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Introduction 

I n  this paper  we continue the s tudy  initiated in [1] in which familiar 
algebraic concepts are studied within the f ramework of a general category.  
I n  [1] our  main  emphasis was on the  question of the definition of a multi-  
plication in this general setting, on the general categorical form of the group 
axioms, and on the  implications of assuming certain objects in a category to 
be group-like. I n  this paper  we concern ourselves more with certain auxil iary 
features and concepts associated t radi t ional ly  with the  category of sets 
which play  an impor tan t  role in group theory.  Our main  object in this paper  
is to define these concepts in a categorical fashion and to show how, with the 
use of some of these concepts, a generalization of the not ion of multiplication 
m a y  be in t roduced;  in the  th i rd  paper  of the  series we will consider more  
explicitly the relation of these concepts to  the assumpt ion of multiplicative 
s t ructure  in certain objects of the  category.  

The  na ture  of the  generalization referred to m a y  be indicated by  reference 
to  the  ca tegory  ~ of groups and  homomorphisms.  A multipl ication satisfying 1) 
Axiom I (an H_-structure) in this ca tegory  is a homomorph i sm/~  : G × G =~ G 
such t h a t  ~ ~- ~ :  G * G -> G, where ~ : G • G -~ G × G is the  canonical  map  
f rom free (inverse) to  direct  p roduc t  and ~ :  G • G -~ G is the  "folding" map  
(1, 1). I t  tu rns  ou t  then  (see [1] or  [2]) t h a t  G admits  an  H_-structure if and  
only  if i t  is commuta t ive .  I t  would be idle to  a t t e m p t  to generalize the concept  
of a mult ipl icat ion b y  demanding a map/~  : G × G × • • • × G (n factors) -> G 
with p ~  = ~ since, as m a y  be readily p roved  in any  DI-ca tegory ,  such a multi-  
plieation exists if and only if the  ord inary  mult ipl ication exists. However ,  
we m a y  factorize ~ : G 1 • • • • • G~ -~ G 1 × • • • × G~ in ~i as 

GI*"'*G~=G~G~-I-~'"-~G2~G~=GI×"" ×G~ 
(faetorization (F) of Theorem 4.4) and demand  in the case G~ . . . . .  G n = G 
that  there exist a map  ~u : G " -1  -~ G such t h a t / ~ - 1  = ~. Of course, if n = 2 
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1) This Axiom asserts the existence of two-sided unity. 
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this is just the original concept of an ~.s tructure.  I t  is a satisfactory feature 
of this notion of an Hn-structure tha t  (see [2]) G admits an _Hn-structure ff 
and only if the nitpotency class of G is less than n. The first two sections of the 
present paper lay the necessary foundations for the definition of _Hn-structures in 
general categories. 

We could then develop the study of H~-structures from the point of view 
of imposing axioms on such structures analogous to those imposed on H - (=  _t, I2)- 
structures in [1], and of studying the nature of primitive maps of tI,-objects.  
This development (which has been carried out in special cases by  B~RST~.IN, 
HmTO~ and P~T~RSO~) is surely worth carrying out in a general category; 
but  in this paper our interest has centred on the narrower question of the 
existence of such structures on given objects of a category. This leads to the 
notion of the length of an object which is defined and investigated in section 5 
of the paper. 

A further remark about the category ® may be helpful in illuminating a 
modification of the notion of length (namely, to tha t  of weak length) which is 
suggested in section 5. Let  K be the kernel of ~ : G • (7 -+ G × G. Then we may 
replace the condition that  there be a homomorphism # with ~ --= ~ : G * G --> G 
by the condition that  d annihilate the kernel of ~. In  the category qi, 
in which u is an epimorphism, this condition is, of course, equivalent to the 
existence of #;  indeed the existence of an _Hn-structure ft : G n-1 -> G is equi- 
valent to  the condition that  d annihilate the kernel of un-I :G'~G'~-I .  
However, in general categories the two conditions are not  equivalent; it 
remains true tha t  the existence of # implies the annihilator condition but  the 
opposite implication is not  generally valid. We are thus led to a notion of weak 
length and the implication that  the weak length of an object is never greater 
than its length. The notion of weak length has also proved fruitful in topology. 

In  order to have the concepts of length and weak length available in ab- 
stract homotopy theory, it is necessary to introduce a further refinement of the 
concepts. Broadly speaking we wish to replace the notion of strict equality 
which appears in the s t a t e m e n t s / ~ - I  = d, #k  = 0 (where k : K -~ G n embeds 
ker u , - i  in G ") by  that  of homotopy. We could approach this question simply 
by considering a classi/ying functor ~--> ~a which places each map of E in 
an appropriate equivalence class called a homotopy class, demanding only the 
compatibility of the classification with the taw of composition of maps in ~. 
However, we have preferred to model ourselves on the situation in a topo- 
logical category and have therefore adopted Kan's  notion of a category with 
homotopy, elaborating it only by  considering both left and right homotopy 
systems (see section 6). In  this way we have been able to establish, by  category- 
theoretical arguments, the homotopy invariance of the factorization (F) and 
of its dual (F') under certain very  general assumptions on the homotopy 
systems in question. The notions of length and weak length generalize in an 
obvious way to those of homotopy length and weak homotoitry length. I t  should 
be made clear, however, tha t  the concept of homotopy length for objects of 
is not just the concept of length for the category ~a. For the factorization on 

11" 
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which the concept of homotopy length is based is carried out in ~, not in ~ ;  
indeed it  may  well be [as it is for the category ~: of based spaces (of the based 
homotopy  type  of C W-complexes) and based maps] tha t  the faetorization is 
defined in ~ but  not in ~ .  Thus the definition involves simultaneously the 
maps of the category themselves and their homotopy  classificationS). 

We have stated that ,  from the point of view of this paper, the notions of 
equalizer, intersection, union, and direct and inverse limit discussed in the 
first two sections are in the nature of necessary preparation for the subsequent 
notions of length and weak length. However, we believe tha t  they are basic 
to any  development of category theory, and they will recur very frequently and 
prominently in paper  I I I  of the series and in subsequent contributions to 
abstract  homotopy theory. Of course, we make great use of categorical duality 
throughout this paper  so tha t  every notion turns up in twin guises; we have 
natural ly not insisted on always being explicit about  dual formulations. 

1. Equalizers 

Let  ~ be an arbi t rary  category with zero-maps. The concept of left (right) 
equalizer of a finite collection of maps/1,  ]3 . . . .  , in between the same objects 
A, B of ~, which will be introduced in this section, is in close relation to the 
notions of kernel and intersection (cokernel and union), familiar in various 
special categories. The definitions are as follows: 

Given ]1, ]3 . . . . .  ]n ~ H(A,  B), a map k : K - ~  A is called a left equalizer 
of h, [~ . . . .  , ]~ if 
(1.1) (i) Ilk = ]~k . . . . .  /~k; 

(ii) for any X in ~ and ~ C H(X,  A), / 1 ~  = / 2 ~  . . . . .  /n~ implies the 
unique factorization ~ = /c~', ~' E H(X,  K). 

A map c : B --> C is called a right equalizer of/1, /2 . . . . .  /~ if 
(1.2) (i) c/1 = c/~ . . . . .  e/n; 

(ii) for any  Y in ~ and ~ E H(B,  Y), ~]1 = ~//2 . . . . . .  ~7]. implies the 
unique factorization ~7 = ~' c, ~' E H(C, Y). 

The definitions are illustrated by  the diagram 

K k ~ A - - ~ B  ~ ' C  

X Y 
Obviously, left and right equalizers are dual to each other; properties of 

one of them are obtained from those of the other " b y  dual i ty" and not always 
mentioned in the following. 

Prol~osition 1.3. Left equalizers are monomorphisms, right equalizers epi. 
morphiams~). 

2) I t  happens that the case n = 2 is exceptional; I-Lstructures in ~a are nothing other 
than homotopy-H-structures in ~. 

~') In view of terminological differences appearing in the literature we wish to emphasize 
that the terms "monomorphism" and "epimerphism" are used in agreement with [9], 
see also [1]: A map ~: X-~ Y in the category ~ is a monomorphism if, for all ZE~ and 
maps g, h : Z --> X in ~ ,  ]g ~ / h  implies g ~ h ;  and dually for epimorphisms. 
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Proo/. The second assertion is, by  duality, equivalent to the first. To prove 
the first, consider, for a map ~' E H(X,  K), k~' E H(X ,  A); s ince / lk~ '  =/2k~ '  
. . . . .  /=k~', the faetorization k~' is unique, i.e., k~ '=  k~" implies ~' = ~". 
Thus k is monomorphic. 

Note that ,  conversely, k being monomorphie implies tha t  the factorization 
in (1.1) (ii) is unique. In  the postulate (ii) the uniqueness of ~' can therefore 
be replaced by  the requirement tha t  k be a monomorphism; and dually, in 
(1.2), the uniqueness of 9'  by  the requirement tha t  c be an epimorphism. 

Proposition 1.4. I /  k: K-+ A and k': K'-+ A are two le/t equalizers o/ 
]1, ]2 . . . . .  /n, there is a unique equivalence h : K --> K' such that k' = kh. (The 
dual s ta tement  for right equalizers is left to the reader.) 

Proo/. From I l k '=  . . . .  / n k '  it follows tha t  k ' =  kh, with a unique 
h : K '  -2 K. Similarly k = k'h', hence k = kh'h. Since k is a monomorphism, 
this implies h'h = 1, and in the same way one proves hh '=  1, so that  h is 
an equivalence. 

The left equalizer of/1,/2, • • . , /n ,  if it exists, is thus, to the greatest possible 
extent, uniquely determined; we denote it by  X(/1 . . . . .  /.), and the right 
equalizer by  Q ( /1 , . . . , /~ ) .  We shall say tha t  ~ is a category with left (right) 
equalizers, if for any  two objects A, B in ~ and any finite collection of maps 
/1,/2 . . . .  ,/n ~ H(A,  B) left (right) equalizers do exist; examples of such 
categories are given later (§ 3). I t  will follow from the next  proposition tha t  
equalizers exist if they exist for any two maps /1 , /2  E H(A,  B). For  a single 
map / E H(A,  B), ,~([) is of course simply the identi ty 1 A of A. 

Proposition 1.5. Let /1,/2 . . . . .  /~ C H(A,  B), n >= 2. I /  the equalizers 
~ ( / 1 ,  " " " ,  / n - - l )  = k and ,~(/lk, /~k) = 1 exist, then kl  is the left equalizer o] [1, 

/8 . . . . .  /~ .  
Proo/. In  the diagram 

L l k ~ K  ' A  ~ B  

we h a v e / l k = / ~ k  . . . . .  /n_lk a n d / l k l = / , k l ,  so t h a t / l k l = / 2 k l  . . . . .  /nkl. 
Since 1 and k are monomorphisms, so is kl. Now, for any ~ : X -+ A such tha t  
]1 ~ =/2  ~ . . . . .  /n ~ one has ~ = k ~' : X -* K -+ A, hence ]1 k ~' = / n  k ~', and 
therefore ~'= l~", whence ~ = kl~". 

We now give a list of various important  properties of equalizers, to be 
used throughout this paper  and number  I I I  of the series. 

(1) ~ ( /1 , /~ , . . . , / n )  and ~(/1, ]~ . . . .  , ],) are independent of the numbering 
of the maps. I f  two of the maps are equal, one of them can be omit ted without 
changing the equalizers. 

(2) The equalizer ~ (/, 0), determined by  / : A -+ B up to a unique equivalence 
is usually called the kernel o/ / ,  written k e r / :  it is a m a p k  : K -+ A such tha t  
]k = 0 and all ~ w i t h / ~  = 0 admit  a unique factorization ~ = k~' .  

The equalizer ~ (g, O) is usually called the cokernel o / / ,  written eoke r / : ,  
it is a map  c : B -7 C such tha t  c /= 0 and all ~ with ~ / =  0 admit  a unique 
faetorization ~ = ~'c. 
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Thus, in a category with left (right) equalizers any map  / has a (unique) 
kernel k (cokernel c). Kernels are monomorphisms, cokernels epimorphisms. 
If  kernels and cokernels exist, any map ] : A -> B can be uniquely factored 
through the cokernel of its kernel and through the kernel of its cokernel. 

(3) An object Z in ~ with 1 z = 0 is called a zero-object; for such an object 
Z and for any X in ~, H(Z, X) and H(X, Z) consist each of a single element 0. 
Any two zero-objects Z, Z' in ~ are equivalent, the equivalence being given 
by  0: Z ~ Z ' .  

I f  for A E ~ the equalizer 2(1A, 0) = k : K ~+ A {i.e., the kernel kerlA) 
exists, K is a zero-object. Indeed we have 

k l K = k =  l ~ k = 0 k = 0 = k 0  K,  

where O K is the zero-map K - ~  K;  this implies 1K = O K. Similarly the equalizer 
e(1A, 0), i.e. coker 1A, yields a zero-object. 

Thus existence o~ le/t (or right) equalizers in ~ implies existence o/ zero- 
objects. 

(4) Given maps/1 , /3  . . . . .  /~ E H(A, B) the set of maps ~ into A such tha t  
/1~ = / 2 ~  . . . . .  /-n~ is a "right ideal" in ~;  i.e., it is not empty  and contains 
with any  ~ all its right multiples ~ ~. This ideal m a y  be called the "le/t equalizer 
ideal" of / i , /2  . . . .  ,/n. I t  always exists; however, the existence of A (/1,/3 . . . . .  /~) 
= k means (i) that it is a principal right ideal, and (if) that it is generated by a 
monomorphism. The proper ty  (if) implies tha t  the generator is determined up 
to a canonical equivalence. - Similar remarks apply to the right equalizer 

(/1,/2 . . . . .  /~) and, in particular, to ker / and coker /; the "kernel ideal" 
and the "cokernel ideal" always exist and can replace ker / and coker / in 
various arguments. 

I t  should be remarked tha t  in the category ~a (of topological spaces and 
homotopy classes of maps) equalizer ideals are principal, but  do not possess 
a canonical generator. 

(5) A rather  trivial generalization of the notion of equalizer will be useful 
in the following ; we formulate it here for left equalizers only. Given a collection 
of maps /ii: A - ~  B~, i = 1 , . . . ,  m; ~ = 1 . . . . .  ni of an object A to several 
object B i, we may  understand by  the left equalizer of the system/i~" a map 
k : K -> A such tha t  

~ilk . . . . .  /in, k ,  for i = 1 , . . . ,  m 

and tha t  the factorization proper ty  corresponding to (ii) in (1.1) holds. 
Proposition 1.6. I / ~  is a D-category (a category with direct products) and 

i/ in ~ ordinary left equalizers exist, then they also exist in the above generalized 
sense. 

Proo/. :By repeating, if necessary, some of the/i~ for fixed i, we may  assume 
tha t  all n~ are equal, n~ = n, i = 1 , . . . ,  m. Then we write /j for the maps  
{ ] ~ , / ~ , . . . , / ~ j } : A ~ B I × B ~ x " "  ×Bin for j = l  . . . . .  n. As one m a y  
easily cheek, the equalizer ~(/1,/~ . . . . .  /~) : K - ~ A  has all the required prop- 
erties, and is unique. Dually, in an I-category (a category with inverse prod- 
ucts) in which ordinary right equalizers exist, they  also exist in the generalized 
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sense referring to a system of maps [tj : A t  -~" B, i ~- l,  . . . ,  m; ~ = 1 . . . . .  ni 
of several objects A i into B. 

