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1. I n t r o d u c t i o n  

The start ing point of the investigation whose results are to be presented 
in a series of three papers, of which this is the first, was an a t t empt  to give 
precise meaning to and to answer the question how group structures arise in 
homotopy theory and why these group structures satisfy the familiar con- 
ditions of natural i ty.  This problem, set in the restricted context  of homotopy 
theory, was discussed in [2], but  it  was already clear that ,  by  restricting the 
category of s tudy in this way, we were disguising the generality of the approach 
and of the results. A more general t rea tment  was indicated in Chapter 14 of [6] 
but not taken very far. 

A group is a set A with a multiplication m : A × A -> A satisfying certain 
axioms. The basic idea of this paper is to consider categories ~ rich enough in 
objects and maps to enable us to formulate a set of axioms which, in the case 
where ~ is the category ~ of (based) sets, are equivalent to the group axioms. 
Of course these axioms are formulated entirely in ' terms of the maps of the 
category ~. I t  is then a basic observation tha t  if (A, m) is a "group"  in ~ or, 
as we shall prefer to say, a G-object, and if H(X, A) is the set of maps from X 
to A, then H(X, A) acquires a group-structure,  in the familiar sense, from the 
structure m a p  m; and the  group-structure is commutat ive  if m is "commuta t ive"  
in a sense applicable to the category ~. Moreover the group-structure is natural  
with respect to maps X - >  Y in ~ in the sense tha t ,  for such a map  ], the 
induced se t - t ransformat ion/* :  H ( Y, A) --+ H (X, A) is a homomorphism; and 
it may  be shown (see [2] or Theorem 4.3 of this paper) tha t  all such natural  
group-structures are induced from G-structures m. The cohomology groups 
H n (X; G) of a polyhedron X give us an example of such a natural  group 
structure. We may  identify H n (X; G) with ]iT (X, K (G, n)), the set of homotopy 
classes of continuous maps of X into the Eilenberg-MacLane space K (G, n) and 
the natural  group structure of H"  (X; G) is then acquired from a G-structure 
or group-like multiplication on K(G, n) in the category ~:h of (based) spaces 
and homotopy  classes 1). 

By  working in an arbi t rary  category ~, we achieve, of course, a gain in 
generality. However, other advantages also accrue which are worth mentioning. 
The first advantage,  which we will discuss in some detail, is the availability of 

1) Added i~ proo/: Thus Ha( ; G) is a "representable" fune~or in the sense of GI~O- 
THE~DIECK; many of the notions of these three papers are related to those in the cate- 
gorical foundations of GROTHE~nI~.CK'a work. 
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the formal duali ty principle. With every category ~ is associated its dual 
category ~*. The objects of ~* are the objects of ~ and the set of maps H* (B,A) 
in ~* is precisely H(A, B); moreover if we, temporarily, indicate composition 
of maps in ~ by go / ,  / CH(A, B), g CH(B, C), then composition in ~* is 
given by 

(1.1) lo* g = g o  l .  

I t  is easy (but vital) to observe that  ~*, so defined, is a category whose 
identi ty maps coincide with those of ~;  if ~ has zero-maps (see section 2) so has 
~* and the zero-map in H* (B, A) is just the zero-map of H(A, B). Further  
~** = ~. 

The construction of ~* is a formal device to enable us to dualize axioms, 
definitions and theorems in the theory of categories. Two statements in ~, 
in terms of objects and maps, are called dual if they differ only in the direction 
of the maps involved 1 a). More precisely, if S is a statement which is meaningful 
in any category, let S(~) be the statement S applied to the category ~. If we 
interpret S (~*) as a statement about the objects and maps of~  we get a s tatement 
S*, meaningful in any category, given by  S* (~) = S(~*). Then S* is the dual 
of S. I t  is in this precise sense tha t  we will speak of dual axioms, dual definitions 
and dual theorems. If the proof of a theorem belongs to the theory of categories 
the dual theorem is automatically true, being, in fact, logically equivalent to it. 

