a based set, and up to natural equivalence this extends to the case of an unbased 
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space. By construction, the map is an equivalence when Y = S ~ The same conclusion 
now follows when Y is a finite simplicial set (or a finite CW complex), by a 
Mayer-Vietoris  argument using the linearity of  the two functors. (A map between 
two Cartesian squares of spectra must be an equivalence in all four corners of the 
square if it is so in any three. This is not quite true for spaces.) 

(v) It often happens that the particular linear functor L under consideration satisfies 
the limit axiom: For every CW complex Y the direct limit of  ~r,L(Y') over finite 
subcomplexes Y ' c  Y is 7r,L(Y). In this case, (iii) or (iv) is valid for all spaces. 

A linear functor L : ~#x - Y- can be thought of  as a homology theory on spaces 
over X. If  ( Y , f )  is a space over X, then the diagram of  spaces over X 

Y---+ CxY  

c.r---+ s x r  

is co-Cartesian, where the fiberwise cone Cx Y is the mapping cylinder o f f  and the 
fiberwise suspension Sx Y is the union of  two such cones along X. Thus, again L Y 
is naturally equivalent to ~L(SxY)  and the groups a .  + iL(S~Y), * > - i ,  satisfy 
analogues of the usual axioms. (Of  course, 1.1(i) yields a very strong 'homotopy 
axiom', since the notion of  equivalence in q/x is so weak. In particular, up to 
isomorphism the homology groups of  Y depend only on the homotopy class of  

f :  Y + X . )  
The most fundamental example of  a linear functor is the one corresponding to 

stable homotopy. For  a based space Y we write as usual Q(Y) for the limit of  
fV(S" ^ Y) and Z~176 for the corresponding spectrum. For  an unbased space Y we 
write Y+ for Y with a disjoint basepoint added, and we sometimes write Q+ (Y) for 
Q(Y+ ) and E ~ Y  for E~(Y+) .  Thus in the language used here Q+ is an excisive 
homotopy functor from q/ to ~" which when reduced yields the linear functor 
Y~-+fiber(Q(Y)--+Q(*)), whose coefficient spectrum is the sphere spectrum 
X*~S ~ Zoo(.). 

More generally there is the following class of  linear functors: 

1.5. CONSTRUCTION.  Let E--+ X be a fibration. If  Y is a space over X, write 
E x x Y for the fiber product. Then Y ~ Q+ (E x x Y) is an excisive homotopy 
functor from q/x to g ' ,  so it yields a linear functor Y ~ fiber(Q+ (E x x Y) --+ Q+ (E)). 

1.6. Remark. Parts (i) and (ii) of  1.3 apply equally well to functors defined on spaces 
over X. A linear functor L from q/x to ~'- has a coefficient spectrum for each point 
x in X, namely {L(X v x Si)} �9 (In 1.5, the coefficient spectrum is Q(Ex), where Ex 
is the fiber of  E --+ X.) This governs the behavior of  L on spaces over X of  the form 
Y --- X v x Z, where the structure map Y ~ X is the retraction sending Z to x. For  
different points x in the same path-component of  X the coefficient spectra are 
equivalent, but the equivalence depends on a choice of  path. Informally, L 
corresponds to a locally trivial coefficient system of  spectra over X (which may 



CALCULUS I: THE FIRST DERIVATIVE OF PSEUDOISOTOPY THEORY 

be globally nontrivial even if X is 1-connected). We will not need to make this 
precise. We will, however, need that in a weak sense any linear functor is 
determined by its coefficient spectra: 

1.7. PROPOSITION. Assume that a map L ~ M between two linear functors from 
Olix to J- induces an equivalence of coefficient spectra for each point in X. I f  L and M 
satisfy the limit axiom, then L(Y)  ~ M ( Y )  is an equivalence for every Y over X. (In 
general, it is an equivalence for every Y which satisfies a suitable finiteness condition, 
for example the following: the map Y ~ X can be factored Y --* X" ~ X with (X', Y) 
a finite relative C W  complex and X" --. X an equivalence.) 

Proof By 1.3(i) and 1.3(ii) we may work instead with the corresponding spec- 
trum-valued functors L and M. Consider the homotopy fiber of L ( Y ) ~ M ( Y ) .  By 
assumption this functor of Y e q/x vanishes (gives a contractible spectrum) when Y 
is XI I  {point}. Since it is a homotopy functor it also vanishes when Y is X I I  {disk} 
(with any map from the disk to X). Being reduced, it vanishes when Y is X. A 
Mayer-Vietoris argument as in 1.3(iv.b) now implies that it vanishes, first, when Y 
is XLI {sphere} (with any map from the sphere to X), and then whenever Y satisfies 
the finiteness condition. In the presence of the limit axiom this implies that it 
vanishes in the general case. [] 

For a functor F :  q / ~ ' -  we can now give an informal definition of DxF. 
Namely, restrict F to qlx and let �9 : q/x ~ f be the reduced functor: 

�9 (Y) = fiber(F(Y) --* F(X)). 

Define (DxF)(Y)  as the direct limit of f~s~(S~xY ). (The (i + 1)st map in the limit 
system is made by evaluating the reduced functor Y ~ f~i~(S~xY) on 1.4. In trying 
to say this carefully, one would need 0.1; the actual definition of DxF will avoid 
that difficulty.) 

In order that this process should actually yield an excisive functor in the limit, it 
seems necessary to make some hypothesis about F. The following mild one will 
suffice; it is satisfied in every interesting example. 

1.8. HYPOTHESIS (stable excision). F has the following property for some in- 
tegers c and x: 

E(c, x): If  Yr is any co-Cartesian square 

y---+ y~ 

l l 
Y~--~ Y~2 

of spaces in which the map Y ~ Ys is ks-connected and ks/> x for i = 1, 2, then the 
square diagram F(~r is (kl +k2-c) -Car tes ian .  That is, the resulting map 
F(Y) ~ holim(F(I"l ) ~ F(Y12) ~ F(II2)) is (at least) (kl + k2 - c)-connected. 
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1.9. EXAMPLES 
(i) The Blakers-Massey triad connectivity theorem says that the identity functor 
from spaces to spaces satisfies E(1, r)  for any ~c. 

(ii) Waldhausen's functor ,4 satisfies E(1, 2), according to ([7], 2.4). 

(iii) The functor X ~ - * F ( X ) =  Q Map(K, X) where K is a d-dimensional finite 
complex satisfies E(2 dim(K), K) for any ~. The proof  uses the Blakers-Massey 
theorem. For  details and a more general statement, see [4]. 

1.10. DEFINITION.  If  C : r162  - is a homotopy functor, then the functor 
TC : ~ x  ~ J -  is given by 

(Te))(Y) = holim(e)(Cx Y)  ~ e)( Sx  Y )  *- e)( Cx Y)),  

and t ( e ) ) : C - *  Te) is induced by 1.4. The functor Pc):  ~ x - ~ f  is defined by 
making a homotopy colimit of  iterates of T: 

( PC)(  Y )  = hocolim(C(Y) ~ ( Te))( Y )  -~ ( TTe))(  Y)  ~ . . .). 

(The map from Tie) to T ;+ ~e) in this diagram is t(Tie)).) The inclusion map e)-~ Pc) 
is called p(C). The linearization of  e) is the functor De):Cgx ~ 5" obtained by 
reducing PC: 

(D C)(Y) = fiber((P e))(Y) --. (Pe))(X)).  