(6) 2gaturality. Equalizers are "na tura l"  (i.e., functors between obvious 
categories). For let ~b be a map of the diagram 

h J~ 
A -  ! ~B into A ' _ - _ : B '  

given by  two maps ~ : A -> A' ,  fl : B -~ B '  such tha t  for each ]~- there is an ]j 
with f l / ¢ = / ~ ;  then there is a unique map  ~ o : K ~ K '  between the two 
equalizers such tha t  

K 
k 

~A _ _  ~ B 

k" 
*A '  - ' ~ B '  

is commutat ive:  ~ k =  k '~ .  The proof is immediate from the definition. 
Notice as a special case that  a map q~ from the map [ to the map ] '  ( that 

is, a pair of maps ~, fl such tha t  [' o~ ~ fl]) induces a map ~ from ker [ to k e r / ' .  
We may  formulate the natural i ty  of equalizers more generally in the follow- 

ing proposition; we shall need this extra generality in subsequent applications. 

Proposition 1.7. Assume several maps o~(1), c~(2) . . . .  : A - >  A '  and fl(1), 
fl(2), . . . : B -~ B '  giveu such that 

(i) /or each/~ there are an od~), fl(q) and f~ with fl(q)/j-- /~a(~), and 
(ii) ~(1)k = ~(2)k . . . . .  and /~ (l) /j k ---- fl(z)/jk . . . .  . 
Then there is a unique q) : K -~ K '  such that ~(~) k = k' T (/or all p) .  

For putt ing ~ = g(~)k, we have 

/;~= ~(0)/jk 

which is independent of i; hence there is a ~0 with ~ = /¢ '  ~0, and ~0 is unique. 
(7) In  applications it will be useful to know tha t  a functor T preserves 

equalizers. Exact ly  as for the preservation of direct or inverse products, there 
is a simple criterion under which this is the case: namely tha t  T possess an 
ad]oint S in the sense of KA~ [8], cf. [1], § 6. This is made precise in the follow- 
ing statement.  

Proposition 1.8. Let T be a covariant ]unctor / tom the category ~ to the 
category ~. I] T possesses a le[t.ad]oint /unctor S : ~ -~ 9 ,  then T preserves le]t 
equalizers. 

Pro@ Let ~ = ~ x r  be the adjugant  of T and S;  i.e., the natural  equiv- 
alence H ( S X ,  Y ) ->  H ( X ,  T Y)  postulated in the definition of left-adjoint- 
ness (cf. [1 ], § 6). For  simplicity, we consider two maps ], g E H (A, B) in ~) 
and assume tha t  they  have an equalizer ~(/, g ) = / ¢ : K - +  A. We have to 
prove tha t  T k  : T K  ~ T A  is the left equalizer of T[ ,  T g  : T A  -,.. T B  in ~. 
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We  first note  t h a t  

T / o  T k =  T ( / o k ) =  T(g o k )=  Tg o T k .  

Fur the rmore ,  let ~ : X ~ T A  in g be such t h a t  T / o ~ =  Tgo~;  writ ing 
~]-1(~) = ~1: S X - ~  A, we have  

T l  o ~ = Z l  o n ( ' ~ )  = ~,~(1 o ~ )  = n ( g  o ~), 
hence ] o ~i = g ° ~1' which implies ~1 = k o ~ with a unique ~ ~ H ( S X ,  K). 
We p u t  ~ ( ~ ) =  ~ ' ~ H ( X ,  T K )  in g and  obta in  the  unique fac tor iza t ion 

Thus  TIC has  all the  required propert ies .  Not ice  t h a t  the  existence of ~ (T / ,  T g) 
is no t  assumed in g ,  bu t  established f rom t h a t  of 2 (/, g) in ~ .  

Dual ly,  a covariant /unctor which possesses a right-adjoint preserves right 
equalizers. I t  is easy  to  fo rmula te  and  prove  the  corresponding s t a t ements  for  
con t r ava r i an t  functors  (left equalizers are t r ans fo rmed  into r ight  ones or 
vice-versa).  - We fur ther  r e m a r k  t h a t  b y  the  above  me thod  one easily proves  
t h a t  a covar ian t  functor  T which has a lef t-adjoint  preserves  monomorph i sms  
(a r ight-adjoint ,  epimorphisms) ;  a con t r ava r i an t  functor  t rans forms  one into 
the  other.  

I n  general,  a (covariant)  functor  T will of course not  preserve equalizers. 
However ,  there  is a lways a natural trans/ormation T o/T,~ into ,~T, as follows. 
Fo r  two maps  / , g : A - + B ,  let [K ; k] =: A (/, g) and [ / ~ ; f c ] = l ( T / , T g ) .  
There  is a unique m a p  TI, g : T K  -~ i~ such t h a t  

koT1, g= T k : T K - ~ - ~ T A .  

For  TIC satisfies T / o  Tic = Tg o Tic and thus  factors  uniquely  t h r o u g h / ~  as 
Tic = k o T~, ~. - Moreover,  if ~b maps  /, g into ] ' ,  g' (cf. (6)), with induced 
maps  ~ : K -+ K '  = ~(/ ' ,  g'), and ~ : /~ - + / ~ '  ~::: ~(T]', Tg'), one has 

i.e. a commuta t i ve  square  
oT1, g = 7:i,,q, o T~, 

T K  T~ .... T K '  

The  proof  of this is immedia te  f rom the definitions. 
(8) Equal izers  and  products .  The  following s t a t e m e n t  is an  immed ia t e  

consequence of the  definitions (we omi t  the  proof). 
Proposition 1.9. The direct product o/ le/t equalizers is the equalizer o/ the 

direct product, the inverse product o/right equalizers the equalizer o/the inverse 
product. More precisely, wi th  restr ic t ion to  the  first ease and  to  equalizers of 
two m a p s :  Given m a p s  /i, g~ : Ai  ~ Bi, i = 1, 2, with left  equalizers A(]~, g~) 



Group-Like Structures I I  157 

= ]~i : Ki  --> A i ,  the map  /c 1 × k s : K 1 × K 2 -+ A 1 × A s is the left equalizer of 
/1 × / s  and ~1 × gs : A1 × As -+ B1 × Bs. 

Remark. The s ta tement  is in general not  t rue for the direct p roduc t  of r ight  
equalizers or the inverse produc t  of left equalizers. (I t  will be shown, however,  
in paper  I I I  of this series, t ha t  it holds, in a certain sense, in primitive cate- 
gories.) Examples :  

1) I n  the  ca tegory  ~ of groups and homomorphisms,  the kernel of /1  * / s :  
A 1 • A s -+ B 1 • B 2 is in general not  the free produc t  K 1 • K s of the two kernels 
of ]1 and / s .  

2) I n  the ca tegory  M of based sets, the cokernel of / : A -~ B is the quot ient  
set B / / ( A )  of B modulo the relation ](a) = o for all a E A (cf. § 3). Obviously 
the cokernel of/1 × /s : A1 × A2 -> B1 × B~. is not  in general the set B1//l(A1) × 
× B2//s(As). 

(9) Equalizers o /pr imi t ive  maps (cf. [1], § 4). Let  (A, mA) and (B, m~) be 
M-objects in ~, a n d / ,  g primitive maps  A -+ B, k : K -+ A their left equalizer. 
I n  the diagram 

I x /  
K x K k×~: + A × A ; B × B 

g × g  

[ ' 1 [ 
i 

+ 

K k / + A '. B 
O 

natura l i ty  of equalizers (1.7) yields a unique map  m K such t h a t  k inK= ma(k × k) ; 
in other  words, there is a unique _M-structure in K for which k is primitive. 
Moreover any  of the axioms I,  I I ,  IV  of _M-structures (cf. [1], § 4) if valid for 
m A is also satisfied by  m K. The three proofs being ve ry  similar, we here describe 
only the case of axiom I :  I t  asserts t ha t  m i{l~, 0} = ma{0, 1A} = 1 a. I n  the 
commuta t ive  d iagram 

k 
K ~ A 

=i 1 
k × k  

K × K ~ " A × A  

k 
K - - ,  A 

we have kmK{1K, 0 } =  ma{1A, O } k =  k; hence, k being a monomorphism,  
mK{IK, 0} = 1K. Similarly m g  {OAK} = 1K. 

We summarize as follows. 
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Proposition 1.10. Let k:  K - +  A be the left equalizer o/ primitive maps 
A --> B relative to M_-structures ma and m B. There is a unique M-structure m K 
in K with respect to which k is primitive. I / m  A satisfies axiom I ,  I I  or I V ,  so 
does m K. 

With  regard to  axiom I I I  (existence of inverse) the s i tuat ion is slightly 
different;  if I I I  is combined with I and I I  and if all three hold both  in A and  B, 
then  m~ satisfies I ,  I I  and I I I .  I n  other  words (using the  terminology of [1], §4). 

Proposition 1.11. I / i n  (1.10) both m A and m B are G-structures, then m K is 
also a G-structure. 

Proo/. Let  SA and sz be the inverses in A and B. We  recall (Prop. 4.16 
of [1]) t h a t  if / : A -> B is primitive, then ]s A = SB/. N o w  in the d iagram 

! 
K k . A  . . . . . .  B 

g 

1 i  S K I 8A 8J~ 

f 
K t.. ~A  - - - - : B  

g 

na tura l i ty  of equalizers yields a map  s K with los K = s A k. Then 

0 = k + SAle = /c + /csK=:: k(1 + SK), 

since k is primitive. Thus  1 + s K = 0, since/c is a monomorphism,  so s K is thc  
inverse in K. 

The duals of (1.10) and (1.11) const i tute the analogous s ta tements  for r ight  
equalizers of primitive maps  relative to ~-s t ruc tures .  

2. Intersections and unions. Limits 

The concept  of intersection (union) familiar, e.g., in the category of sets 
will be generalized in such a wa y  t h a t  it applies to  an a rb i t ra ry  D-category  with 
left equalizers G ( I -ca tegory  with r ight  equalizers). The general  not ion refers 
to  an  a rb i t r a ry  collection of maps  between various objects in ~, bu t  we prefer 
to  formulate  it first for the  case of two maps  ~1, ~2 f rom two objects A 1, A~ 
to  the  same object  B. 

Given al : AI --> B and  a~ : A s -~ B, we consider ]1 = ~1Pl and  ]~ = a2P2, 
bo th  E H ( A  I × A v B), where Pl, P~- denote  as usual  the project ions of A 1 × A~ 
onto  A 1 and A~. The  equalizer ~(/1, [a) = 2(~1Pl, ~P2)  = k :  K - ~  A 1 x A 2 has 
the  propert ies:  

(i) ~plk = a~pzk. 

(ii) Fo r  a n y  ~ : X -~ A 1 × A s such t h a t  0qpl~ = ~ 2 P ~  one has ~ - - - / ~ '  
with a unique ~' : X -7 K.  
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Wri t ing  k = {kt, k2} and ~ = {~t, ~2} in components ,  i.e. Pl k = kt :  K -+ A t 
etc., this  can be fo rmula ted  as follows, and i l lustrated b y  the  d iagram:  

X ~ K B 

(2.1) (i) at/c t ~ a2k ~. 
(ii) a t~  t = a2~ s implies the unique fae tor iza t ion ~t = /~t~', ~2 = ks~'. 

Given at, as, a sys tem [K;  kt, ks] with the  proper t ies  (2.1) will be called the  
intersection oJ o h and a s. I t  is de te rmined  b y  a t and  a 2 up to a unique equivalence 
of K (of. Prop.  1.4). I n  a D-ca tegory  •, the  uniqueness of the fac tor iza t ion (ii) 
is equivalent  to  {/~t,/cs} being a monomorph i sm.  

Proposit ion 2.2. Let  [K;  kt,/%] be the intersection o/ a I *, A t - >  B and 

as : A2 -> B .  I / a  t is a monomorph i sm,  then k s : K -* A s is also a monomorph i sm.  

P r o @  Let  ~', ~ " :  X ~  K be such t h a t  k2~' = ks~".  F r o m  aJcs~ '  -- aJct  ~' 
and the  same equat ion  for ~" we then  conclude t h a t  at/ct~'  = at/c t ~";  since at  
is a monomorph i sm,  this implies I c t~ '=  k t~" .  B y  (2.1) (ii), k~.~' = k ~ "  for  
] = 1, 2 imply  ~' = ~";  hence k s is a monomorph i sm.  

Proposit ion 2.3. I n  a D-category ~ the intersection e x i s t s / o r  a n y  two m a p s  

a I : A t -> B ,  a s : A s ---> B ,  i / a n d  only i] ~ has le]t equalizers. 
Proo/.  I t  has a l ready been shown t h a t  left equalizers yield the intersect ion of 

al  and  as. Conversely,  assume t h a t  intersect ions exist  in ~,  and  le t /1 , /~  be two 
maps  A :$ B. T h e y  have  an  intersect ion [K;  kt, ks] - -  not  to be confounded 
with the  equalizer we are looking forl  - - ,  corresponding to the  d iag ram 

K B 

We now pu t  k = {kl,/cs} : K -~ A × A and consider the  intersect ion [K ' ;  k~, k~] 
of d and k, d being as usual  the  diagonal  m a p  {1, 1} : A -~ A x A. I n  the  
d iagram 

A p ~ / / ,  A 

we then  have,  for ~ = 1, 2, 

l , p ~ d ~ i  = l ,  pjlck~ ; 

since pj ]c = ]c~., pj d = 1, this means /~  k~ =/~/cj  k~. Bu t / t / c t  =/9.ks, whence 

It ~i = I s ~ i .  

I n  order to show t h a t  k[ is the equalizer of/1 and / s ,  it remains  to check t h a t  k~ 
fulfills (ii) of (1.1). Le t  ~:  X - ~  A be such t h a t / 1 ~  = / 2 ~ -  B y  (ii) of (2.1) there  



160 B. E C K ~ N  and P. J. HILTON: 

is a ~' : X --> K such t h a t  ~ = k 1 ~' = k 2 ~', which can be wri t ten 

k ~ , =  {h ,  k2}~' = {2, ~} = d~ .  
Hence, again by  (ii) of (2.1), there is a ~":  X ~ K '  such t h a t  ~ =  k ~ "  (and 
~' = k ~ " ) .  Thus we have the required factorizat ion ~ = k'l~"; and since k is a 
monomorphism,  so is k~ (Prop. 2.2). 

We  mill also need the  following relat ion between kernels, intersections, and 
direct  products.  The proof  will be left to  the  reader. 

Proposition 2.4. Let  ~1 : A -+ B 1 and ~2 : A -> B~ be maps  in  the D-category 
with kernels k I : K 1 -~ A and k2 : K~ -~ A respectively, and let [K;  ll, l~] be the 
intersection o / k  1 and k S. Then the map k = kili = k~l~ : K -+ A is the kernel o/ 

a =  {al, a ~ } : A - ~  B~x B~. 
We tu rn  rapidly  to  the  dual  concept :  The union o / t w o  maps fli : A -~ Bi ,  

i = 1, 2 is a sys tem [C; ci, c2] of two maps ci : Bi  -~ C~ i = 1, 2, such t h a t  in the  
d iagram ~ B1.. - - ~ ( ~ _ ,  

A C ~' .T- V 

(i) cl fl~ = Cu/~2 and ~ B 2 / / ~ z ~  ~ y ~  
(ii) for any  two maps  ~j: B j -~  Y with ~1 ~1 =~ T]2~2 there is a unique 

~ ' :  C -~  Y with ~j = ~'c~, ?" = 1, 2. 
I f  the union exists, it is determined up to a unique equivalence of C. I n  an 

I -ca tegory  ~, the uniqueness of ~' in (ii) above is equivalent  to c = (Ca, c~} : 
B 1 * B 2 -~ C being an epimorphism. The result  dual  to (2.2) states t ha t  if fll 
is an epimorphism, so is c~; the result  dual  to (2.3), t ha t  in an I -ca tegory  
unions exist for any  ill, f12 if and only if ~ possesses r ight  equalizers. The dual  
of (2.4) is a relat ion between cokernets, unions and inverse products ;  the 
precise formulat ion is left to  the reader. 

