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Abstract

In this paper we develop methods for classifying Baker, Richter, and Szymik’s Azumaya
algebras over a commutative ring spectrum, especially in the largely inaccessible case
where the ring is nonconnective. We give obstruction-theoretic tools, constructing and
classifying these algebras and their automorphisms with Goerss–Hopkins obstruction
theory, and give descent-theoretic tools, applying Lurie’s work on∞-categories to show
that a finite Galois extension of rings in the sense of Rognes becomes a homotopy
fixed-point equivalence on Brauer spaces. For even-periodic ring spectra E, we find
that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed
by the Brauer–Wall group of π0(E), recovering a result of Baker, Richter, and Szymik.
This allows us to calculate many examples. For example, we find that the algebraic
Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence
classes, depending on whether the prime is odd or even, that all algebraic Azumaya
algebras over the complex K-theory spectrum KU are Morita trivial, and that the
group of the Morita classes of algebraic Azumaya algebras over the localization KU [1/2]
is Z/8× Z/2. Using our descent results and an obstruction theory spectral sequence,
we also study Azumaya algebras over the real K-theory spectrum KO which become
Morita-trivial KU -algebras. We show that there exist exactly two Morita equivalence
classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ KO-
algebra with the same coefficient ring as EndKO(KU). This requires a careful analysis
of what happens in the homotopy fixed-point spectral sequence for the Picard space of
KU , previously studied by Mathew and Stojanoska.
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1. Introduction

The Brauer group of a field F , classifying central simple algebras over F , plays a critical role in
class field theory. The definition was generalized by Auslander and Goldman [AG60] to the case
of a commutative ring: the Brauer group of R consists of Morita equivalence classes of Azumaya
algebras over R.

In recent years these concepts have been extended to derived algebraic geometry [Toë12],
to homotopy theory [BRS12], to more general categorical frameworks [Joh14], and generalized
to the Morita theory of En-algebras [Hau17]. Associated to a commutative ring spectrum R,
there is a category of Azumaya algebras over R and a Brauer space Br(R) classifying Morita
equivalence classes of such R. Joint work of Antieau with the first author gave an in-depth study
of these Brauer spaces when R is connective [AG14], and in particular found that the set of
Morita equivalence classes could be calculated cohomologically.

There are two important tools developed in [AG14] which make this cohomological identifi-
cation possible. First, Azumaya algebras A over connective R are étale-locally trivial: there exist
enough ‘π∗-étale’ maps R→ S such that S ⊗R A is Morita trivial. Second, generators descend:
an R-linear category which is étale-locally a category of modules over an Azumaya algebra is a
category of modules over a global Azumaya algebra. The goal of this paper is to calculate the
Brauer group of nonconnective ring spectra R, and these tools are absent in the case when R

is nonconnective. Moreover, the first outright fails: there exist Azumaya algebras which are not
π∗-étale-locally trivial.

This should not necessarily be surprising: detecting étale extensions on the level of π∗ is
fundamentally not adequate for nonconnective ring spectra. For example, the homotopy pullback
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of the diagram of Eilenberg–Mac Lane spectra

R ��

��

C[x, y±1]

��

C[x±1, y] �� C[x±1, y±1]

has a map C[x, y]→ R which is not π∗-étale. On the level of module categories, however,
R-modules are equivalent to C[x, y]-modules supported away from the origin, and so this gives
an ‘affine’ but nonconnective model for the open immersion A

2 \ {0} ↪→ A
2 [Lur11a, 2.4.4]. In

this and other quasi-affine cases, the coefficient ring does not exhibit all of the useful properties
of this map [Mat17, § 8].

Our first tool for calculations will be obstruction theory. We show that the homotopy category
of those Azumaya algebras over R whose underlying graded coefficient ring is a projective module
over π∗R form a category equivalent to the category of Azumaya π∗R-algebras in the graded
sense (a result of Baker, Richter, and Szymik [BRS12]). Moreover, we show that there exist
natural exact sequences that calculate the homotopy groups of the space of automorphisms of
such an Azumaya algebra. For example, the space of automorphisms of the matrix algebra Mn(R)
is an extension of a discrete group of ‘outer automorphisms’ by a group which might be called
PGLn(R). With an eye towards future applications, we have developed our obstruction theory so
that one may extend from a Z-grading to general families Γ of elements of the Picard groupoid
of R.

Our second tool for calculations will be descent theory. For a Galois extension of ring spectra
R→ S with Galois group G in the sense of Rognes [Rog08] we develop descent-theoretic methods
for lifting Azumaya algebras and Morita equivalences from S to R. In particular, there are
maps B Pic(S)hG → Br(S)hG ∼−→ Br(R). The first map is an equivalence above degree 0 and an
injection on π0, with image consisting of those Morita equivalence classes of R-algebras which
become Morita trivial S-algebras. This allows us to use calculations with the homotopy fixed-
point spectrum of the Picard spectrum pic(S) from [MS16] to detect interesting Brauer classes,
and employ an obstruction theory for cosimplicial spaces due to Bousfield [Bou89] to lift Azumaya
algebras. In order to carry this out we need to connect the space of autoequivalences of a module
to the space of autoequivalences of its endomorphism algebra. We will make heavy use of the
machinery of ∞-categories to make this possible.

In § 7 we will collect these together and apply them to calculations. For even-periodic ring
spectra E, we find that the algebraic Azumaya algebras (as defined and studied in § 3.3) are
governed by the Brauer–Wall group [Sma71] and are generated by three phenomena: ordinary
Azumaya algebras over π0E, Z/2-graded ‘quaternion’ algebras over E, and (if 2 is invertible)
associated 1-periodic ring spectra.

Theorem 1.1. Suppose that E is even-periodic and that π0E possesses no idempotents. Then

the subgroup of the Brauer group of E generated by algebraic Azumaya algebras is contained in

a short exact sequence

0→ Br(π0E)→ π0 Br(E)alg → Q2(π0E)→ 0,

1213
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where the subgroup is generated by algebraic Azumaya algebras with homotopy concentrated

in even degrees. In Q2(π0E), the elements of H1
et(π0E, Z/2) detect the algebras of Example 7.1,

while the map to Z/2 detects any of the ‘half-quaternion’ algebras of Example 7.2.

In particular, all algebraic Azumaya algebras over KU are Morita trivial, and the algebraic
Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes,
depending on whether 2 is invertible or not.

Finally, our most difficult calculation studies Azumaya KO-algebras which become Morita-
trivial KU -algebras; we show that there exist exactly two Morita equivalence classes of these.
The nontrivial Morita equivalence class is realized by an ‘exotic’ KO-algebra lifting M2(KU)
which we construct by finding a path through an obstruction theory spectral sequence.

Theorem 1.2. There exists a unique equivalence class of quaternion algebra Q over KO such

that

• KU ⊗KO Q �M2(KU), and

• there is no KO-module M such that Q �� EndKO(M) as KO-algebras.

This algebra has homotopy groups isomorphic, as a KO∗-algebra, to the homotopy groups of a

twisted group algebra:

π∗Q ∼= π∗KU〈C2〉 ∼= π∗ EndKO KU.

The proof of this result requires a careful analysis of what happens near the bottom of the
homotopy fixed-point spectral sequence for B Pic(KU)hC2 .

2. Homological algebra

In this section we will recall some important results on categories of graded objects, their algebras,
and their homological algebra.

2.1 Graded objects
In applications it is often convenient to consider gradings by objects more general than the
integers, or even arbitrary abelian groups. This is because abstract stable homotopy theories
(by which, following [Mat16, 2.1], we mean presentable stable symmetric monoidal∞-categories
in which the tensor product commutes with colimits in each variable) are naturally ‘graded’
by their subcategories of invertible objects, their so-called Picard ∞-groupoids. Equivalence
classes of objects in the Picard ∞-groupoid is the Picard groupoid, an object which naturally
grades the homotopy category of the homotopy theory (that is, the latter is the ∞-category,
and the former is its homotopy category). For instance, while the Picard groupoid of the sta-
ble homotopy category has an object Sn for each integer n ∈ Z, with automorphisms Z

×, the
K(n)-local homotopy categories have much larger Picard groupoids, including families of ‘exotic
spheres’.

Definition 2.1. A Picard groupoid Γ is a symmetric monoidal groupoid such that the monoidal
operation makes π0(Γ) into a group. A homomorphism of Picard groupoids is a symmetric
monoidal functor Γ→ Γ′.

1214
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Given a symmetric monoidal category C, the Picard groupoid Pic(C) is the groupoid of
objects in C which have an inverse under the monoidal product, with maps being isomorphisms
between them.

We will abusively use the symbol + to denote the symmetric monoidal structure on a Picard
groupoid Γ, and write 0 for the unit object.

Example 2.2. Suppose that A and G are abelian groups. We can then define a groupoid Γ with
object set A by declaring that HomΓ(a, b) is the monoid G if a = b and empty otherwise. This
category has a natural monoidal structure: we define the monoidal operation + on objects to be
the abelian group structure of A, and on morphisms to be the abelian group structure of G. As
a category, Γ = A×BG. The monoidal structure is split, in the sense that it is the product of
the abelian group structures on A and BG.

Now suppose that ε is a pairing A×A→ G. Then, for any a and b, εa,b ∈ G = Aut(a + b)
can be interpreted as an isomorphism τa,b : a + b→ b + a, natural in a and b. This symmetry
isomorphism makes Γ into a braided monoidal category precisely if ε is bilinear, and it makes
Γ into a Picard groupoid precisely if it is bilinear and satisfies εa,bεb,a = 1 for all a, b ∈ A. In
particular, the splitting of A×BG usually does not respect the symmetry isomorphism.

Definition 2.3. For an ordinary category C, we define the category CΓ of Γ-graded objects
to be the category of contravariant functors M� : Γop → C, and for γ ∈ Γ we write Mγ for the
image.

Suppose C is cocomplete and symmetric monoidal under an operation ⊗ with unit I. If ⊗
preserves colimits in each variable separately, then CΓ has a symmetric monoidal closed structure
given by the Day convolution product. Specifically, its values are given by

(M ⊗N)γ = colimα+β→γMα ⊗Nβ,

and the unit is given by the functor γ �→∐
Hom(γ,0) I. Making choices of representatives for all

isomorphism classes [γ] ∈ π0Γ gives rise to a noncanonical isomorphism

(M ⊗N)γ
∼=

∐
{([α],[β]) |α+β∼=γ}

Mα ⊗AutΓ(0) Nβ .

Definition 2.4. A Γ-graded commutative ring R� is a commutative monoid object in AbΓ. The
unit of R� is the induced map Z[AutΓ(0)]→ R0.

Proposition 2.5. The category ModR� of Γ-graded R�-modules is a symmetric monoidal closed

abelian category, with tensor product ⊗R� , internal Hom objects FR�(−,−), and arbitrary

products and coproducts which are exact.

Example 2.6. We now return to the situation of Example 2.2, where Γ = A×BG has a
symmetric monoidal structure determined by a bilinear pairing ε satisfying εa,bεb,a = 1.

A Γ-graded commutative ring then determines an A-indexed collection Rγ of abelian groups
and multiplication maps Rα ⊗Rβ → Rα+β , as well as a homomorphism i : G→ R×

0 . These are
required to satisfy associativity and unitality conditions. In fact, the homomorphism i determines
the effect of the functor R on morphisms: for any g ∈ G, the isomorphism g : α→ α in Γ is sent
to the multiplication-by-i(g) map Rα → Rα.
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The commutativity condition takes the form x · y = εα,β(y · x) for x ∈ Rα, y ∈ Rβ . The cat-
egory of graded R-modules then inherits a symmetric monoidal structure using ε to describe
a ‘Koszul sign convention’ for the tensor product. We thus recover the framework of [CGO73,
Ika99] without the assumption that R is concentrated in degree 0.

Example 2.7. Let Γ = Z×B{±1}, with symmetric monoidal structure determined by the bilin-
ear pairing εn,m = (−1)nm. We can construct a Γ-graded commutative ring Z by defining Z0 = Z

as rings, letting Zn = 0 for n �= 0, and setting the map i : {±1} → Z
×
0 to be the natural inclusion.

The category of graded Z-modules is then equivalent to the category of Z-graded abelian groups,
with symmetric monoidal structure being the standard graded tensor product using the Koszul
sign convention.

For γ ∈ Γ, write Z
γ for the Γ-graded abelian group obtained from the Γ-graded set

HomΓ(−, γ) by taking the free group levelwise. We have natural isomorphisms Z
α ⊗ Z

β → Z
α+β

that determine a functor Γ→ Pic(AbΓ). Let the suspension operator Σγ be the tensor prod-
uct with Z

γ , an automorphism of the category of R�-modules. There is an isomorphism
Mδ
∼= (ΣγM)γ+δ, and this extends to isomorphisms

Mγ
∼= HomR�(Σ

γR�, M�).

Definition 2.8. A finite Γ-graded set is a functor I : Γop → Set such that

I ∼=
n∐

i=1

HomΓ(−, γi)

is isomorphic to a finite coproduct of representable functors HomΓ(−, γi), 1 ≤ i ≤ n. We write
|I| ∼= {1, . . . , n} for the underlying finite set of I.

Definition 2.9. Given a finite Γ-graded set I, a free Γ-graded R�-module on I, written RI
�, is

any Γ-graded R�-module which is isomorphic to the tensor product of R� with the free Γ-graded
abelian group on I.

Definition 2.10. Suppose A� is an algebra in the category ModR� . We call a right A�-module
P� a graded generator if {ΣγP�}γ∈Γ is a set of compact projective generators of ModA� .

For example, R� is always a graded generator of ModR� . It is unlikely to be a generator of
ModR� in the ordinary sense unless the Γ-graded ring R� contains units in Rγ for each γ ∈ Γ.

Let θ : Γ→ Γ′ be a homomorphism of Picard groupoids and let R� be a Γ-graded commuta-
tive ring. The pullback functor θ∗ from Γ′-graded modules to Γ-graded modules has a left adjoint
θ!, given by left Kan extension along θ.

Proposition 2.11. Suppose C is cocomplete and symmetric monoidal, and that the symmet-

ric monoidal structure preserves colimits in each variable. Then the functor θ! : CΓ → C′
Γ is

symmetric monoidal.

Proof. This is a special case of left Kan extension being symmetric monoidal for the Day con-
volution product, but we give a brief indication of the proof below. For M , N objects of CΓ, we
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consider the following square.

Γop × Γop+
+

��

��

Γop

��
(Γ′)op × (Γ′)op

+
�� (Γ′)op

The object θ!(M ⊗N) is obtained by starting with M ⊗N : Γop × Γop → C and taking Kan
extension along the two functors in the upper-right portion of the square. Because the tensor
product preserves colimits in each variable, the composite Kan extension of M ⊗N along the
lower-left portion of the square is canonically isomorphic to (θ!M)⊗ (θ!N). The natural iso-
morphism making the square commute determines a natural isomorphism between these two
composites. Similar diagrams show that when θ preserves the unit and is compatible with the
associativity, symmetry, and unit isomorphisms, θ! does the same. �

In particular, the ring R� gives rise to a Γ′-graded ring (θ!R)� defined by the formula

(θ!R)γ′ = colimγ′→θ(γ) Rγ .

Moreover, an R�-module M� determines an (θ!R)�-module (θ!M)�.
We also have the notion of a θ-graded ring map R� → R′

�, which is just a Γ′-graded ring map
θ!R� → R′

�. Given a θ-graded ring map R� → R′
�, we obtain a functor

(−)⊗R� R′
� : ModR� −→ ModR′

�

which sends the R�-module M� to the R′
�-module M ′

� := M� ⊗R� R′
� defined by

M ′ = (θ!M)� ⊗(θ!R)�
R′

�.

Here the tensor product on the right is the usual base-change along a Γ′-graded ring map.

Proposition 2.12. For a map θ : Γ→ Γ′ and a θ-graded map R� → R′
�, the functor

(−)⊗R� R′
� : ModR� −→ ModR′

�
is symmetric monoidal. In particular, it extends to a functor

(−)⊗R� R′
� : AlgR�

−→ AlgR′
�

between categories of algebra objects.

As in Definition 2.1, if A is a symmetric monoidal category, we write Pic(A) for the maximal
subgroupoid of A and refer to Pic(A) as the Picard groupoid of A.

Proposition 2.13. Suppose A is an additive symmetric monoidal category with unit I such

that the monoidal product is additive in each variable, and that we have a symmetric monoidal

functor Γ→ Pic(A) given by γ �→ Aγ . Then there is a canonical additive, lax symmetric monoidal

functor φ : A→ AbΓ, sending M to the object M� with

Mγ = Hom(Aγ , M).

In particular, I� is a Γ-graded commutative ring, and φ lifts to the category of I�-modules.