Of course, if C is excisive then t(C) and p(e)) are equivalences. 

1.11. DEFINITION.  Let F :  q/--, 5 be a homotopy functor and X ~ ~ a space. If  
e) : q/x ~ ~- is the restriction of  F (composition with the forgetful functor) then: 

(i) The functor P x F  = Pe) : qlx ~ 5 is the 1-jet of F at X, 
(it) The functor D x F  = De)" ql x ~ ~-- is the differential of F at X. 

It is immediate from the definitions that Px  F and D x F  are again homotopy 
functors. Stable excision for F implies stable excision for e) because the forgetful 
functor q/x ~ q/preserves co-Cartesian squares and connectivity of  maps. We will 
see that stable excision for e) implies excision for P x  F and DxF.  

1.12. REMARK.  Let e ) ~  �9 denote the operation of  reducing a functor, so that 
�9 (Y) = fiber(C(Y) --* C(X)). We have defined De) as PC. It could just as well have 
been defined as P ~ .  Indeed, the diagram 

(PffO(Y) ~ (Pe) ) (Y)  

1 1 
(PC~)(X) --~ (Pe))(X)  

is Cartesian and (PC~)(X) is equivalent to a point. 
Stable excision for C implies stable excision for Te), but with the improved 

constants c - 1 and ~ - 1. (This uses the fact that the fiberwise suspension functor 
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Sx:~x - -*  qlx preserves co-Cartesian squares and raises connectivity of maps by 
one.) Thus, TiO satisfies E(c - i, x - i) and in the limit PO is actually excisive. 

E(c, ~) for �9 also immediately implies that the map t (O):O(Y)-~(TO)(Y) is 
( 2 k -  c)-connected whenever the structure map Y ~ X  is k-connected and k >t x. 
This state of affairs deserves a name: 

1.13. DEFINITION. Two functors �9 and ~ from ~ x  to ~- agree to first order 
via a natural map f :  ( I ) ~  i f f  satisfies the following condition: 

O(c, ~c): there are constants c and r such that, whenever Y--* 2" is k-connected 
and k/> x, then f :  O(Y) ~ ( Y )  is (2k - c)-connected. 

E ( c -  i, x -  i) for TiO implies that the maps in the telescope are better and 
better: the map t(T~O) from T~O to Ti+IO satisfies (9(c-  i, x -  i). In particular, 
p(O) satisfies O(c, x), because each t(TiO) does so. We conclude: 

1.14. PROPOSITION. I f  O is stably excisive, then 

(i) PO is excisive and DO is linear. 
(ii) �9 agrees with PO, and �9 agrees with DO, to first order. 

(To obtain the statement about ~)just note that in the diagram 

O(Y) ---, (PO)(Y) 

l 1 
o(2") ~ (PO)(2") 

the lower map is an equivalence.) 
Of course as a special case of Proposition 1.14 we have: 

1.15. PROPOSITION. I f  F: ~ll ~ ~- is any stably excisive homotopy functor, then 
for every space 2": 

(i) PxF is excisive and DxF  is linear. 
(ii) As functors of  Y e ~ x ,  F(Y)  agrees to first order with (PxF)(Y)  and fiber 

(F(Y)  ~ F(2")) agrees to first order with (DxF)(Y).  

1.16. DEFINITION. For each point x E X, the coefficient spectrum of DxF at 
x e 2" is the derivative of F at (2", x), denoted OxF(2"). 

The general idea behind DxF is that it should be the linear functor of Y ~ ~ x  
which 'best approximates' the fiber of F(Y)--*F(X).  Proposition 1.18 below will 
show that this is the case in two precise senses: DxF is both the universal example 
of a linear functor of Y with a map from the fiber of F ( Y ) - - , F ( X )  and the unique 
example of a linear functor with which the latter agrees to first order. 

The proof requires the following simple result: 

1.17. PROPOSITION. Suppose that two homotopy functors �9 and ~P agree to first 
order ((9(c, re)) via a map g : �9 ~ q[. Then 
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(i) Td~ and T W  agree to f irs t  order via Tg, with the improved constants c - 1 and 
tr - l. 

(ii) Pg : pa~ ~ puL is an equivalence. 

(iii) I f  e~ and uL are excisive, then g i tself  must  have been an equivalence. 

Proof. For (i) use the diagram 

�9 (cx r )  ---, ~(sx Y) ~-- ~(c~ Y) 

1 1 1 
noting that the first and third vertical maps are equivalences. ( g : ~ ( X ) ~ ( X )  
must be an equivalence if g satisfies 1.13.) 

(i) implies that Ttg satisfies C n ( c -  i, x -  i). This implies (ii). 
(iii) follows from (ii) using the comment following 1.10. [] 

The statement of 1.18 involves a homotopy category. Let h~- be the homotopy 
category associated to the category ~ of homotopy functors from ~ to Y.  In ~ ' ,  
an object is any homotopy functor and a map is any natural transformation. Such 
a map is an equivalence if it gives an equivalence in 3- for each object of q/x. The 
category h ~  has the same objects; it is obtained from ~r by formally inverting the 
equivalences. A map in h ~  is called a weak map (of homotopy functors). 

Note that P is a functor from ~ to ~ and induces a functor from h~- to h~'. 
Likewise p(F)  is a natural transformation between functors from h ~  to h~-, from 
the identity to P. Moreover, it makes sense to speak of two functors agreeing to 
first order via a weak map. 

1.18. PROPOSITION. Let  d~: ql x ~ 9 - -  satisfy stable excision, and suppose that 

f :  g)--*q2 is a weak map to an excisive functor.  Then: 

(i) In h ~  there is a unique map g:  pe~ ~ q7 such that f is the composition g o p(ap). 

(ii) I f  d~ agrees to f irs t  order with ~F via f ,  then g is an equivalence (i.e. an 

isomorphism in h ~ ) .  

Proof. For the existence of g in (i) use the diagram (in h~') 
f 

P(~'I I p~' 

Pf 
noting that p(~P) is invertible. For uniqueness let g be any weak map from PO to 
~P and consider the diagram 

p(a,) g 
(I) ) P(I)--+ W 

P ~  ~ P P O  ) P W  
pp(tD) Pg 

The maps p(PO)  and p(tg) are invertible because pcI) and W are excisive. In addition, 
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Pp(~) is invertible because �9 and P ~  agree to first order via p(O). Now since g o p(~) 
determines P(g o p(O)) = (Pg) o (Pp(g)), which determines Pg, which determines g, 
the proof of (i) is complete. 

(ii) follows easily from (i) and 1.17. [] 

Incidentally, it follows that the maps p(P~) and Pp(r were equal (in the 
homotopy category) although we could not assert that until we had proved 1.18. 

1.19. EXAMPLES 
(i) The derivative of any excisive functor is a constant functor. In particular 0x Q(X), 
the derivative of Q, is the sphere spectrum. 

(ii) The derivative of Q+ ( x  n) is cxQ+ (Xn) ~ z ~ ( { 1 , . . . ,  n} x x n-  l). To see this, 
write fiber(Q+ ((X v Z )  ~) ~ Q+ (X")) ~ Q((X v z ) n / x  ~) and note that as a functor 
of Z the latter agrees to first order with Q((u21 ~i~<, X i -  1 x Z • X"-~)/X"),  a linear 

[ x i -  1 n -  functor of Z which can be written Q(Vl~i~<,t  + ^ Z A X +  g)) 
Q(({1 . . . . .  n} • X "-1)+ ^ Z). 