The examples below (§ 3) will show t h a t  certain familiar construct ions in 
h o m o t o p y  theory  and  in group theory  fall under  these generalized notions of 
union and  intersection. These examples will also prepare the  ground for the  
later  developments  generalizing group-like s tructures  to more than two/actors  
which const i tute  a main  objective of this paper.  However ,  before passing to  
these examples, we discuss the  general concept  of intersection and union for 
a rb i t r a ry  collections of maps  in ~, called direct  and inverse limits, of which 
equalizers as well as the intersection and union above are special cases; we also 
investigate their na tura l i ty  and functorial  behaviour.  

The collections of maps  of ~ for which we define these concepts will be 
called aggregates in ~ or ~-aggregatesa);  a ~-aggregate  ~ is, by  definition, 
a subca tegory  of ~ with the unders tanding t h a t  the 0-maps need not  belong 
to  ~ (but, of course, the ident i ty  maps  must),  and tha t  objects of ~ can be 

a) A ~-aggregate is essentially a diagram in the sense of KxN [8]. Kn~, however, 
specifies a model category Ti and defines a diagram as a functor K: ~ -~ ~. Thus his de- 
finition of a limit is formulated quite differently from ours, although the basic idea is the 
same. ]-[owever, an important difference arises in that we consider maps between ~- 
aggregates (see Proposition 2.6) which are much more general than natural transformations 
of functors ~ --> ~. 
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repeated arbitrari ly of ten (i.e., ~ is a subcategory of ~, the  ca tegory  obta ined 
f rom ~ b y  a rb i t r a ry  repeti t ion of objects). Al though we are here interested in 
finite aggregates only, the  definitions and  general propert ies are no t  limited 
to  t h a t  case. 

Definition 2.5. The inverse limit ~ ~ o / a  ~.aggregate d is a system [K; kA ] 
consisting o] an object K o] ~ and maps kA : K ~, A ,  one /or each 4) A C d ,  
such that 

(i) / k A =  k~ /or all A ,  B and / : A -~ B in ~ ;  
(ii) I / ~ A  : X -+ A is a system o/ maps  in ~,  one/or  each A C d ,  w i t h / $ A =  ~B 

/or all A ,  B and / : A -~ B in d ,  then there is a unique ~" : X ~ K with ~A = kA ~' 
]or all A ~ d .  

The direct limit l i ~ d  is defined dual ly as a sys tem [C; CA], CA : A ~ C with 
CB/= CA for all maps  / : A ~ B of d and with the  factor izat ion p roper ty  
corresponding to  (ii). - -  l i m d  and li__md, if they  exist, are unique up to a 
canonical equivalence of K or C respectively. 

Remarks.  (1) Le t  ]1,/2 . . . .  C H ( A ,  B); the left equalizer 2(/1,/2 . . . .  ) and 
lim d of the aggregate d consisting of A ,  B , /1 , /2  . . . . .  1A, 1B coincide in the 
following sense, k : K - +  A being the left equalizer, the maps  ]CA= k and 
k n = / l k  = / 2 k  . . . .  const i tute li+mm ,~¢; and conversely, if li_m ~¢ = [K;  ]CA, lOB] , 
the map  k a : K -+ A is the left equalizer of /1 , /2  . . . .  

The proof is immediate  f rom the definitions. Similarly r ight  equalizers and 
lira .~/coincide. I n  the same sense, for two maps  ~1 : A1 -+ B, a 2 : A 2 -+ B, the 
intersection of ~1 and a2 and lira ~¢ of the corresponding aggregate coincide; 
and for f l l : A  ~ B~, f l 2 : A - +  Bz, the union of fl~ and f12 and l i m ~ / o f  the 
corresponding ~¢. We will often use the terms "un ion"  and " intersect ion" for 
lim_m and  tim, in agreement  with these facts and with s tandard  terminology in 
part icular  special cases. 

(2) I f  ~ '  contains a finite number  of objects A 1 . . . . .  A~, we write ki for kay, 
i = 1 . . . . .  m, in lim_m ~¢/. I f  ~ is a D-category,  the map  $ = {k 1 . . . . .  k,~} : K -+ A 
= A t × • • - × A~  is obviously a monomorphism, and  this is equivalent  to the 
uniqueness of ~' in (ii) above. This s ta tement  can be refined in the  following 
sense; we will make  use of this refinement later. 

Proposition 2.6. Let the objects o] the aggregate ~1 be A I . . . . .  A m and let 
lim_m ~¢ = [K;  kl]. Suppose there exists l, 1 ~ l <--_ m, such that, to each i > l 
there is a j ~ I and a map  / : A j  -> A l in ~/ .  Then k = {k I . . . . .  kt} is a mono- 
morphism. 

Proo/. Assume ]c~' = ]c~"; this means ]c~' = ]cj~", j --- 1 . . . . .  l. Fo r  each 
i > l, choose j and ] : A~ --> A t  in ~ .  Then  k~ = / k s ,  so t h a t  ki~" = Ici~". Thus 
kj ~' = k~-~", ] = 1 . . . . .  m, so t h a t  ~' = ~". 

Dually,  in an  I -ca tegory ,  the  m a p  c = <c x . . . .  , c~> : A x • • • • • A~  -+ C 
connected with lim is an epimorphism, with the  same comments  as above. 

(3) Similar s ta tements  are, of course, valid for a rb i t ra ry  aggregates if we 
work in a ca tegory  ~ with infinite direct and inverse products.  I n  the  same way, 
the following theorem could easily be carried over to the infinite case. 

• ) If the object A ~ ~ is repeated in M, there is one k~ for each copy of A ! 



162 B. ECKMANN and P. J .  HILTON: 

Theorem 2.7. I n  a D-category ~, the inverse limit exis ts /or all finite aggregates 
i / a n d  only i / ~  admits le/t equalizers. I n  an I-category ~ the direct limit exis ts /or 
all finite aggregates i / a n d  only i / ~  admits right equalizers. 

Proo]. I n  view of Remark  (1) above we only have to prove the iLpart .  We 
thus  assume t h a t  in ~ (finite) left equalizers exist. 

Lef t  ~¢ be a finite aggregate, consisting of objects A 1 . . . . .  A m and maps  
/is,/~i . . . .  : A i -~ A~ defined for  some values of i and ] (including in any  ease 
all i = ] , / i f - -  1). We pu t  S = A 1 × • • • × A m and consider / i jPi ,  ]~iPi . . . .  : S -~ 

A s --> Aj, for all maps  into A~ belonging to d .  There is at  least one such map  
into A~., namely  pj. I n  the diagram 

k 
K . . . . . . . . .  S ' A ~  

let/c : K ~ S be the left equalizer in the slightly generalized sense of (1.7) and 
k = {k 1 . . . . . .  k~}. Then 

] i j ~ i  = / i j p i ] C  = pi]C = ]Ci : K ~ A~ . 

Hence (i) of definition (2.3) is fulfilled, and the factor izat ion p roper ty  (if) 
follows immediate ly  f rom tha t  of the  equalizers. 

T h e  naturality of limits will be expressed by  the next  s ta tement  (which 
we formulate  for l~_ only). Fo r  this we have to  consider a map  ~b : ~ / - ~  ¢~4' 
of one ~-aggregate  into another,  i.e. a sys tem of maps  aa) q)AA' given for some 
A E x / ,  A '  E ,~¢ and such t h a t  certain squares 

! 
A - - B  

r 
A '  ~ B '  

are commuta t ive  ( / i n  d , / '  in ~¢'). Na tu ra l i ty  of limits holds for maps  which 
fulfil special conditions and which we call essential. We formulate  the precise 
definition of an  essential map  ~ :  d -+ d '  in the  course of s tat ing the  next  
proposition. 

Proposition ~.8. Let d ,  d '  be ~-aggregates with ~ _ _ d  = [K;  kA], lim_md' 
= [K ' ;  k~,]. I] q~ i8 an essential map  ~ -> d ' ,  i.e. i /  

(i) /or each / '  : A*--> B '  in d ' ,  there is at least one commutative square 
/ '  q~ ~' = q~ B' / wi th q~ x ,  q~ B' ~ ~ ;  and 

(if) epA ~, k.a is independent o / A  E d and o/cpA A', 
then there exists a unique q) : K ~ K '  such that q~A A' kA = k'A, q)/or all A '  E d ' .  - -  

d.) The notation is not intended to imply that there is only one map in • from A to A'. 
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We write q~ = 4 ,  ; then ]or two essential maps ~ : d -~ ~/ ' ,  4 '  : d '  -~ ~/'" one has 
( 4 ' 4 ) ,  = 4 , 4 , .  

The statement is illustrated by the diagram 

kA 1 
K -  ' A - - - ~ B  

K ' - k ~ '  ' A'  I' ~ B' 

We note that  for each A '  ~ ~¢/' there is at  least one q~AA" : it suffices tO take in 
(i) A ' =  B',  / '  ~= 1A,. According to (ii), we thus have, for eaeh A' ,  a welt- 
defined map ~a' = 9A A"/CA : K -~ A'. 

Proo/ o/ 2.8. The maps ~a" above fulfil, for a n y / '  : A '  -~ B '  in d ' ,  

1' ~a ,  = i '  9 A  a .  ka = ~ ,BB '  l / c a  

for some B C d and / : A -~ B; but  llca= k~ by definition of l ~ ,  hence 

Therefore, there is a unique ~ : K -~ K '  with ~A,= ]c~, ~, i.e., 

9a a' kA = k'a, 9 

for all A' and all CfAA,. --  The statement concerning # ' #  follows from the 
uniqueness of (4 '  ~b),. 

Finally, it need not  be emphasized tha t  ]unctors preserving direct and 
inverse limits are of special importance in applications. As before there is a 
simple sufficient criterion for this property of a funetor, namely to admit an 
adjoint. We formulate the statement explicitly for covariant functors T, leaving 
the formulation for contravariant functors to the reader [ef. the remarks after 
the proof of (1.8)], For  a functor T from ~ to ~ and a ~-aggregate ~4, the 
images T A  and T]  of the objects and maps of ~ '  evidently form a ~-aggregate 
T~¢. The following proposition generalizes Proposition 1.8. 

Proposition 2.9. Let T be a covariant /unctor /ram ~ to ~. I~ T possesses a left- 
ad~oint S : ~ -> ~ (a  right-ad]oint), then T preserves inverse limits (direct limits). 
More precisely, let d be a ~-aggregate having an inverse limit l i m d  --- [K; ka] ; 
i / T  has a le/t.adjoint then T d has in ~ an inverse limit lira T ~ ¢ = [ T K ; T kA]. 

Proposition 2.9 is easily proved directly (for a D-category ~O with left 
equalizers it  can, of course, be deduced from the preservation of direct products 
and from (1.6), together with the fact tha t  1,~_ can be expressed by  left equal- 
izers). 

In  general, covariant functors T will, of course, not preserve inverse limits. 
However, there is always a natural transformation T of T lim into lira T, as 
follows. ~-- *- -  
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Proposition 2.10. Let T be covariant /unctor D ---> ~ and ~s/ an aggregate in D. 
There is a unique map  v ~ of T l~__ x / =  [ T K ; T ka] into li.m_m T~¢ = [/~; fCT A], 
i.e., a map  v ~ :  T K - +  ~ such that [c~,do 7:~= T k a  /or all A E ~¢. For any 
essential map qb of ~¢ into a D-aggregate .~¢', with ~b,= q~ : K ~ K '  and (Tqb) ,  
= ~ :  I ~ I ~ ' ,  one has ~ oval= "r~.o Tq~. 

Proof. For all maps/AB:  A ~ B of g~', we have T/ABO T k a =  TkB;  hence 
there is a unique ~d : T K ~ I ~  such tha t  ~TATd= T k  a for all A. To prove the 
second par t  of the statement,  let ~b : ~ / - +  z~" be given by  maps ~A A', A E ~¢, 
A'  E ~¢/'; for each of these ~A A' we have 

and 
~ 

T ~)AA, O k T A :  ~PTA, O (~ • 

NOW [C'TA . . . .  ~ V N =  Tq~AA'OkTA V ~ =  T ~ A A ,  T k a =  Tk~4,oTq~ 
~1 = kTA,O Td, o Tq~, for all A'  E ~¢, which implies. 

o r a l =  v~,o T ~ .  

In  a similar way, one establishes the following useful relation. Let  R and 
T be covariant functors D -+ ~, ~ and r the corresponding transformations of 
R l~_ into ~--lim R and of T lim,~_ into limm T respectively, and b a natural  trans- 
formation of R into T. For a D-aggregate ~/, we obtain from b a map bo~ : R ~ ' - +  

T ~ '  given by  bA : R A  ~ T A  for all A ~ ~¢. This map bd is essential; let 
(b~¢). be the induced map of lim R ~ / i n t o  limm T~/ .  

Proposition 2.11. Given covariant ]unctors R, T : D ~ ~ and a natural 
transformation b of R into T, one has, /or any D-aggregate ~/,  (b~/). o ~ 

b l i  m .~¢ 
R lim d , T lim ~¢ 

l i m R ~  (bd), ' l i m T d  

In  particular, if ~ = ~ and R = I (identity functor), one has 

(bd) , = T do bli m ~ .  
<___ 

We finally note tha t  the analogues of (1.9) - (1.10) hold for inverse limits 
(direct limits): The direct product  of lj__m is lim_m of the direct product maps. 
And 1~__ of an aggregate d consisting of primitive maps, relative to M-structures, 
is primitive;  i.e., [K; ka] being the limit, there is a unique M-structure in 
K for which the k a are primitive; etc. These facts can again be established 
directly, or deduced from (1.9)-(1.10) together with the fact tha t  direct 
products of primitive maps (rel. to M-structures) are primitive. 
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3. Examples of intersections and unions 
Example 1. The category ~ of based sets. 
The left equalizer ~(/1,/2 . . . . .  /n) of an a rb i t ra ry  collection of element 

maps/~- : A -+ B is the  "coincidence set"  of these maps  ; i.e., the subset K of A 
consisting of those elements a E A for which /l (a) = /~ (a) . . . . .  /n(a). 
More precisely, ~(/1,/2 . . . . .  /~) = k is the embedding map  K -~ A. I n  particular,  
the  kernel ker / = ~ (/, 0) of / : A -~ B is the subset of A sent by  / into the base 
element o C B. 

The r ight  equalizer ~ (/1,/3 . . . . .  /n) is the quot ient  set C of B modulo the 
equivalence relation [/1 (a) = ]s (a) . . . . .  /~ (a) for all a E A] ;  more precisely, 
the natura l  epimorphism of B onto C. The cokernel o f / :  A -~ B is the quot ient  
set of B modulo the relation [[ (a) = o for all a ~ A ]. 

The "intersect ion" [K;  kl, ks] of two maps  ~1 : A1 -~ B, ~2 : A2 -~ B in 
is the subset K of A 1 × A s consisting of those pairs (ai ,  a2) , a 1 ~ A1, a 2 E As 
for which a l ( a l ) =  a2(as), together  with the two maps  kj:  K-+Aj,  j=  1, 2, 
given by  (al, as)--> aj. I f  in part icular  ~1, ~2 are embedding maps  A 1 ( B ,  
As ( B, then there is a one-to-one map  of K onto the ordinary intersection set 
A x ~ As, under  which K can be identified with A 1 ~ A~, the maps  kl, k~ cor- 
responding to  the embeddings into A 1 and As: 

A 1 ~ A~ B 

The "un ion"  [C; °1, %] of two maps  fll : A -> B 1 and fl~ : A ~ B~is the quotient  
set C of B 1 v B e (the union of B 1 and B s with identified base element o) modulo 
the relation [fix(a) --= flg.(a) for all a ~ A],  together  with the two natura l  maps  
c ~ : B ~ B  l v B ~ C ,  j =  1 ,2 .  I f  fll and fl~ are embedding maps  A ( B  1 
and A ( B s ,  then C can be identified with the ord inary  ration B~ u B s, and cj 
with the  embeddings B~. ( B  1 ~ B s, j = 1, 2: 

/ "% 
A BI~J B~. 

