$C_{2^{n}}$-EQUIVARIANT RATIONAL STABLE STEMS AND CHARACTERISTIC CLASSES

NICK GEORGAKOPOULOS

Abstract

Аbstract. In this short note, we compute the rational $C_{2^{n}}$-equivariant stable stems and give minimal presentations for the $R O\left(C_{2^{n}}\right)$-graded Bredon cohomology of the equivariant classifying spaces $B_{C_{2^{n}}} S^{1}$ and $B_{C_{2^{n}}} \Sigma_{2}$ over the rational Burnside functor A_{Q}. We also examine for which compact Lie groups L the maximal torus inclusion $T \rightarrow L$ induces an isomorphism from $H_{C_{2^{n}}}^{*}\left(B_{C_{2^{n}}} L ; A_{\mathrm{Q}}\right)$ onto the fixed points of $H_{C_{2^{n}}}^{*}\left(B_{C_{2^{n}}} T ; A_{\mathrm{Q}}\right)$ under the Weyl group action. We prove that this holds for $L=U(m)$ and any $n, m \geq 1$ but does not hold for $L=S U(2)$ and $n>1$.

Contents

1. Introduction 1
Acknowledgment 2
2. Rational Mackey functors 2
3. Euler and orientation classes 4
4. Rational stable stems 5
5. $C_{2^{n}}$ rational characteristic classes 7
References 9

1. Introduction

This note is the followup to [Geo21c]. We start by computing the $C_{2^{n}}$-equivariant rational stable stems; this is done in section 4. While the method employed here is the one used in [Geo21c] and goes back to [GM95], the result is quite a bit more complicated to state and requires the notation set up in sections 2 and 3 .

We then attempt to generalize the results in [Geo21c] to groups $\mathrm{C}_{2^{n}}$. In [Geo21c], we obtained minimal descriptions of the C_{2}-equivariant Chern, Pontryagin and symplectic characteristic classes associated with genuine (Bredon) cohomology using coefficients in the rational Burnside Green functor A_{Q}. The idea was based on the maximal torus isomorphism: if L is any one of $U(m), S p(m), S O(m), S U(m)$, T is a maximal torus in L and W is the associated Weyl group then the inclusion $B_{C_{2}} T \rightarrow B_{C_{2}} L$ induces an isomorphism $H_{C_{2}}^{\star}\left(B_{C_{2}} L ; A_{\mathrm{Q}}\right) \rightarrow H_{C_{2}}^{\star}\left(B_{C_{2}} T ; A_{\mathrm{Q}}\right)^{W}$. We then computed $H_{\mathcal{C}_{2}}^{\star}\left(B_{C_{2}} T ; A_{\mathbb{Q}}\right)$ from $H_{\mathcal{C}_{2}}^{\star}\left(B_{\mathcal{C}_{2}} S^{1} ; A_{\mathbb{Q}}\right)$ and the Kunneth formula, which reduced us to the algebraic problem of computing a minimal presentation of the fixed points $H_{C_{2}}^{\star}\left(B_{C_{2}} T ; A_{\mathbf{Q}}\right)^{W}$.

In section 5, we generalize the maximal torus isomorphism to groups $G=C_{2^{n}}$ when $L=U(m)$, but show that the maximal torus isomorphism is not true for
$G=C_{2^{n}}$ and $L=S U(2)$ when $n>1$. We also compute the Green functor $H_{G}^{\star}\left(B_{G} S^{1} ; A_{\mathrm{Q}}\right)$ which turns out to be algebraically quite a bit more complex compared to the C_{2} case of [Geo21c]. For that reason, we do not attempt to follow the program in [Geo21c] and get minimal descriptions of $H_{G}^{\star}\left(B_{G} U(m) ; A_{\mathbf{Q}}\right)$ from the maximal torus isomorphism.

Acknowledgment. We would like to thank Peter May for his numerous editing suggestions, including the idea to split off this paper from [Geo21c].

2. Rational Mackey functors

The rational Burnside Green functor $A_{\mathbb{Q}}$ over a group G is defined on orbits as $G / H \mapsto A(H) \otimes \mathbb{Q}$ where $A(H)$ is the Burnside ring of H. A rational G-Mackey functor is by definition an A_{Q} module.

We shall use G-equivariant unreduced co/homology in A_{Q} coefficients. So if X is an unbased G-space, $H_{\star}^{G}(X)$ is the rational G-Mackey functor defined on orbits as

$$
H_{\star}^{G}(X)(G / H)=\left[S^{\star}, X_{+} \wedge H A_{Q}\right]^{H}
$$

where $H A_{\mathrm{Q}}$ is the equivariant Eilenberg-MacLane spectrum associated to A_{Q} and the index \star ranges over the real representation ring $R O(G)$.