Proof. Since A is additive, the set Hom(M, N) of maps from M to N admits an abelian group
structure such that composition is bilinear. This determines the functor φ. It remains to show
that φ is lax symmetric monoidal.
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The lax monoidal structure map sends a pair (Aα →M) in Mα and (Aβ → N) in Nβ to the
composite determined by

Aα+β ∼←− Aα ⊗Aβ →M ⊗N,

an element in (M ⊗N)α+β . The natural associativity and commutativity diagrams

Aα ⊗Aβ
∼ ��

��

Aβ ⊗Aα

��

(Aα ⊗Aβ)⊗Aγ
∼ ��

��

Aα ⊗ (Aβ ⊗Aγ)

��

M ⊗N
∼ �� N ⊗M (M ⊗N)⊗ P

∼ �� M ⊗ (N ⊗ P )

(together with a similar unitality diagram) reduce the proof that φ is a lax symmetric monoidal
functor to the fact that Γ→ Pic(A) is symmetric monoidal. �

Definition 2.14. Suppose A is an additive symmetric monoidal category such that the
monoidal product is additive in each variable, and that we have a symmetric monoidal functor
Γ→ Pic(A) given by γ �→ Aγ . The shift operator Σγ : A→ A is defined by

ΣγM = Aγ ⊗M.

We then define
Hom(M, N)γ := Hom(ΣγM, N).

The notation is compatible with the shift notation for Γ-graded abelian groups, because there
is a natural isomorphism (ΣγM)�

∼= Σγ(M�).

Proposition 2.15. In the situation of the previous definition, the Γ-graded abelian groups

Hom(−,−)� make A into a category enriched in I�-modules. Moreover, this enrichment is

compatible with the symmetric monoidal structure.

Proof. There are canonical isomorphisms Σα+βL ∼= ΣαΣβL. Using this, we may define composi-
tion of graded maps by

Hom(ΣαM, N)⊗Hom(ΣβL, M) −→ Hom(ΣαM, N)⊗Hom(ΣαΣβL,ΣαM)

−→ Hom(Σα+βL, N).

This composition is associative, and the unit I� → Hom(M, M)� sends f : Aγ → I to f ⊗ idM . �

Remark 2.16. In [HS99, § 14], a group cohomology element in H3(π0Γ; π1Γ) is described which
obstructs our ability to make Γ-grading monoidal, in the sense of the functor ⊗ inducing an asso-
ciative exterior product ⊗ : πα(X)⊗ πβ(Y )→ πα+β(X ⊗ Y ). This group cohomology element is
the unique k-invariant of the classifying space BΓ.

Since Γ is assumed symmetric monoidal, BΓ admits an infinite delooping and one can
calculate that this k-invariant must vanish. This removes the obstruction to ⊗ inducing a
monoidal pairing. However, this becomes replaced by a spectrum k-invariant

ε ∈ H2(Hπ0Γ, π1Γ) ∼= Hom(π0Γ, π1Γ)[2]

which classifies the ‘sign rule’.
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More specifically, the sign rule is equivalent to a bilinear pairing π0Γ× π0Γ→ π1Γ sending
α, β ∈ π0Γ to the element εα,β ∈ π1Γ. For X and Y with twist isomorphism τ : X ⊗ Y → Y ⊗X,
x ∈ παX, and y ∈ πβY , τ(x⊗ y) = εα,β(y ⊗ x). (The elements εα,β are not invariant under equiv-
alence; the isomorphism with the group of 2-torsion homomorphisms indicates that such Picard
groupoids are determined completely by the εα,α, together describing a 2-torsion homomorphism
π0Γ→ π1Γ [JO12].)

Remark 2.17. One needs to be extremely cautious with isomorphisms between Γ-graded objects
due to the sign rule. For example, a casual expression like

FR�(Σ
αM�, ΣβN�) = Σβ−αFR�(M�, N�)

hides several implicit isomorphisms [Ada84].

2.2 Graded Azumaya algebras
We continue to fix a Picard groupoid Γ and let R� be a Γ-graded commutative ring with module
category ModR� .

Definition 2.18. If A� is an algebra in ModR� with multiplication μ, the opposite algebra
A�

op is the algebra with the same underlying object and unit, but with multiplication μ ◦ τ

precomposed with the twist isomorphism τ .

Definition 2.19. A Γ-graded Azumaya R�-algebra is an associative algebra A� in the category
ModR� such that

• the underlying module A� is a graded projective generator of the category ModR� , and
• the natural map of algebras A� ⊗R� A�

op → EndR�(A�), adjoint to the left action

(A� ⊗R� A�
op)⊗R� A�

1⊗τ−−→ A� ⊗R� A� ⊗R� A�
op μ(1⊗μ)−−−−→ A�,

is an isomorphism.

Proposition 2.20. If P� is a graded generator of the category ModR� , then the endomorphism

algebra EndR�(P�) is an Azumaya R�-algebra.

Definition 2.21. Let CatR� be the 2-category of Grothendieck abelian categories which
are left-tensored over the monoidal category ModR� : abelian categories A with a func-
tor ⊗ : ModR� ×A→ A which preserves colimits in each variable, together with a natural
isomorphism

I⊗A
∼−→ A

and

(M ⊗R� N)⊗A
∼−→M ⊗ (N ⊗A)

that respects the unit and pentagon axioms.
Morphisms in CatR� are ModR�-linear: colimit-preserving functors F : A→ A′, together

with natural isomorphisms M ⊗ F (A)→ F (M ⊗A) that respect associativity and the unit iso-
morphisms. The 2-morphisms in CatR� are natural isomorphisms of functors which commute
with the tensor structure.
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Remark 2.22. In particular, a left-tensored category A inherits suspension operators by defining
ΣγM = (ΣγR)⊗M via the left action. This allows us to define graded function objects by

FA(M, N)γ = HomA(ΣγM, N).

This definition makes a ModR�-linear category into a category enriched in R�-modules in such
a way that ModR�-linear functors preserve this enrichment.

Definition 2.23. The functor

Mod: AlgR�
→ CatR�

sends an R�-algebra A� to the category ModA� of right A�-modules in ModR� , viewed as left-
tensored over R� via the tensor product in the underlying category ModR� . A map A� → B�

is sent to the functor ModA� → ModB� given by extension of scalars. (Composite ring maps
have natural isomorphisms of composite functors which satisfy a coherence condition: Mod is a
pseudofunctor.)

The following theorems have proofs which are essentially identical to their classical
counterparts; for example, see [Ika99]. We will sketch the main points below.

Theorem 2.24 (Graded Eilenberg–Watts). The map sending an A�-B�-bimodule L� to the

functor

N� �→ N� ⊗A� L�

determines a canonical equivalence of categories from the category A� ModB� of A�-B�-bimodules

to the category of ModR�-linear functors ModA� → ModB� .

Proof. Functors of the form (−)⊗A� L� are colimit-preserving and come with a natural
associativity isomorphism

M�⊗R�(N�⊗A�L�)→ (M�⊗R�N�)⊗A� L�,

making them maps ModA� → ModB� in CatR� . This produces the desired functor. Conversely,
any ModR�-linear functor G : ModA� → ModB� preserves the shift operators Σγ and extends to
a Γ-graded functor. In particular, the action map

A� ⊗R� G(A�)→ G(A� ⊗R� A�)→ G(A�)

induced by the multiplication is adjoint to a ring map A� → FB�(G(A�), G(A�)) making G(A�)
into an A�-B�-bimodule. Given the canonical presentation

N�
∼= colim

( ⊕
ΣδA�→ΣγA�→N�

ΣδA� ⇒
⊕

ΣγA�→N�

ΣγA�

)
,

the two colimit-preserving functors G and (−)⊗A� G(A�) both give us naturally isomorphic
presentations

G(N�) ∼= colim
( ⊕

ΣδA�→ΣγA�→N�

ΣδG(A�) ⇒
⊕

A�→N�

ΣγG(A�)
)

.

Therefore, these two functors are canonically equivalent. �
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Theorem 2.25 (Graded Morita theory). Let A� be an R�-algebra, and Modcg
A�

be the full sub-

category of ModA� spanned by the graded generators P�. Then there are canonical pullback

diagrams of categories

Pic(A�ModA�) ��

��

(Modcg
A�

)� ��

��

{ModA�}

��
{A�} �� (AlgR�

)� �� CatR�

in which {A�} and {ModA�} denote categories with a single object and (identity) arrow, viewed

as subcategories of AlgR�
and CatR� , respectively, and the middle vertical arrow is the functor

which sends the graded generator P� to the R�-algebra EndA�(P�). More generally, the fiber of

(Modcg
A�

)� → (AlgR�
)� over an algebra B� is either empty or a principal torsor for the Picard

groupoid Pic(A�ModA�) of the category of bimodules.

Proof. We will first identify Modcg
A�

with the right-hand fiber product. The pullback of the
diagram AlgR�

→ CatR� ← {ModA�} is the category of pairs (B�, φ), where B� is an R�-algebra
and φ is an equivalence ModB� → ModA� in CatR� . Such a functor is colimit-preserving, so by the
graded Eilenberg–Watts theorem such a functor is represented by a certain type of pair (B�, P�).
For this functor to be an equivalence, the graded generator B� must map to a graded generator
P�, and we must have B� = EndA�(P�). It remains to show that any such P� determines an
equivalence of categories.

Given a right A�-module P� as in the statement, we obtain an R�-algebra B� = FA�(P�, P�)
and a functor (−)⊗B� P� : ModB� → ModA� . This functor is colimit-preserving. It also has a
colimit-preserving right adjoint FA�(P�,−) because P� is finitely generated projective.

The unit map

M� → FA�(P�, P� ⊗B� M�)

is an isomorphism when M� = ΣγB�. Both sides preserve colimits, and so applying this unit to a
resolution F1 → F0 →M� → 0 where Fi are (graded) free modules shows that the unit is always
an isomorphism.

The counit map

FA�(P�, N�)⊗B� P� → N�

is an isomorphism when N� = P�. Because the set of objects ΣγP� is a set of generators there
always exists a resolution F1 → F0 → N� → 0 where Fi are direct sums of shifts of P�. Again, as
the functors in question preserve colimits, the counit is always an isomorphism.

We now consider the left-hand square. As pullbacks can be calculated iteratively, the pullback
of a diagram B� → AlgR�

← (Modcg
A�

)� is equivalent to the pullback of the diagram {ModB�} →
CatR� ← {ModA�}. If these categories are inequivalent as R�-linear categories, this is empty. If
these categories are equivalent, then composition with any chosen equivalence makes the groupoid
of R�-linear equivalences {ModB�} → {ModA�} isomorphic to the groupoid of self-equivalences of
ModA� : without making such a choice, it is a principal torsor for the groupoid of self-equivalences
of ModA� .

Equivalences of ModA� are given up to unique isomorphism by tensoring with an A�-bimodule
P�, and there must exist an inverse given by tensoring with an A�-bimodule Q�. For these to be
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inverse to each other, we must have isomorphisms of A�-bimodules

P� ⊗A� Q�
∼= Q� ⊗A� P�

∼=A�.

Such a Q� exists if and only if P� is an invertible element in the category of bimodules. �

The following is a graded analogue of results of [RZ61], relating outer automorphisms to
the Picard group. In the classical case of ungraded algebras over a field k, the Picard group of
k-modules is trivial and so it reduces to the Noether–Skolem theorem: all automorphisms of an
algebra are inner.

Corollary 2.26 (Graded Rosenberg–Zelinsky exact sequence). For an Azumaya R�-algebra

A�, there is an exact sequence of groups

1→ (R0)× → (A0)× → AutAlgR�
(A�)→ π0 Pic(ModR�).

The group Pic(ModR�) acts on the set of isomorphism classes of compact generators of ModA�

with quotient the set of isomorphism classes of Azumaya R�-algebras B� such that ModA� �
ModB� . The stabilizer of A�, viewed as a right A�-module, is the image of the outer automorphism

group in Pic(ModR�).

Proof. We consider the pullback diagram of categories

Pic(A�ModA�) ��

��

(Modcg
A�

)�

��

{A�} �� (AlgR�
)�

obtained from graded Morita theory. This is a homotopy pullback diagram of groupoids, and so
we may take the nerve and obtain a long exact sequence in homotopy groups at the basepoint
A� of Pic. Put together, this gives an exact sequence

1→ AutPic(A�ModA� )(A�)→ AutModA�
(A�)→ AutAlgR�

(A�)→ π0 Pic(A�ModA�).

Moreover, the category of A�-bimodules is equivalent to the category of modules over A� ⊗R� A�
op,

which is Morita equivalent to R�. This gives us an equivalence of categories Pic(A� ModA�) �
Pic(R�) that carries A� to R�. The desired description of this exact sequence follows by identifying
AutModA�

(A�) with A×
0 and AutPic(R�)(R�) with R×

0 .
Similarly, the description of the action of Pic follows by identifying this fiber square with the

principal fibration associated to the map (AlgR�
)� → (CatR�)

�. �

Remark 2.27. In the exact sequence above, suppose v ∈ Aγ is a unit in the graded ring A�. Then
conjugation by v determines an element in AutAlgR�

(A�) whose image in Pic(ModR�) is [ΣγA].

2.3 Matrix algebras over graded commutative rings
Definition 2.28. Let R� be a Γ-graded commutative ring. An R�-algebra is a matrix R�-algebra
if it is isomorphic to the endomorphism R�-algebra

EndR�(M�) = FR�(M�, M�)

of an R�-module of the form M�
∼= RI

� for some Γ-graded set I (Definition 2.3).
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In general, we write MatI(R�) for the Γ-graded matrix algebra EndR�(R�
I) and GLI(R�) for

the group [AutR�(R�
I)]×0 of automorphisms of the graded R�-module R�

I .

Proposition 2.29. If Rγ = 0 for γ �= 0 then there is an isomorphism of groups

GLI(R) ∼=
∏
γ∈Γ

GLIγ (R0),

where the groups on the right are the usual general linear groups of the commutative ring R0.

Proposition 2.30. If I is a finite Γ-graded set with underlying finite set |I|, meaning that

I ∼= ∐
i∈|I| Hom(−, γi) for some |I|-indexed collection of objects γi of Γ, then there is a canonical

isomorphism of R�-modules

EndR�(R�
I) ∼=

⊕
i,j∈|I|

Σγi−γjR�.

In particular, there is a natural Γ-graded set ∂I such that it is of the form R∂I
� .

Proposition 2.31. The formation of matrix algebras is compatible with base-change. That is,

for any homomorphism θ : Γ→ Γ′ of abelian groups, any θ-graded ring map R� → R′
�, and any

finite Γ-graded set I, the canonical R′
�-algebra map

MatI(R�)⊗R� R′
� −→ Matθ!I(R

′
�)

is an isomorphism.

Proof. Write ∂I for the Γ-graded set as in the previous proposition. First, let us assume that θ

is the identity of Γ, so that R� → R′
� is just a Γ-graded ring map. Then θ!∂I = ∂I and the map

R∂I
� ⊗R� R′

� → (R′
�)

∂I is an equivalence between free R′
�-modules on the same Γ-graded set.

Now suppose instead that θ is arbitrary and R′
� = θ!R�. Then the desired map is a composite

R∂I
� ⊗R� R′

�
∼= θ!(R∂I

� ) ∼= (θ!R�)∂θ!I .

Finally, an arbitrary θ-graded ring map R→ R′ is a composite of ring maps of the type treated
above, so the result follows. �

2.4 Derivations and Hochschild cohomology
The following recalls some of Quillen’s work on cohomology for associative rings [Qui70]. We
suppose for simplicity that we are working in a setting in which the relevant derived functors
exist, such as the case in which there are enough projectives and the tensor product of projective
objects is again projective.

In a symmetric monoidal abelian category in which the symmetric monoidal ‘tensor product’
operation ⊗ preserves colimits (separately in each variable), any algebra A sits in a short exact
sequence

0→ ΩA → A⊗Aop → A→ 0

of A-bimodules, split (as left modules) by the unit. If A is the tensor algebra on a projective
object P , then ΩA can be identified with the projective bimodule A⊗ P ⊗Aop. Moreover, for any
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A-bimodule M with associated square-zero extension M � A→ A in AlgA, there are canonical
isomorphisms

Der(A, M) = HomAlgA /A(A, M � A) ∼= Hom
A ModA

(ΩA, M).

This allows us to relate the derived functors of derivations, in the sense of [Qui70], to Hochschild
cohomology in this category. The André–Quillen cohomology groups of A with coefficients in M

may be identified with the nonabelian derived functors Ders(A, M). Applying the right derived
functors of Hom

A ModA
(−, M) to the exact sequence defining ΩA gives us isomorphisms

Ders(A, M)→ HHs+1(A, M)

for s > 0 and an exact sequence

0→ HH0(A, M)→M → Der(A, M)→ HH1(A, M)→ 0.