Example 2. The category ~ of based topological spaces and continuous 
maps. 

Left  and r ight  equalizers, and unions and intersections in ~ are, of course, 
described as in ~ ,  except  for the  induced topologies to be t aken  into account  
{subset topology;  identffieation topology).  More specifically, if B1, B~ are 

l~Iath. Ann.  151 12 
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subsets of a space B, a¢ the embedding maps of Bj in B and/5~, the embedding maps 
of B 1 f~ B 2 into Bj, y" = 1, 2, then B 1 ~ Bz is the "intersection" of a~ and an and 
there is a one-to-one map of the "union" of/51 and fin onto B 1 ~ Bn; this map is 
a homeomorphism if, for example, B~ and Bz are both closed (or open) sets in B. 

I t  may  be worthwile to add the following remarks on the intersections and 
unions thus obtained. 

(3.1) Consider the diagram for the intersection [K; k~, kz] of ~1 and xz: 
~Cl 

K ~" A 1 

t 
I f  ~1 is a fibre map with fibre F, then so is k~ : K -~ A n. The map  k~ is usually 
called " the  fibre map with base space A n induced from the fibre map  ~ : A I -+ B 
by  the map *¢2 of Az into B " .  We recall f rom above tha t  K is the subspaee of 
A I × A~ consisting of all pairs (al, a2) with ~i (al) = ~(a~), and tha t  k~(al, an)= a~. 

(3.2) Consider the diagram for the union [C; % ez] of/51 and fin: 

A ~ 

Bn c, " C 

I f  fl~ is a cofibre map with cofibre F, then so is c 1 : B 1 -~ C. The map c 1 is called 
"the cofibre map with cobase B 1 induced from the cofibre map/52 : A -~ B 2 by  
the map /51 of A into B y "  We recall from above tha t  C is the quotient space 
of B 1 v B n modulo the relation [/51(a)= /sn(a) for all a E A], i.e. obtained 
from B 1 v B n by identifying images of the same a E A. 

We omit the proofs of (3.1) and (3.2) which are straightforward. We mention 
the important  example of (3.1) where A 1 = E B  is the path-space of B, the 
fibre of ~1 being the loop space Q B, and/c 2 the fibre map  with fibre Q B induced 
by  a~: A2-~ B;  and the example of (3.2) where B n is the cone C A  over A, 
the cofibre of /sn the suspension ~'A,  and cl, the cofibre map  with cofibre Z A  
induced by /51 : A -~ B 1 (C is usually called the space obtained by attaching a 
cone C A  to B1, by  means of the map/51 : A -~ B1). 

Example  3. The category ~ of groups and homomorphisms. 
The left equalizer ~(]1,/~ . . . . .  /n) of the homomorphisms ]~ : A -~ B, 

= 1 . . . .  , n, is (the embedding in A of) the coincidence subgroup of the fj. The 
right equalizer q (/1, ]~ . . . . .  /n) is the reduction of B modulo the normal subgroup 
generated by the e lements / t (a ) / j+ l (a)  -1, for all a E A and all values 0 < j < n. 

The"intersect ion"  [K; k I, k~] of two homomorphisms :q : A1 -> B, g~: A ~-+ B 
is the "subdirect"  product  K C A  1 × A~ consisting of all (al, a2) with 0q(ch) 
= ~(a~), together with the projections into A 1 and A v The "union" [C;ct, c~] 
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of two homomorphisms /~1 : A ~ B I, flz : A -~ B z is the "free product  of B z 
and B~ with amalgamated  images of A ,"  i.e., the free product  B 1 • B~ modulo 
the normal subgroup generated by  all fll (a) ~ ( a )  -1, a E A. 

Examp/e 4. The category 92 of Abelian groups and homomorphisms. 
Equalizers are the same as in ~ .  The intersection of ~ : A 1 -+ B and ~¢z:A~ -+ B 
is the same as in ~ ;  the union of ~1 : A -~ B 1 and flz : A --> B~ is equal to the 
Abelianized union in ~ .  

A series of examples of a more general nature is given in the next  section, 
first for arbi t rary  categories and then in the special cases ~ and ~ .  

4. The eanonieal faetorization 
In  a DI-category ~, there is for any system X 1, X~ . . . . .  X n of n objects 

a "canonical map"  g fl'om the inverse product X 1 • X 2 • • • • • X n to the direct 
product  X 1 × X2 × • •. × Xn, given by  

= <,1 . . . . .  = . . . .  , 

(cf. [1], 3.34). Here tj denotes the map  {0 . . . . .  1 . . . .  ,0} : X~ -~ X 1 × ... × Xn, 
all components being 0 except for the ~th; and ~r~ the map <0 . . . .  ,1 . . . . .  0> : 
: X 1 ,  X ~ . . . . , X  n ~ X ~ ,  ] =  1 . . . . .  n. In  the present section, this 
map ~ will be factorized, in two dual ways, through a sequence of "inter- 
mediate products" between the inverse and the direct which will be obtained 
as unions (or dually intersections) of maps arising natural ly from the construc- 
tion of direct and inverse products. 

We first illustrate the faetorization in a simple example. In  the category 
of based topological spaces and continuous maps, let X,  Y, Z be three spaces; 
the subspace of X × Y x Z consisting of those points with at  least two "co- 
ordinates" equal to the base-point o is the inverse product  X • Y • Z, and its 
natural  embedding in X × Y × Z is the canonical map ~. The subspace T of 
X x Y x Z consisting of those points with a t  least one "coordinate" equal to the 
base-point o contains X • Y • Z;  if the embedding of X • Y • Z in T is denoted 
by  2 and the embedding of T in X x Y × Z by  g, we obviously have ~ = / ~  ~: 

T XxYxZ 

In  view of the generalization we have in mind we give a different description 
of T. For tha t  purpose, we consider the various embeddings given in components 

X g ~ XxY 

Y YxZ ~ XxYxZ 

by a = { 1 , 0 } ,  a ' = { 1 , 0 } ,  b = { 0 , 1 }  etc.; d = { p l ,  p, ,0}, e = { 0 ,  pt, p~}, 
] = {Pl, 0, p~}. Then we take the "union" of the six maps a, a ' ,  b, b', e, c'; 

12" 
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more precisely, these maps  together  with the respective identities form an 
aggregate d ,  and  we take  li__m ~¢ = [T;  ~1, ~ . . . . .  ~6] where ~1: X x  Y-+  T, 
~ : Y x Z --> T, ~s : X x Z -+ T play  the essential rSle, while ~4 : X -+ T is 
just  ~la = ~aa' etc. I t  is easily seen tha t  this T is the same as above;  indeed 
it  is the  quotient  space of (X x Y) * (Y x Z) • (X x Z) modulo the relation 
[a (x) = a '  (x) for all x E X,  b (y) = b' (y) for all y E Y, etc. ], i.e., it  is obta ined by  
identifying X x o in X x Y and X x Z etc. 

This definition of T applies, of course, to  a ny  DI -ea tegory  ~ with r ight  
equalizers {direct limits), the  maps  a, a',  b, b', c, c' and  their  union being 
well-defined. Moreover, since d a  = / a '  = {1, 0, 0}, db = eb" = {0, 1, 0}, ec = ]c" 
= {0, 0, 1}, there is unique/~ : T ~ X x Y x Z such t h a t  

I f  we denote  by  2 the map  <~la, ~ b ' ,  ~3c'> : X • Y • Z -> T, we have 

/~2 = ~ u ~ l a , / x ~ b ' ,  ~t ~ac' > - <da, eb',  ]c'> = <q, % t3> = ~ , 
g 

and  we thus  obta in  the  faetorizat ion of x as X • Y .  Z ~ T , X x Y x Z. 

We  now pass to the  general case of n objects X 1, X2 . . . . .  X~ of ~ and  to 
the description of various " intermediate  products" .  For  completeness this 
description will be given in more generali ty t han  would be necessary for the 
factor izat ion of ~ and for the apphcat ions  made  in the next  section. We prefer 
to  in t roduce the nota t ions  and the whole set-up in the s i tuat ion dual  to  t h a t  
given above (for n = 3) ; this factorization, in ~ is referred to in the introduction.  

Nota t ions .  X1 . . . . .  X ~  are n fixed objects of ~, numbered  in a definite way ;  
they  m a y  be different f rom each other  or equal. We use "str ings",  i. e. ordered sub- 
sets of the ordered set of integers N = (1, 2 , . . . ,  n) ; let J = (Jl,J2 . . . . .  Jr) be such a 
string, its number  r of elements being denoted by  ]J]. For  any  J C N, 0 < IJI _-< n, 
let X j  be the  inverse p roduc t  X i ,  • •. • Xjr  (the zero-object if r = 0); Xiv is 
XI * • • • * X~. For  any  K C J ,  K = (kl, k s . . . . .  k~), let ~JK be the na tura l  map  
X j  -+ X K given in components  by  

0 if ? ' , ,qK 
~ t J =  <a 1 . . . . .  a~> with a ~ =  

q~ if  j ~ =  k~, E K 
~ j  is the ident i ty  map  of X j .  

L e m m a  4.1. Let L C K  C J ;  then ~ ~t~ = ~ .  
Prool .  We write in components  

~JK ---- <al . . . . .  at>, ~KL -= <bl . . . . .  bs>, ~tJL = <ct . . . .  , cr> , 

r = IJl > s = [K l. T h e n  

~t~ ~t:~ = <b 1 . . . . .  bs) <a~ . . . . .  a t )  = <(b~ . . . . .  bs> a~ . . . . .  <b 1 . . . . .  b~> a t> .  

B y  definition we have  <b~ . . . . .  b,> a~ = 0 if ], $ K,  = (b~ . . . . .  b~} q~ = b~ if 
] ,  = k~ ~ K ;  the  second possibili ty gives <b~ . . . . .  b~> a,  = 0 if k~ ¢ L,  = qa if 
k~ = la E L. Hence 

<b~ . . . . .  b s> a, = " {0 if ¢ L 

which is precisely c~, ~, = 1 , . . . ,  r. 
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I n  a D I - c a t e g o r y  ¢ wi th  lef t  equalizers,  intermediate-direct  products  of 
X1 . . . . .  X n  are  now def ined as in tersec t ions  ( inverse l imits)  of the  m a p s  ~ ,  
as follows. 

Definit ion 4.2. L e t  X 1 . . . . .  X~ be ob jec t s  of ¢ ;  r, s two in tegers  wi th  
0 ~ s -<- r -~ n;  d ~, ' t he  aggrega te  consis t ing of all  X j  and  ~ wi th  ]JI, IKI = r 
or g s. The  intermediate-direct  product  o / X  1 . . . . .  X n  o / t y p e  r, s is defined as  

r s ob jec t  X r,* li__m ~ /~ ,~=  [Xr,~; ~] ]. I t  is an  toge the r  wi th  maps  ~j---  ~ j s :  
: X ~,s _> X j ,  for [J] = r or  g s, such t h a t  

~ J  ~Z = ~K for all  K C J wi th  ]J[, [K] = r or  ~ s, 

and  t h a t  a n y  sys t em of maps  7}5 : Y --~ X j  with  the  p r o p e r t y  x ~  ~ j =  ~K can 
be un ique ly  fac to red  t h r o u g h  X r, ~ as ~?j = ~ j~ ' .  

F r o m  the  n a t u r a l i t y  t heo rem for l imi ts  (2.8) i t  is easi ly  seen t h a t  X r, , is 
a covariant  functor of the  n var iab les  X 1 . . . . .  X~. W e  will  of ten  call  X r, ~ the  
i n t e rmed ia t e -d i r ec t  p roduc t ,  leaving  the  ~ j  impl ic i t .  Clear ly  all  t he  m a p s  ~ j  

are  de t e r mined  b y  those  wi th  IJ] = r. The  m a p  ~ of X r, ~ in to  the  d i rec t  p roduc t  
of all  X j ,  with  componen t s  ~j, is a monomorph i sm ,  and  so is t he  m a p  ~ of X r, ~ 
in to  the  d i rec t  p r o d u c t  of the  X j  with  ]J[ = r (cf. P rop .  2.6). W e  no te  some 
special  cases:  

(1) X~,  r, for a n y  r, 0 ~ r -~ n, is t he  inverse  p r o d u c t  Xiv = XI*"  . . . X , , .  
(2) X ~, 0, for  a n y  r, 0 g r -< n, is the  d i rec t  p r o d u c t  of all  X j  with  l J] = r. 

F o r  example ,  X ~, 0 = X1 × . . . × X , ;  X °, 0 is the  zero-object .  
(3) X r, r, lo r  a n y  r, 0 ~ r ~ n, is t he  same as X r, t - l ,  b y  the  def ini t ion 

above.  I t  is the  l~_  of the  aggrega te  consis t ing of al l  ~ wi th  ]J] a n d  IK] g r. 
These p roduc t s  will  a p p e a r  in t he  fac to r i za t ion  of u : X n, n ~ X ~, ~ ; we wi l l  
s i m p l y  wri te  X r /or X r,r, r =  O . . . .  , n. Thus  X n =  X x =  Xx  , . . . , Xn ,  
X I =  X~× . . .  ×X~ .  

Proposi t ion 4.3. Let  Xr , "  and X r',~" be two intermediate-direct  products  
wi th  r < s'.  Then  there is  a un ique  m a p  7 : Xr'' ~" -~ Xr '  ~ such that 8 j  y = j ~j, 
/or all  J ' )  J ,  IJ'[ = r',  IJ] = r, where ~s s t a n d s / o r  ~ s ,  ~,j, /or ~ : ¢  : 

Z r', s, ~ X j ,  

~J 
X r , s  ' ' X j  

The  m a p s  y are transi t ive,  i.e., i f  y ' :  X r'',''' -7 X r',s' and  ~," : Xr", '"--> Xr ,  ', 

s' y "  y ' .  s "  >= r',  >= r, then = Y 
Proo/ .  The  asser t ion  follows i m m e d i a t e l y  f rom the  n a t u r a l i t y  of inverse 

l imits ,  P ropos i t ion  2 . 8 : 7  is induced  b y  the  m a p  ~b of d r', *' t o  d r, * g iven  b y  
J~ r '  all  n j ,  IJ'] = or  ~ s' ,  [JI = r or ~ 8. F o r  each m a p  nJK of ~¢r, 8 the re  is a t  

leas t  one c o m m u t a t i v e  square  nJ~ :¢jJ' ~ '  J '  = nK,, and  the  condi t ion  (ii) of (2.8) 
J, r, ,, _ ~ , , , ,  for  al l  IJ ' l  IJI r or  -__ s, (since r ~ s ,  is fulfilled, since Zty ~j  . . . .  r ' ,  = 

~ j '  belongs to  ~ r , , , ,  !) is i ndependen t  of J ' .  Hence  • is essential ,  and  thus  
12a 
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the re  is a un ique  m a p  y = q~, such t h a t  ~ j  y = ~ '  ~ ,  for  al l  ~ ,  be longing to  
d T',8' a n d  al l  ~ j  to  d r ,  s; in  pa r t i cu la r ,  for  a l l  IJ ' l  = r ' ,  tJl = r, a n d  th is  is 
sufficient to  ensure uniqueness  of y. The  " t r a n s i t i v i t y "  follows f rom the  
func to r ia l  behav iou r  of q~. [ last  p a r t  of (2.8)]. 

F o r  example ,  t he  m a p  y of X ~ to  X 1 is t he  canonica l  m a p  ×. I n  the  following, 
we p a y  special  a t t e n t i o n  to  t he  m a p s  y : X ~ - +  X "-1 and  denote  t h e m  b y  
n ~-1, r = 2, 3 . . . .  , n. Accord ing  to  the  t r a n s i t i v i t y  in (4.3), the  compos i t ion  
n l n  2 . . .  n "-1 is prec ise ly  n. 