We warn the reader of differing conventions that can be found in the literature: $H_{\star}(X)$ is sometimes used to denote the reduced homology Mackey functor (the group G being implicit), with $H_{\star}^{G}(X)$ denoting the value of this Mackey functor on the top level (i.e. the G / G orbit). In this paper, $H_{\star}^{G}(X)$ always denotes the Mackey functor and $H_{\star}^{G}(X)(G / G)$ always denotes the top level. This convention also applies when $\star=*$ ranges over the integers, in which case $H_{*}(X)$ denotes the nonequivariant rational homology of X.

All these conventions apply equally for cohomology $H_{G}^{\star}(X)$.
The $R O(G)$-graded Mackey functor $H_{\star}^{G}(X)$ is a module over the homology of a point $H_{\star}^{G}:=H_{\star}^{G}(*)$. This Green functor agrees with the equivariant rational stable stems:

$$
\pi_{\star}^{G} S \otimes \mathbb{Q}=H_{\star}^{G}
$$

Two facts about rational Mackey functors that we shall liberally use ([GM95]):

- All rational Mackey functors are projective and injective, so we have the Kunneth formula:

$$
H_{\star}^{G}(X \times Y)=H_{\star}^{G}(X) \boxtimes_{H_{\star}^{G}} H_{\star}^{G}(Y)
$$

and duality formula:

$$
H_{G}^{\star}(X)=\operatorname{Hom}_{H_{\star}^{G}}\left(H_{\star}^{G}(X), H_{\star}^{G}\right)
$$

- For a G-Mackey functor M and a subgroup H of G consider the $W_{G} H$ module $M(G / H) / \operatorname{Im}(T r)$ where $W_{G} H=N_{G} H / H$ is the Weyl group and $\operatorname{Im}(\operatorname{Tr})$ is the submodule spanned by the images of all transfer maps $T r_{K}^{H}$ for $K \subseteq H$. If we let H vary over representatives of conjugacy classes of subgroups of G then we get a sequence of $W_{G} H$ modules. This functor from rational G-Mackey functors
to sequences of $\mathbb{Q}\left[W_{G} H\right]$-modules is an equivalence of symmetric monoidal categories.
From now on, we specialize to the case $G=C_{2^{n}}$.
There are two 1-dimensional $\mathbb{Q}[G]$ modules up to isomorphism: Q with the trivial action and \mathbf{Q} with action $g \cdot 1=-1$ where $g \in G$ is a generator. We shall denote the two modules by Q and Q_{-}respectively; every other module splits into a sum of these.

The representatives of conjugacy classes of $G=C_{2^{n}}$ are $H=C_{2^{i}}$ for every $0 \leq i \leq n$ thus the datum of a rational G-Mackey functor is equivalent to a sequence of rational $W_{G} H=C_{2^{n}} / C_{2^{i}}$ modules.

We let $M_{i}^{+}, 0 \leq i \leq n$, and $M_{i}^{-}, 0 \leq i<n$, be the Mackey functors corresponding to the sequences $C_{2^{n}} / C_{2^{j}} \mapsto \delta_{i j} \mathrm{Q}$ and $\mathrm{C}_{2^{n}} / C_{2^{j}} \mapsto \delta_{i j} \mathrm{Q}_{-}$respectively.

For example, M_{0}^{+}, M_{0}^{-}are the constant Mackey functors corresponding to the modules Q and Q_{-}respectively.

Observe that:

- The $M_{i}^{ \pm}$are self-dual.
- $M_{i}^{ \pm} \boxtimes M_{j}^{ \pm}=0$ if $i \neq j$.
- $M_{i}^{\alpha} \boxtimes M_{i}^{\beta}=M_{i}^{\alpha \beta}$ where $\alpha, \beta \in\{-1,1\}$.

Henceforth we shall write M_{i} for M_{i}^{+}.
The notation $M_{i}\{a\}$ shall mean a copy of M_{i} with a choice of generator $a \in$ $M_{i}\left(C_{2^{n}} / C_{2^{i}}\right)=\mathbb{Q}$. The element a generates $M_{i}\{a\}$ through its transfers:

$$
M_{i}\{a\}\left(C_{2^{n}} / C_{2^{j}}\right)= \begin{cases}\mathbb{Q}\left\{\operatorname{Tr}_{2^{i}}^{j^{j}}(a)\right\} & \text { if, } j \geq i \\ 0 & \text { if, } j<i\end{cases}
$$