This duality principle is exploited repeatedly  in this series of papers. If a 
theorem T is proved for all categories satisfying some axioms A, then theorem 
T* automatically holds for all categories satisfying axiom A*. If one works 
in a single category ~0 (say, the category of groups ~5 or the category of based 
sets ~ )  then ~0 may satisfy axiom A but  not  axiom A* so the duality principle 
does not  allow us to  deduce the t ru th  of T* in ~0 even if the proof of theorem 
T(~0) has been made in category-theoretic terms. I t  may  also happen tha t  
while theorem T* does hold in ~0 it  is trivial or even vacuous there ; and that  
the interesting categories for the applications of theorems T and T* are 
certainly not identical. Thus, for example, comultiplications with two-sided 
units are definable only on the one-element sets of ~ and so are total ly un- 
interesting. However they are of great interest in ~ and in the category ~a of 
(based) spaces and homotopy classes, and thus the theorems about multi- 
plicative structures in general categories yield on dualization theorems of 
interest in group theory and homotopy theory. 

We should at  this stage make a remark about  notation in connection with 
the application of 'the duali ty principle. In  previous publications (e.g. [2], 
[3], [4]) we have indicated the dual of a statement or concept by  attaching 
a prime '. Thus we have talked of H'-spaces and referred to  Theorem X • YZ'.  
The choice of which of the two notions to regard as "basic" and which as " the  
dual" was determined in each case on various grounds-traditional,  psycho- 
logical, and pedagogic- and could not, in the nature of things, be systematic. 

1 a) Indeed we speak of obtaining the dual of statement S by "reversing the arrows" 
occurring in S. 
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Here we have preferred to s tar t  with a completely unprejudiced viewpoint and 
have sought a notat ion appropriate to tha t  viewpoint. Thus two notions which 
are dual to each other are indicated by  the same letter, underlined in the one 
case and overlined in the other;  for example a multiplication on an object A 
is called an M-structure and a comultiplication is called an M-structure. Where 
a notat ion is represented by  a symbol  rather  than  a letter we have chosen a 
comparable symbol for the dual notion;  for example the direct product  of A 1 
and A 2 is writ ten A 1 x A s and the component  form of a map X -+ A 1 x A ,  is 
written {/1,/~}, while the inverse product  of A 1 and A s is writ ten A 1 • A ,  and 
the component form of a map A 1 * A 2 -+ X is wri t ten </1,/,>. The break with 
tradition is not complete, of course, as our choice of the phrase "direct product"  
indicates; and since we refer to direct products and inverse products we have 
felt compelled to refer to a category with direct products as a D-category and 
a category with inverse products as an I-category although these concepts are 
dual to each other. We do not index dual theorems in the way referred to above. 
Usually only one of a pair of dual theorems is enunciated and in the exceptional 
cases where we think it preferable to give both statements explicitely each 
statement  receives the enumeration appropriate to its position in the text.  

A second advantage of working in a general category which we mention 
briefly is tha t  of the functorial approach. Since our theorems consist of asser- 
tions about  categories in which certain constructions may  be carried out, 
at tention is natural ly directed to those functors which respect the constructions. 
Such functors effect tim t ransport  of the structures we are studying from one 
category to another. 

The contents of the present paper  are as follows. Following a brief section 
describing categories with zero-maps, section 3 contains the theory of direct 
products in general categories and the dual theory of inverse products2). This 
provides a preparat ion for section 4 wherein multiplicative structures in 
categories are discussed. Simultaneously with the introduction of such a 
concept we natural ly  define the notion of homomorphism or, as we prefer to 
say to avoid confusion, the notion of a primitive map  which is a map  of the 
category from one object with multiplication to another  which is compatible 
with the multiplications. Various axioms are considered to which the multi- 
plicative structures m a y  be subjected, in particular, axioms producing group- 
like structures. Section 5 consists of examples of the fundamental  notions of 
the paper;  one of the examples t reated briefly here, namely tha t  of the category 
of groups ~5, is dealt  with more extensively in a separate publication [5]. Sec- 
tion 6 is concerned with the relation of Kan ' s  theory  of adjoint funetors (see 
[7]) to the theory presented here. I t  turns out t ha t  the condition of possessing 
an adjoint has important  implications for the structure preserving properties of 
the functor. Section 7 contains an example of a category with direct products 
in which there exist epimorphisms whose direct product  is not an epimorphism. 
We would mention tha t  the theory of operators and cooperators in general 

~) For further details of this theory, see [9], [10]. 
16" 
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categories, appropriate though it  is to this paper, has not  been discussed as it 
appeared in sufficient generality in [3]. 