Proposition 2.32. Suppose A� is an Azumaya R�-algebra. For any A�-bimodule M� in the

category of Γ-graded R�-modules, we have a short exact sequence

0→ HH0(A�, M�)→M� → Der(A�, M�)→ 0.

Both the Hochschild cohomology groups HHs
R�

(A�, M�) and the derived functors Ders
R�

(A�, M�)
vanish for s > 0.

Proof. Consider the short exact sequence

0→ ΩA� → A� ⊗R� A�
op → A� → 0

of bimodules. The center bimodule is free, hence projective. Moreover, under the chain of Morita
equivalences

ModR� � ModEndR� (A�) � ModA�⊗R�A�
op ,

the image of the projective R�-module R� is A�, and hence A� is also projective. Therefore, the
sequence splits and ΩA� is projective too. �

3. Obstruction theory

3.1 Gradings for ring spectra
Definition 3.1. Let R be an E∞-ring spectrum, with ΓR the algebraic Picard groupoid of
invertible R-modules and homotopy classes of equivalences; similarly, let ΓS be the Picard
groupoid of the sphere spectrum. A grading for R is a Picard groupoid Γ together with a
commutative diagram

Γ

���
��

��
��

�

ΓS
��

ν
���������

ΓR

of Picard groupoids.
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The period of the grading is the minimum of the set

{n > 0 | ν[Sn] = 0 in π0Γ} ∪ {∞},

where [Sn] ∈ π0ΓS is the equivalence class of the n-sphere.

A grading provides a chosen lift of the suspension ΣR to Γ such that the twist on ΣR⊗ ΣR

lifts the automorphism −1 ∈ (π0R)×; it also provides an action ΓS × Γ→ Γ, (n, γ) �→ n + γ,
compatible with that on ΓR. The minimal and maximal options are ΓS-grading (usually referred
to as ‘Z-grading’) and ΓR-grading (usually referred to as ‘Picard grading’). If R is connective
(and nontrivial) then π0ΓS → π0ΓR is a monomorphism, and so R has period∞ (usually referred
to as ‘not being periodic’).

Throughout this section we will assume that we have chosen a grading for R. This produces
elements Rγ ∈ ModR for γ ∈ Γ and gives the category of R-modules Γ-graded homotopy groups
π�M as in § 5.1. These homotopy groups preserve coproducts and filtered colimits, as well as
take cofiber sequences to long exact sequences. The fact that weak equivalences are detected on
Z-graded homotopy groups implies the following propositions.

Proposition 3.2. If R has a grading by Γ, a map X → Y of R-modules is an equivalence if

and only if the map π�X → π�Y is an isomorphism of π�R-modules.

Proposition 3.3. If A is an R-algebra, the Γ-graded groups π�A form a π�R-algebra. If A is a

commutative R-algebra, π�A is a graded commutative π�R-algebra.

3.2 Picard-graded model structures
In this section we describe model structures on categories of R-modules and R-algebras based
on using elements of Pic(R) as basic cells. The structure of this section is based on Goerss and
Hopkins’ work on obstruction theory for algebras over an operad [GH04], which in turn is based
on Bousfield’s work [Bou03]. We carry this out under the simplifying assumptions that we are not
using an auxiliary homology theory, and that the operad in question is the associative operad.
However, we will remove the assumption that the base category is the stable homotopy category,
and allow ourselves the use of homotopy groups graded by a Picard groupoid Γ rather than
integer-graded homotopy groups.

In this section we work in the flat stable model category structure on symmetric spectra (the
S-model structure of [Shi04]). Fix a commutative model for our E∞-ring spectrum R, and let
ModΔ

R denote the (ordinary) category of R-module objects in symmetric spectra (which should
not be confused with its underlying ∞-category ModR). We also fix a grading Γ for R as in the
previous section, giving any R-module M natural Γ-graded homotopy groups π�M .

According to [Shi04, 2.6–2.7], the category ModΔ
R is a cofibrantly generated, proper, stable

model category with generating sets of cofibrations and acyclic cofibrations with cofibrant source;
it is also, compatibly, a simplicial model category (see, for example, [DL14] for references in
this direction). The smash product ∧R and function object FR(−,−) give ModΔ

R a symmetric
monoidal closed structure under which ModΔ

R is a monoidal model category, and the category
AlgΔ

R of associative R-algebras is a cofibrantly generated simplicial model category with fibrations
and weak equivalences detected in ModΔ

R [SS00]. We let T denote the monad taking M to the
free R-algebra T(M) =

∨
M∧Rn; algebras over T are associative R-algebras.
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The following definitions are dual to those in Bousfield [Bou03], taking the category Γ as
generating a class P of cogroup objects.

Definition 3.4. Let DR denote the homotopy category of ModΔ
R .

1. A map p : X → Y in DR is Pic-epi if the map π�X → π�Y is surjective.
2. An object A ∈ DR is Pic-projective if the map p∗ : [A, X]→ [A, Y ] is surjective whenever

p : X → Y is Pic-epi.
3. A morphism A→ B in ModΔ

R is a Pic-projective cofibration if it has the left lifting property
with respect to all Pic-epi fibrations in ModΔ

R .

Remark 3.5. Technically speaking, we should include the group Γ in the notation, but we do
not.

Any object P ∈ Pic(R) with a lift to an element γ ∈ Γ is automatically Pic-projective, and
the class of projective cofibrations is closed under coproducts, suspensions, and desuspensions.
There are enough Pic-projective objects: to construct a Pic-projective P and a map P → X

inducing a surjection π�P → π�X, we can choose generators {xα ∈ πγαX} of π�X which are
represented by a map

∨
α Rγα → X. We can then describe a model structure on the category

s ModΔ
R of simplicial R-modules.

Definition 3.6. Let f : X• → Y• be a map of simplicial R-modules.

1. The map f is a Pic-equivalence if the map πγf : πγX• → πγY• is a weak equivalence of
simplicial abelian groups for all γ ∈ Γ.

2. The map f is a Pic-fibration if it is a Reedy fibration and the map πγf : πγX• → πγY• is a
fibration of simplicial abelian groups for all γ ∈ Γ.

3. The map f is a Pic-cofibration if the latching maps

Xn

∐
LnX

LnY → Yn

are Pic-projective cofibrations for n ≥ 0.

Theorem 3.7 [Bou03]. These definitions give the category s ModΔ
R of simplicial R-modules the

structure of a simplicial model category, which we call the Pic-resolution model structure. This

model structure is cofibrantly generated, and has generating sets of cofibrations and acyclic

cofibrations with cofibrant source. The forgetful functor to simplicial R-modules (with the Reedy

model structure) creates fibrations.

As in [GH04, § 3], for a simplicial R-module X and γ ∈ Γ we have ‘natural’ homotopy groups
π�

n(X; γ). On geometric realization there is a homotopy spectral sequence with E2-term

πpπγ(X)⇒ πp+γ |X| .

The E2-term of this spectral sequence comes from an exact couple, the spiral exact sequence
[GH04, Lemma 3.9]:

· · · → π�
n−1(X; γ)→ π�

n(X; γ)→ πnπγ(X)→ π�
n−2(X; γ)→ · · ·
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As applications of the Pic-resolution model structure, we obtain Pic-graded Künneth and
universal coefficient spectral sequences.

Theorem 3.8. For X, Y ∈ DR, there are spectral sequences of Γ-graded R�-modules:

TorR�
p,γ(π�X, π�Y )⇒ πp+γ(X ∧R Y ),

Exts,τ
R�

(π�X, π�Y )⇒ π−s−τFR(X, Y ).

Proof. Lift X and Y to ModΔ
R , cofibrant or fibrant as appropriate. Then choose a cofibrant

replacement P → X, where X is viewed as a constant simplicial object in the Pic-resolution
model category structure. The result is a simplicial R-module, augmented over X, such that
the map |P | → X is a weak equivalence and such that the associated simplicial object π�P is
levelwise projective as a Γ-graded π�R-module. The spectral sequences in question are associated
to the geometric realization of P ∧R Y and the totalization of FR(P, Y ), which are equivalent to
the derived smash X ∧R Y and derived function object FR(X, Y ), respectively. �

Corollary 3.9. Suppose P is a cofibrant R-module such that π�P is a projective π�R-module.

Then π�T(P ) is isomorphic to the free π�R-algebra on π�P .

Proof. This follows by first observing that the Künneth formula degenerates to isomorphisms

π�(P ∧R · · · ∧R P ) ∼= π�P ⊗π�R · · · ⊗π�R π�P,

and then applying π� to the identification

T(P ) ∼=
∨
k≥0

P∧Rk

of R-modules. �

The Pic-resolution model structure on simplicial R-modules now lifts to R-algebras. The
following results are originally due to Bousfield (cf. [Bou03, Bou89]) and Goerss and Hopkins
(cf. [GH04, GH]), respectively; see also [PV19] for a more recent treatment.

Theorem 3.10. There is a simplicial model category structure on s AlgΔ
R such that the for-

getful functor s AlgΔ
R → s ModΔ

R creates weak equivalences and fibrations. We call this the

Pic-resolution model structure on simplicial R-algebras. This model structure is cofibrantly

generated, and has generating sets of cofibrations and acyclic cofibrations with cofibrant source.

For each X ∈ s AlgΔ
R , there is a Pic-equivalence Y → X with the following properties.

1. The simplicial object Y is cofibrant in the Pic-resolution model category structure on s AlgΔ
R .

2. [GH04, 3.7] There are objects Zn, which are wedges of cofibrant R-modules in Pic(R), such

that the underlying degeneracy diagram of Y is of the form

Yn = T

( ∐
φ:[n]�[m]

Zm

)
.

Given this structure, we can use Goerss and Hopkins’ moduli tower of Postnikov approx-
imations to produce an obstruction theory. This both classifies objects and constructs a
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Bousfield–Kan spectral sequence for spaces of maps between R-algebras using Γ-graded homo-
topy groups. In order to describe the resulting obstruction theories, let DersAlgπ�R

denote the
derived functors of derivations in the category of Γ-graded π�R-algebras as in § 2.4.

Theorem 3.11. 1. There are successively defined obstructions to realizing an algebra A� ∈
Algπ�R by an R-algebra A in the groups

Ders+2
Algπ�R

(A�, ΩsA�),

and obstructions to uniqueness in the groups

Ders+1
Algπ�R

(A�, ΩsA�),

for s ≥ 1.

2. For R-algebras X and Y , there are successively defined obstructions to realizing a map

f ∈ HomAlgπ�R
(π�X, π�Y ) in the groups

Ders+1
Algπ�R

(π�X, Ωsπ�Y ),

and obstructions to uniqueness in the groups

Ders
Algπ�R

(π�X, Ωsπ�Y ),

for s ≥ 1.

3. Let φ ∈ MapAlgΔ
R
(X, Y ) be a map of R-algebras. Then there is a fringed, second quadrant

spectral sequence abutting to

πt−s(MapAlgΔ
R
(X, Y ), φ),

with E2-term given by

E0,0
2 = HomAlgπ�R

(π�X, π�Y )

and

Es,t
2 = Ders

Algπ�R
(π�X, Ωtπ�Y ) for t > 0.

This theorem is obtained using simplicial resolutions. Given an R-algebra A, we form a
simplicial resolution of A by free R-algebras, which becomes a resolution of π�A by free π�R-
algebras by Corollary 3.9. We get the spectral sequences for mapping spaces from the associated
homotopy spectral sequence (see [Bou03]). The obstruction theory for the construction of such
A, instead, relies on constructing partial resolutions PnA as simplicial free R-algebras whose
homotopy spectral sequence degenerates in a specific way, and then identifying the obstruction
to extending the construction of Pn(A) to Pn+1(A) as lying in an André–Quillen cohomology
group.

3.3 Algebraic Azumaya algebras
We now apply the obstruction theory of the previous section to the algebraic case. We continue
to let R be an E∞-ring spectrum with a grading by Γ, and DR the homotopy category of left
R-modules.

We recall that an algebra A is an Azumaya R-algebra if A is a compact generator of DR,
and the left-right action map A ∧R Aop → EndR(A) is an equivalence in DR [BRS12].

1228

https://doi.org/10.1112/S0010437X21007065 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007065


Brauer groups and Galois cohomology of commutative ring spectra

Proposition 3.12. Suppose A is an R-algebra such that π�A is a projective π�R-module. Then

π�A is an Azumaya π�R-algebra if and only if A is an Azumaya R-algebra.

Proof. The projectivity of π�A makes the Künneth and universal coefficient spectral sequences
of Theorem 3.8 degenerate. We find that the action map A ∧R Aop → EndR(A) becomes, on π�,
the map π�A⊗π�R π�A

op → Endπ�R(π�A), and so the two conditions are equivalent. �

We have a similar result about Morita triviality.

Proposition 3.13. Let M be an R-module whose Γ-graded homotopy groups π�M form a

finitely generated projective π�R-module. The function spectrum EndR(M) has homotopy groups

given by the π�R-algebra Homπ�R(π�M, π�M). The center of this algebra is the image of π�R,

and if π�M is a graded generator this algebra is Morita equivalent to π�R in the category of

Γ-graded π�R-algebras.

Definition 3.14. An R-algebra is said to be an algebraic Γ-graded Azumaya algebra over R if
the multiplication on π�A makes it into an Azumaya π�R-algebra.

We may apply the Goerss–Hopkins obstruction theory to algebraic Azumaya R-algebras.
Much of the following is originally due to Baker, Richter, and Szymik [BRS12, 6.1].

Theorem 3.15. 1. Any Azumaya π�R-algebra is isomorphic to π�A for some Γ-graded algebraic

Azumaya R-algebra A.

2. Suppose A is a Γ-graded algebraic Azumaya R-algebra. For any R-algebra S (not

necessarily Azumaya), the natural map

[A, S]AlgΔ
R

π�−→ HomAlgπ�R
(π�A, π�S)

is an isomorphism. For any map φ : A→ S of R-algebras (making π�S into a π�A-bimodule)

and any t > 0, we have an isomorphism

πt(MapAlgΔ
R
(A, S), φ) ∼= (πtS)/HH0(π�A, Ωtπ�S).

3. If A is a Γ-graded algebraic Azumaya R-algebra, the homotopy groups of the space

AutAlgΔ
R
(A) satisfy

πt(AutAlgΔ
R
(A), id) ∼=

{
AutAlgπ�R

(π�A) if t = 0,

πtA/πtR if t > 0.

4. If A is a Γ-graded algebraic Azumaya R-algebra, then for t > 0 the sequence

0→ πt GL1(R)→ πt GL1(A)→ πt AutAlgΔ
R
(A)→ 0

is exact, and there is an exact sequence of potentially nonabelian groups

1→ π0 GL1(R)→ π0 GL1(A)→ π0 AutAlgΔ
R
(A)→ π0 Pic(R).

The image in π0 Pic(R) of the last map is the group of outer automorphisms of π�A as a

π�R-algebra.
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Proof. The Goerss–Hopkins obstruction groups Ders
Algπ�R

(π�A, M) appearing in Theorem 3.11
vanish identically for s > 0 by Proposition 2.32. In particular, the obstructions to existence and
uniqueness vanish, so every Azumaya π�R-algebra lifts to an Azumaya R-algebra. Moreover,
the obstructions to existence and uniqueness for lifting maps also vanish, and so every map of
Azumaya π�R-algebras lifts uniquely to a map of R-algebras.

We then apply the vanishing and exact sequence of Proposition 2.32 to the spectral sequence
calculating the homotopy groups of MapAlgΔ

R
(A, S). We find that there are short exact sequences

0→ HH0(π�A, π�S)→ π�S → πt MapAlgΔ
R
(A, S)→ 0

for t > 1, and thus obtain the stated results on π1 and π0, once due caution is exercised regarding
basepoints. �

Corollary 3.16. The functor π� restricts to an equivalence from the homotopy category of

algebraic Γ-graded Azumaya R-algebras to the category of Azumaya π�R-algebras.

Remark 3.17. There are two very common sources of nonalgebraic Azumaya R-algebras. First,
any compact generator M of ModΔ

R produces an Azumaya R-algebra EndR(M) regardless of
whether π�M is projective or not (for example, the derived endomorphism ring of Z⊕ Z/p is
a nonalgebraic derived Azumaya algebra over Z). Second, the property of being algebraic also
depends on the grading. If P is an element in Pic(R) which is not a suspension of R, then
EndR(R⊕ P ) is likely to be exotic for Z-grading but is definitely not exotic for Pic-grading.