We analogously define $M_{i}^{-}\{a\}$.
The rational Burnside G-Green functor is

$$
A_{\mathbf{Q}}\left(C_{2^{n}} / C_{2^{i}}\right)=\frac{\mathrm{Q}\left[x_{i, j}\right]}{x_{i, j} x_{i, k}=2^{i-\max (j, k)} x_{i, \min (j, k)}}
$$

where $x_{i, j}=\left[C_{2^{i}} / C_{2}\right] \in A\left(C_{2^{i}}\right)$ for $0 \leq j<i$. To complete the Mackey functor description, we note that:

$$
\operatorname{Tr}_{2^{i}}^{2 i+1}\left(x_{i, j}\right)=x_{i+1, j}, \operatorname{Tr}_{2^{i}}^{2+1}(1)=x_{i+1, i}
$$

Let

$$
y_{i}= \begin{cases}1-\frac{x_{i, i-1}}{2} & \text { if, } i \geq 1 \\ 1 & \text { if, } i=0\end{cases}
$$

living in $A_{\mathbf{Q}}\left(C_{2^{n}} / C_{2^{i}}\right)$. We can see that y_{i} spans a copy of M_{i} in $A_{\mathbf{Q}}$ and:

$$
A_{\mathbb{Q}}=\oplus_{i=0}^{n} M_{i}\left\{y_{i}\right\}
$$

This is an isomorphism of Green functors, where the RHS becomes a Green functor by setting the product of elements from different summands to be 0 and furthermore setting the y_{i} to be idempotent $\left(y_{i}^{2}=y_{i}\right)$.

3. Euler and orientation classes

The real representation ring $R O\left(C_{2^{n}}\right)$ is spanned by the irreducible representations $1, \sigma, \lambda_{s, k}$ where σ is the 1-dimensional sign representation and $\lambda_{s, m}$ is the 2-dimensional representation given by rotation by $2 \pi s\left(m / 2^{n}\right)$ degrees for $1 \leq m$ dividing 2^{n-2} and odd $1 \leq s<2^{n} / m$. Note that 2 -locally, $S^{\lambda_{s, m}} \simeq S^{\lambda_{1, m}}$ as $C_{2^{n}}$-equivariant spaces, by the s-power map. Therefore, to compute $H_{\star}^{C^{2}}(X)$ it suffices to only consider \star in the span of $1, \sigma, \lambda_{k}:=\lambda_{1,2^{k}}$ for $0 \leq k \leq n-2$ ($\lambda_{n-1}=2 \sigma$ and $\lambda_{n}=2$).

We shall now define generating classes for H_{\star}^{G}.
We first have Euler classes $a_{\sigma}: S^{0} \hookrightarrow S^{\sigma}$ and $a_{\lambda_{k}}: S^{0} \hookrightarrow S^{\lambda_{k}}$ given by the inclusion of the north and south poles; under the Hurewicz map these classes are $a_{\sigma} \in H_{-\sigma}^{G}(G / G)$ and $a_{\lambda_{k}} \in H_{-\lambda_{k}}^{G}(G / G)$.

There are also orientation classes $u_{\sigma} \in H_{1-\sigma}^{G}\left(C_{2^{n}} / C_{2^{n-1}}\right), u_{2 \sigma} \in H_{2-2 \sigma}^{G}(G / G)$ and $u_{\lambda_{k}} \in H_{2-\lambda_{k}}^{G}(G / G)$ but we shall need a small computation in order to define them.

Using the cofiber sequence $C_{2^{n}} / C_{2^{n-1}+} \rightarrow S^{0} \xrightarrow{a_{\sigma}} S^{\sigma}$ we get:

$$
\begin{gathered}
\tilde{H}_{0}^{G}\left(S^{\sigma}\right)=M_{n}\left\{a_{\sigma}\right\} \\
\tilde{H}_{1}^{G}\left(S^{\sigma}\right)=\oplus_{i=0}^{n-1} M_{i}^{-}
\end{gathered}
$$

where $\tilde{H}_{*}^{G}(X)$ denotes the reduced homology of a based G-space X. We can further see that $\tilde{H}_{1}^{G}\left(S^{\sigma}\right)$ is generated as a Green functor module by a class $u_{\sigma} \in$ $\tilde{H}_{1-\sigma}^{G}\left(C_{2^{n}} / C_{2^{n-1}}\right)$. So we get

$$
\tilde{H}_{*}^{G}\left(S^{\sigma}\right)=M_{n}\left\{a_{\sigma}\right\} \oplus \oplus_{i=0}^{n-1} M_{i}^{-}\left\{y_{i} \operatorname{Res}_{2^{i}}^{2^{n-1}}\left(u_{\sigma}\right)\right\}
$$

Using that $S^{2 \sigma}=S^{\sigma} \wedge S^{\sigma}$ and the Kunneth formula, we get a class $u_{2 \sigma}$ restricting to u_{σ}^{2} and:

$$
\tilde{H}_{*}^{G}\left(S^{2 \sigma}\right)=M_{n}\left\{a_{\sigma}^{2}\right\} \oplus \oplus_{i=0}^{n-1} M_{i}\left\{y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{2 \sigma}\right)\right\}
$$