Theorem 4.4. T h e  c a n o n i c a l  m a p  n o /  X n =  X 1 ,  . . . , X ~  i n t o  X 1 =  

X 1 x . . .  x X ~  c a n  be ]ac tored  t h r o u g h  the  i n t e r m e d i a t e - d i r e c t  p r o d u c t s  X r o /  

X 1 . . . . .  X ~ a s n = n l n  2 . . . ~ n - l , n ~  2: 

( F )  X n ~ - 1  X n - 1  ----~-> X r ~ - 2  . . . . . .  X 2 gl , X 1 . 

B y  dual iz ing  the  defini t ion (4.2), i n t e rmedia te - inver se  p roduc t s  r, sX, 
0 ~  r___ s ~  n of X 1 . . . . .  X n are  obta ined ,  as follows. F o r  a s t r ing 
J C N,  J = ()1 . . . . .  ?r), the  d i rec t  p roduc t  j X  = Xi~ × • • • × X j ,  is considered,  
and  for  J C K  the  m a p  ~ t :  j X  -÷ K X with  componen t s  {a 1 . . . . .  a~}, s = [K[, 
is g iven  b y  a~ ~ 0 if Ic~ ~ J ,  =, Pl* if k~ = ~ ~ J ;  j~t " e m b e d s "  j X  in K X .  F o r  
0 --~ r ~-- s ~-- n, *, sX is t hen  defined as the  d i rec t  l imi t  li_mm", ~ d  of the  aggrega te  
",*~¢ consis t ing of all  jKt wi th  ]J] and  [K[ = r or  ~ s; ~,sX is p rov ided  wi th  
m a p s  K~ = ~ ' ~ : K X - ~  r,*X for all  tK[ = r or -> s, sa t i s fy ing  x~ o) 'e = j ~  

(and wi th  the  unique  fac to r iza t ion  p roper ty ) .  The  m a p  ~ of the  inverse p r o d u c t  
of all  j X  to  r, ~X, wi th  componen t s  j ~  is an  ep imorph ism,  and  so is the  m a p  
of the  inverse  p roduc t  of all  j X  with  ]Jt = r to  *, *X. B y  na tu r a l i t y ,  t r ans i t i ve  
maps  y : ~, *X -~ ~', 8'X are  un ique ly  defined for s ~ r '  ; the  m a p  t -  1, r -  1X _> r, *X, 
in shor t  * - i X  -+ rX, is wr i t t en  r - i n ,  a n d  the  m a p  1X ->nX is aga in  the  canonica l  
m a p n o f l X = X  1 , - - . , X . i n t o n X = X  1 × - . .  ×X~ .  

Theorem 4.5. T h e  c a n o n i c a l  m a p  n o I 1X = X I * - - .  * X ~  i n t o  ~ X  = 

X 1 × . . .  × X , ,  c a n  be l a c t o r e d  t h r o u g h  the i n t e r m e d i a t e - i n v e r s e  p r o d u c t s  r X  of 
X I ,  . . . ,  X h a s h = n - 1  n . . . ~c l~c, n > 2 

( F ' )  1 X  1~ , 2 X  . . . . .  n - 2 X  , - 2 ~  n - - l X  n-ln) n X  . 

I f  we r e t u r n  to  t he  special  case of th ree  ob jec t s  X,  Y, Z dea l t  wi th  a t  t he  
beg inn ing  of th i s  section,  we no te  t h a t  ~X is j u s t  T. W e  will  genera l ly  a d o p t  
t he  no t a t i on  T or  T (X 1 . . . .  , X n )  for n -~X associa ted  with  n ob jec t s  X x . . . . .  Xn, 
a n d  _T for  X n -  ~ in the  dua l  const ruct ion .  

R e m a r k .  Both  fae tor iza t ions  can  be comple ted  b y  add ing  a m a p  n ° (or °n 
respect ive ly)  ; namely ,  n ° : X t --> X ° and  °n : °X --> ~X. W e  recal l  t h a t  X ° a n d  
°X are  zero-objects .  
I n  t he  case n = 1 only  these  m a p s  n ° and  °n are  avai lable .  

As an  example  we' descr ibe  the  fac tor iza t ions  (~) and  (F ')  in the  ca t egory  

o / b a s e d  se ts  ~ .  A n  e lement  a of the  p roduc t  set A x × A~ × • • • will as usual  be 
given b y  i ts  " c o m p o n e n t s "  a = (at, a~ . . . .  ), at  ~ A , ;  an  e lement  of A I * A 2 *  • • • 

b y  a --  (at, a S . . . .  ) wi th  a t  mos t  one a i :~ o ~ A i ,  i.e., we use the  cons t ruc t ion  
of A I * A  , * • • • as a subse t  of A~ × A ,  × . • •,  n being s imply  the  inclusion map .  
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Given n sets  X 1 . . . . .  Xn the  ob jec t  ~X of the  fac to r iza t ion  ( F ' )  is the  set  
consis t ing of those  n - tup les  (x 1 . . . .  , xn) E X1 × ' " " × X~ wi th  a t  mos t  r compo- 
nen ts  ~= o, the  m a p s  rk : rX  -~ r + l X  being the  cor responding  inclusions (cf. the  
expl ic i t  descr ipt ion,  for  n = 3, a t  the  beginning  of § 4;  the  p roof  for genera l  
n is s imi lar  and  left  to  the  reader) .  Thus  the  fac to r i za t ion  ~ ---- n - ~ . . .  ~ 1~ 
is n o n - t r i v i a l  (for n > 2) and  all  ~ are  m o n o m o r p h i s m s .  

The dua l  fac to r iza t ion  (F) however ,  is t r i v i a l  i n  ~ in the  fol lowing sense:  
(4.6) I n  ~¢= ~ 1 ~ . . .  ~ , - 1  each  ~ ,  r > 1, i s  a n  e q u i v a l e n c e  X ~+I - - ->XL 

H e n c e  a l l  X r, 2 ~ r -< n c a n  be i d e n t i f i e d  w i t h  X 1 • • • • • X n ,  a n d  i n  tha t  s e n s e  
~ 1 =  ~ .  

Proof  of (4.6). F r o m  the  defini t ions i t  follows eas i ly  t h a t  X r is the  following 
subse t  of the  d i rec t  p roduc t  of all  X j ,  ]JI = r :  A n  e lement  of X j ,  J = (Jl . . . . .  Jr), 
is an  r - tup le  (x  i . . . . . .  x],), x]~ C X i r ,  with  at  m o s t  o n e  xj =4= o; an e lement  of X r 
is a sys tem of such r - tuples ,  one for  each J ,  

((xj  . . . . . .  x~) ,  (x'~, . . . .  x'~) . . . .  ) 

with  componen t s  x./~ = x~s if j~ = k~. I n  o ther  words,  an  e lement  of X r is a 
sys tem of r - tuples  (xj,, . . . .  x#) of the  t y p e  descr ibed,  one for each J wi th  
IJI = r, of the  form 

((zj . . . . . .  x~,), (xk . . . . . .  xk,) . . . .  ) 

I n  th is  sys tem xj, # o, for example ,  implies  x~. = o for  v = 2 . . . . .  r, and  more  
genera l ly  xk, ' = o for  all  k~ 4= )1. I .e. ,  if xj~ 4= o, all  x i ,  i 4= Jl, are  o ( p r o v i d e d  

tha t  r ~ 2) .  Thus  the  sys t em is s imply  given b y  an  n - tup le  o / representa t ives  
x i ~ X i ,  i = 1, . . . ,  n w i t h  a t  m o s t  one  x i 4= o, i.e., an  e lement  of X 1 * • • - • X=. 
The  e lements  of X r and  those  of X r + l  are  in one- to-one correspondence  and  
differ on ly  b y  the  a r r a n g e m e n t  (with repet i t ions)  of one and  the  same  n- tup le  
x 1 . . . .  , x~ in the  double  b racke t ing  ( ( . . . ) ,  ( . . . )  . . . .  ), the  correspondence  
being es tab l i shed  precise ly  b y  the  m a p  ~r. 

I n  the  ca tegory  ~5 of groups,  the  fac tor iza t ions  (F) and  (F ' )  a re  descr ibed  
expl ic i t ly  in [2]. I t  t u rns  out  t h a t  u = u lg  2 • • . U n-1  is non- t r iv ia l  and  t h a t  all  
ur are  ep imorph isms  ; and  t h a t  ~ = " - 1 ~ . . .  ~ 1 ~  is t r iv ia l  in the  sense t h a t  all  
~ : ~ X  ---> r + l X ,  r ~ 2,  are  equivalences  ( isomorphisms),  so t h a t  al l  rX can be 
ident i f ied wi th  X 1 × • • • × X n and  1~ wi th  ~. The  curious d u a l i t y  be tween 
and  ~5 appea r ing  in these  examples  will f ind an  exp l ana t i on  in  p a p e r  I I I  of 
th is  series, in connect ion  wi th  p r imi t ive  categories .  - -  A s t u d y  of t he  occur- 
rence of t r i v i a l i t y  in the  fac to r i za t ion  of z, for  genera l  categories,  can  be found  
in [4]. 

W e  f inal ly r e m a r k  t h a t  in the  ca tegory  ~ of based  topologica l  spaces  the  
s i tua t ion  is exac t l y  the  same as in ~ ,  the  only  add i t i ona l  f ea tu re  being the  
n a t u r a l  topologies  involved  in the  cons t ruc t ions  and  the  con t inu i ty  of the  
var ious  maps .  

§ 5. Length of an object 

W e  consider,  in" the  canonica l  f ac to r i za t ion  (F) (Theorem 4.4) of 
~ : X x  , . . . . X~- -> X I  × . . .  × X ,  the  m a p  u'~-~ : X ~  , . . . . X~--> X " - 1  and  
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wr i t e  (~ for  u n - l ,  _T or  T (X1 ,  . . . ,  X~) for X ~ -1 ;  a n d  s imi la r ly ,  i n  (F ' )  (Theo rem 
4.5), v for n - l z  a n d  ~P for  " - i X .  N o t e  t h a t  for  n = 1, b o t h  _T a n d  T are  equa l  to  
t he  ze ro -ob jec t  0 of ~ .  F o r  n = 2, b o t h  ~ a n d  v are  e q u a l  t o  z ( T  = X 1 x X~, 
T = X 1 • X~). W e  a s s u m e  n o w  t h a t  X I ----X~ . . . . .  Xn = X ,  a n d  reca l l  
t h a t  a n  H - o b j e c t  i n  ~ is a n  ob j ec t  X t o g e t h e r  w i th  a " m u l t i p l i c a t i o n "  m :  
X 1 × X 2 ~ X such  t h a t  m g  = <re{l ,  0}, m{0,  1}> = <1, 1> = d, t h e  fo ld ing  m a p  
X I • X ,  -'~ X ;  a n d  t h a t  a n  l~ -ob jec t  is a n  o b j e c t  X w i t h  a " c o m u l t i p l i c a t i o n "  
m : X -~ X 1 • X 2 such  t h a t  z m  = {1, 1} = _d, t h e  d i a g o n a l  m a p  X -+ X~ × X , .  
U s i ng  a : X 1 * • • • * X~ -> _T a n d  v : T -~ X 1 × • • • × X= above ,  these  concep t s  
of a m u l t i p h c a t i v e  or comul t i p l i c a t i ve  s t r u c t u r e  in  X are  genera l i zed  to  a n  
a r b i t r a r y  n u m b e r  n > 1 of factors ,  as follows. 

Def in i t ion  5.1. I n  a D I-category ~ with left equalizers, an  Hn-structure in  
X ~ ~ is a m a p  m :  T ( X  . . . . .  X )  -+ X such that m a  = ~ ....... <1, . . . ,  1>: 

X 1 ,  . . . , X n  ~ , _T " , X .  

I n  a D I-category ~ wi th  right equalizers, an  Hn-structure in  X ~ ~ is a m a p  
m :  X -+ T ( X  . . . . .  X )  such that Tm = d = {I . . . .  , 1} :  

, T  " X ~ x . . . × x n .  

A n  t I~ - s t rue tu re  m is t h u s  t h e  s a m e  as  a n  H - s t r u c t u r e .  A n  H~-ob jec t  is a 
pa i r  cons i s t ing  of a n  o b j e c t  X a n d  a n  H ~ - s t r u c t u r e  m i n  X.  S imi l a r ly  for  t he  
d u a l  concepts .  A n  I l l - o b j e c t  is a n  ob j ec t  X a n d  a m a p  m : 0 -+ X such  t h a t  

X ' " * 0 -  m ,  X is e q u a l  to  d = 1, i.e., a n  ob j ec t  w i th  1 = 0, a n d  d u a l l y ;  thus 

the only Hi-objects and ~l-objeets in  ~ are the zero-objects. 
I n  t h e  fo l lowing we c o n c e n t r a t e  on  t h e  ques t i on  w h e t h e r  a g iven  ob j ec t  

X a d m i t s  a n  I t ~ - s t r u e t u r e  (an  ~ ,~-s t rue ture) ,  r a t h e r  t h a n  o n  t he  t t~-  a n d  H~- 
ob jec t s  themse lves .  A f u n d a m e n t a l  fac t  in  t h a t  c o n t e x t  is g i v e n  b y  t he  fol- 
lowing  t heo rem.  

T h e o r e m  5.2. For  each n ~ 1, i / X  admits  an  Hn-structure, it also admits  an  

H~ + x-structure. 
T h e  case n = 1 is t r i v i a l :  ze ro-objec ts  a d m i t  H_~-structures for  all  n.  W e  

a s s u m e  n > 2;  i n  o rder  t o  es tab l i sh  t h e  t h e o r e m ,  we refer  to  t he  c o n s t r u c t i o n  of 
_T = X " - 1  w i t h  r e spec t  t o  n ob jec t s  X I . . . . .  X .  of ~ ,  g i v e n  in  § 4 a n d  to  t h e  
n o t a t i o n s  u sed  t he r e  such  as N = (1 . . . .  , n) ,  J = (h  . . . . .  Jr) C ~V, X j ,  ~ : X j  --> 
-+ X K for  K C J ,  ~# : T -+ X j  for  IJl = r g n - 1. F o r  t h e  s a m e  c o n s t r u c t i o n  
of X n with respect to n + 1 objects Xo, X I . . . . .  X n o] ~ wi th  X o = X1, we use  t h e  
s a m e  n o t a t i o n s  w i t h  a d a s h :  N '  = {0, 1 . . . . .  n), J '  C N ' ,  X j , ,  zt~; for  K '  C J ' ,  
_T' = X",  ~ . :  _T' -+ X x ,  a '  : X 0 * X 1 * • • • * X .  -+ _T'. W e  first  p rove  t he  follow- 
ing  l e m m a .  

L e m m a  5.3. Let  ~ be the m a p  <ql, 1 > : X ~ ,  = X o • X ~  -÷ X N. There exists 

a m a p  v 2 : _T' -+ _T such that v 2a'  = a q~. 
Proo/.  As a first  s t ep  we define a m a p  a j  : X o -+ X j ,  J C N ,  b y  az  = 0 if 

~ > 1, = q~ if h = 1 (q~ w i t h  respec t  ix) X j  = X 1 • XI~ • • • .). T h e n  we t a k e  for 
K = ( k ~ , . . . ,  ks) C J t h e  m a p  

ytJ~aj = (c 1 . . . . .  cr>a J : X o -+ X j  -+ X K  , 
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where c~ = 0 if ]~ (~ K,  = q~ if ]~ = k~ ~ K. Thus  :rtJ~aj = 0 if ]~ > 1, = c~ if ~ = 1 ; 
i.e., in the second case, = 0 if k~ > 1, = ql if kl = 1. This means nJ~aj  = 0 if 
k I > 1, = qx if k~ = 1, which is precisely the map  a ~ :  

(5.4) xt'~aj = a K . 