I t  may  help the reader if we summarize the contents of the second and third 
papers of this series. The second paper is concerned with generalized unions and 
intersections in arbi t rary categories and with a consequent notion of the length 
of an object which generalizes the multiplicative and comultiplieative structures 
of this paper;  this generalization includes and dualizes, e.g., Lusternik-Sehnirel- 
mann  "category"  of spaces. The third paper  is concerned with what  we call 
primitive categories, namely, categories in which the objects are multiplicative 
objects of a given category ~ and in which the maps are primitive maps. 
We show how various phenomena familiar in group theory and abelian group 
theory (as well as certain less familiar ones) are explicable as properties of 
primitive categories, and we derive a curious relation of symmet ry  between the 
categories ~ and ~5. 

We wish to acknowledge the benefit of very fruitful correspondence with T. GA~EA 
on the topics covered by these three papers. 

2. Categories with zero-maps 

Let  ~ be a category;  following [9] we will denote the set of maps associated 
with the ordered pair of objects (A, B) of ~ by  H(A, B), and we will permit  
ourselves to write ]: A ~ B for a map  in H(A, B) and call / a map  from A to B. 
We will denote the identi ty map of H(A, A) by IA, frequently abbreviated to l, 
and the dual category of ~ by  ~* (cf. 1). 

A m a p / :  A -~ B is called an equivalence (or invertible) if there is a m a p / ' :  
B ~ A  such tha t  ]']= 14 and ]]'= 1B; in tha t  case A and B are called 
equivalent. Of course the equivalence / determines its inverse ]'  and we may  
wr i t e / -1  f o r / ' .  The map / is called an epimorphism if for any  C and any  vi: 
B -~ C, i = 1, 2, the relation Vl/ = V2/ implies v 1 = v s. The map [ is called a 
monomorphism if for any  D and any  w~: D -~ A, i -~ 1, 2, the r e l a t i o n / w l = / w  ~ 
implies w 1 = w 2. Notice tha t  if / is an equivalence then / is both an epimorphism 
and a monomorphism, but  the converse is in general false. 

We shall suppose - -  though this is by  no means necessary for all our sub- 
sequent definitions and results - -  t ha t  ~ possesses zero.maps. That  is, we 
suppose tha t  for any  two objects A, B of ~g the set H(A, B) is non-empty  and 
contains a distinguished element, 0 = 04 B, such tha t  

(2.1) /04B----04v fora l l  C a n d a l l  /EH(B,G), 

0ABg-~ 0D~ for all D and all g EH(D, A). 

Note tha t  the zero-maps are unique ; for if also 

/5.4, = 04o, 5~g---- ODB, all 1, g ,  
then  

We list some elementary but  impor tant  observations in the following 
propositions. 
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Proposition 2.2. (i) The map  / is an equivalence in ~ i / a n d  only i / i t  is an 
equivalence in ~*;  

(ii) The map  / is a monomorphism in ~ i/  and only i/  it i8 an epimorphism 
in ~* ; 

(iii) ~ possesses zero-maps i/  and only i[ ~* possesses zero-maps, and the 
zero-map in H (A, B) coincides with the zero-map in H* (B, A ). 

Proposition 2.3. (i) I [  / is an epimorphism and v /  = 0 then v = O. 
(ii) I / ]  is a monomorphism a n d / w  = 0 then w = O. 
I n  the  light of Prop.  2.2 (ii) the  two par ts  of this  proposi t ion are dual  to  

each other.  Note  t h a t  the  converse of Prop.  2.3 is, in general, false. 
Since in our  discussion all categories will be assumed to  possess zero-maps 

we will henceforth s imply use the  word  "ca tegory"  to  denote  a ca tegory  with 
zero-maps and the word " func to r"  to  denote  a (unary) funetor  which preserves 
zero-maps. Examples  of such categories and funetors  are given below (§ 5). 

3. Direct and inverse products 

Let  A 1, A S . . . . .  An be a finite collection of objects of ~. A direct product 
(P ;  Pl, P2 . . . . .  Pn), abbrevia ted  to  (P ;  p~) or even P ,  of A 1, A S . . . . .  A n is an 
object P of ~ and  a sys tem of maps  p~: P ~ A j ,  j - ~  1, 2 . . . .  , n ,  with the  
proper ty3) :  (D) For  a n y  object  X of ~ and  any  sys tem of maps  ]~: X - ~  A~, 
j = 1, 2 . . . .  , n, there exists a unique m ap  / : X ~ P with p ~ / =  ]i. 