For $0 \leq k \leq n-2$ we have a G-CW decomposition $S^{0} \subseteq X \subseteq S^{\lambda_{k}}$ where X consists of the points $\left(x_{1}, x_{2}, x_{3}\right) \in S^{\lambda_{k}} \subseteq \mathbb{R}^{3}$ with $x_{1}=0$ or $x_{2}=0$. From this decomposition we can see that:

$$
\begin{gathered}
\tilde{H}_{0}^{G}\left(S^{\lambda_{k}}\right)=\oplus_{i=k+1}^{n} M_{i}\left\{y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(a_{\lambda_{k}}\right)\right\} \\
\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)=\oplus_{i=0}^{k} M_{i}\left\{y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{\lambda_{k}}\right)\right\}
\end{gathered}
$$

for a class $u_{\lambda_{k}} \in H_{2-\lambda_{k}}^{G}(G / G)$. This also works for $k=n-1$ and $\lambda_{n-1}=2 \sigma$ giving a different way of obtaining $a_{2 \sigma}=a_{\sigma}^{2}$ and $u_{2 \sigma}$.

The classes $u_{\sigma}, u_{\lambda_{k}}, 0 \leq k \leq n-1$, have not been canonically defined so far. Once we fix orientations for the spheres $S^{\lambda_{k}}$, the $u_{\lambda_{k}}$ are uniquely determined by the following two facts:

- A G-self-equivalence of $S^{\lambda_{k}}$ induces the identity map on the Mackey functor $\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)$ if it does so on its bottom level $\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)(G / e)$.
- An orientation of $S^{\lambda_{k}}$ determines a generator for $\mathbb{Z}=\tilde{H}_{2}\left(S^{2} ; \mathbb{Z}\right)$ and consequently a generator for $\mathbb{Q}=\tilde{H}_{2}\left(S^{2} ; \mathbf{Q}\right)=\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)(G / e)$.

The first fact is proven using that the Mackey functor $\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)$ is generated by the transfers of $y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{\lambda_{k}}\right)$ where $i \leq k$, so we only need to check that the induced map is the identity on $\tilde{H}_{2}^{G}\left(S^{\lambda_{k}}\right)\left(G / C_{2^{i}}\right)=\tilde{H}_{2}^{C_{2}{ }^{i}}\left(S^{\lambda_{k}}\right)\left(C_{2^{i}} / C_{2^{i}}\right)$ which follows from the fact that $C_{2^{i}}$ acts trivially on $S^{\lambda_{k}}$ when $i \leq k$.

We can similarly uniquely determine u_{σ} upon fixing an orientation of S^{σ} that is compatible with the orientation for $S^{\lambda_{n-1}}=S^{2 \sigma}$, meaning that $\operatorname{Res}_{2^{n-1}}^{2^{n}}\left(u_{2 \sigma}\right)=u_{\sigma}^{2}$.

The discussion regarding orientation classes can also be performed integrally, defining $A_{\mathbb{Z}}$-orientation classes $u_{\sigma}, u_{2 \sigma}, u_{\lambda_{k}}$ upon fixing orientations for $S^{\sigma}, S^{2 \sigma}$, $S^{\lambda_{k}}$ as above. The $A_{\mathbb{Z}}$-orientation classes map to the corresponding \mathbb{Z}-orientation classes of [HHR16] under the map $H A_{\mathbb{Z}} \rightarrow H \underline{\mathbb{Z}}$ where $\underline{\mathbb{Z}}$ is the constant Green functor corresponding to the trivial G-module \mathbb{Z}.

4. Rational stable stems

In this section we shall give a presentation of the Green functor H_{\star}^{G} with generators and relations.

The generators are elements $r_{k} \in H_{V_{k}}^{G}\left(C_{2^{n}} / C_{2^{i} k}\right)$ spanning $M_{i_{k}}^{\epsilon_{k}}$, where $\epsilon_{k}=+$ or - , such that every element of $\coprod_{H \subseteq G, \star \in R O(G)} H_{\star}^{G}(G / H)$ can be obtained from the r_{k} using the operations of addition, multiplication, restriction, transfer and scalar multiplication (where the scalars are elements of $\coprod_{H \subseteq G} A_{\mathrm{Q}}(G / H)$).

The fact that the r_{k} span $M_{i_{k}}^{\epsilon_{k}}$ gives all the additive (Mackey functor) relations, but also implies certain multiplicative relations by means of the Kunneth formula: If $i_{k}<i_{l}$ then $r_{k} \cdot \operatorname{Res}_{2^{i} k}^{2^{i} l}\left(r_{l}\right)=0$ and if $i_{k}=i_{l}$ then $r_{k} r_{l}$ spans $M_{i_{k}}^{\epsilon_{k} \epsilon_{l}}$.

