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Abstract. In this very short note, we expand the Hu-Kriz computation of the
G-equivariant Borel dual Steenrod algebra in characteristic 2, from the group
G = C2 to all power-2 cyclic groups G = C2n .
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1. Introduction

In this companion piece to [Geo21a], we show that the C2-equivariant Borel
dual Steenrod algebra computation in [HK96] generalizes to all groups G = C2n .
More precisely, we give an explicit description of the RO(C2n)-graded ring of the
homotopy fixed points (H F2 ∧H F2)

hC2n
F as a Hopf algebroid over (H F2)

hC2n
F ,

where F2 stands for the constant C2n -Green functor associated to the field of two
elements. We also compare our description to the dual description of the Borel
Steenrod algebra of [Gre88].

Acknowledgment. We would like to thank Peter May for his numerous editing
suggestions, including the idea to split off this paper from [Geo21a].

2. Conventions and notations

We will use the letter k to denote the field F2 with trivial G = C2n action, the
constant G-Mackey functor k = F2 and the corresponding equivariant Eilenberg-
MacLane spectrum Hk. The meaning should always be clear from the context.

Henceforth all our co/homology will be in k coefficients. We use kF(X)
to denote the RO(G)-graded Mackey functor of G-equivariant homology in k-
coefficients. The value of kF(X) on the G/H orbit is denoted by kH

F(X).

The real representation ring RO(C2n) is spanned by the irreducible represen-
tations 1, σ, λs,k where σ is the 1-dimensional sign representation and λs,m is the
2-dimensional representation given by rotation by 2πs(m/2n) degrees for 1 ≤ m
dividing 2n−2 and odd 1 ≤ s < 2n/m. Note that 2-locally, Sλs,m ' Sλ1,m as
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C2n -equivariant spaces, by the s-power map. Therefore, to compute kF(X) for
F ∈ RO(C2n) it suffices to only consider F in the span of 1, σ, λk := λ1,2k for
0 ≤ k ≤ n− 2 (λn−1 = 2σ and λn = 2).

For V = σ or V = λm, denote by aV ∈ kC2n
−V the Euler class induced by the

inclusion of north and south poles S0 ↪→ SV ; also denote by uV ∈ kC2n
|V|−V the

orientation class generating the Mackey functor k|V|−V = k ([HHR16]).

3. Borel cohomology

Let EG be a contractible free G-space and ẼG be the cofiber of the collapse
map EG+ → S0. For a spectrum X we use the notation Xh = EG+ ∧ X, Xh =
F(EG+, X) and Xt = ẼG ∧ Xh; there is a cofiber sequence

Xh → Xh → Xt

The G-fixed points of Xh, Xh, Xt are the nonequivariant spectra of homotopy or-
bits XhG, homotopy fixed points XhG and Tate fixed points XtG respectively.

The orientation classes uV : k∧ S|V| → k∧ SV are nonequivariant equivalences,
hence induce G-equivalences in Xh, Xh, Xt for a k-module X, so they act invertibly
on XhF, Xh

F and Xt
F. This implies that

XhF ≈ Xh|F| , Xh
F = Xh

|F| , Xt
F = Xt

|F|

and the RO(G) graded part is determined by the integer graded part.

Proposition 3.1. For G = C2n and n > 1:

khG
F = k[aσ, aλ0 , u±σ , u±λ0

, ..., u±λn−2
]/a2

σ

ktG
F = k[aσ, a±λ0

, u±σ , u±λ0
, ..., u±λn−2

]/a2
σ

and khGF = Σ−1ktG
F/khG

F (forgetting the ring structure). The map khGF → khG
F is

trivial.

Proof. The homotopy fixed point spectral sequence becomes:

H∗(G; k)[u±σ , u±λ0
, ..., u±λn−2

] =⇒ khG
F

We have H∗(G; k) = k∗BG = k[a]/a2 ⊗ k[b] where |a| = 1 and |b| = 2. The
spectral sequence collapses with no extensions and we can identify a = aσu−1

σ

and b = aλ0 u−1
λ0

. Finally, ẼG = S∞λ0 = colim(Sλ0
aλ0−→ Sλ0

aλ0−→ · · · ) so to get ktG
F

we are additionally inverting aλ0 .
�

For G = C2 we have

khC2
F = k[aσ, u±σ ]

ktC2
F = k[a±σ , u±σ ]

and khC2F = Σ−1ktC2
F /khC2

F (forgetting the ring structure). The map khC2F → khC2
F

is trivial.
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4. The Borel dual Steenrod algebra

The G-Borel dual Steenrod algebra is

(k ∧ k)hG
F

This is a Hopf algebroid over khG
F .

We will implicitly be completing it at the ideal generated by aσ for G = C2,
and at the ideal generated by aλ0 for G = C2n , n > 1 (see [HK96] pg. 373 for
more details in the case of G = C2). With this convention, Hu-Kriz computed the
C2-Borel dual Steenrod algebra to be

(k ∧ k)hC2
F = khC2

F [ξi]

for |ξi| = 2i − 1 (ξ0 = 1). The generators ξi restrict to the Milnor generators in
the nonequivariant dual Steenrod algebra and