The maps  pj are called the  projections of P ,  and  the  maps  )t~ are called the 
components o f / ;  we wri te  / = {h, /2  . . . . .  /~}, so t h a t  

(3.1) p~{h, ts . . . . .  £ }  = 5 .  
Notice t h a t  

(3.2) {01, 03 . . . . .  On} = 0 ,  

in view of (3.1) and the  uniqueness o f / .  
Suppose t h a t  ( P ' ;  p~) is a direct  p roduc t  of the  objects A~, A~ . . . . .  A~ and 

let maps  g~ : Aj -+ A] be given, j --  1, 2 . . . . .  n. The ma p  

(3.3) g - :  { g l P l ,  g 2 P 2  . . . . .  gnPn} : P "-~ P '  

will f requent ly  be wri t ten  gl × g~ × " " " × gn" I n  par t icular  set t ing Aj ~ A~, 
g~ : 1, j ----- 1, 2 . . . .  , n, we have 

(3.4) 1----1 × 1 × . . - ×  1----(pl, p2 . . . . .  P n } : P - * P -  

We now list some rules which m a y  be deduced immedia te ly  f rom the  
definitions. 

Proposition 3.5. Given h : X '  --~ X and {/1, ]~ . . . . .  ]n} : X -~ P ,  then 

{ h , / ,  . . . . .  /n}h  = { h h , / , h  . . . . .  /nh} : X '  -~ e .  

8) There is, of course, no difficulty in generalizing this definition and the subsequent 
discussion to arbitrary collections of objects of ~, but we are content to leave this generali- 
zation to the reader. 
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Proposition 3.6. G i v e n  {]1,/2 . . . .  ,]n} : X -~ P a n d  91 x 92 x • • • x 9,~: P -~ P ' ,  

t h e n  

(9~ x g~ x . . .  x m~) {I1,  t~ . . . . .  l~}  = {9~1~, 9~I~ . . . .  ,9W,~}  : i ~ P ' .  

Proposition 3.7. G i v e n  

9 1 x  g2 x . . . x g~ : P - ~ .  P '  a n d  hl  x h3 x . . . x hn : P ' - >  P ' ,  

where  ""  " ( P  , p j  ) i s  a d irect  p r o d u c t  o / A ~ ' ,  A'2', . . ,  A ' / ,  t hen  

(h l x h 2 x " " " x hn) (gl x 92 x " " x gn) = hlgx  x h292 x " " " x h,~gn : P ~ P " .  

From Prop. 3.6 we immediately infer 
Theorem 3.8. I / 9 ~  : A j  ---> A~ is  a m o n o m o r p h i s m  ]or each ], then  9 = 91 x 

x 92 x • • • x g~ : P -+ P '  i s  a m o n o m o r p h i s m .  

(The corresponding s ta tement  for epimorphisms is false; see the appendix.) 
From Prop. 3.7 and (3.4.) we immediately infer 
Theorem 3.9. I /  9j : A j  ~ A~ is  a n  equiva lence  /or  each ], then  g = 9t x 

x g2 x • • • x 9n : P -+ P '  is  a n  equ iva lence  s u c h  that  

(3.10) P ~ 9 = 9 ~ P j ,  j = l , 2  . . . . .  n ;  

a n d  g is  u n i q u e l y  d e t e r m i n e d  b y  (3.10). 
By  taking A~ = Aj in this theorem and all gJ = 1, we see tha t  if (P;  p~), 

(P ' ;p~)  arc both direct products of A1,  A 3 . . . .  , A ~  then there is a unique 
equivalence 9 : P - ~  P '  such tha t  

(3.11) P ~ g =  PJ ; 

we say tha t  9 is the c a n o n i c a l  equivalence between (P;  pj) and ( P ' ; p ~ ) .  Con- 
versely if ( P ; p j )  is a direct product  of A1,  A 2 . . . . .  A ~  and g: P - >  Q is an 
equivalence then (Q; p i g  - I )  is a direct product of A1,  A s . . . . .  A n and 9 is the 
canonical equivalence between ( P ;  pj) and ( Q; p~. 9-1). 

The definition of a direct product  refers to an unordered 4) set of objects 
so tha t  i t  is, per  d e f i n i t i o n e m ,  commutat ive  as a function of two objects. On the 
other hand if we wish to form the direct product of objects presented as 
A, B, C , . . . ,  i t  is necessary to assign to them a definite but  a rb i t ra ry  order so 
tha t  we m a y  be able to refer to a map  ] : X -> P by  means of its components 
]1,/2 . . . . .  /n without  ambiguity.  Once this order is assigned the notations 
] = {~i,/2 . . . . .  ]~} and pj for the projections become unambiguous. 