Finally, if $r \in H_{V_{k}}^{G}\left(C_{2^{n}} / C_{2^{i}}\right)$ and there exists a unique $r^{\prime} \in H_{-V_{k}}^{G}\left(C_{2^{n}} / C_{2^{i}}\right)$ with $r r^{\prime}=y_{i}$, then we shall use the notation y_{i} / r to denote r^{\prime}. If $r, y_{i} / r$ are generators then we have the implicit relation $r \cdot\left(y_{i} / r\right)=y_{i}$.

Proposition 4.1. The Green functor H_{\star}^{G} has a presentation whose generating set is the union of the following four families:

- $y_{i} \operatorname{Res}_{2^{2}}^{2^{n-1}}\left(u_{\sigma}\right)$ and $y_{i} / \operatorname{Res}_{2^{i}}^{2^{n-1}}\left(u_{\sigma}\right)$ spanning M_{i}^{-}, where $0 \leq i<n$.
- $y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{\lambda_{k}}\right)$ and $y_{i} / \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{\lambda_{k}}\right)$ spanning M_{i}, where $0 \leq i \leq k$ and $0 \leq k \leq n-2$.
- $y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(a_{\lambda_{k}}\right)$ and $y_{i} / \operatorname{Res}_{2^{i}}^{2^{n}}\left(a_{\lambda_{k}}\right)$ spanning M_{i}, where $k<i \leq n$ and $0 \leq k \leq n-2$.
- $a_{\sigma}\left(=y_{n} a_{\sigma}\right)$ and y_{n} / a_{σ} spanning M_{n}.

We have implicit relations of the form $\left(y_{i} \gamma\right) \cdot\left(y_{i} / \gamma\right)=y_{i}$ in each of the four families. The remaining multiplicative relations can be obtained using the Kunneth formula.

Two observations:

- For $0 \leq i<n$, the square of $y_{i} \operatorname{Res}_{2^{i}}^{2^{n-1}}\left(u_{\sigma}\right)$ is $y_{i} \operatorname{Res}_{2^{i}}^{2^{n}}\left(u_{2 \sigma}\right)$ and spans M_{i}.
- The ring $H_{\star}^{G}(G / G)$ has multiplicative relations: $a_{\sigma} u_{2 \sigma}=0, a_{\sigma} u_{\lambda_{k}}=0$ and $a_{\lambda_{k}} u_{\lambda_{s}}=0$ for $s \leq k$.
The Green functor presentation also gives us an additive decomposition of H_{\star}^{G} into M_{i}, M_{i}^{-}but to state it explicitly, we'll need some notation: For each integer
tuple $t=\left(j_{0}, \ldots, j_{n-1}, j_{0}^{\prime}, \ldots, j_{n-1}^{\prime}\right)$ let

$$
k(t)= \begin{cases}n & \text { if } j_{k}=0 \text { for all } k \\ \min \left\{k: j_{k} \neq 0\right\} & \text { otherwise }\end{cases}
$$

and

$$
k^{\prime}(t)= \begin{cases}-1 & \text { if } j_{k^{\prime}}^{\prime}=0 \text { for all } k^{\prime} \\ \max \left\{k^{\prime}: j_{k^{\prime}}^{\prime} \neq 0\right\} & \text { otherwise }\end{cases}
$$

and consider the representation

$$
V_{t}^{ \pm}=\sum_{k=0}^{n-2}\left(j_{k}\left(2-\lambda_{k}\right)-j_{k}^{\prime} \lambda_{k}\right)+j_{n-1}(1-\sigma)-j_{n-1}^{\prime} \sigma
$$

where the sign \pm in $V_{t}^{ \pm}$is + if j_{n-1} is even and - if j_{n-1} is odd.
Let T be the set of all tuples t with $k^{\prime}(t)<k(t)$; as t ranges over T, the $V_{t}^{ \pm}$are pairwise non-isomorphic virtual representations. We can now state the additive description:

Proposition 4.2. The $C_{2^{n}}$ equivariant rational stable stems are:

$$
H_{\star}^{G}= \begin{cases}\oplus_{k^{\prime}(t)<i \leq k(t)} M_{i} & \text { if } \star=V_{t}^{+} \text {for } t \in T \\ \oplus_{k^{\prime}(t)<i \leq k(t)} M_{i}^{-} & \text {if } \star=V_{t}^{-} \text {for } t \in T \\ 0 & \text { otherwise }\end{cases}
$$