4. Presentable symmetric monoidal ∞-categories

From this section forward, we will switch to an ∞-categorical point of view on categories of
Azumaya algebras and their module categories so that we can make use of the results of [AG14,
Lur17, GH15]. Finding strict model-categorical versions of many of these constructions we will
use seems extremely difficult. For example, it is hard to find point-set constructions that simulta-
neously give a construction of GLn(R) as a group, Mn(R) as an R-algebra, an action of GLn(R)
on Mn(R) by conjugation, and a diagonal embedding GL1(R)→ GLn(R) which acts trivially. If
we also want these to be homotopically sensible then it becomes harder still.

Making this switch implicitly requires a translation process, which we will briefly sketch.
Given a commutative symmetric ring spectrum R, its image R̄ in the ∞-category Sp of spectra
is a commutative algebra object in the sense of [Lur17, 2.1.3.1].

• [Lur17, 4.1.3.10] Associated to ModΔ
R there is a stable presentable symmetric monoidal

∞-category N⊗(ModΔ◦
R ), the operadic nerve of the category ModΔ◦

R ⊂ ModΔ
R of cofibrant-

fibrant R-modules.
• [Lur17, 4.3.3.17] This ∞-category is equivalent to the ∞-category of modules over the

associated commutative algebra object R̄ in Sp.
• [Lur17, 4.1.4.4] The model category of associative algebra objects AlgΔ

R has∞-category equiv-
alent to the ∞-category of associative algebra objects of N⊗(ModΔ◦

R ) in the sense of [Lur17,
4.1.1.6].

• [Lur17, 4.3.3.17] For such R-algebras, the model categories of left A-modules, right A-modules,
or A-B bimodules in ModΔ

R have associated∞-categories equivalent to the left modules, right
modules, or bimodules over the corresponding associative algebra objects in N⊗(ModΔ◦

R ).

1230

https://doi.org/10.1112/S0010437X21007065 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007065


Brauer groups and Galois cohomology of commutative ring spectra

Definition 4.1. Let Ring := CAlg(Sp) denote the ∞-category of E∞-ring spectra, or, equiva-
lently, commutative algebra objects in Sp.

4.1 Closed symmetric monoidal ∞-categories
Definition 4.2 [Lur17, 4.1.1.7]. A monoidal∞-category C⊗ is closed if, for each object A of C,
the functors A⊗ (−) : C→ C and (−)⊗A : C→ C admit right adjoints. A symmetric monoidal
∞-category C⊗ is closed if the underlying monoidal ∞-category is closed.

Recall [Lur17, 4.8] that the ∞-category of PrL of presentable ∞-categories and colimit-
preserving functors [Lur09, 5.5.3.1] admits a symmetric monoidal structure with unit the
∞-category S of spaces. We refer to (commutative) algebra objects in this ∞-category as
presentable (symmetric) monoidal ∞-categories.

Proposition 4.3 [Lur17, 4.2.1.33]. A presentable monoidal ∞-category is closed.

Proof. Let C⊗ be a presentable monoidal ∞-category. Then, by definition, the underlying
∞-category C is presentable, and for each object A of C the functors A⊗ (−) and (−)⊗A

commute with colimits. It follows from the adjoint functor theorem [Lur09, 5.5.2.2] that both of
these functors admit right adjoints. �

Note that this implies that (the underlying∞-category of) a presentable symmetric monoidal
∞-category C⊗ is canonically enriched, tensored and cotensored over itself. If C is stable, then C

is enriched, tensored and cotensored over Sp, the ∞-category of spectra. We will not normally
notationally distinguish between the internal mapping object and the mapping spectrum, which
should always be clear from the context.

Proposition 4.4. A symmetric monoidal ∞-category R is stable and presentable (as a sym-

metric monoidal ∞-category) if and only if the underlying ∞-category is stable and presentable

and (any choice of) the tensor bifunctor R× R→ R preserves colimits in each variable. In par-

ticular, a closed symmetric monoidal ∞-category R is stable and presentable if and only if the

underlying ∞-category is stable and presentable.

There is also the following multiplicative version of Morita theory.

Proposition 4.5 ([Lur17, 7.1.2.7], [AG14, 3.1]). The functor

Mod: CAlg(Sp) −→ CAlg(PrL),

sending R to the (symmetric monoidal, presentable, stable) ∞-category of R-modules, is a fully

faithful embedding.

4.2 Structured fibrations
We will write Cat∧∞ for the very large ∞-category of large ∞-categories.

Definition 4.6. Given a (possibly large) ∞-category C and a functor C→ Cat∧∞, we will say
that a cocartesian fibration X → S admits a C-structure if its classifying functor X → Cat∧∞
factors through C→ Cat∧∞.
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We have a cocartesian fibration Mod→ Ring [Lur17, 4.5.3.6] whose fiber over the E∞-ring
spectrum R is the (large) ∞-category ModR of R-modules.

Proposition 4.7 [Lur17, 4.5.3.1, 4.5.3.2]. The cocartesian fibration Mod→ Ring admits a

canonical symmetric monoidal structure: there is a cocartesian family of ∞-operads

Mod⊗ → Ring×Comm⊗

classifying a functor R �→ ModR : Ring→ CAlg(PrL
st) from E∞-ring spectra to presentable stable

symmetric monoidal ∞-categories.

We next consider algebra objects. By applying [Lur17, 4.8.3.13], we similarly find that we
have a cocartesian fibration Alg→ Ring whose fiber over the ring R is the (large) ∞-category
AlgR of R-algebras.

Proposition 4.8. The cocartesian fibration Alg→ Ring admits a canonical symmetric

monoidal structure such that the forgetful functor from algebras to modules induces a morphism

of symmetric monoidal cocartesian fibrations

Alg ��

���
��

��
��

�
Mod

����
��

��
��

�

Ring

over Ring.

Proof. As in [Lur17, 5.3.1.20], the cocartesian family of∞-operads Mod⊗ → Ring×Comm⊗ clas-
sifies a functor Ring→ (Op∞)/ Comm⊗

, taking R to the cocartesian fibration Mod⊗
R → Comm⊗.

Applying [Lur17, 3.4.2.1], we obtain a functor Alg : Ring→ (Op∞)/ Comm⊗
, taking R to a

cocartesian fibration Alg⊗R → Comm⊗ with a forgetful map

Alg⊗R ��

���
��������

Mod⊗
R

		���������

Comm⊗

that preserves cocartesian arrows [Lur17, 3.2.4.3]. Converting this back, we obtain a diagram

Alg⊗ ��



����������� Mod⊗

��											

Ring×Comm⊗

of cocartesian Ring-families of symmetric monoidal∞-operads, lifting the underlying map Alg→
Mod to one compatible with the symmetric monoidal structure. �
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Restricting the cocartesian fibration Mod→ Ring to the subcategory of cocartesian arrows
between compact modules, we obtain a left fibration

Modω,cocart −→ Ring

whose fiber over R is the∞-groupoid Modω,�
R of compact (or perfect [Lur17, 7.2.5.2]) R-modules.

More precisely, an arrow (R, M)→ (R′, M ′) of Modω,cocart is an arrow (R, M)→ (R′, M ′) of Mod
such that M is compact (as an R-module) and the map M ⊗R R′ →M ′ is an equivalence.

Lastly, let Algprop → Ring denote the left fibration whose source ∞-category is the
subcategory Algprop of proper algebras defined by the following pullback.

Algprop ��

��

Alg

��
Modω,cocart �� Mod

This time, however, Algprop
R is not the full subgroupoid of AlgR on the compact R-algebras, but

rather the full subgroupoid of AlgR consisting of the R-algebras A whose underlying R-module
is compact.

Proposition 4.9. The morphism of symmetric monoidal cocartesian fibrations Alg→ Mod
over Ring restricts to a morphism of symmetric monoidal left fibrations Algprop → Modω,cocart

over Ring.

Proof. Tensors of compact modules are compact [Lur17, 5.3.1.17]. �

4.3 Functoriality of endomorphisms
In order to construct the endomorphism algebra as a functor, we need to extend the results of
[Lur17, 4.7.2]. In this, Lurie considers the category of tuples (A, M, φ : A⊗M →M), which has
a forgetful functor p given by p(A, M, φ) = M . He extends it in such a way as to give this functor
p monoidal fibers; this gives the terminal object End(M) in the fiber over M a canonical monoid
structure. For the reader’s convenience, we will first review some details of Lurie’s construction.

Let LM⊗ denote the ∞-operad parametrizing pairs of an algebra and a left module [Lur17,
4.2.1.7]. A cocartesian fibration O⊗ → LM⊗ of ∞-operads determines a monoidal ∞-category C

and an ∞-category M such that M is left-tensored over C [Lur17, 4.2.1.19]; in particular, there
exist objects A⊗M for A ∈ C and M ∈M. Associated to this there is a category LMod(M) of
left module objects in M [Lur17, 4.2.1.13]; such an object is determined by an algebra A ∈ C

and a left A-module M ∈M. There is a forgetful map LMod(M)→M which is a categorical
fibration.

Proposition 4.10. Let Act(M) be the fiber product LMod(M)×M M�. The natural map

Act(M)→M� is a cocartesian fibration.

Proof. The map Act(M)→M is a categorical fibration to a Kan complex, and so by [Lur09,
2.4.1.5, 2.4.6.5] it is a cocartesian fibration. �

Definition 4.11 [Lur17, 4.2.1.28]. Suppose that M is left-tensored over the monoidal
∞-category C. A morphism object for M and N is an object FM(M, N) of C equipped with
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a map FM(M, N)⊗M → N such that the resulting natural homotopy class of map

MapC(C, FM(M, N))→ MapM(C ⊗M, N)

is a homotopy equivalence for all C ∈ C. If morphism objects exist for all M and N , we say that
the left-tensor structure gives M a C-enrichment.

Proposition 4.12 [Lur17, 4.7.2.40]. Suppose that M is left-tensored over C, giving it a

C-enrichment. For any M ∈M, the fiber LMod(M)×M {M} has a final object End(M) whose

image under the composite LMod(M)→ AlgC→ C is FM(M, M).

Corollary 4.13. Under these assumptions, there exists a functor End: M� → AlgC sending

M to End(M).

Proof. By [Lur09, 2.4.4.9], the full subcategory of Act(M) spanned by the final objects determines
a trivial Kan fibration End(M)→M�. Choosing a section of this map, we obtain a composite
functor

M� → LMod(M)→ AlgC

with the desired properties. �

Remark 4.14. It should be sufficient to assume that C is monoidal and M merely C-enriched,
rather than including the stronger assumption that M is left-tensored over C. However, we
require this assumption in order to make use of the results from [Lur17, 4.7.2].

5. Picard and Brauer spectra

In this section we recall the definitions and some important features of Picard and Brauer groups
of a commutative ring spectrum. These groups are the homotopy groups of associated Picard
and Brauer spectra, which arise as certain nonconnective deloopings of the spectrum of units of
a commutative ring spectrum.

Much of the work in this section is a recapitulation of previous work. Picard spectra have
been widely studied by many authors (far too many to list here), and calculations of the Picard
group (that is, π0 of the Picard spectrum) have played an immensely important role in the
development of chromatic homotopy theory. The study of Brauer spectra and the Brauer group,
on the other hand, is significantly newer and less well developed. Foundational work on Brauer
groups in higher categorical and derived algebro-geometric contexts has been carried out by a
number of authors, including Antieau and Gepner [AG14], Baker, Richter, and Szymik [BRS12],
Hopkins and Lurie [HL17], Johnson [Joh14], and Toën [Toë12].

5.1 Picard spectra
In this section we recall the relevant notions and derive a useful long exact sequence (Corollary
5.20), related to the graded Rosenberg–Zelinsky sequence of Corollary 2.26, which generalizes
the short exact sequences of Theorem 3.15.

If C is a small ∞-category, we write π0C for the set of equivalence classes of objects of C. By
definition, π0C is an invariant of the underlying ∞-groupoid C� of C (the ∞-groupoid obtained
by discarding the noninvertible arrows).
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Definition 5.1. A symmetric monoidal∞-category C is grouplike if the monoid π0C is a group.

A symmetric monoidal ∞-category C has a unique maximal grouplike symmetric monoidal
subgroupoid C×, the subcategory C× ⊂ C consisting of the invertible objects and the equivalences
thereof. That this is actually a symmetric monoidal subcategory in the ∞-categorical sense
follows from the fact that invertibility and equivalence are both detected upon passage to the
symmetric monoidal homotopy category; the grouplike condition is guaranteed by considering
only the invertible objects.

Let PrL
st ⊂ PrL denote the ∞-category of stable presentable ∞-categories and colimit-

preserving functors; by [Lur17, 4.8.2.18] this is the category ModSp of left modules over the
∞-category of spectra. We have the ∞-category CAlg(ModSp) of commutative ring objects in
PrL

st; these are the same as commutative Sp-algebras or presentable symmetric monoidal stable
∞-categories.

Definition 5.2. Let R be a commutative Sp-algebra. The Picard ∞-groupoid Pic(R) of R is
R×, the maximal subgroupoid of the underlying ∞-category of R spanned by the invertible
objects.

By [ABG18, 8.9] Pic(R) is equivalent to a small space, and by [ABG18, 8.10] the functor Pic
commutes with limits.

We have a symmetric monoidal cocartesian fibration

Mod(ModSp) −→ CAlg(ModSp)

whose fiber over a commutative Sp-algebra R is the symmetric monoidal ∞-category CatR of
R-linear ∞-categories. Writing

ModSp,ω ⊂ ModSp

for the symmetric monoidal subcategory consisting of the compactly generated Sp-modules and
compact-object-preserving functors, this restricts to a symmetric monoidal cocartesian fibration

Mod(ModSp,ω) −→ CAlg(ModSp,ω)

over the subcategory CAlg(ModSp,ω) ⊂ CAlg(ModSp) of commutative algebra objects in
ModSp,ω ⊂ ModSp. For a commutative algebra object R ∈ CAlg(ModSp,ω), also known as a
compactly generated commutative Sp-algebra, we write Cat�R,ω for the full subgroupoid of
the fiber CatR,ω over R, the symmetric monoidal ∞-category of compactly generated R-linear
∞-categories in the sense of [Lur09, 5.3.5], and note that the map R �→ Cat�R,ω defines a left
fibration Mod�(ModSp,ω)→ CAlg(ModSp,ω).

Proposition 5.3 (cf. [MS16, 2.1.3]). Let R be a compactly generated commutative Sp-algebra.

Then any invertible object of R is compact.
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Proof. Let I be any invertible object of R and let {Mα} be a filtered system of objects of R.
Then there are natural equivalences

Map(I, colimMα) � Map(1, colim I−1 ⊗Mα)

� colimMap(1, I−1 ⊗Mα)

� colimMap(I, Mα).

The first equivalence follows because ⊗ commutes with colimits. The second follows because
the monoidal unit 1 (the image of the sphere spectrum under the map Sp→ R) is compact by
definition. �

Because Pic(R) is closed under the symmetric monoidal product on R, it is a grouplike
symmetric monoidal ∞-groupoid, so by the recognition principle for infinite loop spaces we may
regard Pic(R) as having an associated (connective) spectrum pic(R) = K(Pic(R)). Let ΓR be the
algebraic Picard groupoid of R: the homotopy category of Pic(R), which is the 1-truncation of
Pic(R). If R is unambiguous, we drop it and simply write Γ. We will notationally distinguish
between an object γ ∈ Γ and the associated invertible object Rγ ∈ R.

Proposition 5.4. The homotopy category of R is canonically enriched in the symmetric

monoidal category of Γ-graded abelian groups.

Proof. Since R is stable, the set π0 Map(M, N) of homotopy classes of maps from M to N admits
an abelian group structure which is natural in the variables M and N of R, and composition is
bilinear. The result then follows from Proposition 2.15, defining π� Map(M, N) by the rule

πγ Map(M, N) := π0 Map(ΣγM, N). �

If R is an E∞-ring spectrum, then we will typically write Pic(R) in place of Pic(ModR) and
ΓR in place of ΓModR

.

5.2 Brauer spectra
The results in this subsection and the next are essentially a summary of some of the results of
Toën [Toë12], in the differential-graded context, and Antieau and Gepner [AG14], in the spectral
context.

Definition 5.5. Let R be a compactly generated commutative Sp-algebra. The Brauer
∞-groupoid Br(R) of R is the full subgroupoid Pic(CatR,ω) ⊂ Cat�R,ω of the underlying
∞-groupoid Cat�R,ω of CatR,ω consisting of the invertible R-linear categories which admit a
compact generator.