(iii) More generally, if G is a subgroup of the symmetric group E,,  then 
oxa+(x"  xrEG) ~1~7([{1 ..... n} x X "-11 xcEa ). 

If F is a functor to unbased spaces then the definitions of DxF and OxF(X) do not 
make sense (although that of PxF: ql ~ all does), because we cannot speak of the 
fiber of a map to F(X). Thus, for example, the derivative of the identity functor 
q / ~  q/ is  undefined. However, we can speak of the derivative and differential of a 
functor F from Y to J by a slight adaptation of our conventions. Namely, if 
X = (X, 4) is a based space then DxF = D(x, oF  is a linear functor from ~ to ~'- 
which depends on 4, and OxF(X, ~), is a spectrum which depends on both points 
and x. (It is the coefficient spectrum of the linear functor Z ~ (D(x,r v ~ Z) ,  
where Z is joined to X at x.) 

1.20. EXAMPLE. The differential of the identity functor 1 : J --+ : at a space (X, 4) 
is, almost by definition, the functor 

D(x,r 1 : ( Y , f )  ~ Q(fiberr Y ~ X). 

This functor is an example of 1.5; the linear functor is determined by a space E 
fibered over X, namely the (contractible) space of all paths in X which end at the 
point 4. In particular, for the derivative we have 

+ 

where P~,,r is the space of paths in X from x to r 
Curiously, our result (Corollary 3.3) about Waldhausen's A(X) looks very similar 

to this. Namely, Dx A is determined by the free loopspace AX = Map(S 1, X), fibered 
over X by evaluation at a point in S 1, so that for the derivative we have 

oo 

~ A ( x )  ~ y~ tax(X). 
+ 
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2. Example: Stable Homotopy of Function Spaces 

We now determine the differential (and in particular the derivative) of  the functor 
X ~-, Q + Map(K, X), where K is any finite complex and Map(K, X) is the space of  
continuous maps from K to X. A specific reason for paying special attention to 
this class of  examples is that Q+ Map(S 1, X) turns out to be closely related to 
algebraic K-theory. A more general reason is that the functors Q+ Map(K, X) 
appear to play a central role in the 'calculus of  functors', perhaps analogous to 
the role of  the rational functions in ordinary calculus. (Functors like those in 1.19 
are analogous to polynomials.) 

The statement of  the result will require a slightly more general method than 1.5 
for writing down excisive functors on the category of spaces over X. 

2.1. CONSTRUCTION.  If  E - - , K  is a (Serre) fibration over a finite complex K, 
then for each i ~> 0 let Ei be the colimit (pushout) of  

K ~ t~D t x E---~ D i X E. 

The evident map Ei ~ K is a fibration with a distinguished section. It is obtained 
from E ~ K by, fiberwise over K, adding a basepoint to E and suspending i times; 
its fiber over k ~ K is Si(E(k)+ ), where E(k) is the fiber of  E ~ K .  (We had to use 
unreduced suspension here to guarantee a fibration.) Let F;,K(E) be the based 
space of  all sections of  E~--* K. These spaces form a prespectrum (after rectifica- 
tion by 0.1). Let FK(E) be the associated spectrum and let FK(E) be its zeroth 
space, the homotopy colimit over i of  ~iFg,r(E). 

2.2. CONSTRUCTION.  More generally, suppose X is a space, K a finite com- 
plex, and E - - , K  x X a fibration. We define an excisive functor Y~--~ FK(Er)  from 
q/x to ~-. Given Y ~ X, let E r be the fiber product of  E with K x Y over K x X. 
Viewing Er as a space fibered over K, make FK(Er)  as in 2.1. 

In the case of  a trivial bundle E = Z x K x X this amounts to taking 

Fi, r ( E r )  = Map(K, Si((Z • Y)+ )), 

FK(Er)  ,-~ hocolim Map(K, ~S~((Z x Y)+ )) 

Map(K, Q+ ( z  x Y)), 

where the last step uses the finiteness of  K. In particular, FK(Er)  is an excisive 
functor of  Y ~ q/x in this case. 

To verify excision (of  FK(Er)  as a functor of  Y) in general, note that construc- 
tion 2.2 is contravariantly functorial over subcomplexes of  K. Excision holds when 
K is a point, or more generally, a cell, and also trivially when K is empty. A 
Mayer-Vietoris  argument over subcomplexes of  K yields the general case. 

The fibration to which we need to apply 2.2 is 

(2.3) E(K, X) = K x Map(K, X) ~ K • X 
( k , f )  ~ (k, f(k)) .  

Write |  X) = FK(Er(K, X)) = hocolim ~iFr(Ei, r(K, X)). This is a functor 
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of maps Y-)  X of spaces, and for fixed X it is an excisive functor of Y e q/x. Write 
OK(X) for |  = FK(E(K, X)). The reduced part 

OK(Y -) X) = fiber(OK(Y -) X) -) OK(X)) 

is a linear functor of Y. Its coefficient spectrum at x e X is given, in the notation of 
2.1, by FK(Ex(K, X)), where Ex(K, X) is the space 

Ex(K, X) = {(k,f)  ~ E(K, X) If(k) = x}  -) K 

fibered over K with fiber Map(K, k; X, x). 

2.4. THEOREM. Let F(X) = Q+ Map(K, X), K a finite complex. Then the differen- 
tial of F is ~)K above; there is a natural equivalence 

(DxV) (Y -) X) ~ OK(Y-) X). 

In particular the derivative is given by 

d~a Map(K, X) ~ FK(Ex(K, X)) 

2.5. COROLLARY. Write AX for the free loopspace Map(S 1, X). We have 

O~Q + AX ~ Map(S 1, X~f~xX) 

~ ( y . ~ n ~ x )  x ( n x ~ n x x ) .  

Proof of 2.5. Ex(S I, X) is a trivial bundle over S I. 

Proof of 2.4. The plan is to write down a natural map from the fiber of 
F(Y) - )F(X)  to O K ( Y - ) X )  and then to check that when Y is X v S j this map is 
approximately 2j-connected. 

There is a tautological map q) from F(X) to | Map(K, X) is mapped into 
the space of sections of K x Map(K, X) - ) K  and Si(Map(K, X)+ ) is mapped into 
Fi.r(E(K, X)). Now in the diagram 

F(Y) , F(X) 

~ 
OK(Y) 

l 
|  x )  ---, OK(X) 

compare homotopy fibers of horizontal maps to obtain a natural map 

fiber(F(Y) ~ F(X)) ~-~ OK(Y -) X). 

Linearize both sides in the sense of 1.10. Since the right-hand side is already linear 
this yields a (chain of) natural map(s) 

(D xF)( Y) -) O K( Y -) X). 

To show that this is an equivalence it will be enough, by 1.7, to compare coefficient 
spectra. This means proving: 



14 THOMAS G. GOODWILLIE 

2.6. LEMMA. When Y is X v S j, then 6p is (2j - c)-connected for some constant c 
which depends only on K. 

Proof. Probably any proof  of  this would use something like configuration spaces; 
this proof  uses framed bordism. 

Without loss of  generality K is a smooth compact framed manifold with 
boundary, because changing K by a homotopy equivalence only changes F and | 
by homotopy equivalences. The constant c will be related to d = dim(K). We take 
K to be framed in the strong sense that its tangent bundle has a chosen trivialization 
(not  just stably). 