Let  us take the case of two objects which is quite typical. I f  then we say tha t  
(P;  #, l) i s  a d irec t  p ro d uc t  o / A  a n d  B i t  is to  be understood that/c,  l are maps  
in H (P, A), H (P, B) respectively; and if we refer to a map  / : X --> P by  means 
of its components, / =  {9, h}, it is to be understood tha t  9 ( H ( X , A ) ,  

h ( H ( X ,  B )  and #]  = g, I / =  h.  Now let (P ' ;  #', l') be a direct product  of B 
and A. Then (P '  ; l', k') is a direct product of A and B so tha t  there is a canonical 
equivalence 

v:  (P;  k, l) -~ (P ' ;  l ' ,/c') 

4) An alternative procedure is to define the direct product for ordered sets of objects. 
This procedure leads, of course, to a different development of the basic concepts. 
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such t h a t  

(3.12) t 'v  = k, k ' z =  I .  

I f  we regard ~ as a m a p  f rom P to  ( P '  ; k', l ') it  follows f rom (3.12) t h a t  we m a y  
write i t  

(3.13) ~ =  {/, k} : P - + ( P ' ; k ' , l ' ) .  

Of course we m a y  have P '  = P ,  T = 1, l '  ~-- k, /c '  = I. On the  o ther  h a n d  in  the 
particular case A = B we m a y  t ake  P '  = P ,  k' =/~,  l' = l, giving rise to  an  
equivalence, 

(3.14) ~ =-- {1,/c} : P - +  (P ;  k, l) 

which is, in general, different f rom the  ident i ty  map.  
We shall henceforth adopt  the  no ta t ion  (A × B x C x . . .  ; Pl, P2, P3 . . . .  ), 

usually contracted to  A × B x C x . . . .  for an  a rb i t ra ry  representat ive of the 
class of canonically equivalent  direct  products  of the  objects A, B, C . . . . .  
Indeed  by  writ ing the object  A x B x C × . . .  in this wa y  we are exhibit ing 
the range of the  ] t h  projection pj and rendering unambiguous  the  expression by  
components  of a m a p  into A × B x C × . . . .  I n  this no ta t ion  the  s)-mbol pj 
becomes a generic symbol  for the  project ion of a direct  p roduc t  onto  its j t h  
fac tor  and  assumes the  na ture  of an  opera tor  which, when applied to  ~ map  
] = {/1, ]~, ]3 . . . .  } yields its j t h  component  (see (3.1)). Wi th  these nota t ional  
conventions (3.13) assumes the  fo rm 

(3.15) • = {P2, P~} : A1 × A~ --> A 2 × A~ 

and (3.14) becomes 

(3.16) v = {P2 '  Pl} : A × A -~ A × A . 

We call the map  v in (3.15) or (3.16) the  switching map or switch;  it switches 
components  in the  precise sense t h a t  

(3.17) ~{1~, lz} = {12, 1~}, 

/i E H ( X ,  A~), i =- 1, 2. We can, of course, have A i --  A n = A in this formula,  
as in the following theorem. 

Theorem 3.18. Let 5~ : A~ --> B~, i = 1, 2. Then, assuming the direct products 
to exist, the diagram 

is commutative. 

A i x A  2 ~×~'~'B i x  B z 

A~ x A i ~,×~l._, B~ x B 1 

For T(51 X 52) = {P2' Pl} (51 × 52) 

= {p~(5 i x ~2), Pi(~l x 52)} by  Prop.  3.5, 

= {52p~, 51P1} b y  definition of 51 x 5~, 

=- (52 x 5i) {P2, Pi} by  Prop.  3.6, 

= (53 x 51)~.  
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W e  will  call  ~ a category wi th  direct products or D-category if a n y  f inite 5) 

col lect ion of ob jec t s  of ~ has  a d i rec t  p roduc t .  W e  p rove  
Theorem 3.19. ~ is a D-category i / a n d  only  i /  a n y  two objects o / ~  have 

a direct product. 
This follows i m m e d i a t e l y  f rom 

L e m m a  3.20. ( ( A  1 X • • • x A, )  x (At+ i x • ' • x An); PlPl  . . . . .  PIP1, 
PiPs . . . . .  P n - t P s )  is a direct product o / A i ,  A s . . . .  , A n. 