Remark 5.6. If C is a presentable∞-category, then C � Indκ(Cκ) is the κ-filtered colimit comple-
tion of the full subcategory Cκ ⊂ C on the κ-compact objects for some sufficiently large cardinal
κ. If κ can be taken to be countable, then C is said to be compactly generated, and if there
exists a compact object P ∈ C such that C � ModEnd(P ) as Sp-modules, then C is said to admit
a compact generator. Note that an Sp-module C admits a compact generator P if and only if the
smallest thick subcategory of Cω containing P is Cω itself, in which case Cω � Modω

End(P ). Also
observe that there is a distinction between these objects (R-linear ∞-categories with a compact
generator) and the compact objects in CatR.
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Because Br(R) is closed under the symmetric monoidal product on CatR, it is a grouplike
symmetric monoidal ∞-groupoid, so we may associate to it a connective spectrum br(R).

Proposition 5.7. Let R be a compactly generated stable symmetric monoidal ∞-category.

Then there is a canonical equivalence Pic(R)→ Ω Br(R), induced by a spectrum level map

pic(R)→ Ω br(R) which is an equivalence on connective covers.

Proof. We first observe that CatR,ω is a symmetric monoidal ∞-category in which the ten-
sor product is induced from the tensor product of (compactly generated) presentable stable
∞-categories [Lur17, § 4.8.1]. Furthermore, this symmetric monoidal structure is compatible with
the tensor product of associative algebra spectra; in particular, there is a canonical equivalence

ModA⊗ModB � ModA⊗B .

In particular, Br(R) � Pic(CatR,ω) (and also Pic(R)) are grouplike symmetric monoidal E∞-
spaces.

Observe that if X is a grouplike E∞-space, regarded as an∞-groupoid, then ΩX � AutX(∗)
is the space of automorphisms of the distinguished object ∗ of X. Moreover, ΩX is again a group-
like E∞-space, as limits of grouplike E∞-spaces are computed in the∞-category of spaces. Hence
Ω Pic(Modω

R) � AutR(R) � Pic(R), where the last equivalence follows from the fact that invert-
ible R-module endomorphisms of R correspond to invertible objects of R under the equivalence
EndR(R) � R [Lur17, 4.8.4]. The spectrum level equivalence pic(R)→ Ω br(R) now follows from
the fact that pic(R) and br(R) are the connective spectra associated to the grouplike E∞-spaces
Pic(R) and Br(R), respectively. �

If R is an E∞-ring spectrum, we will typically write BrR for the ∞-groupoid Br(ModR).

5.3 Azumaya algebras
Definition 5.8 ([AG14, 3.1.3], [BRS12], [Toë12]). Let R be an E∞-ring spectrum. An Azu-
maya R-algebra is an R-algebra A such that

• the underlying R-module of A is a compact generator of ModR in the sense of [Lur09, 5.5.8.23],
and

• the ‘left-and-right’ multiplication map A⊗R Aop → EndR(A), adjoint to the composite
multiplication map

(A⊗R Aop)⊗R A
1⊗τ−−→ A⊗R A⊗R Aop μ−→ A,

is an R-algebra equivalence.

Remark 5.9. Informally, the ‘left-and-right’ multiplication map is the morphism which sends the
pair (a0, a1) to the endomorphism a �→ a0aa1.

Remark 5.10. In [AG14, 3.15] it is shown that an R-algebra A is Azumaya if and only if the asso-
ciated compactly generated R-linear ∞-category ModA is invertible in the ∞-category CatR,ω

of all compactly generated R-linear ∞-categories and R-linear functors which preserve compact
objects.

Remark 5.11. The notions of Azumaya algebra and Brauer group (of Morita equivalence classes
of Azumaya algebras) make sense more generally in any symmetric monoidal ∞-category C
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such that C admits geometric realizations of simplicial objects and the tensor product functor
⊗ : C× C→ C preserves realizations of simplicial objects in each variable. See [HL17, § 2.2] for
details.

Proposition 5.12. If A is an Azumaya R-algebra and R→ R′ is a ring map, then A⊗R R′ is

an Azumaya R′-algebra.

We write Az for the full subcategory of Alg determined by pairs (R, A) such that A is
an Azumaya R-algebra. Because Azumaya algebras are stable under base-change, we have a
morphism of cocartesian fibrations

Az ��

��














Alg

����
��

��
��

Ring

over Ring.

Proposition 5.13. Let A be an Azumaya R-algebra. Then the category of right A-modules

ModA is an invertible ModR-module with inverse ModAop .

Proof. We must show that ModA⊗ModAop � ModR, where the tensor is taken in the category
of left ModR-linear categories. Since Mod is symmetric monoidal [Lur17, 4.8.5.16], we have
an equivalence ModA⊗ModR

ModAop � ModA⊗RAop , and as ‘left-and-right’ multiplication A⊗R

Aop → EndR(A) is an equivalence of R-algebras we see that ModA⊗ModAop � ModEndR(A).
Finally, because A is a compact generator of ModR, Morita theory gives an equivalence ModR �
ModEndR(A) [Lur17, 8.1.2.1], and the result follows. �

Remark 5.14. We can instead show that the functor Mod itself is symmetric monoidal using the
results of [BGT14]. There it is shown that the category of stable ∞-categories is the symmetric
monoidal localization of the category of spectral ∞-categories, obtained by inverting the Morita
equivalences. In particular, regarding ring spectra A and B as one-object spectral ∞-categories,
it follows that ModA⊗ModR

ModB � ModA⊗RB. The relative tensors are computed as the geo-
metric realization of two-sided bar constructions B(A, R, B) and B(ModA, ModR, ModB) [Lur17,
4.4.2.8]; the localization functor preserves geometric realization due to being a left adjoint.

Proposition 5.15. The map of ∞-groupoids AzR → BrR is essentially surjective. Moreover, if

A and B are Azumaya algebras such that the images of A and B become equal in π0 BrR, then

A and B are Morita equivalent.

Proof. Let R = ModR and let I be an invertible object of CatR,ω. Then I has a compact generator,
so I � ModA for some R-algebra A ([SS03], [Lur17, 7.1.2.1]), and invertibility implies that A is
a compact generator of ModR. It follows that EndR(A) is Morita equivalent to R, and thus that
the R-algebra map A⊗R Aop → EndR(A) is an equivalence. �

We remark that we can identify the homotopy types of the fibers of the various left fibrations
over Ring.

1238

https://doi.org/10.1112/S0010437X21007065 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007065


Brauer groups and Galois cohomology of commutative ring spectra

Proposition 5.16. Let R be an E∞-ring spectrum. Then

Modω
R �

∐
[M ]∈π0 Modω

R

B AutR(M)

and

AzR �
∐

[A]∈π0 AzR

B AutAlgR
(A).

5.4 The conjugation action on endomorphisms
Let R be a symmetric monoidal presentable stable ∞-category with unit 1, which is therefore
enriched over itself (see [Lur17, 4.2.1.33] or [GH15, 7.4.10]), and let M be an object of R. In this
section we analyze the fiber of the map

AutR(M) −→ AutAlgR
(EndR(M)),

which roughly sends an automorphism α of M to the conjugation automorphism α−1 ◦ (−) ◦ α

of the endomorphism algebra End(M). This map arises from the map EndR : R� → AlgR of
Corollary 4.13.

Proposition 5.17. Let R be an E∞ ring spectrum, A an Azumaya R-algebra, and Modcg
A denote

the ∞-category of compact generators of ModA. Then there are canonical pullback diagrams of

∞-categories as follows.

Pic(R) ��

��

Modcg
A

��

��

{ModA}

��
{A} �� AzR

�� BrR

More generally, the fiber of Modcg
A → AlgR over an R-algebra B is either empty or a principal

torsor for Pic(R).

Remark 5.18. Note that Modcg
A should not be confused with the larger subcategory Modω

A of
compact objects.

Proof. The pullback of the right-hand square is the ∞-category of R-algebras equipped with
a Morita equivalence to ModA. In [Lur17, 4.8.4] it is shown that the category of functors
ModA → ModB is equivalent to a category of bimodules, and so this pullback category of Morita
equivalences is equivalent to the ∞-category Modcg

A of compact generators of ModA via the map
M �→ EndA(M).

The pullback of the left-hand square is the ∞-category of A-bimodules inducing ModR-
linear Morita self-equivalences of ModA. These are, in particular, invertible bimodules over
A⊗R Aop � EndR(A), and Morita theory implies that the map I �→ I ⊗R A makes this equivalent
to Pic(R). �

Taking preimages of the unit component, we obtain the following corollary.
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Corollary 5.19. For an E∞-ring R, there is a fiber sequence∐
[M ]∈π0 Modcg

R

B AutR(M)→
∐

[A]∈π0(AzR)triv

B AutAlgR
(A)→ B Pic(R),

where the middle coproduct is over Azumaya R-algebras Morita equivalent to R.

In particular, this implies that the map AutR(M)→ AutAlgR
(EndR(M)) factors through a

quotient by GL1(R).

Corollary 5.20 (cf. Corollary 2.26). For any Azumaya R-algebra A, there is a long exact

sequence of groups

· · · → πn GL1(R)→ πn GL1(A)→ πn(AutAlgR
(A))→ · · ·

→ π0 GL1(R)→ π0 GL1(A)→ π0(AutAlgR
(A))→ π0 Pic(R).

Moreover, the group π0 Pic(R) acts on the set of isomorphism classes of compact generators of

ModA. The quotient is the set of isomorphism classes of Azumaya algebras A Morita equivalent

to R, and the stabilizer of A is the image of the group of outer automorphisms of π�A as a

π�R-algebra.

This long exact sequence generalizes the short exact sequences of Theorem 3.15 for Γ-graded
algebraic Azumaya R-algebras.

6. Galois cohomology

6.1 Galois extensions
In this section we will review definitions of Galois extensions of ring spectra, due to Rognes
[Rog08]. Let R be an E∞-ring spectrum and let G be an R-dualizable ∞-group: that is, G is
a grouplike A∞-space (equivalently, G � ΩX for some pointed connected ∞-groupoid X) such
that the associated group ring spectrum R[G] := R⊗S Σ∞

+ G is dualizable as an R-module.

Definition 6.1. A Galois extension of R by G is a functor f : BG→ RingR/, sending the
basepoint to a commutative R-algebra S with G-action, such that

• the unit map R→ ShG = lim f is an equivalence, and
• the map S ⊗R S → S ⊗R DRR[G] � DSS[G], induced by the action R[G]⊗R S → S, is an

equivalence.

A G-Galois extension R→ S is faithful if S is a faithful R-module.

We will usually just write f : R→ S for the Galois extension without explicitly mentioning
the G-action. All of the Galois extensions that we consider in this paper will be assumed to be
faithful.

We have the following important result.

Proposition 6.2 [Rog08, 6.2.1]. Let R→ S be a G-Galois extension. Then the underlying

R-module of S is dualizable.
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In other words, S is a proper R-algebra in the sense of [Lur17, 4.6.4.2]. Using this, Mathew
has deduced several important consequences.

Proposition 6.3 [Mat16, 3.36]. Let R→ S be a faithful G-Galois extension with G a finite

group. Then R→ S admits descent in the sense of [Mat16, 3.17].

Proposition 6.4. Let R→ S be a faithful G-Galois extension with G a finite group, and M

an R-module. Then several properties of S-modules descend.

• A map M → N of R-modules is an equivalence if and only if S ⊗R M → S ⊗R N is an

equivalence.

• M is a faithful R-module if and only if S ⊗R M is a faithful S-module.

• M is a perfect R-module if and only if S ⊗R M is a perfect S-module.

• M is an invertible R-module if and only if S ⊗R M is an invertible S-module.

Proof. The first statement is equivalent to the statement that N/M is trivial if and only if
S ⊗R N/M is, which is the definition of faithfulness. The second statement follows from the
tensor associativity equivalence N ⊗S (S ⊗R M) � N ⊗R M . The third statement is [Mat16,
3.27] and the fourth is [Mat16, 3.29]. �

Associated to a commutative R-algebra S, there is the associated Amitsur complex, a
cosimplicial commutative R-algebra:

S⊗• :=
{
S →→S ⊗R S →→→S ⊗R S ⊗R S →→→

→ · · ·}.

In degree n this is the (n + 1)-fold tensor power of S over R. More explicitly, the Amitsur complex
is the left Kan extension of the map {[0]} → RingR/ classifying S along the inclusion {[0]} ↪→ Δ.
Composing with the functor Mod: CAlg→ Cat∧∞, we obtain a cosimplicial R-linear∞-category

ModS⊗• :=
{

ModS →→ ModS⊗RS →→→ ModS⊗RS⊗RS →→→
→ · · ·},

a categorification of the Amitsur complex.

Proposition 6.5 (cf. [Lur11b, 6.15, 6.18], [Mat16, 3.21]). Suppose S is a proper commutative

R-algebra and A is an R-algebra. Then the natural map

θ : ModA → lim Mod(S⊗•)⊗RA

has fully faithful left and right adjoints. If S is faithful as an R-module, then θ is an equivalence.

Proof. We will prove this result by verifying the two criteria of [Lur17, 4.7.5.3] (a consequence
of the ∞-categorical Barr–Beck theorem) for both this cosimplicial diagram of categories and
the corresponding diagram of opposite categories.

The first criterion asks that colimits of simplicial objects exist in ModA and that the
extension-of-scalars functor S ⊗R (−) : ModA → ModS⊗•⊗RA preserve them. However, both cat-
egories are cocomplete and the given functor is left adjoint to the forgetful functor, hence
preserves all colimits. The same condition on the opposite category asks that S ⊗R (−) pre-
serve totalizations of certain cosimplicial objects, but since S is R-dualizable there is a natural
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equivalence
S ⊗R M � FR(DRS, M).

This equivalent functor has a left adjoint, given by N �→ DRS ⊗S M , and so preserves all limits.
The second criterion is a ‘Beck–Chevalley’ condition, as follows. For any α : [m]→ [n] in Δ,

consider the following induced diagram of ∞-categories.

ModS⊗Rm⊗RA
d0

��

��

ModS⊗R(1+m)⊗RA

��
ModS⊗Rn⊗RA

d0

�� ModS⊗R(1+n)⊗RA

Then we ask that these diagrams are left adjointable and right adjointable [Lur17, 4.7.5.13]: that
the horizontal arrows admit left and right adjoints, and that the resulting natural transformation
between the composites is an equivalence. In our case, this diagram is generically of the following
form.

ModB
��

��

ModS⊗RB

��
ModB′ �� ModS⊗RB′

Here the horizontal arrows are extensions of scalars to S, while the vertical arrows are exten-
sions of scalars induced by a map of R-algebras B → B′. The natural transformation between
composed left adjoints is the natural equivalence

(DRS ⊗S M)⊗B B′ → DRS ⊗S (M ⊗B B′),

and the one between composed right adjoints is the natural equivalence

N ⊗S⊗RB (S ⊗R B′)→ N ⊗B B′,

verifying the Beck–Chevalley condition and its opposite.
Therefore, the map from ModA to the limit category has fully faithful left and right adjoints.

If S is faithful, then the functor ModA → ModS⊗RA is conservative and [Lur17, 4.7.5.3] addition-
ally verifies that ModA is equivalent to the limit, making ModA monadic and comonadic over
ModS⊗RA. �

Remark 6.6. This construction has a stricter lift. If we lift R and S to strictly commutative ring
objects in a model category and G is an honest group acting on S, the operation of tensoring
with the right R-module S implements a left Quillen functor between the category of R-modules
and the category of modules over the twisted group algebra S〈G〉 � EndR(S).

6.2 Group actions
Let G be a finite group. In what follows we will write BG for the Kan complex whose set of
n-simplices is given by the formula Hom(Δn, BG) ∼= Gn, with face and degeneracy maps induced
from the multiplication and unit of the group G, as usual. Notice that BG has a unique vertex
i : Δ0 → BG. For an ∞-category C, the category of G-objects in C is the functor category
CBG = Fun(BG,C). Evaluation at the basepoint determines a functor i∗ : CBG → C.
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If C is complete and cocomplete, the functor i∗ admits left and right adjoints i! : C→ CBG and
i∗ : C→ CBG respectively, given by left and right Kan extension. These are naturally described
by the colimit and limit of the constant diagram on G with value X, or equivalently the tensor
and cotensor of X with G:

i!X � G⊗X, i∗X � XG.

Proposition 6.7. If C is complete and cocomplete, the forgetful functor i∗ : CBG → C exhibits

CBG as being monadic and comonadic over C in the sense of [Lur17, 4.7.4.4].

Suppose G is equivalent to a finite discrete group and let p : C→ D be a functor between

complete and cocomplete ∞-categories which preserves finite products, with induced map

p∗ : CBG → DBG. If T
C and T

D are the induced comonads on C and D, then the resulting

natural transformation p ◦ T
C→ T

D ◦ p between comonads is an equivalence.

Proof. For the first statement it suffices, by [Lur17, 4.7.4.5] and its dual, to observe that i∗ is
conservative and preserves all limits and colimits, being both a left and right adjoint.