The homotopy groups of  fiber(F(X v SQ ~ F ( X ) )  are the relative stable homo- 
topy groups of  the pair (Map(K, X v SQ, Map(K, X)). An element of  ne+j corre- 
sponds to a bordism class of  pairs (M, h), where M i+j is a smooth framed compact 
manifold with boundary and h is a continuous map of  pairs 

( M  x K, OM x K) ~ ( X  v S j ,X ) .  

Let 0 ~ S j be a point different from the basepoint. We may assume that h is smooth 
near h-~(0) and that both h and its restriction to M x OK are transverse to 0. Then 
the set W = h - ~(0) is a smooth compact framed manifold of  dimension i + d, with 
boundary 0 W = W c~ (M x OK). It is equipped with a map of  pairs s : (HI, a W) --* 
(Ex, OEx), where Ex is above and we have written 

OEx = Ex c~ (OK x Map(K, X)). 

Namely, for (m, k) ~ W c M x K define 

s(m, k) = (k, Sin) E Ex c K x Map(K, X), 

sm(k') = r(h(m, k')), 

where r is the retraction X v S j---, X. This construction gives a map of framed 
bordism groups 

(o , :  ~,~ri+j(Map(K, X v SJ), Map(K, X)) --* ~ri+a(Ex,  OEx) 

which we may identify with the effect of  ~p on zc~+j. Therefore, 2.6 will follow from: 

2.7. CLAIM. ~b, is surjective i f  j >/d. It is injective i f  j >1 d and i < j  - 2d. 
Proof. For  surjectivity, let (W, s) represent an element of  the right-hand side. 

Thus (W, 0W) has a stable framing and s : ( W ,  OW) ~ ( E x ,  OEx) is a map of  pairs. 
Write s(w) = (t(w), Uw) and u(k, w) = uw(k), so that t :  (IV, 0W) --+ (K, 0K) is a map 
of  pairs and for each w e W the map Uw : K ~ X sends t(w) to x. We are free to alter 
t by any homotopy of  pairs, since any such homotopy can be lifted to a homotopy 
of  s. Choose t to be smooth, and also proper in the sense that c~ W is the transverse 
preimage of  OK. Let if" be W with an external boundary collar attached. Let F be 
the graph of t, a proper submanifold of K x int(ff'). Choose a continuous function 
u : K x if'--* X extending the given u : K x W ~ X. Note that u(k, w) = x for all 
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(k, w) e F. Alter u by a homotopy fixed on F so as to make u(k, w) = x for all (k, w) 
in a neighborhood of  F, say Jff. The restriction to K x if" still represents the same 

element of ~-ri+ d because s has only been altered by a homotopy of  pairs again. 
Note that the normal bundle of  F in K • IT/is (unstably) trivial because the tangent 
bundle of  K is trivial. We obtain a trivialization of  the normal bundle of  F x 0 in 
K x Vg • D j - d .  Use it to make a product tubular neighborhood T ~-D j x F of 
F x 0 in K x if" x D J -  d. Choose T to be small: 

(2.8) T ~ JV • int(D j -  d). 

The Thom-Pont ryag in  construction now yields a map 

K x I~ x D J - d - o  T/OT ~- SJ ^ F + -+ S j. 

This together with the map 

K x l~z x DJ-d----~K X ITV"~X 

makes a map h : K x M ~ X x S J. The image of h lies in X v S i by 2.8. Putting 
M = I~ x / ) I - d ,  we have a map of  pairs 

h : (K x M, K x ~M) ~ ( X  v S j ,X).  

It is easy to see that the class of h is sent to the class of  (W, s) by q3,. (In particular, 
the transverse preimage h - l ( 0 )  is F x 0 _-__ IV.) 

The main step in proving injectivity is to show that every element of 
~-ri+j(Map(K, X v SJ), Map(K, X)) has a representative of  the kind which was 
constructed during the proof  of  surjectivity. Any element is represented by some 
framed (M '+j, OM) and some map 

h : (K x M, K x ~M) ~ ( X  v S j ,X)  

with h transverse to 0 e S J. Consider the manifold 

F i+d= h - l ( 0 )  c K x int(M). 

Using the dimensional hypothesis i + j  >2( i  + d), arrange (by an isotopy of 
K x M) that the projection K x M ~ M embeds F in int(M). Let W = int(M) be 
the image of F. Use the hypothesis again to see that every stable trivialization of the 
relative normal bundle of  W in M exists unstably. In particular, this is so for the 
stable trivialization which results from comparing the given framing of  M with the 
stable trivialization of the tangent bundle F which arises from the definition of  F as 
a transverse preimage. Attach a collar to W in M and call the result I~. Extend to 
if" the trivialization of  the normal bundle of  W. Use this to make a product tube 
Mo-~ lTg x D J -  d for if" in M. For  a small disk D, about 0 in S j the preimage 
h-~(D, )  will be a product tube for F x 0  in K x M o ,  say T ~ F x D L  By a 
homotopy of  h which is fixed near h - l ( 0 )  we can arrange for int(T) to be 
h - l ( S  j - , )  rather than h-l( int(D,)) .  Now since h sends all of  K x ( M -  Mo) to X 
we can replace M by M0 and still have a representative for the same bordism class. 
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If  we write M for M0, then the new representative is of the familiar special kind: 
M = W x D j - a ,  where i f ' =  Ww[collar] and h is given by the Thom-Pont ryag in  
construction on a product tube around the graph of  a proper map (W, ~ W) ~ (K, OK). 

The rest of  the injectivity proof  is a copy of  the surjectivity proof. As we used a 
W to construct an it/, we can use a null-cobordism of  W to construct a null-cobordism 
of  M. 

This completes the proof  of 2.7, 2.6, and 2.4. [] 

3. The Derivative of Pseudoisotopy Theory 

We now identify the derivative of  the functor X ~ ~(X) ,  stable smooth pseudoisotopy 
( = concordance) theory. As a corollary we also identify the derivative of  X ~-~ A(X), 
the algebraic K-theory of  spaces. The answers are related to the free loopspace 
AX = Map(S 1, X), considered as a fibration over X by evaluation at a point in S 1. 

For  any map Y ~ X of  spaces let A(Y ~ X) be the fiber product of  Y with AX over 
X. Thus Q + A ( Y ~ X )  is excisive as a functor of  Y e q/x. The reduced part of  this 
(a linear functor of Y~ q/x) turns out to be the differential Dx A. Its coefficient 
spectrum at x e X is E~(~xY) .  

The formula for D x ~  looks a bit more complicated; we have to take away the 
constant loops and shift by two dimensions. Let W(Y ~ X) be f~2Q(A(Y ~ X) /Y) ,  
where A ( Y ~  X ) / Y  is the cofiber of  the inclusion 

(3.1) Y - ~ A ( Y - - . X )  

of the space of  constant loops. Again W is an excisive functor of  Y. Write W(X) for 
W(X---, X) and ~(Y-- ,  X) for the reduced part: 

�9 (Y ~ X) = fiber(W(Y ~ X) --* W(X)). 

3.2. THEOREM.  The differential D x ~  is (naturally equivalent to) the linear funetor 
Y ~ ff2(Y ~ X)  defined above. In particular, the derivative is given by 
a~(X) ~ ~2Z~(~xX)). 