Next  we take  the  aggregates ~4 and  ~ '  f rom which T and T '  are defined 
as lim, and the  m a p  ~ of ~ / '  to  ~ given b y  maps  ~J '  : X j ,  -~ X j ,  as follows: 
~J '  is defined for J '  = (0, ]1 . . . . .  iv) = 0 ~ J only;  as a map  of X j ,  -- X o • X j  
to  X j  it is given b y  ~J '  = <a j, 1 >. Note  tha t  ~ '  = ~ in the lemma. The maps  
~J '  fulfill the conditions (i) and (ii) of the na tura l i ty  theorem (2.6), i.e., ~5 is 
essential: 

T . . . . . . .  Xs ,  > X~,  ' I I  Ii ~, ~," ~"  

(i) F o r J ' = 0 ~ J J ,  K ' = 0 u K ,  t h e m a p n J K ; : X  o , X J - > X o , X . ~ c p n b e  
writ ten as <ql, q2n~>. For  any  n~  of d ,  taking these J ' ,  K ' ,  we find a commu- 
tat ive square 

cfl~' xe J', = (ag,  1> <q,, q2xe~> = (aK, :r~JK> : X o • X j  -~- X j  
and  

~ ~ ' =  ~ <aj, I> = <n~aj, ~ >  = <aK, ~ >  

by  (5.4), hence _K,_S, _ 

(ii) For  a given J ,  there is only one m a p  ~ j J ' : X j , - *  X j .  Thus  J '~ '  ~ J  CJ '  
depends on J only. 

According to  (2.6) there is a unique m a p  ~), = ~ : _T' -~ _T satisfying 

~J~ ~z, 

for all J with IJI g n - 1. Now, by  definition of a : X 1 • • .  • • X~ -~ _T, we 
_ ~' ~' ~ ' ,  hence have ~ j a  = z ~  for  all J with IJl ~ n - 1 and similarly ~j, = 

B y  the unique factorizat ion p roper ty  of l~_ this implies a ~ = v2a'. 
Proo] o] theorem 5.2. I n  the d iagram 

~, ~t, 
X o  * X x  * " " * X,~ . . . .  T '  ' X 

~ m 
& * ' - ' * X , ,  . . . . . . . .  _ T ~ + X  

we assume X0 = X 1 . . . . .  Xn = X, and m to  be an  t in-s t ructure  iu X,  
m a = ~. We put  
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then  m" a' = m~pa" = m a c f  = dq~ = d (ql, 1} : X o • X~- ~ Xz,. -~ X .  This m a p  is 
equal  to  {~ql, d )  = (1,  d )  = d ' :  X z,, -~ X,  a n d  hence m'  is an  Hn+ l - s t ruc tu r e  
in  X .  - -  No te  t h a t  m '  is o b t a i n e d  func to r i a l ly  f rom m. 

On the  basis  of t heo rem 5.2 and  i ts  dual ,  non-nega t ive  in tegers  (possibly  oz) 
/ ( X )  and  l (X) ,  cal led lengths, can now be  a t t a c h e d  to  a n y  X E ~,  as follows. 

Defini t ion 5.5. t_(X) < n i / a n d  only i / X  admits an tin-structure; -[(X) < n  
i / a n d  only i] X admits an ~n.structure.  

_/(X) = n means  _/(X) < n ÷ 1 b u t  _/(X) no t  < n ;  and  / (X) : ~ if the re  is no 
in teger  n such t h a t / i X )  < n. A n d  s imi la r ly  for  l (X) .  I n  p a r t i c u l a r , / ( X )  : 0 or  
l ( X )  : 0 means  t h a t  X is a ze ro-ob jec t ;  / ( X ) =  1 means  t h a t  X a d m i t s  an  
H- s t ruc tu r e  ( =  _H2-structure ) w i thou t  being a zero-object ,  and  s imi lar ly  for 
l ( X )  = 1. 

Examples:  (1) I n  the category ~ o /based  sets, l ( X )  is always < 2  (any set 
can be given an H_-structure); and l ( X )  = 0 / o r  a one-element set and otherwise 
l (X)  = c~. - -  To prove  the  las t  asser t ion,  consider,  for n ~ 2, the  m a p  v : T -+ 
-~ X 1 x X 2 x • • • x Xn ; here T is the  subse t  of the  car tes ian  p roduc t  consis t ing 
of those  e lements  for which a t  leas t  one coord ina te  xi = o ~ X i  and  T is the  
embedding .  Then  given a m a p  m : X -~ T wi th  v m  = d ( X  1 . . . . .  X~ = X),  
we have  Tm(x)  = (x, x . . . . .  x) C X 1 x  X~ x . . .  x Xn; the  i - th  coord ina te  
being = o, we thus  have  x = o. I n  o ther  words,  l ( X )  < n implies  X = o. 

(2) I n  the  ca t egory  ~: of based  topologica l  spaces,  / (X)  is a lways  < 3; and  
l ( X )  = 0 for  a one-poin t  space and  otherwise  l (X)  = ~ .  - -  The  first asser t ion  
follows f rom the  fac t  t h a t  in ~: (as in ~ )  the  fac to r i za t ion  (F) is t r iv ia l  for n ~ 3, 
i.e., X ~ =  X n, 2 --< r ~ n, and  u~== u (see the  end of §4) ;  hence _T(X) = X ~, 
a = 1, so t h a t  m = d : X n -> X is an H . - s t r u c t u r e  for n ~ 3. As one knows,  
the re  a re  spaces X which do  no t  a d m i t  an  t t~-s t ructure ,  i.e., wi th  / (X) = 2. - -  
The  proof  of the  second asser t ion is exac t l y  as  in  example  (1) above.  

B y  rep lac ing  the  s t r ic t  no t ion  of length  b y  a homotopy not ion,  we m a y  
o b t a i n  in te res t ing  i nva r i an t s  in ~: ana logous  to  1. The  genera l  ca tegor ica l  
f r amework  for  th is  re f inement  of the  no t ion  of length  is la id  in § 6. 

{ 3) I n  t he  ca t ego ry  ~5 of groups,  / ( X ) =  1 for  the  non- t r iv ia l  Abe l i an  
groups,  and  l ( X ) =  1 for  t he  non- t r iv ia l  free groups.  As es tab l i shed  in  [2], 
/{ X)  is t he  n i lpo tency  class of the  g roup  X,  and  l (X)  ~ 2 for  al l  groups.  [This 
l as t  asser t ion  is an  immed ia t e  consequence of t he  " t r i v i a l i t y "  of t he  canonica l  
f ac to r i za t ion  iF ' )  for  n > 2, i.e. T = n - 1 X  : = :  X1 x " " " X Xn, T = 1 ; an ~,~- 
s t ruc tu re  in X is t hus  s imply  g iven  b y  m = d.] 

Before  discussing genera l  p roper t i e s  of the  lengths  / (X)  and  l (X) ,  we 
in t roduce  fu r the r  numer ica l  i nva r i an t s  of objec ts  X in a genera l  ca tegory ,  
called weak lengths and  deno ted  b y  w l ( X )  and  ~ ( X ) .  T h e y  are  closely r e l a t ed  
t o / ( X )  and  l (X)  respec t ive ly  b u t  in  some cases easier  to  handle  (no s t ruc tu re  
m a p  m being involved) .  

As above,  we consider  for X 1 = X 2 . . . . .  Xn = X the  m a p  a: X 1 . ' . .  * X n ~_T; 
le t  k e r a  = k : K ~ X I • . . .  • X n be i ts  kernel .  I f  X a d m i t s  an  I-In-structure 

m:_T--> X ( m a = ~ ) ,  o n e h a s ~ k = m a k : = O : K  k--~ X 1 , . . . ,  X n "d) x .  
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Definition 5.6. w l (X) <n ,  i /  a n d  o n l y  i /  d k  = O. 

I t  is plain t h a t / ( X )  < n implies w l ( X )  < n, but that  the converse is not 
true in general. 

Proposition 5.7. I / w l ( X )  < n,  then  w l ( X )  < n ÷ 1. 

This justifies the Definition 5.6 and yields a non-negative integer w~l(X),  

possibly ~ ,  exactly as for /(X). The dual definition and proposition yield 
w l ( X ) .  Obviously one has 

Proposition 5.8. w l ( X )  ~ l ( X )  a n d  w---l(X) ~ l ( X ) .  

Pros ]  o / 5 . 7 .  We use, in addition to the notations above, those appearing 
in the proof of Theorem 5.2 and referring to the constructions made for n ÷ 1, 
instead of n,  objects X0, X 1 . . . . .  Xn. In  particular we make use of the map 
qz : X o * X 1 ,  " . . , X n -~ X 1 ,  . . . , X n  a n d  o f  ~ : _T' -+ _T s u c h  t h a t  a ~ = ~va' 
(Lemma 5.3) and ~ : =  d ' :  X o ,  X 1 , - .  . .  X ~ + X .  Let k ' : K ' - + X  s ,  
* X  l * ' . ' , X , ~  be the kernel of ( ~ ' : X  o , X  1 , . . . , X  n - + T ' .  From a T k '  
= ~,va'k' = 0 we obtain a (unique) y :  K ' - ~  K such that  ~ k ' =  k? .  Assuming 
now w l ( X )  < n, i.e. dk ~ 0, it follows that  

3 ' k ' =  3 ~ k ' =  d k y =  0 ,  
i.e., w/(X) < n + 1. 

R e m a r k s .  (1) The map k : K -> 2 ~  • • • .  • X n  on which the definition of weak 
length rests has been defined as the kernel of a : X I * • • - * X ,  -~ T. There is an 
equivalent description of k without using T;  we give it here in the following 
terms {referring to the notations used in § 4). 

Proposition 5.9. L e t  h g : H j -+ X 1 * " "  * X n be the kerne l  o[ ~ "  : X 1 ,  . . . . X n  ~ X j ,  

IJt = n - 1, a n d  [K; kj] the in tersec t ion  ( the inverse  l i m i t )  o / a l l  these kernels  h j .  

T h e n  the m a p  [c : 1~ -~ X 1 • • • • • X n g iven  by fc = h j k j  ( i n d e p e n d e n t  o[ J )  is the 

kerne l  o / ~ .  

P r o s / .  Let P be the direct product of the X a with ]J] = n -  1, let 
a : X 1  * ' ' "  * X n - >  P be the map with components ay~ and let ~:_T-~ P 
be the map with components ~j. Then ~ is a monomorphism by Proposition 2.6 
and ~a = a ;  thus ke ra  = kera, and the proposition follows from Proposi- 
tion 2.4 (more prieesely its analogue for n, instead of 2, maps), 

(2) Other "kernels" in X 1 , . . . .  X n can be chosen either by universal 
procedures or by special ones applying to particular categories; these yield 
similar numerical invariants. For example, a very general concept of nilpotency 
class can be introduced in this way (compare [3]). 

There are special circumstances under which w e a k  length a n d  length coincide.  

This is obviously the case if d k = 0 implies the factorization d =  m a: X 1 * ' "  * Xn--> 
~ T ~ X. For example, such a conclusion with a unique m holds i / ¢  is  the 

c o k e r n d  o] i t s  kerne l  k.  But  it is, of course, not necessary in that  connection to 
assume the existence of cokernels in the category; it would be enough to look 
at the cokernel ideal of k (the right annihilator)S), and the conclusion holds 

5) The right annihilator of a map g is the (left) ideal consisting of those maps h which 
annihilate g when g stands to the right (hg = 0). 
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if it is the principal left ideal generated by  a. Maps with tha t  property are called 
"normal"  e) ; we avoid the introduction of two dual types of normality for 
arbi t rary maps and define only the concept of normal epimorphism (or dually, 
normal monomorphism) without reference to the existence of kernels, or co- 
kernels, as follows. 

Definition 5.10. In  an arbitrary category ~, an epimorphism / : X - +  Y 
is called normal  i f  the following property holds: Any map h of X into some Z 
such tha t  hg = 0 for all maps g into X with [g = O, can be (uniquely) factored 
through [ : 

h =  h ' [ :  X ~  Y - + Z  . 

(I.o.w., if the right annihilator of the left annihilator of ] is the ideal generated 
by / . )  

For  example, any cokernel is a normal epimorphism. --  We do not enunciate 
the dual definition of a normal monomorphism; any kernel is a normal mono- 
morphism. We note tha t  in the category ~5 of groups all epimorphisms are 
normal (they are cokernels), but  not all monomorphisms (the embedding of a 
non-normal subgroup into a group is not a normal monomorphism) ; and tha t  
in the category ~ of sets all monomorphisms are normal, but  not all epi- 
morphisms. This duality between the categories ~5 and ~ will again find its 
explanation in part  I I I  of this series. 

Theorem 5.11. I [  a : X 1 , . . . ,  X n .+  _'!' i s  a normal  ep imorph i sm,  w l ( X )  
= l_(X). I ]  T: T -+ X 1 x • • . x X n is  a normal  monomorph i sm,  - ~ ( X )  = l ( X ) .  

We now list some general properties of lengths and weak lengths valid in 
arbi t rary categories (in which the appropriate equalizers exist). 

Theorem 5.12. 1] Y dominates  X ,  i.e., i /  there exist  m a p s  / : X --',- Y and 
g: Y + X such that g /=  lx,  then l(X) ~ l_( Y) and 7(X) ~ 7( Y). 

Proof .  We write X n for X I • • • • • Xn with X I . . . . .  X~, = X, ]'~ for the 
map [ , . . - ,  [ :  X"-+  Y~, T(X)  for X n- l ,  T([)  for the map _T(X)-~ _T(Y) 
induced by  f, a x  for a : X" -~ T(X),  m r : T { Y )  -~ Y for an H~-structure given 
in Y ( m y a y  = ~ y :  y n  __> y ) .  In  the diagram 

X~t ~ ~X 'T(X)--'~x ~X 

the first square is commutative; we put  m x = g m r T ( f  ). Then 

m x a x =  g m r T ( / ) a x =  g m f a y f • =  g ~ y f n .  

Now St[ '*  = ] d x  is immediate to verify; hence 

mx~z= gfZx= Z:~. 
Thus m x is an I~,-strueture in X, i.e., /(Y) < n implies /(X) < n. --  The 
inequality l(X) g 7(Y) is obtained by the dual proof, using the same assump- 
tion g/---- 1 (instead of permuting X and Y and making the dual assumption !). 

6) For the concept of normality the reader is referred to [5] and [9]. 
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A similar proof would yield the same inequalities for w_! and w-1. However, 
for these weak lengths, we have a stronger result. 

Theorem5.13. 1/ there exists a map ]: X ~  Y with k e r r =  0, then 
w~l(X) ~ w_ll ( Y) and-wll(X) ~ "wl(Y). 

Note that  g / =  1 implies k e r / =  0. 
Proo] o] (5.13). We write k e r a x =  kx: K z ~  X ~. In the diagram 

kx ~'x K x  ÷ X ~ " _T(X) 

kF qy  K y  , Yn + T_ ( Y) 

the second square is commutative. Hence a v / n k z =  T(/)(rxkx=- 0; thus there 
is a unique y : K x - +  K y  such tha t  pkx-= ky~ .  Now we assume w l ( Y )  < n, 
i.e., dy ky== 0. Then 

l xkx= cTr l "kx=  d r k r  = O . 

] having 0-kernel, this implies d x k x  = O, i.e., wl (X)  < n. 
Corollary 5.14. For any A and B E ~, one has l (A)  g l(A × B) and l(A) g 
1 (A * B) ; the same inequalities hold/or i, wl  and ~ll. 
For A is dominated by  A x B (p~{1, 0} = 1A), and by A * B (<1, O)qz-= la). 
Theorem 5.15. For any A and B C g, one has 

/ (A x B ) =  max( / (A) , / (B) )  

l(A • B) = max(l(A),  l (B) ) .  