For the second statement, the natural map is provided by the adjunction in the form of a
composite

pi∗i∗ ∼= i∗p∗i∗
i∗(η)−−−→ i∗i∗i∗p∗i∗ ∼= i∗i∗pi∗i∗

i∗i∗p(ε)−−−−−→ i∗i∗p.

For X ∈ C, this takes the form of the limit natural transformation

p(XG)→ p(X)G,

which is an equivalence by assumption. �

Corollary 6.8. If G is a finite group, then associated to a G-equivariant commutative

R-algebra spectrum S there is a cosimplicial commutative R-algebra

T
•(S) =

{
i∗S →→T(i∗S)→→→T(T(i∗S))→→→

→ · · ·}
induced by the comonad T which computes the homotopy fixed points

ShG � lim
{
S →→SG →→→SG×G →→→

→ · · ·}
as the limit in the ∞-category RingR/ � CAlgR.

Given a G-equivariant commutative R-algebra spectrum S ∈ (RingR/)BG as above, we obtain
G-equivariant ∞-categories ModS and CatS , where the action is induced from the composition

G −→ AutR(S) −→ AutModR
(ModS) −→ AutCatR

(CatS),

given successive application of Mod functor. This is meaningful as R→ S and ModR → ModS

are morphisms of commutative algebra objects in spectra and PrL, respectively.

Corollary 6.9. If G is a finite group, then associated to a G-equivariant commutative

R-algebra spectrum S there is a cosimplicial object

T
•(ModS) =

{
i∗ ModS →→T(i∗ ModS)→→→T(T(i∗ ModS))→→→

→ · · ·}
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of CatR induced by the comonad T which computes the homotopy fixed points

ModhG
S � lim

{
ModS →→ ModG

S →→→ ModG×G
S →→→

→ · · ·}
as the limit (in the ∞-category CatR).

Corollary 6.10. If G is a finite group, then associated to a G-equivariant commutative

R-algebra spectrum S ∈ (RingR/)BG, there is a cosimplicial object

T
•(CatS) =

{
i∗ CatS →→T(i∗ CatS)→→→T(T(i∗ CatS))→→→

→ · · ·}
in Cat∧∞ induced by the comonad T which computes the homotopy fixed points

CathG
S � lim

{
CatS →→ CatG

S →→→ CatG×G
S →→→

→ · · ·}
as the limit (in the ∞-category Cat∧∞).

6.3 Descent
Proposition 6.11. For a Galois extension R→ S, there is a natural equivalence of cosimpli-

cial R-algebras between the Amitsur complex S⊗R• and the fixed-point construction T
•(S) of

Corollary 6.8.

Proof. The universal property of the left Kan extension implies that the identity map S � T
0(S)

extends to a map of cosimplicial objects S⊗• → T
•(S), unique up to contractible choice. It suffices

to verify that this induces equivalences S⊗R(n+1) → SGn
, which follows by induction from the

case n = 1. �

Corollary 6.12. For a Galois extension R→ S, there is a natural equivalence of cosimplicial

R-linear ∞-categories ModS⊗• and the fixed-point construction T
•(ModS) of Corollary 6.9.

Corollary 6.13. For a Galois extension R→ S, there is a natural equivalence of cosimplicial

∞-categories CatS⊗R• and the fixed-point construction T
•(CatS) of Corollary 6.10.

We now specialize Corollary 6.9 to the case in which R→ S is a faithful Galois extension
of R by a stably dualizable group G. Write f : BG→ RingR/ for the functor classifying S as a
G-equivariant commutative R-algebra, so that S � f(∗) and R � lim f . By Corollary 6.12, we
have equivalent descriptions

lim{ModS⊗•} � (ModS)hG � lim Modf

for the ‘fixed points’ of the∞-category Modf , the∞-category of G-semilinear S-modules. Lastly,
we write NhG for the limit of a G-semilinear S-module N , and view it as an R � ShG-module.

Theorem 6.14. Let R→ S be a faithful G-Galois extension with G finite, and A ∈ AlgR. Then

the canonical map

ModA −→ (ModS⊗RA)hG

is an equivalence of ∞-categories.
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Proof. Tensoring the equivalence of Proposition 6.11 with A, we obtain maps of cosimplicial
objects

(S⊗•)⊗R A
∼−→ T

•(S)⊗R A→ T
•(A).

The natural map T(X)⊗R Y → T(X ⊗R Y ) is equivalent to the map XG ⊗R Y → (X ⊗R Y )G

and is therefore an equivalence, because both sides are a |G|-fold coproduct of copies of X ⊗R Y .
Since S is faithful and dualizable as an R-module, Proposition 6.5 shows that there is an

equivalence

ModA � lim(ModS⊗R⊗RA).

The equivalence of cosimplicial rings shows that this extends to an equivalence

ModA � limModT•A � (ModS⊗RA)hG. �

Corollary 6.15. Let R→ S be a faithful G-Galois extension with G finite, associated to a

functor f : BG→ RingR/, and consider the following diagram.

Mod

��

BG
f

��



Ring

Then the map

ModR −→ Fun/ Ring(BG, Mod),

which sends the R-module M to the G-Galois module S ⊗R M , is an equivalence.

Proof. The ∞-category of sections from BG to the pullback of Mod→ Ring is equivalent to the
limit of the functor Modf : BG→ Cat∧∞ it classifies [Lur09, 3.3.3.2], which in turn is equivalent
to ModR by Theorem 6.14. �

Lemma 6.16. For an∞-operad O, the∞-category of O-monoidal∞-categories has limits which

are computed in Cat∞.

Proof. In [Lur17, 2.4.2.6] it is shown that there is an equivalence between O-monoidal
∞-categories and O-algebra objects in Cat∞, and so [Lur17, 3.2.2.1] shows that limits of the
underlying ∞-categories lift uniquely to limits of O-monoidal ∞-categories. The same proof
applies within the category of large ∞-categories. �

Corollary 6.17. Let f : I → CatO
∞ be a diagram of O-monoidal∞-categories and O-monoidal

functors. Then the canonical map

Alg/O(lim f)→ lim(Alg/O◦f)

is an equivalence.

Proof. The ∞-category Alg/O(C⊗) of O-algebra objects in an O-monoidal ∞-category p : C⊗ →
O⊗ is the ∞-category of functors Fun/O⊗(O⊗, C⊗), and Fun/O⊗(O⊗,−) : CatO

∞ → Cat∞ evi-
dently preserves limits in the target. �
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Proposition 6.18. Let R→ S be the G-Galois extension associated to a functor f : BG→
RingR/, and consider the following diagram.

Alg

��

BG
f

��



Ring

Then the map AlgR −→ Fun/ Ring(BG, Alg), which sends the R-algebra A to the G-equivariant

S-algebra S ⊗R A, is an equivalence.

Proof. This follows from the corresponding statement for modules, by noting that f is comes from
a diagram BG→ CAlg(Cat∞) of symmetric monoidal ∞-categories and symmetric monoidal
functors, together with Corollary 6.17. �

We now consider the diagram of ∞-categories

Pic

���
��

��
��

��
�� Modcg

��

�� Az

�����
��

��
��

�� Br

��

BG� �� Ring

where the bottom map describes R as the limit of the G-action on S. For each of the vertical
maps we may take spaces of sections over the cone point or over BG, recovering fixed-point
objects for the action of G on PicS , Modcg

S , AzS , and BrS , respectively.

6.4 Monogenic linear ∞-categories
We now consider the question of Galois descent for linear ∞-categories. Since faithful G-Galois
extensions of commutative ring spectra are examples of universal descent morphisms in the sense
of [Mat16, 3.18] and [Lur18, D.3.1.1], we have the following foundational result of Mathew and
Lurie.

Theorem 6.19 [Lur18, D.3.6.2]. The functor Ring→ Ĉat∞, which on objects sends the com-

mutative ring R to CatR and on morphisms is given by base-change, is a sheaf with respect to

the universal descent topology. In particular, if f : R→ S is a faithful G-Galois extension, then

the augmented cosimplicial ∞-category

CatR → CatS →→ CatS⊗RS →→→ · · ·
is a limit diagram.

Corollary 6.20. There is a canonical equivalence CatR � lim T
•(CatS).

Proof. Using Corollary 6.13, this is immediate from the above theorem. �

To ease the notation somewhat, we will sometimes write CatcgR in place of CatR,ω for the
∞-category of ModR-module objects of PrL

ω. Equivalently, these are the compactly generated R-
linear∞-categories, and morphisms are those R-linear colimit-preserving functors which preserve
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compact objects. We will be especially interested in the monogenic case; that is, the case in which
the R-linear ∞-category C is of the form ModA for some R-algebra A.

Proposition 6.21. Let R be a commutative ring spectrum. Then CatcgR is a symmetric monoidal

presentable ∞-category. Moreover, if A is an associative R-algebra spectrum, then ModA is a

dualizable object of ModR if and only if A is smooth and proper over R, in which case ModAop

is dual to ModA in CatR.

Proposition 6.22. Let f : R→ S be a faithful G-Galois extension. Then ModS is a dualizable

object of CatcgR .

Proof. Since S is a proper R-algebra, it suffices to show that S is a smooth R-algebra
[AG14, § 3.2]. Using the Galois condition, we see that S ⊗R S �∏

g∈G S splits as a product as
S-bimodules, so that S is a retract of the compact S-bimodule S ⊗R S. Hence S itself is compact
as an S-bimodule. �

Definition 6.23. Let R be a commutative ring spectrum. The ∞-category Catmg
R ⊂ CatcgR of

monogenic R-linear∞-categories is defined to be the full subcategory of CatcgR consisting of those
compactly generated R-linear ∞-categories which admit a compact generator.

Remark 6.24. By definition, any object C of CatcgR is in particular a compactly generated
∞-category, meaning that C admits a set of compact generators. However, C lies in the full
subcategory Catmg

R ⊂ CatcgR if and only if this set can be taken to be finite, in which case the
coproduct of these objects is again compact and a generator.

Using the Morita theory of Schwede and Shipley [SS03], an object C of CatcgR lies in the full
subcategory Catmg

R if and only if C � LModA for some R-algebra spectrum A. That is, the full
subcategory Catmg

R ⊂ CatcgR is the essential image of the functor AlgR → CatcgR which associates
to the R-algebra A the R-linear ∞-category of LModA of left A-module spectra, and to a
morphism A→ B of R-algebras the base-change functor f∗ : LModA → LModB. This morphism
lies in the ∞-category CatcgR ; indeed, f∗M � B ⊗A M is a compact left B-module whenever M

is a compact left A-module.

Lemma 6.25. Let f : R→ S be a faithful G-Galois extension and let C be an R-linear

∞-category. Then C admits a compact generator if and only if

ModS ⊗ModR
C � ModS(C)

admits a compact generator.

Proof. This is essentially the same argument as in [AG14, 6.15]. Clearly, if C admits a compact
generator P , then f∗P � P ⊗R S is a compact generator of ModS(C), so suppose that ModS(C)
admits a compact generator Q. Since S is compact (equivalently, dualizable) as an R-module,
the forgetful functor f∗ : ModS → ModR admits a right adjoint f ! : ModR → ModS , given by the
formula

f !(M) � FR(S, M).

Again by compactness, f ! preserves colimits; equivalently, f∗ : ModS → ModR preserves compact
objects. Hence the forgetful functor f∗ : ModS(C)→ C admits a right adjoint, namely the functor
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obtained by tensoring C with f ! : ModR → ModS , which we will also denote f !. Consequently,
f∗ : ModS(C)→ C preserves compact objects; in particular, f∗(Q) is a compact object of C.

We claim that f∗(Q) is in fact a generator of C. To see this, suppose that FR(f∗(Q), M) � 0.
It follows by adjunction that FS(Q, f !(M)) � 0, and therefore that f !(M) � 0, as Q was chosen
to be a compact generator of ModS(C). But f∗ : ModS(C)→ C is conservative, and f∗f !(M) �
DRS ⊗R M , which is also conservative since S (and hence DRS as well) is a faithful R-module.
It follows that f ! : C→ ModS(C) is conservative, and consequently that M � 0. Therefore f∗(Q)
is a compact generator of C. �

In order to establish Galois descent for the Brauer space, we will show more generally that
the functor Catmg

(−) : Ring→ Ĉat∞ satisfies Galois descent, and then restrict to the invertible
objects.

Lemma 6.26. Let f : R→ S be a faithful G-Galois extension. Then the induced functors f∗ :
CatR → CatS and f∗ : Catmg

R → Catmg
S are conservative.

Proof. This follows immediately from the fact that CatS is comonadic over CatR, as f is a
universal descent morphism [Lur18]. �

Proposition 6.27. Let f : R→ S be a morphism of commutative ring spectra. Then the free

S-linear ∞-category functor

F = (−)⊗ModR
ModS : CatR → CatS

preserves compactly generated (respectively, monogenic) linear ∞-categories and compact-

object-preserving morphisms. If additionally S is a compact as an R-module, then the right

adjoint U : CatS → CatR of F also preserves compactly generated (respectively, monogenic)

linear ∞-categories and compact-object-preserving morphisms.

Theorem 6.28. Let f : R→ S be a faithful G-Galois extension. Then the canonical map

CatcgR → (CatcgS )hG is an equivalence of ∞-categories.

Proof. We verify the two criteria of [Lur17, 4.7.5.3]. As a presentable ∞-category, col-
imits of simplicial objects exist in CatcgR , and the extension-of-scalars functor f∗ �
ModS ⊗ModR

(−) : CatcgR → CatcgS preserves them. For the Beck–Chevalley condition, given a
map α : [m]→ [n] in Δ, the fact that the induced diagram of ∞-categories

Catcg
S⊗Rm

d0

��

��

Catcg
S⊗R(1+m)

��

Catcg
S⊗Rn

d0

�� Catcg
S⊗R(1+n)

is left adjointable follows from the fact that the left adjoint of the horizontal arrows exist because,
according to Proposition 6.22, ModS is a dualizable object of CatcgR with dual DModR

ModS (self-
dual, actually, but we do not need this here). It follows that the functor from CatR to the limit
of the simplicial ∞-category n �→ Catcg

S⊗R(1+n) has a fully faithful left adjoint. Since S is faithful,
the functor CatcgR → CatcgS is conservative, so that CatcgR is equivalent to the limit. �
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Theorem 6.29. Let f : R→ S be a faithful G-Galois extension. Then the resulting augmented

cosimplicial ∞-category

Catmg
R

�� Catmg
S

���� Catmg
S⊗RS

������ · · ·

is a limit diagram.

Proof. Consider the morphism of augmented cosimplicial ∞-categories

Catmg
R

��

��

Catmg
S

����

��

Catmg
S⊗RS

������

��

· · ·

CatcgR �� CatcgS
���� CatcgS⊗RS

������ · · ·

in which the vertical maps are inclusions of full subcategories. By Theorem 6.28, the bottom row
of the diagram is a limit cone, and the limit of a diagram of inclusions of full subcategories is
again a full subcategory. Hence the canonical functor

Catmg
R → lim Catmg

S⊗•

is fully faithful, so it remains to show that it is essentially surjective. An object of limCatmg
S⊗• is

a compatible family of monogenic S⊗•-linear ∞-categories, which we may view as an R-linear
∞-category C by virtue of the fully faithful inclusion lim Catmg

S⊗• → CatcgR . But f∗C ∈ CatcgS lies
in the full subcategory Catmg

S ⊂ CatcgS , so by Lemma 6.25, C admits a compact generator as
well. �

Proposition 6.30. Let C be a monogenic R-linear ∞-category and f : R→ S a faithful

G-Galois extension. Then C is invertible as an object of Catmg
R if and only if ModS(C) is invertible

as an object of Catmg
S .

Proof. Each of the functors in the augmented cosimplicial diagram in the statement of
Theorem 6.29 above is symmetric monoidal. It follows from Lemma 6.16 that Catmg

R is the
limit of Catmg

S⊗• as symmetric monoidal ∞-categories. Moreover, passage to spaces of invertible
objects is a corepresentable functor, so it commutes with limits. Now let C be a monogenic
R-linear ∞-category. Clearly if C is invertible then ModS(C) is invertible, so suppose that
ModS(C) is invertible in Catmg

S . Then for each map [0]→ [n] in Δ, ModS⊗n+1(C) is invertible in
Catmg

S⊗n+1 . It follows that ModS⊗•(C) is an object of Pic(Catmg
S⊗•), so, taking the limit, we deduce

that C lies in Pic(Catmg
R ). �

Theorem 6.31. Let R→ S be a faithful G-Galois extension with G finite. There is a

commutative diagram of symmetric monoidal ∞-categories

PicR

��

�� Modcg
R

��

�� AzR

��

�� BrR

��

�� Catmg
R

��

(PicS)hG �� (Modcg
S )hG �� (AzS)hG �� (BrS)hG �� (Catmg

S )hG

in which all five vertical arrows are equivalences.
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Proof. We already have equivalences ModR � (ModS)hG and AlgR � (AlgS)hG, so for the left
three arrows it suffices to identify the essential images of the ∞-categories PicR, Modcg

R , and
AzR of invertible modules, compact generators, and Azumaya algebras.