3.3. COROLLARY.  The differential DxA is the reduced part of the excisive functor 
Y ~-* Q A( Y ~ X). In particular, the der.ivative is given by 

OxA(X) ~ ~ ( ~ X ) .  
+ 

Thus there is a natural map 

fiber(A(Y) ~ A(X)) ~ fiber(Q+ A(Y --* X)  ~ Qx AX) 

which is (2k - 1)-connected if  Y ~ X is k-connected and k >f 2. 

Proof of  3.3. from 3.2. By a theorem of  Waldhausen [10], there is a homotopy 
functor Wh = Wh diet related to ~ and A by natural equivalences 

f~ZWh(X) ,-, @(X), A(X) ,-, Q+ (X) x Wh(X). 



CALCULUS I: THE FIRST DERIVATIVE OF PSEUDOISOTOPY THEORY 

It follows from 3.2 that ~2DxWh is the reduced part of 

Y ~ n2Q(A(Y ~ X ) / Y )  

and this implies (by 1.3(i) and 1.3(ii)) that D x W h  is the reduced part of  

17 

Y ~ Q(A(Y -~ X)/Y) .  

Therefore, DxA is the reduced part of  

Y ~--~ Q+ Y • Q( A( Y --, X) / Y) ~ Q + A( Y + X). 

(The last equivalence uses a retraction of 3.1.) 
The last statement in 3.3 follows from 1.9(ii) and 1.15(ii). [] 

3.4. Remarks. Of course stable excision for A implies the same for Wh and 
~ .  There is also a direct proof, due to Morlet, of  stable excision for ~ ;  see 3.9 
below. 

Recall the definition of  pseudoisotopy: 

3.5. DEFINITION.  Let M be a smooth compact manifold (possibly with cor- 
ners). A pseudoisotopy of  M is a diffeomorphism F from M • I to itself such that 
F(x, t) = (x, t) whenever x is near 0M or t is 0. The space of all pseudoisotopies of 
M, with the C ~ topology, is denoted P(M). The same symbol denotes the 
simplicial model for P(M) which is its 'smooth singular complex'. (A p-simplex is 
a fibered pseudoisotopy over AV; see ([2], App. I).) 

P is functorial with respect to codimension-zero embeddings, because a pseudo- 
isotopy of N c M can be extended from N x I to M x I by the identity. There is 
also a suspension map 

P(M) ~ P(M x [--1,  11). 

(For  example, see [6].) According to Igusa's stability theorem [6], the suspension 
is k-connected where k is roughly dim(M)/3. 

The direct limit with respect to suspension hocolim, P(M • [ - 1, 1]") is the stable 
pseudoisotopy space. It is rather easy to see that its homotopy type depends only on 
that of M. A better statement is that there is a homotopy functor ~ from spaces to 
spaces such that for compact manifolds M the spaces hocolim, P(M x [ - 1, 1] ") 
and ~ ( M )  are equivalent. Such a functor ~ can be constructed by something like 
a left Kan extension. We use the following construction, described by Waldhausen 
in [9] (where he applies it not to P itself but to a double delooping of  it): First fix 
m >i 0. For  a space X make the homotopy colimit of P(M) where M runs through 
the category of m-dimensional parallelized smooth manifolds over X, with embed- 
dings as the morphisms. Now ~(X)  is the homotopy colimit with respect to m. 
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The proof  of  3.2 will follow the same overall pattern as the proof  of  2.4. We will 
define a natural map ~ : N(X) ~ W(X). Then for every Y ~ X the diagram 

N(Y) , N(X) 

(3.6) q~(Y) 

1 
�9 (Y --, x )  , ~ ( x )  

will yield a map 

fiber(N(Y) -~ N(X)) ---* ~I'(g ~ X) = f iber(q(Y ~ X) ~ ~(X)).  

Finally, for certain k-connected maps Y ~ I", we will verify that f is an equivalence 
in a stable range (roughly 2k). 

We begin with that last step, which is the geometric crux of  the proof. We first 
identify the fiber of P(N)--* P(M) in a stable range when N ~ M is a (very special) 

I highly-connected codimension-zero embedding, and afterwards address the problem 
of  fitting what we have learned into the framework described above. Let the 
m-dimensional compact manifold M be obtained from the (codimension-zero) 
submanifold N by attaching a handle of  index k t> 3. Let H c M be the handle and 
let D = D m - k c H be its cocore, a proper disk in M of  codimension k. 

3.7. PROPOSITION. The homotopy fiber of P(N)~P(M) is equivalent to 
~PE(D, M) where PE(D, M) is the space of pseudoisotopy embeddings. 

Proof and definition. A point in PE(D, M) is an embedding of  D x I in M x I 
which carries D x 1 into M x 1 and which fixes pointwise both D x 0 and a 
neighborhood of  (D c~ OM) x / .  There is also the space PG(D, M) of  germs of  
pseudoisotopies; this is the direct limit, over neighborhoods U of  D in M, of  
PE(U, M). The restriction maps 

PG(H, M) ~ PG(D, M) 

1 1 
PE(H, M) -+ PE(D, M) 

are clearly equivalences ([2], App. I). Finally, the restriction map 
P(M) --* PG(H, M) is (simplicially, say) a fibration with fiber P(N). (Actually some 
fibers might be empty in general, but PE(D m- k, M) is connected if k i> 3. This is 
a theorem of Hudson [5]. It will also come out in the proof  of 3.19 below.) [] 

Thus, our task is to identify the homotopy type, up to dimension roughly 2k, 
of  PE(D, M) when D c M is a proper disk of  large codimension k. It turns out, 
by an argument of  Morlet (used below in the proof  of  3.19), that it is enough to 
do this when D is a point. The key to the argument is the following result. For  
the proof  see [2] (but the statement there has k~ + k2 - 5; for the sharp version see 

[31). 
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3.8. L E M M A  (Morlet). Let D1 and D2 be disjoint proper disks in M of  codimensions 
k 1 and k2. Assume k I >~ 3 and k2 >1 3. Then the inclusion map PE(D2, M - D1) 
PE(D2, M) is (ki + k2 - 4)-connected. 

3.9. Remark. This 'disjunction lemma'  has the following consequence: I f  M is 
obtained from N by attaching two disjoint handles H~ and / / 2  of  indices k~ t> 3 and 

k 2 >~ 3, then the diagram 

P(m) , P(m u HI) 

1 1 
P(N u 112) , P(M)  

is (k~ + k 2 -  5)-Cartesian. Thus, the result can be viewed as a version of the 

statement that ~ satisfies stable excision. (It  is a strong version, because it applies 

to P rather than just # 3  
We now examine PE(x, M),  where x is an interior point of  M. We will find that 

a certain map 

a : PE(x, M)  --* t 2QZ" t ' lM  

is (2m - 5)-connected. ( t i M  means the space of  loops based at x. Recall that m is 

the dimension of M.) 

Before defining ~r we describe the map  

a . : r~iPE(x, M)  ~ r~ifl2QXmtM 

which it induces. The description uses transversality; the target of  a .  is the framed 

bordism group ~ - r i + 2 _ , , ( t M ,  x). 
An element of  rciPE(x, M )  can be represented by a smooth map  F :  D i x I ~  

M x I such that for each z e D i the map Fz: t  ~-~ F(z, t) is a smooth proper 
embedding of I in M x I sending 0 to (x, 0), sending 1 into M • 1, and in case 

z e OD ~ sending t to (x, t) for all t. Write Fz(t) = (f~(t), gz(t)), so that 

f z : I ~ M ,  g ~ : I ~ L  

We will say that the point (s, t) ~ I • I is a crossing for F~ if one of  the following 
conditions holds: 

(3.10) s < t andf~(s) =f~(t) and gz(s) >g~(t)  (ordinary crossing), 
(3.11) s = t and Df~(t) = 0 and Dg~(t) < 0 (infinitesimal crossing). 