Proo]. We only give the proof of the first assertion. The notations are as 
above. We assume /(A) < n a n d / ( B )  < n, the _H~-structure maps being m a 
and m B. In the diagram 

( A × B p  ~×~ * ~ T ( A x B )  ~×~  ' A x B  

....... , A 

we put  m A ×B = {mA-T(Pl), mB-T(P2)} : T (A x B) -~ A x B; thus the diagram 
is commutative, and so is the analoguous one with B n, T(B) ,  B in the second 
row, Pl being replaced by  p~. 

Then 

ma xB(TA x B =  {mA-T(Px)GA xl~, m~-T(P2)GA xB} 

Thus m A x B is an H,-struetm'e in A x B, and /(A x B ) <  n. Therefore 
t (A x B) _~ max( / (A) , / (B) ) ;  together with (5.14) this establishes the theo- 
rem. --  Note that  the dual proof yields the result for l (A*  B), but  not for 
i (A  x B) o r / ( A  • B). 
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N o w  let ~ and ~ '  be DI-categories  and let T : ~ -~ ~ '  be a functor  preserving 
inverse limits. We consider the  factorizat ion (F) of Theorem 4.4 for bo th  
and ~ '  ; then,  for a family  of objects X 1 . . . . .  Xn of ~, T induces natural  t rans-  
format ions  ~ : ( T X )  r -+ T ( X  r) such tha t  the d iagram 

~¢r - 1 

(TXV---:~-~---~ (TX)"-x 

(5.16) q~t l ~'-1 

TtXr~-------:-~- T(Xr-1)  ! T~Sf I 

is commuta t ive  (this is shown in the  next  section, in the special context  of 
h o m o t o p y  systems, bu t  the a rgumen t  is quite generalV)). I n  particular,  
q~'*---- <Tql . . . . .  T q , > :  T X  1 , . . . ,  T X ~ - ~  T ( X I , . . . ,  X~). We use (5.16) 
in the  special case r -- n to prove 

Theorem 5.17. Let T : ~ - ~  ~ '  be a /unctor /rom the DI-category ~ to the 
Dt-category ~ '  preserving inverse limits.  T h e n , / o r  each X ~ ~,  I ( T  X )  ~ l_(X), 
w l ( T X )  -<= w l ( X ) .  

Proo/. We assume the existence of a m a p  m : X n - ~  X such t h a t  m~ 
= d : X ~ -+ X, where a = u ~-I. Then we have the  diagram 

( T X ) "  ~.~: + "~Tx ( T X )  ~-1 . . . .  T X  

T~ g Tm x 
T(X ~) ~T(X~-I) - ---~TX 

andwese t  mTX = T m  x o ~)n - I  : ( T  X ) n - I - >  T X . T h e n m T x o a ~ , x =  T m x o  T a x °  qJ~ 
= T d x o  99 ~. But  V"= <Tq~ . . . . .  Yq,>, so Y d x o  q~" :- (Y~-~oTq l  . . . . .  T d x o Y q ,  } 
= <T(gxq~) . . . . .  T(dxq,~)>. Fur the r  dq~:= 1 and T1 = 1, so T d x  o q~ 
---- <1 . . . . .  1> = dTX. This shows t h a t  ! ( T X )  ~ l ( X ) .  

To prove the second assertion of the theorem, we set ke rg  X = ]c : K - >  X ~, 
k e r a ~ x  = 1: L -+ ( T X )  n. Since T preserves inverse limits, ker T a x  = T k :  T K  -+ 
- + T ( X ~ ) ;  fur ther  T a x o ~ n o l =  q)n-loClTXOl~-O, SO t ha t  there exists 

: L -~ T K  with T k  o Q = 9~ '~ ol. We have the diagram 
l 37~,x 

L - - *  ( T X )  n T X  

T K  Tk * T(X'~) ~ax -" T X  

where the  eommuta t iv i ty  of the r ight -hand square was proved above. Then  
dTxo l = T d r  o q~', o 1 ---- T ~  x o T k  o @ = T ( ~  x o k) o ~. Thus  if dx" ° k = 0 it 
follows t h a t  ~ " x  ° 1 = 0 and  the  theorem is proved.  

• ) I t  matters not at all that the functor P considered in § 6 is actually from g to itself, 
whereas here the range of the funetor T need not coincide with its domain. 
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We close this section with a theorem which states a consequence of im- 
posing a limitation on the length of objects. 

Theorem 5.18. Let A,  B ~ ~, let (B, m) be an H.object o / ~  and let l (A)  < 3. 
Then the structure induced in H (A, B) ]rom that in B is associative. 

Proof. Consider the diagram 

A ~ + A x A x A - 1 ' x I ~ × h ' B × B x B m ' ( ~ × I ) ; B ,  
mo(lxm) 

T(A)  f(t~,t,,t,) T (B)  

We wish to show tha t  the two horizontal routes from A to B are the same. 
In  view of the commutat iv i ty  of the diagram it is plainly sufficient to show tha t  

(5.19) m o (m × 1) o T =~- m o (1 ×m) o z; 

but  (5.19) is equivalent to the three assertions 

(5.20) m o ( m × l )  o ~ j = m o ( 1 X m ) o t i j ,  (i, 7') = (1, 2), (1, 3), (2, 3), 

where Iij embeds B X B in B x B x B as the product of the i th and jth factor. 
Now (5.20) is a straightforward consequence of the fact tha t  m is an H-structure.  
Thus the theorem is completely proved. 

Remarks. (i) Recall (Theorem 4.17 of [1]) tha t  H(A,  B) is commutat ive  if 
i ( A ) <  2. 

(if) I f  the H-object  B is a quasi-group in ~ then we are content to suppose 
tha t  wl (A) < 3, and conclude tha t  H (A, B) is a group. 

§ 6. Homotopy systems and homotopy length 

In  this section we follow KAI~ [6] in describing a f ramework in which, for 
general categories ~, the notion of homotopy between two m a p s / ,  ff : X -+ Y 
can be defined. I t  is, of course, pat terned after the homotopy  concept in topology, 
so as to include this case and various other examples. The homotopy concept 
in a general category ~ will allow us to introduce further  integers a t tached to 
the objects of ~, called homotopy lengths and weak homotopy  lengths, which 
are "homotopy  type  invariants".  In  the category ~ of (based) topological 
spaces and continuous maps,  with the usual homotopy concept, the "Lusternik- 
Schniretmann category" c a t X  of a space X (if defined according to G . W .  
WHITErtnAO [11 ]) is such a homotopy length; its definition is exactly as tha t  
of l(X) in ~,  except tha t  the characteristic proper ty  of the structure map  m, 

T m =  d : X "~ ' T ~ ~ Xz x . • • × Xn is replaced by  " v m  homotopic to _d". The 
corresponding weak homotopy length (w ca tX)  is defined by  using "e_d homo- 
topic to 0" instead of c d = 0, c being the eokernel of z. (NB. The construction 
of T is made in ~, not in ~Ta ; in ~7 a equalizers do not exist in general.) 

Definition 6.1. (see [6]). A le/t homotopy system 8 = [Z; t, b, p] in the cate- 
gory ~ is a system consisting o/ 

(i) a covariant I-/unctor Z : ~ -~. ~ called the "cylinder ]unetor", and 
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(ii) three natural trans/ormations t : I ---> Z, b : I ~ Z and p : Z -7 1 ( I  being 
the identity ]unctor) satis/ying p t  = pb = 1 : I ---> I .  

Relative to a left homotopy system S, a map F : Z A  -~ B is called a (left) 
homotopy between the maps F b  A and F t ~  : A --> Z A  -7 B.  Two m a p s / ,  g : A -~ B 
are called homotopic, / ~  g, i f  there is a homotopy F : Z A  ~ B such tha t  
F b A =  / and FtA-~ g. Mote tha t  /or any map  ]: A -+ B,  we have ] ~ ], the 
homotopy  being 2' = / P A .  To ensure further  properties of the relation ] ~ g 
such as symmet ry  and transit ivity,  suitable axioms must  be imposed on S, in 
addition to (ii) above (e.g., symmet ry  is obtained by  means of a natural  trans- 
formation r : Z -~  Z satisfying rt  = b, rb = t). In  the context of this paper we are 
not  so interested in the nature (and number) of the natural  transformations 
at tached to a homotopy system as in the cylinder functor itself. We propose to 
return to these finer questions" of homotopy in a later publication. 

I f  the above homotopy relation between / and g is not an equivalence 
relation, one usually considers the equivalence relation it generates; for simplicity 
we make here the convention tha t  the symbol / ~ g shall be interpreted to 
designate this equivalence relation. Then, e.g., t ransi t ivi ty can be used wherever 
it is necessary (in fact  this will here be the case only in one instance, namely in 
the proof of 6.9). Moreover, as shown in the next  proposition, the classification 
o/maps  of • thus obtained is compatible with composition; hence a category ~h 
is obtained whose objects are the objects of ~ and whose maps are the equiv- 
alence classes of maps  of ~, with the induced composition. 

Proposition 6.2. The relation ] ~ g relative to a le/t homotopy system S is 
compatible with the composition o/ maps  in  ~ ;  i.e., i] ] ~ g : A ~ B,  and i] 
~¢: A'--->A and fl:  B---> B '  are arbitrary maps,  then / ~  ~ g~ and fl] ~ fig. 

Proo/. I t  is sufficient to consider a single homotopy • : Z A  ~ B between 
/ and g. Then (a) F ' =  F o Z ( ~ ) : Z A ' - - > Z A - ~ B  is a homotopy between 
/ c¢ and g :¢, and (b) F "  = fl o F : Z A  -> B ~ B '  is a homotopy between f l / a n d  fig. 

To prove (a) we use the equation 

Z(o~) o b A, = bAo 

which holds since b is a natural  t ransformation I -~ Z. Then 

F '  o bA,= F oZ(a )  o bA,= F o b~ o ~ = lo~, 
and similarly 

F '  ot~,= F o Z ( a )  otA,= F o t ~  o ~ =  g a .  

(b) simply follows from 

F " b A =  f l F b A =  f l /  and F " t A =  f l F t A =  f i g .  

Dually a right homotopy  system in ~ is defined as a left homotopy system 
in the dual category ~*. Explicitly: 

Definition 6.3. A right homotopy system S = [P;  t, b, p] in  ~ is a system 
consisting o/ 

(i) a covariant D-]unctor P : ~ --> ~ called the "pa th /unc tor" ,  and 
(ii) three natural trans]ormations t : P ~ I ,  b : P -~ I and p : I ~ P saris. 

ly ing  t p  = bp  = 1 : I -~ I .  
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A homotopy,  relative to a right homotopy  system, is a map  F : A -+ P B;  
] ~ g : A -~ B means tha t  there is a homotopy  F : A ~ P B  such tha t  b~F = / 
and tBF = g. All the remarks  above, including Proposition 6.2 apply  as well 
to a right homotopy  system and the corresponding homotopy  relation. 

Examples. (1) In  any  category ~ there is a trivial left homotopy  system 
consisting of Z = I ,  and t ---- b = p = 1 : I ~ I .  The corresponding relation 
/ ~ g holds if and only if ] = g; thus ~h ---- ~- 

(2) The usual homotopy system in ~: is given by  Z X  = X × [0, 1]/o × [0, 1]; 
tx(x  ) = x × ( 1 )  for all xE X,  bx(x )--=x×(O), p x ( x , t ) = x  for 0_~ t_~ 1. 

There is, in ~:, a r ight homotopy system given by  P X = pa th  space of X 
(function space of all maps  co : [0, 1 ] ~ X, with the constant map  at  o E X 
as base point), tx(co ) = e)(1), bx(og) == ~o(0), px(x) = constant pa th  a t  x E X. 
The corresponding homotopy relation / ~ g coincides with tha t  given by  the 
left homotopy  system above : for there is a natural  one-to-one correspondence 
between the two kinds of homotopies H ( Z A ,  B) and H(A,  P B )  compatible 
with the natural  transformations t, b and p. In  other words, the functor P is 
right-adjoint to Z;  from this it automatical ly follows tha t  Z preserves inverse 
products and right equalizers, and tha t  P preserves direct products and left 
equalizers. We return below to "adjoint  homotopy  systems" in general. 

(3) In  the category of group complexes (c.s.s. groups) Kan ' s  notion of 
"homotopy through homomorphisms" or "loop homotopy"  (see [7 ]) is obtained 
from a right homotopy  system in which the pa th  functor P is essentially 
given by  P X  = function space X[°,l]. 

Definition 6.4. A le/t homotopy system S is called/aith/ul i/ its cylinder/unctor 
Z preserves right equalizers (direct limits); a right homotopy system, i / i t s  path 
/unctor P preserves le]t equalizers (inverse limits). 

We recall [cf. Prop. (1.8)] tha t  if Z has a right.ad]oint then it certainly 
preserves right equalizers (and inverse products); this sufficient condition for a 
homotopy system to be faithful is available in m a n y  cases. Moreover, if Z has 
a right-adjoint P ,  this D-functor P can be used as pa th  functor of a right 
homotopy system. S = [P;  ~, ~, #] - which of course will be faithful - as 
follows. 

Let ~ : H (X, P Y) ~ H (Z X,  Y) be the adjugant  (the natural  one-to-one 
correspondence) of Z and P.  We define ~, 6, 23 as the "adjoint"  transformations 
of t, b, p; e.g., ~ : P --> I is defined by  the condition 

/ ° ix  = v(P( / ) )  ° tz~x for aU / : X -~ Y ,  

which is equivalent (putting / = I : X ~ X) to 

~x = V (1Px) ° t p x .  
Similarly 

~z = v ( l e z )  ° b e x .  

The transformation i~ : I -+ P is defined by  the condition 

V ( ~ x / ) - ~ p z o Z ( ] )  fora l l  / :  Y ~  X 
~atla. Ann. 151 13 
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which  is equ iva len t  to  ~l(~x) = Px  ° l z x =  Px, or 

P x  = ~ -  1 ( P x )  • 

Using the  n a t u r a l i t y  of the  t r a n s f o r m a t i o n  t and  ~ we then  have  

t x P x  = ~(1px)  o tpx  ° P x  = ~ (1px)  ° Z ( P x )  ° tx  

= ~ ( l p x ~ x ) °  tx  = ~](Px) ° tx = p x t x  = l x  • 

Hence  ~/5 = 1 : I -+ I and  s imi la r ly  g/5 = 1. W e  summar ize  
Proposition 6.5. I] the cylinder ]unctor Z o] the left homotopy system S = [Z ; t, 

b, p] has a right-adjoint P,  then S i s /a i th /u l ,  and P together with the ad]oint 
trans/ormations ~, g, ~ yields a [aith/ul right homotopy system S = [ P ;  ~,/~, ~5]. 

W e  now consider,  e x a c t l y  as in § 5, assuming ~ to  be a D I - c a t e g o r y  wi th  
lef t  equal izers ,  the  m a p  a : X i * • • • * X n ~ T_ for X 1 . . . . .  Xn and  i ts  kerne l  
k : K -+ X 1 • • • • • X n. Using  the  h o m o t o p y  re la t ion  [ ~ g in ~ wi th  reference 
to  a f ixed (left or r ight )  h o m o t o p y  sys tem S we define h o m o t o p y  length  hl  (X)  
and  weak  h o m o t o p y  length  w h l ( X )  as follows. 

Definit ion 6.6. h l ( X )  < n i / a n d  only i / X  admits a homotopy H~-strueture, 
i.e., a map m :  _T ~ X such that m a  ~ d. Furthermore w h l ( X )  < n i / a n d  only 
i !  o ~ ~ k .  

To jus t i fy  these  definit ions,  we have  to  show t h a t  (i) h / (X)  < n impl ies  
h l {X)  < n + 1 and  (ii) w h l ( X )  < n impl ies  w h l ( X )  < n + 1. The proofs  a re  
as those  of (5.2) and  (5.7), excep t  t h a t  in one ins tance  the  equa l i t y  sign is 
r ep laced  b y  ~ .  I n  de t a i l :  

(i) Using  the  no ta t i ons  of the  proof  of (5.2), we have  

m ' a ' =  m y ) a ' =  macp -- dq~= d' : X o , . . . , Xn ~ X . 