Proo/ .  Suppose  g iven  / i : X - - *  Ai ,  i = 1 . . . . .  n. Then  the re  exis t  
/ ' : X ~ A  i × . . . × A  t such t h a t  p ~ - / ' = / j ,  j =  1 , . . . , r ,  and  / " : X - *  
- * A , +  i x • .  • x A n such t h a t  Pk /"  = / k + , ,  k =  1, . . . ,  n -  r. Consequen t ly  
the re  e x i s t s / :  X - +  (A i x • • • x A t )  × ( A t + i  x " " " x An) such t h a t  P i / = / ' ,  
p J  = / " ,  whence 

p ~ p l / =  /j ,  i =  l . . . .  , r ; P k P J =  /k+t,  k----1 . . . .  , n - r . 

Now suppose  t h a t  PJPi /  = P~Pig, j =  1 . . . . .  r, a n d  P~Ps/  = PkPsg, 
k : 1 . . . . .  n - r. Then  P l / :  Pig,  P J  : Psg, so t h a t  / -~ g and  t h e  t emma is 
p roved .  

The  l emma implies  also t he  associativi ty  of di rec t  p roduc t s :  
Theorem 3.21. There is a canonical equivalence a : (A i x As) x A a -* A i x 

x (A s x A3) such that 

a{{/i, 13}, 18} : {{/1, {Is,/a}} 
where li E H ( X ,  A i )  , i = 1, 2, 3. 

Note  t h a t  t he  m a p  a m a y  be wr i t t en  {PiPl, Ps x 1} and  a - i  m a y  be wr i t t en  
{1 x Pi, P~Ps}. There  is Mso a canonica l  equiva lence  

b : ( A  i x A s )  x A  a - + A  i x A  2 x  A 3,  
g iven  b y  

(s.~2) b = { p l y ,  p ~ p .  ps}, b-1 = { {p .  ps}, p~}.  

W e  m a y  use such equivalences  as b imp l i c i t l y  to  i n t roduce  b racke t s  in to  a 
d i rec t  p r o d u c t  objec t .  Thus,  for example ,  we m a y  refer  to  t h e  m a p  

1 x ~ : A  l x A  sXAa-*A1 x A  a X A  s 

as a s h o r t h a n d  n o t a t i o n  for  c (1 x T)c - i ,  where  c is t he  canonica l  equiva lence  

c -~ ba  -1 -~ {Pl, PiPs, P2Ps} : A i  x (A s x Aa) -* A i x A s x A a . 

I n  fac t  in ca lcu la t ions  invo lv ing  impl ic i t  b r acke t ing  i t  is u sua l ly  p re fe rab le  
to  p re sen t  t he  m a p s  b y  means  of t he i r  componen t s  i n  the unbracketed ]orm. 

Thus,  for  example  t h e  m a p  1 x T a b o v e  is g iven  in componen t s  b y  

(a.2a) 1 x ~ = { p .  ps, ps} 

To prove  (3.23) we m u s t  show t h a t  

(a.24) {p,, p, ps, p,,ps} (i  x {ps, pl}) = {p,, p~, p2} {p,, pips, psp2} • 

5) See footnote 3. 
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Now 1 x {Ps, Pl} : {Pl, {P2, Pl}Ps} = {P~, {P2Ps, PlP~}}. Thus 

{P~, P~Ps, PsP~} (1 × {P2, P~}) = {Pl, P~{P~Ps, PlP~}, Ps{PsPs, PiPs}} 

= {Pl, PsP~, PiPs} 

= {pl, p3, psi {pl, p~ps, p,  ps} .  
In this calculation we have made repeated use of (3.1) and Prop. 3.5; in future 
we will state the component forms of such maps as 1 × ~ without proof, 
leaving the verification to the reader. We illustrate the notation in the following 
proposition which will be used in a later  paper of the series. 

Proposition 3.25. The diagram 

A x B x C  

C l X ~ B  B x A x  - -  × C x A  
commutes. 