Proof. (Of Proposition 4.1). Any representation sphere S^{V} is the smash product of $S^{\sigma}, S^{\lambda_{k}}$ and their duals $S^{-\sigma}, S^{-\lambda_{k}}$. By duality,

$$
\tilde{H}_{*}^{G}\left(S^{-\sigma}\right)=\tilde{H}_{G}^{-*}\left(S^{\sigma}\right)=M_{n} \oplus \oplus_{i=0}^{n-1} M_{i}^{-}\left\{y_{i} \operatorname{Res}_{2^{i}}^{2^{n-1}}\left(u_{\sigma}^{-1}\right)\right\}
$$

Let t be a generator for this copy of M_{n}; then

$$
\tilde{H}_{0}^{G}\left(S^{0}\right)=\tilde{H}_{0}^{G}\left(S^{\sigma}\right) \boxtimes \tilde{H}_{0}^{G}\left(S^{-\sigma}\right) \oplus \tilde{H}_{1}^{G}\left(S^{\sigma}\right) \boxtimes \tilde{H}_{-1}^{G}\left(S^{-\sigma}\right)
$$

On the left hand side we have a factor $M_{n}\left\{y_{n}\right\}$ and on the right hand side we have $M_{n}\left\{a_{\sigma}\right\} \boxtimes M_{n}\{t\}=M_{n}\left\{a_{\sigma} t\right\}$ so $y_{n}=\lambda a_{\sigma} t$ for $\lambda \in \mathbb{Q}^{\times}$. Thus we can pick $t=y_{n} / a_{\sigma}$. The result then follows from the Kunneth formula.

We note that taking geometric fixed points inverts all Euler classes, annihilating all orientation classes and setting $y_{i}=1$. Therefore:

$$
\Phi^{C_{2^{n}}}\left(H A_{\mathbb{Q}}\right)_{\star}=\mathbb{Q}\left[a_{\sigma}^{ \pm}, a_{\lambda_{k}}^{ \pm}\right]_{0 \leq k \leq n-2}
$$

hence $\Phi^{C_{2}{ }^{n}} H A_{\mathrm{Q}}=H \mathbb{Q}$ as nonequivariant spectra. The homotopy fixed points, homotopy orbits and Tate fixed points are computed using that $H A_{\mathrm{Q}} \rightarrow H \mathrm{Q}$ is a nonequivariant equivalence, where $\underline{Q}=M_{0}$ is the constant Green functor. Thus:

$$
\left(H A_{\mathbb{Q}}\right)_{h C_{2^{n}} \star}=\left(H A_{\mathbb{Q}}\right)_{\star}^{h C_{2^{n}}}=\mathbb{Q}\left[u_{2 \sigma}^{ \pm}, u_{\lambda_{k}}^{ \pm}\right]_{0 \leq k \leq n-2}
$$

and $\left(H A_{\mathbb{Q}}\right)^{t C_{2^{n}}}=*$.

5. $C_{2^{n}}$ RATIONAL CHARACTERISTIC CLASSES

Proposition 5.1. As a Green functor algebra over the homology of a point:

$$
H_{G}^{\star}\left(B_{G} S^{1}\right)=\frac{H_{G}^{\star}\left[u, \alpha_{m, j}\right]_{1 \leq m \leq n, 1 \leq j<2^{m}}}{\alpha_{m, j} \alpha_{m^{\prime}, j^{\prime}}=\delta_{m m^{\prime}} \delta_{j j^{\prime}} \alpha_{m, j}, \operatorname{Res}_{2^{m-1}}^{2^{n}}\left(\alpha_{m, j}\right)=0}
$$

for $|u|=2$ and $\left|\alpha_{m, j}\right|=0$.
Proof. Note that

$$
H_{G}^{\star}(X)=H_{G}^{*}(X) \boxtimes_{A_{\mathrm{Q}}} H_{\star}^{G}
$$

so it suffices to describe the integer graded cohomology.
For an explicit model of $B_{G} S^{1}$ we take $\mathbb{C} P^{\infty}$ with a G action that can be described as follows: Let $V_{1}, \ldots, V_{2^{n}}$ be an ordering on the irreducible complex Grepresentations and set $V_{k+2^{n} m}=V_{k}$ for any $m \in \mathbb{Z}, 1 \leq k \leq 2^{n}$. The action of $g \in G$ on homogeneous coordinates is $g\left(z_{1}: z_{2}: \cdots\right)=\left(g z_{1}: g z_{2}: \cdots\right)$ where g acts on z_{i} as it does on V_{i}.

Fix a subgroup $H=C_{2^{m}}$ of G. The fixed points under the H-action are:

$$
\left(B_{G} S^{1}\right)^{H}=\coprod_{j=1}^{2^{m}} \mathbb{C} P^{\infty}
$$

To understand the indexing, let $W_{1}, \ldots, W_{2^{m}}$ be an ordering on the irreducible complex $C_{2^{m}}$-representations; the j-th $\mathbb{C} P^{\infty}$ in $\left(B_{G} S^{1}\right)^{H}$ corresponds to the set of points with homogeneous coordinates $\left(z_{1}: z_{2}: \cdots\right)$ such that $z_{k}=0$ if $\operatorname{Res}_{2^{m}}^{2^{n}}\left(V_{k}\right) \neq W_{j}$.