Proposition 6.4 implies that the property of being invertible descends, as do subcategories
of equivalences, so that the essential image of PicR is the subcategory (PicS)hG of (ModS)hG.
Similarly, Proposition 6.4 implies that the properties of being dualizable and faithful descend, and
that for a dualizable R-algebra A the map A⊗R Aop → EndR(A) � DRA⊗R A is an equivalence
if and only if the same is true for the S-algebra S ⊗R A. Therefore, the essential image of AzR

is the subcategory (AzS)hG of (AlgS)hG.
Compact generators are taken to compact generators, and so the second vertical arrow is

defined. Further, if M is an R-module whose image in ModS is a compact generator, then M is
compact and EndR(M) is an R-algebra whose image EndS(S ⊗R M) is an Azumaya S-algebra,
as already shown. Therefore EndR(M) is an Azumaya R-algebra, implying that M is a generator.

Finally, the fact that the right-hand vertical map is an equivalence is precisely the con-
tent of Theorem 6.29, and the equivalence BrR � BrhG

S follows from Proposition 6.30 as
BrR � Pic(Catmg

R ). �

In particular, this gives a descent criterion for Morita equivalence.

Corollary 6.32. The group π0(B PichG
S ) has, as a subgroup, the group of Morita equivalence

classes of R-algebras A such that there exist an S-module M and an equivalence of S-algebras

S ⊗R A � EndS(M).

Proof. The ∞-category of such R-algebras is the preimage of the component of ModS in CatS ,
and all such algebras are Azumaya R-algebras by the previous result; this component is B PicS

by Proposition 5.17. The maximal subgroupoid in CatR spanned by objects in this preimage
is therefore equivalent to (B PicS)hG, as taking maximal subgroupoids preserves all limits and
colimits. �

6.5 Spectral sequence tools
For an object X in an ∞-category C, we write B AutC(X) for the subgroupoid of C� spanned
by objects equivalent to X and AutC(X) for the space of self-equivalences.

Definition 6.33. Let G be a group and f : BG→ Cat∞ a functor classifying the action of G

on an ∞-category C. Write ChG → BG for the associated fibration (the colimit) and ChG for the
limit.

Restricting gives us a Kan fibration (ChG)� → BG of Kan complexes whose space of sections
is (ChG)� [Lur09, 3.3.3.2]. The descent diagram in Theorem 6.31 will now allow us to carry out
computations using the Bousfield–Kan spectral sequence for spaces of sections. In our cases of
interest there will be obstruction groups that are annihilated by late differentials, and so we need
to use the more sophisticated obstruction theory due to Bousfield [Bou89]. We will review this
obstruction theory now.

For a cosimplicial object D• : Δ→ Cat∞, the limits

Totn(D) = lim
k∈Δ≤n

Dk
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give a tower of ∞-categories whose limit is the limit of D•.

Proposition 6.34. Let f : ChG → BG be a Kan fibration classifying the action of G on a Kan

complex C, viewed as an ∞-groupoid. Then there is a tower

· · · → Tot2 → Tot1 → Tot0 = C

of Kan fibrations whose limit is ChG. Given an object X ∈ C, there is an obstruction theory for

existence and uniqueness of lifts of X to an object of ChG, natural in X and C.

1. An object X ∈ C is in the essential image of Tot1 if and only if the equivalence class [X] ∈
π0C is fixed by the action of the group G. Equivalently, this is true if and only if the map

π0 AutChG
(X)→ π0 AutBG(∗) = G

is surjective.

2. Given an object X ∈ C with a lift Y ∈ Tot1, consider the surjection of groups

π0 AutChG
(X)→ G

as above. The obstruction to X being in the essential image of Tot2 is whether this map

of groups splits, and the obstruction to uniqueness of lift to Tot2 is parametrized by the

choice of splitting.

3. [Bou89, 2.4] If X lifts to Y ∈ Totn for n ≥ 2, we have a fringed spectral sequence (starting

at E1) with E2-term

Hs(G; πt(B AutC X)),

defined for t > 1 or for 0 ≤ s ≤ t ≤ 1. Further pages Es,t
r only exist for 2r − 2 ≤ n, and the

Er-page depends on a choice of lift of X to Totr−1. For r ≥ 2 the Er-page is defined on the

region

{(s, t) | s ≥ 0, t− s ≥ 0} ∪ {(s, t) | s ≥ 0, t− r ≥ r−2
r−1(s− r)}.

4. [Bou89, 5.2] If r ≥ 1 and Y is a lift of X to Totr which admits a further lift to Tot2r, then

there is an obstruction class

θ2r+1 ∈ E2r+1,2r
r+1

which is zero if and only if Y can be lifted to Tot2r+1.

5. [Bou89, 5.2] If r ≥ 2 and Y is a lift of X to Totr which admits a further lift to Tot2r−1,

then there is an obstruction class

θ2r ∈ E2r,2r−1
r

which is zero if and only if Y can be lifted to Tot2r.

6. If Y ∈ ChG, the above spectral sequences converge (in the region t− s > 0) to

πt−s(B AutChG Y ).
7. If C � ΩD for a Kan complex D with compatible G-action, the spectral sequences for C and

D are compatible. In particular, if the map BG→ Sp representing the G-action on C lifts to

a functor from BG to the category of E∞-spaces, we can construct an associated K-theory

spectrum K(C) such that the spectral sequence above extends to the homotopy fixed-point

spectral sequence for the action of G on K(C).

1251

https://doi.org/10.1112/S0010437X21007065 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007065


D. Gepner and T. Lawson

Remark 6.35. The beginning of the obstruction theory may be described as follows. In order for
X to lift to the limit ChG, a lift to Tot1 is determined by choosing equivalences φg : gX → X for
all g ∈ G. A lift to Tot2 is then determined by witnesses for the cocycle condition, in the form
of homotopies from φgh to φg ◦ g(φh).

Remark 6.36. The user (particularly if they are used to stable work) may benefit from being
explicitly reminded of some of the dangers of the ‘fringe effect’. While the splittings in the
second obstruction can be parametrized by H1(G; π0 AutC(X)), this does not occur until an
initial splitting is chosen (indeed, otherwise the action of G on π∗ AutC(X) is not even defined).
The structure of the spectral sequence, at arbitrarily large pages, may also depend strongly on
the choices of lift Y .

Because we will be interested in understanding different lifts, it will be useful to be more
systematic about the obstructions to this.

Definition 6.37. For an ∞-category C and objects X and Y in C, we write EquivC(X, Y ) for
the full subcomplex of MapC(X, Y ) spanned by the equivalences.

Proposition 6.38. The space EquivC(X, Y ) is a Kan complex, and composition of functions

gives a left action of the group AutC(Y ) on EquivC(X, Y ). If EquivC(X, Y ) is nonempty, any

choice of point f ∈ EquivC(X, Y ) produces an equivalence f∗ : AutC(Y )→ EquivC(X, Y ).

Proposition 6.39. Let G be a group acting on an ∞-category C, let p : ChG → C be the limit,

and suppose X and Y are objects in ChG. Then the map

EquivChG(X, Y )→ EquivC(p(X), p(Y ))hG.

is an equivalence of Kan complexes.

Proof. The fixed-point construction, as a limit, commutes with taking maximal subgroupoids,
mapping objects, and pullbacks. �

We may therefore apply the tower of Tot-objects to both AutC(Y ) and EquivC(X, Y ) to
obtain the following result.

Proposition 6.40. Let f : ChG → BG be a Kan fibration classifying the action of G on a Kan

complex C, p : ChG → C the limit, and X and Y objects in ChG.

1. There are towers of Kan fibrations:

· · · → Aut2(Y )→ Aut1(Y )→ Aut0(Y ) = AutC(p(Y )),

· · · → Equiv2(X, Y )→ Equiv1(X, Y )→ Equiv0(X, Y ) = EquivC(p(X), p(Y )).

The limits are AutChG(Y ) and EquivChG(X, Y ), respectively.

2. The spaces Autn(Y ) are ∞-groups which act on the spaces Equivn(X, Y ).
3. If Equivn(X, Y ) is nonempty, any choice of point produces an equivalence of partial towers

Aut≤n(Y )→ Equiv≤n(X, Y ).
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4. [Bou89, 5.2] If Equivn(X, Y ) is nonempty, there is an obstruction class

θn+1 ∈ En+1,n+1
r

in the spectral sequence calculating π∗B AutChG(Y ), defined for 2r ≤ n + 1, which is zero if

and only if Equivn+1(X, Y ) is nonempty.

7. Calculations

7.1 Algebraic Brauer groups of even-periodic ring spectra
In this section we assume that E is an even-periodic E∞-ring spectrum; that is, there is a unit
in π2E, and π1E is trivial.

We can describe specific Azumaya algebras for these groups using Theorem 3.15 and the
algebras described in the proof of [Sma71, 7.10].

Example 7.1. Let u ∈ π2E be a unit and π0E → R a quadratic Galois extension with Galois
automorphism σ. There is an Azumaya E-algebra whose coefficient ring is the graded quaternion
algebra

R〈S〉/(S2 − u, Sr − σrS),

where S is in degree 1 and R is concentrated in degree zero.

Example 7.2. Suppose 2 is a unit in π0E and u ∈ π2E is a unit. There is an Azumaya E-algebra
whose coefficient ring is (perhaps unexpectedly) the 1-periodic graded ring

(π∗E)[x]/(x2 − u) ∼= (π0E)[x±1],

which is of rank 2 over π∗E. If A and B are two such algebras determined by units u and v,
then A ∧E B is equivalent to a quaternion algebra from Example 7.1 determined by the unit
u ∈ π2(E) and the quadratic Galois extension π0(E)→ π0(E)[y]/(y2 + uv−1).

If E is even-periodic and we fix a unit u ∈ π2E, the category of E-modules has Z/2-graded
homotopy groups in the classical sense. Therefore, the set of Morita equivalence classes of
algebraic Azumaya algebras over E is the same as the set of Morita equivalence classes of
Z/2-graded Azumaya algebras over π0(E): the Brauer–Wall group BW(π0E). This Z/2-graded
Brauer group of a commutative ring has been largely determined (generalizing work of Wall over
a field [Wal64]). In order to state the result, we will need to recall the definition of the group of
Z/2-graded quadratic extensions of a ring R.

Definition 7.3. Suppose R is a commutative ring, viewed as Z/2-graded and concentrated
in degree 0. Then Q2(R) is the set of isomorphism classes of quadratic graded R-algebras:
Z/2-graded R-algebras whose underlying ungraded R-algebra is commutative, separable, and
projective of rank 2.

In the ungraded case the corresponding set is identified with the étale cohomology group
H1

et(Spec(R), Z/2); similarly, Q2(R) admits a natural group structure in which the product of
two quadratic graded R-algebras L and M consists of the subset of elements of the graded ten-
sor product L⊗R M fixed under the action of the tensor product σ ⊗R τ of uniquely defined
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order-2 automorphisms σ : L→ L and τ : M →M with Lσ = R and M τ = R (see [Sma71,
Proposition 7.3 and Theorem 7.5] for details).

If Spec(R) is connected, then there are two possible types of element in Q2(R). In a quadratic
graded R-algebra L = (L0, L1), either L1 has rank 0 and we have an ungraded quadratic extension
R→ L0, or L1 has rank 1 and L is of the form (R, L1) for some rank-1 projective R-module L1.
In the latter case, the multiplication map L1 ⊗R L1 → R must be an isomorphism. Carrying this
analysis further yields the following result.

Proposition 7.4. When Spec(R) is connected, there is a short exact sequence

0→ H1
et(R, Z/2)→ Q2(R)→ Z/2.

Here the étale cohomology group H1
et(R, Z/2) parametrizes ungraded Z/2-Galois extensions of

R, and the map Q2(R)→ Z/2 sends a Z/2-graded quadratic R-algebra (L0, L1) to the rank

of L1. The image of Q2(R) in Z/2 is nontrivial if and only if 2 is a unit in R.

Theorem 7.5 [Sma71]. Suppose that R possesses no idempotents. Then the Brauer–Wall group

BW(R) is contained in a short exact sequence

0→ Br(R)→ BW(R)→ Q2(R)→ 0,

where the subgroup is generated by Azumaya algebras concentrated in even degree.

Corollary 7.6. Suppose that E is even-periodic and that π0E possesses no idempotents. Then

the subgroup of the Brauer group of E generated by algebraic Azumaya algebras is contained in

a short exact sequence

0→ Br(π0E)→ π0 Br(E)alg → Q2(π0E)→ 0,

where the subgroup is generated by algebraic Azumaya algebras with homotopy concentrated

in even degrees. In Q2(π0E), the elements of H1
et(π0E, Z/2) detect the algebras of Example 7.1,

while the map to Z/2 detects any of the ‘half-quaternion’ algebras of Example 7.2.

Example 7.7. In the case where E is the complex K-theory spectrum KU , with coefficient
ring Z[β±1], the relevant Brauer–Wall group BW(Z) is trivial (this follows from the exact
sequence 0→ Br(Z)→ BW(Z)→ Q2(Z)→ 0 and the classical facts that Br(Z) = 0 and Q2(Z) ∼=
H1

et(Z, Z/2) = 0 as 2 is not a unit in Z) and all Z/2-graded algebraic Azumaya algebras are Morita
equivalent. Therefore, there are no Z-graded algebraic Azumaya algebras over KU other than
those of the form EndKU (M) for M a coproduct of suspensions of KU .

Example 7.8. Suppose that π0E is a Henselian local ring with residue field k. Then exten-
sion of scalars determines isomorphisms H1

et(π0E, Z/2)→ H1
et(k, Z/2) and Br(π0E)→ Br(k)

([Azu51, 5], [Gro68, 6.1]), and hence an isomorphism BW(π0E)→ BW(k). If k is finite (for exam-
ple, when E is a Lubin–Tate spectrum associated to a formal group law over a finite field) the
group Br(k) is trivial and the Galois cohomology group is Z/2, so we find that the Brauer–Wall
group of k is Z/2 if k has characteristic 2 and is of order 4 if k has odd characteristic. The
algebraic Z/2-graded Azumaya E-algebras are generated (up to Morita equivalence) by those of
Examples 7.1 and 7.2.
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Example 7.9. If we form the localized ring KU [1/2], we may use global class field theory to
analyze the result. The ordinary Brauer group is Z/2, generated by the Hamilton quaternions over
Z[1/2], and this algebra lifts to an Azumaya algebra as originally shown in [BRS12, 6.3]. The étale
cohomology group is Z/2× Z/2, with nonzero elements corresponding to the quadratic extensions
obtained by adjoining i,

√
2, or

√−2. Finally, KU [1/2] also has Azumaya algebras given by its
1-periodifications, generating the quotient Z/2 of the Brauer–Wall group BW(Z[1/2]). The full
group has order 16, and one can show that it is isomorphic to Z/8× Z/2. These can be given
specific generators: the Z/8-factor is generated by an algebra with coefficient ring Z[β±(1/2), 1/2]
as an algebra over KU∗, while the Z/2-factor is generated by an algebra with coefficient ring

KU∗
[√

2, 1/2
]〈S〉/(S2 − β, S

√
2 +
√

2S).

Remark 7.10. The short exact sequence of Theorem 7.5 is generalized in [CGO73, § 4] for many
more groups, and by applying their results one can compute the Brauer–Wall group classifying
algebraic Azumaya algebras for an overwhelming abundance of examples. For the 4-periodic
localization KO[1/2] we may show that the Brauer–Wall group has 16 elements, combining the
order-2 Brauer group of Z[1/2] with the order-8 collection of Galois extensions of Z[1/2] with
cyclic Galois group of order 4. For the p-complete Adams summand Lp at an odd prime p, the
Brauer–Wall group has p− 1 elements if p ≡ 1 mod 4 and 2(p− 1) elements if p ≡ 3 mod 4. By
contrast, p-local spectra such as K(p), KO(p), or L(p) tend to have much larger Brauer groups
because Z(p) and its finite extensions have infinite Brauer groups.

7.2 Homotopy fixed-points of Pic(KU)
In this section we study the Galois extension KO → KU . Most of the structure of the homo-
topy fixed-point spectral sequence for Pic(KU) has been determined in depth by Mathew and
Stojanoska using tools they developed for comparing with the homotopy fixed-point spectral
sequence for KU [MS16, 7.1]. However, for our purposes we will require information about the
behavior of the spectral sequence in small, negative degrees.