Here Df~(t) and Dg~(t) are derivatives with respect to t. (They are a tangent vector 
of  M and a number, respectively.) The representative ( f ,  g) can always be chosen in 
such a way that any crossings which occur satisfy a general-position hypothesis: 

3.12. HYPOTHESIS .  At an ordinary crossing the map 

(z, s, t) ~ ( L ( s ) , L ( O ) ,  

D i x I x I ~ M x M  
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is transverse to the diagonal, and at an infinitesimal crossing the map 

(z, t) ~ Dfz(t), 

D i • l - ~  T M  

is transverse to the space of  zero-vectors. 

In that case the set of  all (z, s, t) at which crossings occur is a compact 
(i + 2 - rn)-manifold 

W ~ D i x I  2 

with boundary. Set A --- {(s, t) 10 ~< s ~< t ~< 1} and 8 = {(t, t)} ~ A; W is contained 
in D~x A and the only intersection of  W with B(D~x A) is the set ~ W =  
W n  (D t x ~) of  infinitesimal crossings. W is (stably) framed, for the normal bundle 
of W - ~W in D i x A may be identified with the pullback of  the tangent bundle of 
M by the map (z, s, t) ~--~f~(s) --fz(t), a map which is homotopic 

(3.13) fz(us), 0 <~ u ~ 1 

to the constant function x. 
To obtain a bordism class of  the required kind we now need a map of  pairs 

(IV, dW) ~( f~M,  x). A point (z, s, t) e W determines a loop 

(3.14) v~-~fz(s + v ( t - s ) )  

I ~ M  

and the loop is constant if w e ?W. The loop is based at fz(s) =f~(t) rather than at 
x, but because of  the homotopy 3.13 this is good enough. (Rather than being 
mapped into the actual fiber f~M of  AM ~ Mr, W is mapped into the homotopy 

fiber, say hf~M. The subspace ~ W is mapped into the homotopy fiber hx  of  M ~ M. 
The inclusion (I2M, x ) ~ ( h f ~ M ,  hx) is an equivalence of pairs.) 

It is easy to see that we now have a well-defined map tr , .  
We next make a map of  spaces tr inducing a , .  The first step is to reformulate the 

definition of tr ,  as follows: Write 4 /  for PE(x ,  M )  and think of this as an 
infinite-dimensional manifold. Inside . d / x  A define the set of  crossings ~ just as 
above (replacing the parameter space D i by Jg). Thus, ~ /  is a closed subset of  
~r  A and is a submanifold of codimension m with trivial normal bundle. ~IV has 
a boundary t3~r = ~ c~ (Jg x ~) = ~V c~ ( J / x  t3A). The intersection of  ~ with 
~t' x ~ is transverse. The image of the projection ~ ~ J / d o e s  not contain the base 
point # e Jg  (which is the inclusion x x I ~ M x I). 

A map F as above corresponds to a smooth map ~o:(D ~, dD ~) ~ ( J / , /~ ) .  Hypo- 
thesis 3.12 says that the maps cp x i d : D ~ x A ~ J / / x A  and q ~ x i d : D ~ x o # - ~  
J / / x  ~ are transverse to 9f" and t~f' ,  respectively, and we have (W, t3W)= 
(q~ x i d ) -  1(~//-, t~/r). It is clear that tr ,  is a composition 

zc~PE(x, M )  --, ~r~§ 2 - ,, (~/r c~g/') -" ~'r~ § 2 -,~ ( f lM,  x), 
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where the first map is defined by transversality and the second is induced by a map 
of  pairs co : (~r `9~r ~ ( h ~ M ,  hx) defined by 3.13 and 3.14. 

To define a itself we must trade the transversality for a Thorn space construction. 
This means identifying the Thom space T(v) of  the normal bundle v of  ~ in ~r162 x A 
with the homotopy co fiber of the inclusion ( J / x  A) - ~ ~ ~ / / x  A, and similarly 
for the normal bundle of  `9~r in J / x  8. Writing X / / Y  for homotopy co fiber of  an 
inclusion Y ~ X, we have: 

T(v) ,,~ J/4 x A / /Jr  x A - ~lCr, 

T(v 1,9) .-, .~ '  x # / / . . a  x # - ` 9~ .  

(This step will be justified below.) 
Define tr by letting its adjoint be the composition of  the following maps: 

(3.15) (i) Z2J4 --.Z"(~f'/`9~ir ") 

(ii) -4 Z " f l M  

(iii) ~ Q Z " ~ M .  

Here (iii) is the usual inclusion, (ii) is induced by co, and (i) is the T h o m -  
Pontryagin map, the quotient map 

(J/' x A)/(d4 x o ~ u #  x A) --* T(v) /T(v  1`9). 
3.16. LEMMA. Let  ~[[ = PE(x ,  M) ,  x e int(M), rn = dim(M). Then the map 
tr : Jr  --. f~2Q ~,mflM is (2m - 5)-connected. 

Proof. First of all, d',/is (m - 3)-connected. To see this, let ~ be the space of  all 
smooth maps F :  (/, 0) ~ (M x L x x 0), not necessarily embeddings, transverse to 
M x`gL such that F - I ( M  x 0 )={0}  and F - ~ ( M  x 1)={1}.  Thus ~ is con- 
tractible and by a general-position argument the inclusion J / ~  ~ is (m - 2)-con- 
nected. (When i < r n -  1 an /-parameter family of  maps I ~ M  x I is usually a 
family of embeddings.) 

A consequence is that the double suspension map J r  ~f~:Z:~r162 is ( 2 m -  5)- 
connected. To finish proving 3.16, we have to show that (i), (ii), and (iii) are all 
(2m - 3)-connected. 

Certainly (iii) is (2m - 1)-connected. 
(ii) is ( 2 m - 2 ) - c o n n e c t e d  if the map ~ / ` 9 ~ l r  induced by o2 is 

(m - 2)-connected. Extend o~ to a larger space ~/F/`9~t~ as follows: Let ~ c ~ '  x A 
be defined like ~ c ~t' x A. Thus, (F, s, t) belongs to ~,~ if F has a crossing at (s, t) 
in the sense of  3.10 and 3.11. Let `9~/~ be ~,~n~/r x 8. We have an obvious 
extension 03 : (~tr ~, 9̀~/r ~ ( h f ~ M ,  hx) of  o9. The inclusion ~/`9~f~ ~ / ` 9 ~ / ~  is 
( m -  2)-connected, because this is so for each of the inclusions ~r ~ ~ and 
`gqCr ~ `9~/~ by a general-position argument. 

The map o5 is an equivalence. To see this, factor it 

( ~ ,  `9~]F) ~ (3e, `9~) - .  ( h ~ M ,  hx) 

( f , g ,  s, t) ~ ( f ,  s, t). 
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Here ~r is the space of all triples ( f , s ,  t) such that f :  (1, O ) ~ ( M , x )  is smooth, 
0 < s ~< t < 1, and either 

s < t and f ( s )  = f ( t ) ,  in which case we say ( f ,  s, t) E ~ - 8 ~ ,  or 

s = t and Df( t )  = 0, in which case we say ( f ,  s, t) 6 ~ .  