By [GM95] we have:

$$
H_{G}^{*}\left(B_{G} S^{1}\right)=\oplus_{m=0}^{n} H^{*}\left(\left(B_{G} S^{1}\right)^{C_{2} m}\right)^{C_{2} n / C_{2^{m}}}
$$

where $H^{*}(X)$ is nonequivariant cohomology in \mathbb{Q} coefficients. The action of $C_{2^{n}} / C_{2^{m}}$ on nonequivariant cohomology is trivial since it's determined in degree $*=2$ and thus on the 2-skeleton, which itself is the disjoint union of copies of $S^{2}=\mathbb{C} P^{1}$ and for each S^{2} the action is a rotation hence has degree 1 . Thus

$$
H_{G}^{*}\left(B_{G} S^{1}\right)=\oplus_{m=0}^{n} \oplus_{j=1}^{2^{m}} H^{*}\left(\mathbb{C} P^{\infty}\right)=\oplus_{m=0}^{n} \oplus_{j=1}^{2^{m}} \mathbb{Q}\left[e_{m, j}\right]
$$

where each $e_{m, j}$ spans M_{m}. Set $\alpha_{m, j}=e_{m, j}^{0}$ and $u=\sum_{m, j} e_{m, j}$; then

$$
\sum_{j=1}^{2^{m}} \alpha_{m, j}=\frac{\operatorname{Tr}_{2^{m}}^{2^{n}}\left(y_{m}\right)}{2^{m}}
$$

so the $\alpha_{m, 2^{m}}$ are superfluous. Thus we can take $1 \leq m \leq n$ and $1 \leq j<2^{m}$ in the indexing for $\alpha_{m, j}$.

We can similarly prove that:
Proposition 5.2. We have an isomorphism of Green functor algebras over H_{G}^{\star} :

$$
H_{G}^{\star}\left(B_{G} \Sigma_{2}\right)=\frac{H_{G}^{\star}\left(B_{G} S^{1}\right)}{u}
$$

where the quotient map $H_{G}^{\star}\left(B_{G} S^{1}\right) \rightarrow H_{G}^{\star}\left(B_{G} \Sigma_{2}\right)$ is induced by complexification: $B_{G} \Sigma_{2}=B_{G} O(1) \rightarrow B_{G} U(1)=B_{G} S^{1}$.

The set of generators $\left\{u, \alpha_{m, j}\right\}$ for $H_{G}^{*}\left(B_{G} S^{1}\right)$ is not minimal. Indeed, whenever we have generators e_{1}, \ldots, e_{s} with $e_{i} e_{j}=\delta_{i j} e_{i}$, we can replace them by a single generator defined by $e=e_{1}+2 e_{2}+\cdots+s e_{s}$:

$$
\frac{\mathrm{Q}\left[e_{1}, \ldots, e_{s}\right]}{e_{i} e_{j}=\delta_{i j} e_{i}}=\frac{\mathrm{Q}[e]}{e(e-1) \cdots(e-s)}
$$

This isomorphism follows from the fact that any polynomial f on e_{1}, \ldots, e_{n} satisfies:

$$
f(e)=f(0)+(f(1)-f(0)) e_{1}+\cdots+(f(s)-f(0)) e_{s}
$$

and thus

$$
e_{i}=\frac{f_{i}(e)}{f_{i}(i)} \text { where } f_{i}(x)=\frac{x(x-1) \cdots(x-s)}{x-i}
$$

In this way, $H_{G}^{*}\left(B_{G} S^{1}\right)$ is generated as an A_{Q} algebra by two elements u, α but now with α satisfying some rather complicated relations. If $n=1$ i.e. $G=C_{2}$, we only have one $\alpha_{m, j}$ element, namely $\alpha=\alpha_{1,1}$ satisfying $\alpha^{2}=\alpha$.
Proposition 5.3. The inclusion $B_{G} U(1)^{m} \rightarrow B_{G} U(m)$ induces an isomorphism of Green functor algebras over H_{G}^{\star} :

$$
H_{G}^{\star}\left(B_{G} U(m)\right)=\left(\otimes^{m} H_{G}^{\star}\left(B_{G} U(1)\right)\right)^{\Sigma_{m}}
$$