Notice that  the description of the maps in the diagram involves implicit 
bracketing. However in component form the maps are given by 

X 1 = {Ps, Pl, P3}, 

1 X • = {Pl,  P3, P s } ,  

= {Ps, P~, P l} ,  

and in this form the commutat ivi ty is trivial. 
Frequent use will be made of the following special maps related to direct 

products. If  A1, A s . . . . .  A n are objects of a D-category ~ then there exists for 
each j, 1 <j-_< n, a m a p  

(3.26) l j = { 0  . . . .  , 0 , 1 , 0 , . . . , 0 } : A j - ~ A  l x A ~ × . . .  × A n ,  

where the ] th component is 1 and the rest are zero. Since pjtj = 1 it follows that  
each pj is an epimorphism and each e~ is a monomorphism. If  A 1 = A s . . . . .  An 
there is a map 

(3.27) d = { I ,  1 , . . . , 1 } : A - ~ A x A x - . . x A ,  

called the diagonal map; it is evidently a monomorphism, and, moreover 

(3 .28)  { h ,  t~, . . . . .  t,,} = (h  x h x - . "  x l , ) d ,  

for maps h ( H (A, Bj),  ~ = 1, 2 . . . . .  n. 

Proposition 3.29. The diagram 

A x B  

is commutative. 

l x , ~ x l  
A x A × B x B  , A x B x A x B  
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For ,  in t e rms  of components ,  t h e  asse r t ion  is t h a t  

{pl, p3, p,}  {pl, p .  p2, p2) = p2, p .  p2) ,  

which is obv ious ly  t rue .  
W e  t u r n  now to  t he  concept  dua l  to  t h a t  of d i rec t  p r o d u c t ;  th i s  wil l  be 

cal led the  i n v e r s e  p r o d u c t  and  i t  is sufficient of course to  es tabl i sh  t e rmino logy  
and  no ta t ion .  Thus  an  inverse  p r o d u c t  of t he  ob jec t s  A~, A s . . . . .  A n is an  
ob jec t  Q and  a sy s t em of m a p s  qs : As -> Q, ] = 1, 2 . . . . .  n, w i th  the  p r o p e r t y :  
(I) F o r  a n y  ob jec t  X of ~ and  a n y  sys t em of m a p s  ]j : A s -+ X,  } = 1, 2 . . . . .  n ,  

t he re  exis ts  a un ique  m a p  ] : Q -> X wi th /q~  = / s .  

The maps  qj a re  cal led the  i n j e c t i o n s  in to  Q, a n d  the  m a p s / j  a re  cal led thc  
c o m p o n e n t s  o f / ;  we wr i te  / = ( /1, /2 . . . . .  /n>, so t h a t  

(3.30) ( /~,  /,. . . . . .  [ ~ } q j  = ]~ 

I f  (Q' ;  q~) is a n  inverse  p r o d u c t  of A~, A~ . . . .  , A~ a n d  m a p s  g~ : A~ -~ A~., 
] = 1, 2 , . . . ,  n, a re  given,  t h e  m a p  g = ( q i g l ,  q~g2, • • . ,  q n g n }  : Q '  -> Q will  be 
w r i t t e n  gl * g2 * " " " * gn" F u r t h e r  we shal l  wr i t e  A t • A s • • • • • A n  for  an  
a r b i t r a r y  r ep resen ta t ive  of t he  class of canonica l ly  equ iva len t  inverse  p roduc t s  
of t h e  ob jec t s  A1, A 2 . . . . .  A n. I f  in  ~ a n y  two  ob jec t s  a n d  hence  a n y  f ini te  
n u m b e r  of ob jec t s  have  a n  inverse  p r o d u c t  we say  t h a t  ~ is a c a t e g o r y  w i t h  

i n v e r s e  p r o d u c t s  or an  I - c a t e g o r y .  

Dua l  to  t he  m a p s  t~ we have  the  m a p s  

(3.31) :~j ---- (0  . . . . .  0, 1, 0, . . . ,  0 )  : A 1 * A 2 • • • • * A n ---> A t 

in  an  I - c a t e g o r y ;  and  if A 1 = A~. . . . . .  A n we have  the  ] o l d i n g  m a p  

d------ (1, 1 . . . . .  I > : A  * A  * " ' "  * A - > A  , 

such t h a t  

(3.32) (/1, 1~ . . . . .  In) = d ( l l  * / 2  * ' ' "  * In ) ,  

for  m a p s  ls C H ( B j ,  A ) ,  i = 1, 2 . . . . .  n .  

I f  no a m b i g u i t y  is to  be fea red  we wil l  wr i t e  d for d or  d. 

A ca t ego ry  w i th  d i rec t  and  inverse  p roduc t s  is cal led a D I - c a t e g o r y .  W e  
prove  the  fol lowing t heo rem for such categories .  