The projections " / ~ -  8 ~  ~ V -  8~e" and 8~"--* 8~e" are both fiber bundles with 

contractible fibers. The inclusions ~ " -  8 ~  ~ "  and ~e"_ 8~/"--. ~ are both 
equivalences. The maps ~e -~f~M and 8~e" ~ x  are equivalences. It  follows that 

~Tr / 8 ~  " ~ h I~M ~ M is an equivalence. 

For  (i) let ~//" c ~ be the set of  all ( f ,  g, s, t) such that (s, t) is the only crossing 
of  F = ( f ,  g), and such that the projection rc : . / /  x A ~ ~ '  when restricted to ~r is 

an injective immersion at that point. For  an ordinary crossing this means that the 

vectors Df(s)  and Df( t )  are independent, and for an infinitesimal crossing it means 
that the vectors D~Cand D3fa re  independent. (Strictly speaking D2f is  only defined 
because D f i s  zero, and D3fis  only defined modulo D2f.) The set ~ - ~//" is closed 
in ~r ,  and the set rc(~ r - ~ r , )  is closed in ~t'. Let J r "  = rc~r r '  u ( J / -  n~/r be its 
complement. Writing 8~/r "' for ~ ' n  8~  r, we have a diagram 

1 1 
I ; 2 ~  ~ l ~ " ( ~ / O f )  

in which the lower map is 3.15(i). By general position the inclusion ~ " ~  is 
( 2 m -  3)-connected while ~ ' - - , ~ / "  and 8 ~ ' - , 8 ~ #  r are ( m -  3)-connected. To 
finish proving the lemma we show that the upper map is an equivalence. 

The map  is the Thom -P on t ryag i n  map for the submanifold-with-boundary 

~ H / - c J t " x  A. Note that ~ '  projects diffeomorphically to a submanifold 
rc~/r' c ~ ' .  This is a closed subset of  ~t",  and it has a boundary although d-/' itself 
does not. I t  follows that the map can be identified with the double suspension of the 
quotient map .#r ~ J [ ' / / ( ~ / '  - ~r162 But dr"  - r~qCr' = Jr '  -- r c ~  (the space of  all 

elements of  ~r without crossings) is contractible: a deformation to the contractible 

subspace {(f, g) ~ dr' IV,g(t) = t} is given by the straight-line homotopy  

I x (J/r -- rcr162 r )  ~ ~ / / - -  ~z#/" 

(v, (f ,  g)) ~ (f ,  go) 

gv(t) = ( 1 -- v)g(t) + vt. [] 

3.17. J U S T I F I C A T I O N  (For  the use of  Thom spaces of  normal bundles in an 
infinite-dimensional setting). Suppose 5( is an infinite-dimensional smooth manifold 
(in some sense which will not be made precise - the argument here applies in the 
cases we need). Let ~ ~ &r be both a closed subset and a submanifold of  finite 
codimension m. Let v be the normal bundle. For  simplicity assume that both 5f and 
~# are without boundary. We claim that the homotopy  cofiber ~ / / ( ~ -  ~ )  is 



CALCULUS I: THE FIRST DERIVATIVE OF PSEUDOISOTOPY THEORY 23 

(weakly homotopy-)  equivalent to the Thom space T(v). In the finite-dimensional 
case, one proves this using tubular neighborhoods. We outline a proof  in the 

general case using a combination of bordism and simplicial methods. Transversality 
shows that YC//(X - ~ )  and T(v) have isomorphic homotopy  groups: in each case 
rrp may be identified with the set of  bordism classes of  triples (K,f ,  *) ,  K c ~P a 

( p - m ) - d i m e n s i o n a l  closed manifold, f : K ~ l a  continuous map, and 

rb :f*v ~ v(K) a bundle isomorphism to the normal bundle of  K in R p. Introduce a 
simplicial set ~-(v) as follows: A p-simplex is a compact  manifold K c A p of 

dimension p - m, transverse to all faces and corner sets, with f and �9 as above. ( I f  
p < m, there is only the basepoint simplex K = O.) This is a Kan  complex, so its 
homotopy  groups are the bordism sets described above. We construct an equiva- 
lence from a model for .~IIX --', Yr to ~-(v). For  X use the smooth singular simplices 
q~ : A p ~ ~ which are transverse to ~r on A p and on all of  its faces and corner sets. 
There is a map q~ ~ tp-1(~1) from this model of  s to J ( v ) ;  it takes the smooth 

singular complex of  ~r to the basepoint and so induces a map  from (a model of) 

5f//(Y" - ~  to J ( v ) .  This is an equivalence by examining homotopy  groups. The 
same construction, with s and ~r _ ~/replaced by T(v) and the complement of  the 
zero-section, gives an equivalence T(v) ~.Y-(v). 

Lemma 3.16 gave a stable-range description of  the fiber of  P ( N ) ~ P ( M )  in the 

very special case when N was the complement of  an interior m-disk in M. Before 

extending it to the more general case where M is the union of N with a handle of  
index k ~> 3, we define the map 

z : P(M) -~ qJ(M) = f~20_.(AM/M). 

As with o', the definition uses manifolds of  crossings. By a crossing for 

F = (f ,  g) : M x I ~ M x I we mean a crossing for the restriction of F to x x I for 
some x ~ M. Thus, an ordinary crossing is a point (x,s, t ) e  M x A where 

f (x,  s) =f(x,  t) and g(x, s) >g(x, t); it occurs when there are two points p = (x, s) 
and q = (x, t ) i n  M x I such that p is directly below q and F(p) is directly above 
F(q). An infinitesimal crossing occurs when at some point p the upward vertical 
tangent ray is mapped by DF to the downward vertical tangent ray. 

Let # r  c P(M) • M x A be the set of  all (F, x, s, t) such that (x, s, t) is a crossing 
for F. This is a closed submanifold of  codimension m, which meets the boundary 

only in its own boundary O"W = ~ c~ (P(M) x M x r and which does not meet 
id x M x A at all. The normal bundle of  W" is isomorphic to the tangent bundle of  

M (pulled back to #~ by the projection ~/U ~ M). 
As with ~, we first describe the effect of  z on homotopy  groups. Represent an 

element of  rciP(M) by a smooth map q9 : (D ~, aD i) --*(P(M), id), and choose tp so 
that it satisfies: 

3.18. HYPOTHESIS .  tp x i d : D  i x M x A ~ P(M) x M x A as well as 
~o x id: D i x  8 ~ P ( M )  x r are transverse to ~ and ~r respectively. 
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The preimage W = (~0 x id) -1(YC) is then an (i + 2)-dimensional smooth compact 
manifold with boundary and has a map (W, 0W)--+(AM, M) given by 3.13. It is 
stably framed, because its normal bundle in D" x M x A is isomorphic to the tangent 
bundle of  M (pulled back by the projection). Thus we have an element of  the framed 
bordism group .~ri + 2( AM, M). 