Proof. Let V_{i} be the complex G-representation corresponding to the root of unity $e^{2 \pi i / n}$. The Grassmannian model for $B_{G} U(m)$ uses complex m-dimensional subspaces of $\mathbb{C}^{\infty \rho_{G}}$; a G-fixed point W of $B_{G} U(m)$ is then a G-representation and thus as splits as $W=\oplus_{i=1}^{2^{n}} k_{i} V_{i}$ for $k_{i}=0,1, \ldots$ with $\sum_{i} k_{i}=m$. An automorphism of W is made out automorphisms for each $k_{i} V_{i}$ hence

$$
B_{G} U(m)^{G}=\coprod_{\sum k_{i}=m} \prod_{i=1}^{2^{n}} B U\left(k_{i}\right)
$$

Following [Geo21c] and inducting on the n in $G=C_{2^{n}}$, it suffices to show that

$$
H^{*}\left(\left(B_{G} U(m)\right)^{G}\right) \rightarrow H^{*}\left(\prod^{m}\left(B_{G} S^{1}\right)^{G}\right)
$$

is an isomorphism after taking Σ_{m} fixed points on the RHS. Spelling this out, we have:

$$
\prod_{\sum k_{i}=m} \otimes_{i=1}^{2^{n}} H^{*}\left(B U\left(k_{i}\right)\right) \rightarrow \prod^{2^{n m}} \otimes^{m} H^{*}\left(B S^{1}\right)
$$

where the product on the right is indexed on configurations $\left(V_{r_{1}}, \ldots, V_{r_{m}}\right)$. If we fix k_{i} with $\sum_{i} k_{i}=m$ then we get

$$
\otimes_{i=1}^{2^{n}} H^{*}\left(B U\left(k_{i}\right)\right) \rightarrow \prod \otimes^{m} H^{*}\left(B S^{1}\right)
$$

where the product on the right is indexed on configurations $\left(V_{r_{1}}, \ldots, V_{r_{m}}\right)$ where k_{i} many of the r_{j} 's are equal to i. Taking Σ_{m} fixed points is equivalent to fixing a configuration and then taking $\Sigma_{k_{1}} \times \cdots \times \Sigma_{k_{2^{n}}}$ fixed points, where each $\Sigma_{k_{i}}$ permutes the k_{i} many coordinates that are V_{i} in the configuration. Thus we are reduced to the nonequivariant isomorphism:

$$
H^{*}\left(B U\left(k_{i}\right)\right)=\left(\otimes^{k_{i}} H^{*}\left(B S^{1}\right)\right)^{\Sigma_{k_{i}}}
$$

For $n=1, G=C_{2}$ and $H_{G}^{*}\left(B_{G} S^{1}\right)$ has a simple enough description to allow the computation of an explicit minimal presentation of $H_{G}^{*}\left(B_{G} U(m)\right)=$ $H_{G}^{*}\left(B_{G} U(1)^{m}\right)^{\Sigma_{m}}$. Due to the greater algebraic complexity of $H_{G}^{*}\left(B_{G} S^{1}\right)$ for $n \geq 2$ ($G=C_{2^{n}}$), we do not attempt to generalize this and the rest of [Geo21c] to groups $G=C_{2^{n}}$ for $n \geq 2$.

We note that the maximal torus isomorphism does not work $C_{2^{n}}$ equivariantly for the Lie group $L=S U(2)=S p(1)$ and $n \geq 2$. The reason is that a $C_{2^{n}}$ representation in $S U(2)$ is $2,2 \sigma$ or $V_{i} \oplus V_{-i}, 1 \leq i<2^{n-1}$, using the notation of the proof above. Thus:

$$
B_{G} S U(2)^{G}=B S U(2) \coprod B S U(2) \coprod \coprod_{i=1}^{2^{n-1}-1} B S^{1}
$$

so $H^{0}\left(B_{G} S U(2)^{G}\right)$ has dimension $2^{n-1}+1$. On the other hand, the maximal torus is $U(1) \subseteq S U(2)$ with Weyl group C_{2} and

$$
B_{G} U(1)^{G}=\coprod_{i=1}^{2^{n}} B S^{1}
$$

The C_{2} action does not affect $H^{0}\left(B_{G} U(1)^{G}\right)$ which has dimension 2^{n}. Finally, $2^{n-1}+1=2^{n}$ only when $n=1$.

References

[Geo21c] N. Georgakopoulos, C_{2} equivariant characteristic classes over the rational Burnside ring, available here
[GM95] J.P.C. Greenlees, J.P. May, Generalized Tate Cohomology, Memoirs of the American Mathematical Society 543 (1995).
[HHR16] M. A. Hill, M. J. Hopkins, D. C. Ravenel, On the non-existence of elements of Kervaire invariant one, Annals of Mathematics, Volume 184 (2016), Issue 1

Department of Mathematics, University of Chicago
E-mail: nickg@math.uchicago.edu
Website: math.uchicago.edu/~nickg