We recall the following about the ∞-category Fun(BG, Sp) of G-equivariant spectra. These
are ‘very naive’ G-spectra in the sense that they are simply spectra equipped with a G-action,
and have the equivalent descriptions of spectra parametrized over BG, local systems of spectra
on BG, or modules over the spherical group algebra S[G]. They should not to be confused with
the more sophisticated notions of ‘naive’ or ‘genuine’ G-spectra that carry additional fixed-point
data, which we will not require.

Every G-space Y gives rise to such a G-spectrum Σ∞Y , and every G-spectrum to a ‘Borel
equivariant’ cohomology theory for G-spaces:

Et(Y ) = [Σ∞Y, ΣtE]G

= π−tFS[G](Σ
∞Y, E)

= π−tF (Σ∞Y, E)hG.

The standard notion of connectivity gives the category of G-spectra a t-structure whose heart
is the category of abelian groups with G-action, or modules over π0S[G] = Z[G]. For such a
G-module M with associated Eilenberg–Mac Lane object HM , there are standard descriptions
of the associated cohomology theory. We can either identify it with the Borel equivariant coho-
mology of Y , or with the cohomology of the Borel construction YhG with coefficients in the local
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system associated to M :

HM t(Y ) = Ht
G(Y ; M) = Ht(YhG; M).

This allows us to interpret maps HM → ΣsHN as operations on Borel equivariant cohomology :
such a map, in particular, determines stable cohomology operations

H∗
G(Y ; M)→ H∗+s

G (Y ; N).

Proposition 7.11. For a G-equivariant spectrum X such that πi(X) = 0 for n < i < m, the

dn−m+1-differential

Hs(G; πn(X))→ Hs+m−n+1(G; πm(X))

in the homotopy fixed-point spectral sequence for XhG is given by an equivariant k-invariant

kG ∈ πn−m−1FS[G](HπnX, HπmX),

which determines a cohomology operation of degree m− n + 1 on Borel equivariant cohomology.

The forgetful map

πn−m−1FS[G](HπnX, HπmX)→ πn−m−1FS(HπnX, HπmX)

sends kG to the underlying k-invariant of X.

Proof. One derivation of the homotopy fixed-point spectral sequence is from the exact couple
associated to the Postnikov tower X → {PnX} determined by the t-structure, as follows. The
fiber sequences ΣnHπn(X)→ PnX → Pn−1X induce long exact sequences

· · · → π∗−n[Hπn(X)]hG → π∗Pn(X)hG → π∗Pn−1(X)hG → · · ·
and we can make the Borel equivariant identification

π−∗[Hπn(X)]hG = H∗(G; πn(X)).

Once we make this identification with an exact couple, the dn−m+1-differential in question is the
composite map

kG : ΣnHπn(X)→ PnX
∼←− Pn+1X . . .

∼←− Pm−1X → Σm+1Hπm(X).

of G-spectra.
The statement about compatibility with the underlying k-invariant is determined by

compatibility of the t-structure on G-spectra with the t-structure on spectra. �

Using the adjunction

FS[G](X, Y ) � FS[G](S, FS(X, Y )) = FS(X, Y )hG,

we recover the following computational tool.

Proposition 7.12. For functors BG→ Sp representing spectra X and Y with G-action, there

exists a spectral sequence with E2-term

Es,t
2 = Hs(G; πtFS(X, Y ))⇒ πt−sFS[G](X, Y ).
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Furthermore, the edge morphism in this spectral sequence recovers the natural map to

π∗FS(X, Y ).

We may then apply this to calculate the possible first two C2-equivariant k-invariants of
pic(KU), both between degrees 0 and 1 and between degrees 1 and 3.

Proposition 7.13. Let Z
− be Z with the sign action of C2, and

β− : H∗(C2; Z/2)→ H∗+1(C2; Z−)

the Bockstein map associated to the short exact sequence

0→ Z
− → Z

− → Z/2→ 0.

Let x ∈ H1(G; Z/2) denote the generator. We have

π−2FS[C2](HZ/2, HZ/2) ∼= (Z/2)3,

generated by the operations Sq2(−), x · Sq1(−), and x2 · (−). We also have

π−3FS[C2](HZ/2, HZ
−) ∼= (Z/2)2,

generated by the operations β− ◦ Sq2(−) and β−(x2 · (−)).
The restriction to the group of nonequivariant operations sends the generators involving x

to zero.

Proof. Proposition 7.12 gives us two spectral sequences, pictured in Figure 1:

Hs(C2; πtFS(HZ/2, HZ/2))⇒ πt−sFS[C2](HZ/2, HZ/2),

Hs(C2; πt−sFS(HZ/2, HZ))⇒ πt−sFS[C2](HZ/2, HZ
−).

There is an isomorphism π−∗FS(HZ/2, HZ/2) ∼= A∗, where A∗ is the mod-2 Steenrod algebra;
this group is isomorphic to Z/2 for −2 ≤ ∗ ≤ 0 and is trivial for all other ∗ ≥ −2. Similarly,
there is an isomorphism π−∗FS(HZ/2, HZ) ∼= Sq1 ·A∗ ⊂ A∗; this group is isomorphic to Z/2
for ∗ = −1,−3 and is trivial for all other ∗ ≥ −3. The associated spectral sequences appear
in Figure 1. These spectral sequences place an upper bound of 8 on the size of the group
π−2FS[C2](HZ/2, HZ/2) and of 4 on the size of the group π−3FS[C2](HZ/2, HZ

−). However,
the cohomology operations on Borel equivariant cohomology that we have described in these
groups are linearly independent over Z/2, as can be checked by applying them to the group

π∗FS[C2](Σ
∞
+ EC2, HZ/2) ∼= H∗(BC2; Z/2).

(These represent elements in different cohomological filtration in this spectral sequence.) �

Proposition 7.14. The first two C2-equivariant k-invariants of pic(KU) are Sq2 +x Sq1 and

β− Sq2.

Proof. The underlying nonequivariant k-invariants must be the first two k-invariants of pic(KU).
These are Sq2 and β Sq2, where β is the nonequivariant Bockstein [Fre12, 1.42]. (As a sketch,
the first k-invariant is determined by noting that the twist map on ΣKU ⊗KU ΣKU is multipli-
cation by −1 ∈ (π0KU)×. The second is detected by the symmetric monoidal structure on the
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s

t − s
0-2

s

t − s
0-3

Figure 1. Spectral sequences for equivariant k-invariants.

2-groupoid of Clifford algebras. The nontriviality of this k-invariant is the source of the addi-
tion rule (λ, μ)(λ′, μ′) = (λ + λ′, μ + μ′ + β(λ · λ′)) for twisting cocycles (λ, μ) ∈ H1 ×H3 when
expressing cup products in graded twisted K-theory [Kar12, § 5].)

Moreover, the generating elements in π0 pic(KU) and π1 pic(KU) are the images of the classes
[ΣKO] and −1 from pic(KO) respectively, and hence must survive the homotopy fixed-point
spectral sequence. These classes would support a nontrivial d2 or d3 differential if the cohomology
operation involved a nonzero multiple of x2 or β−x2, respectively. This shows that the second
k-invariant can only be β− Sq2, and the first k-invariant can only be Sq2 or Sq2 +x Sq1.

Suppose that the second k-invariant were Sq2. This k-invariant is in the image of the map

π−2FS(HZ/2, HZ/2)→ π−2FS[C2](HZ/2, HZ/2)

induced by the ring map S[C2]→ S, and so the resulting C2-equivariant Postnikov stage
τ≤1 pic(KU) would be equivalent to one with the trivial C2-action. We would then have the
equivalence

(τ≤1 pic(KU))hC2 � F ((BC2)+, τ≤1 pic(KU)).

This splits off a copy of τ≤1 pic(KU) so there could be no hidden extensions from
H0(C2; π0 pic(KU)) to H1(C2; π1 pic(KU)) in the homotopy fixed-point spectral sequence.
However, there is a hidden extension: the class [ΣKO] ∈ π0 pic(KO) has nontrivial image in
H0(C2; π0 pic(KU)) and twice it is [Σ2KO], which has nontrivial image in H1(C2; (π0KU)×).
(This reflects the fact that KO is not 2-periodic.) �

Proposition 7.15. The homotopy fixed-point space B Pic(KU)hC2 has homotopy groups

πnB Pic(KU)hC2 =

⎧⎪⎨⎪⎩
πn−2GL1(KO) if n ≥ 2,

Z/8 if n = 1,

Z/2 if n = 0.

Proof. The homotopy fixed-point spectral sequence

Hs(C2; πt pic(KU))⇒ πt−s pic(KU)hC2

is pictured in Figure 2; we refer to [MS16] for the portion with t > 3, obtained by comparison
with the homotopy fixed-point spectral sequence for KU . The differentials supported on t = 0
and t = 1 are the stable cohomology operations we just determined. The inclusion of Z/8 into
π0 pic(KO) ∼= π0 pic(KU)hC2 forces the hidden extension in degree 0. �

This recovers the calculation of the Picard group of KO by [HMS92].
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s

t − s
0 8-8

?

Figure 2. Fixed-point spectral sequence for pic(KU) up to E3.

There are potential further differentials in negative degrees in the homotopy fixed-point
spectral sequence which we have not addressed here. There are potential sources for a
d4-differential when t = 0, s ≡ 3 mod 4. There are also potential targets for a d3- or d5- or
d6-differential when t = 5, s ≡ 2 mod 4, though the latter would be impossible if the Postnikov
stage pic(KU)→ τ≤3 pic(KU) split off equivariantly. It seems likely that a precise formulation
of the periodic structure in this spectral sequence would be able to address these questions.

7.3 Lifting from KU to KO

In this section we examine those Azumaya KO-algebras whose extension to KU is algebraic. By
Example 7.7, we have the following .

Proposition 7.16. Any algebraic Azumaya KU -algebra is of the form EndKU N , where N is

a finite coproduct of suspensions of KU .

Therefore, by Proposition 7.15 and Corollary 6.32, there are at most two Morita equivalence
classes of Azumaya KO-algebras whose extensions to KU are algebraic.

The following shows that the nontrivial Morita equivalence class is realizable.

Proposition 7.17. There exists a unique equivalence class of quaternion algebra Q over KO

such that

• KU ⊗KO Q �M2(KU), and

• there is no KO-module M such that Q �� EndKO(M) as KO-algebras.

This algebra has homotopy groups isomorphic, as a KO∗-algebra, to the homotopy groups of a

twisted group algebra:

π∗Q ∼= π∗KU〈C2〉 ∼= π∗ EndKO KU.

Proof. The KO-algebras A such that KU ⊗KO A �M2(KU) are parametrized by the preimage
of the component B AutAlgKU

M2(KU) ⊂ AzKU . We may therefore apply the obstruction theory
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of § 6.5. We know that there is a chain of equivalences

KU ⊗KO EndKO(KU) � EndKU (KU ⊗KO KU)

� EndKU (KU ⊕KU) �M2(KU),

and so we may use EndKO(KU) as a basepoint for the purposes of calculations. The obstruction
theory then takes place in a fringed spectral sequence with E2-term

Hs(C2; πtB AutAlgKU
(M2(KU))).

By Corollary 5.20, we have a long exact sequence

· · · → πn GL1(KU)→ πn GL1(M2(KU))→ πn(AutAlgKU
(M2KU))→ · · ·

→ π0 GL1(KU)→ π0 GL1(M2(KU))→ π0(AutAlgKU
(M2(KU)))→ π0 Pic(KU).

Since π∗M2(KU) ∼= M2(π∗(KU)), we find that AutAlgKU
(M2KU) has trivial homotopy groups

in odd degrees, and that for k > 0 there are short exact sequences

0→ π2kKU → π2kM2(KU)→ π2k AutAlgKU
(M2KU)→ 0.

Moveover, the C2-action on π2k(KU ⊗KO EndKO(KU)) ∼= M2(KU2k) is given in matrix form by[
a b

c d

]
�→ (−1)k

[
d c

b a

]
.

We may now use this to calculate group cohomology. We find that for s, t > 0, the cohomology
Hs(C2; πtM2(KU)) vanishes with this action and we have isomorphisms

Hs(C2; πt AutAlgKU
(M2KU))→ Hs+1(C2; πt Pic(KU)),

realized by the natural map B AutAlgKU
(M2KU)→ B Pic(KU). We display the spectral

sequence for calculating lifts of M2(KU) in Figure 3 through the E3-term. The regions where
the spectral sequence is undefined at E2 or E3 are blocked out, and the nonabelian cohomology
Hs(C2; PGL2(Z)) is indicated with �. The first detail we note about this spectral sequence is
that for t− s ≥ −1, the E4-page vanishes entirely for s ≥ 5. There are potential obstructions to
lifting in the column t− s = −1 and to uniqueness in the column t− s = 0; we will now discuss
these obstruction groups using the machinery of § 6.5.

Because the groups Es,s−1
r and Es,s

r become trivial at E4 for s > 5, there are no obstructions
to existence or uniqueness of lifting algebras beyond Tot5: any Azumaya KU -algebra equivalent
to M2(KU) with a lift to Tot5 has an essentially unique further lift to an Azumaya KO-algebra.

The group E4,3
2 is Z/2, and this group is a potential home for obstructions for a point in Tot2

which lifts to Tot3 to also lift to Tot4 (see Remark 7.18 for further elaboration). Since we have
already chosen a lift of M2(KU) to the algebra EndKO(KU) in the homotopy limit to govern
the obstruction theory, the obstruction must be zero at this basepoint.

The group E5,5
3 parametrizes differences between lifts from Tot4 to Tot5. This group is Z/2,

and contains only permanent cycles due to the fact that the spectral sequence has a vanishing
region at E4. Therefore, there are two distinct lifts of KU ⊗KO EndKO(KU) from Tot2 to Tot5,
representing two inequivalent KO-algebras which become equivalent to M2(KU) after extending
scalars. One of these is EndKO(KU); we will refer to the other algebra as Q.
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Figure 3. Fixed-point spectral sequence for B Aut(KU ⊗KO EndKO(KU)) up to E3.

Moreover, the map B AutAlgKU
(M2KU)→ B Pic(KU) induces an isomorphism on homo-

topy fixed-point spectral sequences in the relevant degree. The generator of E5,5
3 representing Q

therefore maps to the nontrivial element of π0(B Pic(KU))hC2 ⊂ π0 Br(KO), and so any points
of the fixed-point category with distinct lifts to Tot5 are Morita inequivalent.

Hence, there exists precisely one other KO-algebra, Q, whose image in Tot4 is the same as
the image of EndKO(KU), and Q is Morita inequivalent to any endomorphism algebra.

Finally, to determine the coefficient ring of Q, we use the homotopy fixed-point spectral
sequence Hs(C2; π∗(KU ⊗KO Q))⇒ π∗Q. The action of C2 on the coefficient group M2(KU) is
the same as that for EndKO(KU), by construction, and we have already established that there
are no higher cohomology contributions, and so we have

π∗Q ∼= π∗(KO ⊗KO EndKO(KU))C2 ∼= π∗ EndKO(KU),

as desired. �

Remark 7.18. The obstruction group E4,3
2 deserves some mention. There is an element in

H1(C2; π1B AutAlgKU
(M2KU)) whose image in H2(C2; π2B Pic(KU)) is nontrivial. More explic-

itly, π1B AutAlgKU
(M2KU) contains PGL2(Z) and this H1-class is represented by the alternative

action [
a b

c d

]
�→ (−1)t

[
0 1
−1 0

] [
a b

c d

] [
0 −1
1 0

]
of C2 on π2tM2(KU). One might hope that there is a KO-algebra A such that KU ⊗KO A is
M2(KU) with this alternative C2-action on the coefficient ring.

For example, we might imagine finding a self-map φ : KO → KO representing multiplication
by −1 ∈ π0(KO), and using it to produce an action of C2 on KU ⊗KO M2(KO) such that the
generator acts on the KU factor by complex conjugation and on the M2(KO)-factor by[

a b

c d

]
�→

[
0 1
φ 0

] [
a b

c d

] [
0 φ

1 0

]
.
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In the classical setup, one encounters a sequence of difficulties with carrying this program out.
The spectrum KO cannot be a fibrant-cofibrant KO-module if KO is strictly commutative, so
we require a replacement in order for φ to be defined. Then this replacement is not strictly
the unit for the smash product and so we cannot move φ across a smash product without an
intervening homotopy. In order to make this a ring homomorphism one either wants φ2 to be
the identity, or one wants to replace φ by an automorphism so that we can genuinely replace
this with a conjugation action. And so on. One is left with the feeling that these are technical
details and the tools are just barely inadequate for the job, but this is not the case: this H1-class
cannot be realized by an algebra at all because the image in H2(C2; π2B Pic(KU)) supports a
d3-differential (see Figure 2). These seemingly mild details are fundamental to the situation.
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