∆(ξi) = ∑
j+k=i

ξ2k

j ⊗ ξk

ε(ξi) = 0 , i ≥ 1

ηR(aσ) = aσ

ηR(uσ)
−1 =

∞

∑
i=0

a2i−1
σ u−2i

σ ξi

Proposition 4.1. For G = C2n , n > 1,

(k ∧ k)hG
F = khG

F [ξi]

for |ξi| = 2i − 1 restricting to the C2n−1 generators ξi, with

∆(ξi) = ∑
j+k=i

ξ2k

j ⊗ ξk

ε(ξi) = 0 , i ≥ 1

ηR(aσ) = aσ , ηR(aλ0) = aλ0

ηR(uσ) = uσ + aσξ1

ηR(uλm) = uλm , m > 0

ηR(uλ0)
−1 = ∑

i
a2i−1

λ0
u−2i

λ0
ξ2

i

Proof. The computation of (k ∧ k)hG
∗ = (k ∧ k)∗(BG) follows from the compu-

tation of khG
∗ = k∗(BG) = k[a]/a2 ⊗ k[b] and the fact that nonequivariantly,

k ∧ k is a free k-module. To see that the homotopy fixed point spectral se-
quence for k ∧ k converges strongly, let FiBG be the skeletal filtration on the Lens
space BG = S∞/C2n ; we can then compute directly that lim1

i (k ∧ k)∗(FiBG) =

lim1
i (k[a]/a2 ⊗ k[b]/bi) = 0.

Thus we get (k ∧ k)hG
F = khG

F [ξi] and the diagonal ∆ and augmentation ε are
the same as in the nonequivariant case. The Euler classes aσ, aλ0 are maps of
spheres so they are preserved under ηR. The action of ηR on uσ, uλ0 can be
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computed through the right coaction on khG
F : The (completed) coaction of the

nonequivariant dual Steenrod algebra on k∗(BG) = k[a]/a2 ⊗ k[b] is

a 7→ a⊗ 1

b 7→∑
i

b2i ⊗ ξ2
i

To verify the formula for the coaction on b we need to check that Sq1(b) = 0
(the alternative is Sq1(b) = ab). From the long exact sequence associated to
0 → Z /2 → Z /4 → Z /2 → 0, we can see that the vanishing of the Bockstein
on b follows from H2(C2n ; Z /4) = Z /4 (n > 1).

After identifying a = aσu−1
σ and b = aλ0 u−1

λ0
we get the formula for ηR(uλ0)

and also that
ηR(uσ) = uσ + εaσξ1

where ε is either 0 or 1. This is equivalent to

ηR(u−1
σ ) = u−1

σ + εaσu−2
σ ξ1

and to see that ε = 1 we use the map khC2 = kh(C2n /C2n−1 ) → khC2n that sends
aσ, uσ to aσ, uσ respectively. Finally, to compute ηR(uλm) for m > 0 note that

khC2n−m = khC2n /C2m → khC2n

sends aλ0 , uλ0 to aλm = 0, uλm respectively. �

5. Comparison with Greenlees’s description

We now compare our result with the description of the Borel Steenrod algebra
given in [Gre88], which is dual to our calculation.

In our notation, the G-spectrum b of [Gre88] is b = kh and bV(X) corresponds
to (kh)

|V|
G (X); to get (kh)V

G(X) we need to multiply with the invertible element
uV ∈ khG

|V|−V . The Borel Steenrod algebra is bFG b = (kh)FG (kh) and the Borel dual

Steenrod algebra is bG
Fb = (kh)G

F(k
h) = (k ∧ k)hG

F .
Greenlees proves that the Borel Steenrod algebra is given by the Massey-

Peterson twisted tensor product ([MP65]) of the nonequivariant Steenrod algebra
k∗k and the Borel cohomology of a point (kh)FG = khG

−F. The twisting has to do

with the fact that the action of the Borel Steenrod algebra on x ∈ (kh)FG (X) is
given by:

(θ ⊗ a)(x) = θ(ax)

where θ ∈ k∗k and a ∈ khG
F . The product of elements θ⊗ a and θ′ ⊗ a′ in the Borel

Steenrod algebra is not θθ′ ⊗ aa′, since θ does not commute with cup-products,
but rather satisfies the Cartan formula:

θ(ab) = ∑
i

θ′i(a)θ′′i (b) , ∆θ = ∑
i

θ′i ⊗ θ′′i

Therefore:

(θ ⊗ a)(θ′ ⊗ a′)(x) = θ(aθ′(a′x)) = ∑
i

θ′i(a)(θ′′i θ′)(a′x)
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so
(θ ⊗ a)(θ′ ⊗ a′) = ∑

i
θ′i(a)(θ′′i θ′ ⊗ a′) (1)

(we have ignored signs as we are working in characteristic 2).
So the Borel Steenrod algebra is k∗k⊗ khG

F with twisted algebra structured defined
by (1).

Moreover, Greenlees expresses the action of k∗k on (kh)FG (X) in terms of the
action of k∗k on the orientation classes uV and the usual (nonequivariant) action
of k∗k on (kh)∗G(X) = k∗(X ∧G EG+). This is done through the Cartan formula: If

x ∈ (kh)V
G(X) then u−1

V x ∈ (kh)
|V|
G (X) and

θ(x) = θ(uVu−1
V x) = ∑

i
θ′i(uV)θ

′′
i (u
−1
V x)

What remains to compute is θ′i(uV), namely the action of k∗k on orientation
classes.

In our case, for G = C2n , we can see that:

Proposition 5.1. The action of k∗k on orientation classes is determined by:

Sqi(uσ) =


uσ i = 0
aσ i = 1
0 otherwise

Sqi(uλm) =


uλm i = 0
aλ0 i = 2, m = 0
0 otherwise

Proof. Compare with the proof of Proposition 4.1. �

The twisting in the case of the Borel dual Steenrod algebra corresponds to the
fact that (k ∧ k)hG

F is a Hopf algebroid and not a Hopf algebra; computationally
this amounts to the formula for ηR of Proposition 4.1.
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