To define z itself we use a combination of  cobordism and simplicial methods as 
before. For  any space X the following cobordism model is equivalent to Q + X:A 
p-simplex is a manifold P, smooth, compact, p-dimensional, with a continuous map 
to X and a smooth proper map to A p. 'Proper '  means transverse to the j-codimen- 
sional corner set for a l l j  and such that the preimage of that set is thej-codimensional 
corner set of  P. 'Framed'  means stably framed, and two stable framings are 
considered the same if they are homotopic. This is a Kan complex, so that its 
homotopy groups are the framed bordism groups of  X. Inside the total singular 
complex of  Q+X define a subcomplex by allowing only those maps t p : A P ~  
fl"Z"(X+ ) which correspond to maps ~"  Zn(A p ) ~  Z"(X+ ) that are transverse to 
0 x X c R n x X (in the sense that 

~ - ' ( R  ~ x X ) ~ R  ~ x X ~ R  ~ 

is transverse to 0 and in particular smooth in a neighborhood of  ~ - I (0  x X)). We 
also require this for the restriction of  ~p to each corner set. This subcomplex has the 
homotopy type of  the full complex, and of  course it has a map ~p ~ ~-1(0)  to the 
cobordism model. The map is an equivalence. 

By a little variation on the construction above we can make a model for Q(X//Y) 
when (2, Y) is a pair. One way to do it is to say that a p-simplex is a (smooth, 
framed, compact) manifold P with a proper map to A p x [0, 1) and a map of  pairs 
(P, dP), where dP means preimage of  A p x 0. Another little variation gives a model 
for f~Q(X/Y); just say that now dim(P) = p x j for a p-simplex. We omit the details. 

It is the cobordism model for fFQ(AM/M) which will be the target for a map from 
P(M), or rather from a model for P(M), namely the subcomplex of  the smooth 
singular complex consisting of all those maps A p ~ P(M) which (together with their 
restrictions to corner sets) satisfy 3.18. With these models there is a map 

r : P(M) ~f~2Q(AM/M) = ~P(M) 

defined by the same geometry which defined ~, .  
For  any codimension-zero submanifold N c M we have a diagram 

P(N) , P(M) 

W(N) 

1 
�9 (N -+ M )  , ~ ' ( g )  

and so a map f from P(N) = fiber(P(N) ~ P(M)) to ~ ( M  ~ N). 
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3.19�9 LEMMA.  I f  M is obtained f r o m  N by attaching a handle o f  index k >>. 3, then 

the map ~ is (2k -5 ) -connec ted  i f  k < m and (2k -6) -connec ted  i f  k = m. 

Proof. We use 3.16 in the case when k = m and use the disjunction lemma to pass 
f r o m k + l  t o k .  

First assume k = m. Call the handle (an interior m-disk) H. Let x be a point 
inside H. The following diagram commutes (up to sign): 

�9 "" ~ lti + I PE(x ,  M )  ~ ~ iP(N)  , ~ i P ( M )  --* rciPE(x , M )  ~ ' "  

�9 �9 "--" ~i+ 3 Q I ~ " ~ M  --, rc i~ (N ~ M )  ~ ~ i ~ ( M )  --, ~ +  2QY.mf~M ~ "  �9 �9 

Here, the upper exact sequence comes from 3.7 and the lower one uses the 
excisiveness of  Y ~-* ~ ( Y  ~ M):  

�9 (N ~ M)  = fiber(qJ(N ~ M) --* ~ ( M  ~ M)) 

--~ fiber(W(0H ~ M) --* ~F(n ~ M)) 

--~ fiber(~2Q(0H+ ^ t iM)  ~ ~2Q(H+ A t iM))  

,.~ ~ 3 o  ~,m~M" 

(The fact that the diagram commutes is checked using cobordism groups.) The 
conclusion follows from 3.16. 

Now assume that the handle H has index k < m. We use an argument similar to 
the one in ([2], pp. 23-25).  View M as N plus two k-handles H 1 and/-/2,  disjoint 
from each other, plus a (k + 1)-handle Ho (by writing the cocore of  H, an 
(m - k)-disk, as the union of two half-disks along an (m - k - 1)-disk). This leads 
to a square diagram 

P E ( H ,  M )  ~ PE(Ho w H z, M )  

(3.20) 1 1 
PE(H 0 k.) nl, M) --~ PE(no, M). 

The maps are all fibrations. The upper right and lower left spaces are contractible 
by a simple geometric argument. The map between the fibers of the vertical maps 
is the inclusion 

PE(H2,  N w/-/2) --* P E ( H  2, N w H,  w HE) 

and so is ( 2 k -  4)-connected by 3.8. 
This immediately yields a stable-range description of P E ( D  ' ' - k ,  M ) ,  namely a 

(2k - 4)-connected map [2k - 5 if k = m] from it to f~EQy.kf~M. Indeed, we have a 
( 2 k - 4 ) - c o n n e c t e d  map from PE(D m - k ,  M), the upper left space in 3.20, to 
f~PE(D m -  k - , ,  M ) ,  the loopspace of the lower right space, and this provides a 
downward induction with respect to k. (In particular it proves that P E ( D  m -  k, M )  
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is connected, as mentioned in the proof  of  3.7.) However, we need a statement 
involving z and so we must say a few more words. 

The square 3.20 is (2k - 4)-Cartesian. The resulting (2k - 5)-Cartesian square of  
loop spaces may be written 

P(N) , P(N u Hi) 

1 l 
/~(N u H2) ~-P(NuH1uH2)  

by 3.7. Map it by f to the Cartesian square 

W(N - ,  M) -* W(N w H 1 --~ M) 

l l 
~ ( N  u H 2 --* M) --* CP(N u H I U H 2 ---* M). 

Again the upper right and lower left spaces are contractible. The inductive 
hypothesis that ~ in the lower right is (2(k + 1 ) -  O-connected [2(k + 1 ) -  5)- 
connected if k = m] implies that ~ in the upper left is (2k - 5)-connected, as it is 
equivalent to the composition of  ( 2 k -  5)-connected maps 

/~(N) ~ f2/~(N u H 1 u H: )  --. f~W(N u H l ~ H 2 ~ M). 

This completes the proof  of 3.19. [] 

To prove 3.2, we must extend the definition of  T from unstable to stable 
pseudoisotopy theory. Observe that whenever we changed models for P(M) or 
W(M) in constructing z it was by equivalences natural with respect to codimension- 
zero embeddings, and z is natural with respect to these. (This property of  z was 
needed already in the proof  of  3.19.) Observe also that W(X) is defined for all 
spaces X and that the equivalence between it and the bordism model is natural for 
continuous maps. 

~ (X)  was built in a certain way using the spaces P(M), where M is a manifold 
over X. The construction required P to be functorial with respect to codimension- 
zero embeddings and also required suspension maps P(M)--*P(M x [ - 1 ,  1]), 
natural with respect to such embeddings. Carry out the same construction now with 

in place of  P, letting the 'suspension' W(M) -~ W(M x [ - 1, 1]) be the equivalence 
given by x ~-* x x 0. The resulting functor of  spaces is just W again, up to natural 
equivalence; this would be true for any homotopy functor from spaces to spaces 
which, like W, satisfies a limit axiom on infinite complexes. 

Thus z : P(M) ~ W(M) leads to a new map from ~ (X )  to W(X). Call it r again. 
Diagram 3.6 is now defined. For  any map Y ~ X it induces a map ~ from (Dx~)(Y) 
to W(Y --, X). 

3.21. CLAIM. I f  (X, Y) is a finite CW pair with X =  Ywek,  k >>, 3, then ~ is 
(2k - 5)-connected. 
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Proof. This is almost immediate from 3.19, using an equivalence of pairs 
(M, N) ~ (X, Y) where M and N are compact manifolds of some dimension and M 
is N with a k-handle attached. [] 

By 1.7, 3.21 suffices to prove 3.2 if X is finite CW. The general case follows by 
a colimit argument. [] 
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