(ii) Using  the  no ta t i ons  of the  proof  of (5.7), we have  

0~  ~k~= ~ k ' =  ~'k'. 
Note  t h a t  the  only  p r o p e r t y  of the  h o m o t o p y  re la t ion  used in th is  con tex t  is 
t h a t  i t  is compat ib le  wi th  composi t ion  of maps .  The same r e m a r k  appl ies  to  
the  fol lowing propos i t ions  l is t ing inequalities for h / a n d  w h 1. 

I t  is p la in  t h a t  t he  in tegers  h / (X)  and  w h l ( X )  defined b y  (6.6) fulfil 

h / ( X )  g / ( X )  and  w h l ( X ) ~  w l ( X ) .  
Moreover  we have  

Proposition 6.7. whl(X) ~ hi(X). 
For ,  if t he re  is a m a p  m wi th  m a  ~ d, one has  0 = m a k  ~ dk. 
Definit ion 6.8. W e  say  t h a t  Y homotopy-dominates X if the re  are  m a p s  

] : X -+ Y and  g: Y -+ X wi th  g / ~  1 x.  - W e  say  t h a t  X and  Y are  homotopy- 
equivalent, if there  a re  m a p s  / : X -~ Y and  g : Y -+ X such t h a t  g / ~  1 x a n d  

]g ~ 1 r .  
Theorem 6.9. I f  Y homotopy.dominates X ,  then (i) h l ( X )  ~ h i ( Y )  and 

(ii) w h l ( X )  <= w h l ( Y ) .  
{3orollary 6.10. I] X and Y are homotopy-equivalent, then h l ( X ) =  h l ( Y )  

and w h l ( X )  = wh l  (Y )  (Homotopy invariance o] homotopy lengths.) 
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Proo/ o/ 6. 9. This proof follows exactly tha t  of (5.12), to which we refer 
without any  further explanation. 

(i) Assuming tha t  there is a map my  : _T(Y) -> Y with m y a y  ~ dy,  we put  
m x = g r a f T ( l ) ;  then 

m x a  x = gray_T(/) ax  = gmy(;y /~  ~ g g y / n  = f f / d x  ~ d x "  

(if) Assuming 0 ~ d y k y ,  we have 

O ~  d y k y ~ =  d y / n k x =  ] d x k x  , hence 0 ~ g ] d x k  x ~  d x k  x .  

We now formulate the analogue of Theorem 5.13 on whl,  using the concept 
of a map  / with zero homotopy kernel; i.e., the kernel ideal of the class of / in ¢~ 
is the zero-ideal. In  other words, / : X -+ Y having zero homotopy kernel means 
tha t  for any map g : A -+ X with 0 ~ / g  one has 0 ~ g. 

Theorem 6.11. I /  there exists a map / : X - +  Y with zero homotopy kernel 
then w h l ( X )  g w h l (  Y).  

Proo/ (cf. the proof of 5.13). We assume w h l ( Y ) <  n, i.e. O ~ d f k y .  

Then 
0 ~ d y k y  y = / d x k x ;  

hence, / having zero homotopy kernel, 0 ~ d x k x ,  i.e., w h l ( X )  < n. 
Theorem 6.12. For any A and B ~ ~ one has 

h l ( A  × B) = max  (hl(A) ,  h i ( B ) ) .  

Proo/ (cf. Proof of 5.15). Assuming the existence of mA and mB with 
mA(YA ~ dA and mB(~ B ~ riB, we put  

mAx B = (mA T_ (Pl), mBT- (P2)} ; 
then 

mA x B(rA × B = {mAffAPT, mBaBp~} ~ Cd ~,n = 

(Here we have used the fact that ,  F,  F'  being homotopies Z X  ~ A ,  Z X  ~ B 
respectively, w i t h F b  x = / , F t  x = g, F ' b x  = / ' , F ' t x =  g', {F,F '}  : Z X  ~ A  × B 
is a homotopy with {F, f ' }  bx = {/ , / '}  and {F, F '} tx  = {g, g'}; in other words, 
tha t  / ~ g: X -+ A , / '  ~ g ' :  X -+ B implies {/, / '} ~ {g, g'}: Z -~ A × B.) 

Thus h l ( A x B ) < =  m a x ( h l ( A ) , h l ( B ) ) .  On the other hand, h_/(A)~_ 
~< h l ( A  × B),  since A × B dominates A. 

The dual definitions, for h l ( X )  and w h l ( X )  and the duals of all the above 
inequalities or equalities are obvious. 

We now proceed to a further main objective of this section, namely to 
show tha t  not only the homotopy  lengths, but  the /u l l  canonical ]actorizations 
(F) and (F') o/ ~: X 1 , . . . ,  Xn--->X1X . . .  × X  n (cf .§4)  are homotopy 
invariant. For  this not only the homotopy  relation, but  the homotopy  system 
S itself is needed. 

We first consider the homotopy behaviour of the factorization (F) with 
respect to a left homotopy  system S = [Z; t, b, p] in ~. By  assumption, Z 
is an I- functor ;  moreover one has the natural  t ransformation ¢ of Z lim into 

< _ _ _  

lim_m Z of Prop. 2.8. Given n objects X 1 . . . . .  X ,  of ~, the X ~ appearing in (F) 
13" 
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are inverse limits of ~.aggregates  ~¢r,r consisting of inverse products  X j  of 
X1, . . . ,  Xn (cf. § 4). I n  the  same wa y  we form f rom Z X  1 . . . . .  Z X , ,  inverse 
products  ( Z X ) j  which can be na tura l ly  identified with Z ( X j ) ,  and aggregates 
( Z ~ y ,  * which can be identified with Z(~c~,r); thus  ( Z X y =  ~ (Z~')r ,  r 
= li~_mZ(~Cr, r). Similarly, if ~ :  ~ ¢ r , r _ + ~ r - l , r - 1  is the map  inducing u , -1  
= n~r- ~ : X *-+ X ~- ~, the map  nz x : (Z X y  -~ (Z X y -  ~ is induced by  Z ~5 : Z ~'~, * -> 
- ->Zs~r-~ ,~-L  The na tura l  t ransformat ion ~ then  yields a sequence of maps  
~ : Z ( X  ~) -+ (ZX)% r = 1, 2 . . . . .  n such tha t  the d iagram 

z(~-~) 
z (x~)  , z ( x ~ - l )  

( z x ) ~  , ( z x y  - t  

is commuta t ive ;  in other  words, the ~r const i tute a map  of Z ( F )  into F ( Z ) .  
Now let Y1 . . . . .  Y~ be n fur ther  objects, and F i : Z X  i -~ Y~ left homotopies,  

i = 1 . . . . .  n;  t hey  induce maps  _Fr: (ZX)r___> yr,  r = 1 . . . . .  n. 

Then  ~ r =  Fr$~ are homotopies,  i.e. maps  Z (X r) -~ Y~ with the properties 
(i) ~ - 1  o /~r=  tV~- loZ(~x-1)  : Z ( X r  ) ___> y~ 

(ii) ~r  o bxr = (F  o bx) ~ : X r -+ Y * ,  

where (F  o b x Y  stands for the map  induced by  F 1 o bx  . . . . . .  F~ o bx, ,. 
Proo/  o/ (i): ~,-1 is natural ,  hence 

Thus  x~;-lo p r  = ..r-l.~, o~Pr o~7-r = / ~ r - l o  2 ) ~ 1  o ~r = F r - l o  ~ r - l c  Z ( g ~ - l )  
= xi0r -1  ° Z ( ~ - 1 )  . 

Proo/  o[ (ii). The na tura l  t ransformat ion  b yields maps  bx , :  X i-+ Z X i  
and thus  induced map  (bx) r : X r ~ ( Z X )  t. According to (2.9) ~r o b x , =  (bx) % 

whence 
i~r o bx" = F r o ~r o bx" = F r o  (bx)~ = (F  o bx) r . 

(ii) holds, of course, also for the t ransformat ion  t. We summarize the results as 
follows, wr i t ing / i  = F i b x ,  and g~ = F ,  tx,.  

Theorem 6.13. I]  ]or i = 1, 2 . . . . .  n the m a p s / ~  and gi : X i  ~ Y i  are homo- 
topic, wi th  respect to a le]t homotopy system in  ~ ,  then the induced m a p s  f f  and 
~ : X r . +  y r  are also homotopic; the homotopies t Pr : Z ( X  r) ---> y r  are obtained 

canonically f rom the homotopies F i : Z X ,  -+ Y ,  between It and g~ as l~r = F t  o $% 
and are compatible wi th  the maps  ~r-1 (i.e., n~,-lo p r = / ~ r - ~  o Z (n~r-1)). 

Corollary 6.14. (Homotopy  invariance o/ (F) wi th  respect to a lelt homotopy 
system). I [  ]t : X t  ~ Y, ,  i = 1 . . . .  , n are homototry equivalences, then the in- 

duced maps  f f  : X ~ --> y r  are also homotopy equivalences. 
B y  dual i ty  (6.13) and (6.14) hold for the  dual  factorizat ion (F') of 

: X 1 • • • • • X~ -~ X 1 ×.  • • × Xn with respect to  a right h o m o t o p y  system. 
The  results (6.13) and (6.14) on the factorizat ion (F) also hold for a r ight  

homot~py  sys tem S -  [P ;  t, b, p]  unter  the addit ional  assumpt ion t h a t  S 
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be/aith/ul,  i.e. that P preserves inverse limits. The proof proceeds as before by  
establishing a sequence of maps ~n :(px)r._> p ( x  r) such that  the diagram 

¢--1 
P X  

(px)~  . . . . . .  ( px )~ - I  

+l 1 
p ( x  ~) , p (xr -1)  

is commutative, and then by defining a (right) homotopy/~r  :X~-~ p(yr )  as 
P~ = ~0~F ~ : X ~ -~ (P  Y)~ -+ P(Y~), where F ~ is the map induced by right homo- 
topics Fi : X i  ~ P Yi, i = 1 . . . .  , n. - In order to get the q9 ~ one first uses the 
natural transformation which maps the inverse product of P X 1 , . . . ,  P X ,  
into P ( X  1 . . . . .  Xn), given by <Pql . . . . .  Pqn>, to obtain natural  maps 
(PX)j--> P(Xj) and thus an (essential) map of (Pd)~,  ~, i.e. the aggregate 
formed with P X  1 . . . .  , P X ,  instead of X~ . . . . .  X~, into p(~cr,~). Then 
l ~ ( P  d )  ~, ~ = (P X y  is mapped naturally into l im P ( d  r , ~) which by assumption 
can be identified with P li+_mm d~,~= P(X~). Without repeating the further 
details, we state the analogues of (6.13) and (6.14) in short as follows: 

Theorem 6.15. The ]actorization (F) is homotopy invariant with respect to a 
]aith/ul right homotopy system. 

Examples o/homotopy-lengths. (1) In the category ~: of based topological 
spaces, h l (X) is the (based) "Lusternik-Schnirelmann category" cat X defined 
according to G. W. WHITeHeAD [11], and whl(X)  the "weak category" 
w cat Xs). There exist examples of spaces for which h--l(X)and-w-ffl(X) have 
prescribed integer values (while l(X) = oo for non-trivial spaces, cf. example (2) 
in § 5). The dual length h/(X) in ~: is always < 3 (hl(X) = 0 for contractible 
spaces, h l (X) - -  1 for non-contractible H-spaces, h / ( X ) - - 2  otherwise); this 
follows from hl(X) ~ /(X) < 3, cf. example (2) in § 5. 

(2) In  the category of group complexes (css-groups) and homomorphisms, 
with Kan's concept of homotopy through homomorphisms g), h/(X) and whl(X)  
are not limited as in ~ ;  thus non.trivial numerical homotopy invariants can be 
obtained by using functors which lead from ~: to the category of group complexes. 

(3) Conversely, functors passing from the category of groups ~ to ~ yield 
numerical invarients hl or whl  of groups which give more information than 

and w--1 in ~5 itself. For  example, Emm~BERO and GAI~EA have considered the 
invariant cat K[~ ,  1] of the group z. 

Let  ~ and ~'  be categories and let S = [Z; t, b, p], S' = [Z'; t', b', p'] be 
left homotopy systems in ~, ~'  respectively. A functor T : ~ -~ ~'  will be said 
to preserve homotopy if T Z =  Z ' T  and, for each X E ~, T(tx)-~ t'Tx, 

8) Cat and w cat are here renormalized so that they take the value 0 on contractible 
spaces (instead of 1). 

9) See [7]. A concept of h_l(X) and whl(X)for c.s.s, groups was suggested by HILTO~ 
[Homotopy theory and duality, Corne]l (1958)]; it has recently been shown that wh__/ 
coincides in this category with nilpotency. 
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T(bx) --" b~x,  T(px)  = P'Tx. Not ice  in pa r t i cu l a r  t h a t  if S '  is  the  t r iv i a l  lef t  
h o m o t o p y  sys t em then  T preserves  h o m o t o p y  if and  on ly  if T Z  = T and  
T(tx)  -- T(bx) = T(px)  = 1TX. A similar  no t ion  is ava i lab le  for r igh t  homo-  
t o p y  sys tems.  

Proposi t ion 6.16. Let ~ and ~' be categories and S, S' le/t homotopy systems 
in (~, ~' respectively. Let T : ~-+ ~' be a homotopy-preserving /unctor. Then 
T / ~  Tg:  TA--> T B  I/ / ~ g : A - +  B. 

Proo/. I t  is p l a in ly  sufficient to  consider  a single h o m o t o p y  F : Z A  ---> B 
be tween  / and  g. Then  i t  is i m m e d i a t e l y  verif ied t h a t  T F  : Z' TA  = T Z A  -+ T B  
is a h o m o t o p y  f rom T / t o  Tg. 

Theorem 6.17. Let T : ~--> ~' be a /unctor /rom the DI-category ~ to the 
])I-category ~ preserving inverse limits. Suppose /urther that ~ and ~' are 
/urnished with le[t (right) homotopy systems and that T preserves homotopy. 
Then,/or each X E ~, h l ( T X )  < hi(X) ,  w h l ( T X )  < whl (X) .  

The  proof  is the  obvious  smal l  modif ica t ion  of t h a t  of Theorem 5.17 a n d  
uses P ropos i t i on  6.16. 

References 

[1] EOKMAl~1% B., and P. J. HILTON: Group-like structures in general categories I. 
Multiplications and comultiplications. Math. Ann. 145, 227 (1962). 

[2] - -  - -  Structure maps in group theory. Fund. Math. 50, 207 (1961). 
[3] HILTON, P. J. : On a generalization of nilpotency to semi-simplicia] complexes. 

Proc. London Math. Soc. 10, 604 (1960). 
[4] - -  Note on free and direct products. Bull. Soc. Math. Belgique 18, 38 (1961). 
[5] - - ,  and W. LEDERMANI~." On the Jordan-HSlder Theorem in homological monoids. 

Proc. London Math. Soc. (3) 10, 321 (1960). 
[6] KAN, D. M.: Abstract homotopy II .  Proc. Nat. Acad. Sci. U. S. 42, 255 (1956). 
[7] - -  On homotopy theory and css-groups. Ann. Math. 68, 38 (1958). 
[8] - -  Adjoint functors. Trans. Am. Math. Soc. 87, 294 (1958). 
[9] KUROS~, A. G., A. K~. LIVSHITS and E. G. SCHUL'O]:IFER: Foundations of the theory 

of categories. Uspekhi Matem. Nauk XV, 6, 1 (1960). 
[10] TSALENKO, M. S.: On the foundations of the theory of eetegories. Uspekhi Matem. 

Nauk XV, 6, 53 (1960). 
[11] WHrr~HEAD, G. W.: On the homology suspension. Colloque de Topologie Alg~brique, 

Louvain, 89 (1956). 

(Received October 30, 1962) 