Theorem 3.33. L e t  A 1 . . . .  , A m ;  B1  . . . .  , B n be ob jec t s  a n d  / i j  : A i  -> B j ,  

i = 1 . . . .  , m ,  ~ =- 1 . . . . .  n ,  m a p s  i n  the  D I - c a t e g o r y  ~ .  T h e n  

x . . .  x B n ,  

w h e r e  ~ :  <{/~ . . . .  , ha} . . . . .  { / ~  . . . . .  /,nn}), a n d  /_ = { ( / ~  . . . . .  [m~> . . . . .  

( l , n  . . . .  , 
For p,  I----- ( P , { l u  . . . . .  / , n }  . . . . .  P, {/~1 . . . . .  l~.}>, by the dual of Prop. 3.5, 

= <1 .  . . . . .  
= P J L '  l ~ ] d n .  

I n  pa r t i cu l a r  we m a y  t a k e  m =  n, Aj  = B~, ~ = 1 . . . . .  n, a n d  / .  = 1. 
/t~ = O, i ~= j.  W e  t h u s  o b t a i n  a m a p  

(3.34) x = < q  . . . . .  t n > = { ~ ,  . . . . .  g n } : A I * ' " * A n - ~ A l X ' " x A  n , 
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called the canon ica l  map, from inverse to direct product. I t  is natural  in an 
obvious sense. 

We close this section with a brief discussion of the functors which are of 
special interest to us in considering D-categories and I-categories. Since our 
categories will always be categories with zero-maps, we shal l  a l w a y s  i n s i s t  that  

a ]unctor  preserve  zero m a p s .  Now let F : ~ -~ ~ '  be a covariant  functor from 
the D-category ~ to the D-category ~ ' .  We will say tha t  F is a D-]unc tor  if it 
preserves direct products in the following sense: I f  (P ;  p~) is a direct product  
of A 1, A 2 . . . . .  An ,  then ( F ( P ) ; F ( p ¢ ) )  is a direct product  of F ( A 1 ) ,  

F (A 3) . . . .  , F ( A  n). We shall write this proper ty  briefly as 

F ( A  I × A 2 × • • • × A,~) = F ( A I )  × F ( A 2 )  × • . .  × F(A,~)  , 

F(p~) = p~. 

Proposition 3.35. I /  F :  ~--> ~ '  is  a D - / u n c t o r  a n d  /i  ~ H ( X ,  As) ,  

] =- 1, 2 . . . . .  n, t hen  

F { I .  lz . . . . .  ln} = { F / l ,  F/~ . . . . .  -F in } .  
For p~ F{/1, Is . . . . .  1~} = F(p~) F { h ,  12 . . . . .  1~} 

= F (p~. {11, 12 . . . . .  In}) 

= F ( I j )  

= p~ { F I .  FI2 . . . .  , F I ~ } .  

We omit the proofs of the following propositions, in which F is understood 
to be a D-functor.  

Proposition 8.36. F(v) = v'  : F ( A ~ )  × F ( A ~ )  -+ F ( A ~ )  × F ( A ~ ) .  

Proposition 3.37. (i) F(t~) = t~ :F(A~) ~ F ( A 1 )  × F ( A ~ )  x • • • × F ( A n )  

(ii) F ( d ) - - - d '  : F ( A ) - - > F ( A )  × F ( A )  × . . .  × F ( A ) .  

Of course an I-functor  from the I-category ~ to the I -category ~ '  is defined 
similarly; in particular a D-functor from ~ to ~ '  can be interpreted as an 
I-functor  from ~* to ~ '* .  A contravar iant  functor from the I-category ~ to the 
D-category ~ '  will be called an I - ]unc tor  (or, more explicitly, a contravariant  
I-functor) if it is an I-functor  from ~ to the I-category ~ ' * ;  a contravariant  
D-functor is defined analogously. I f  ~ and ~ '  are both DI-categories then we 
may  define covariant and contravariant  DI-functors  from ~ to E '  in an evident 
way;  and we have 

Proposition 3.38. If  F : ~ --> ~ '  is a D I- functor  then 

F(:~) = :~' : F ( A 1 )  * F ( A ~ )  * • • • * F ( A n )  -+ F ( A 1 )  × F ( A ~ )  × • "" × F ( A n )  . 

We are deferring our principal examples to section 5, but  we mention here 
two very important  examples of the special functors we have been discussing. 
Let  @ be the category of based sets and let ~ be any  category (with zero maps). 
Then for each fixed object A of ¢ the t ransformation 

X -+ H (A, X) 

induces a (covariant) func tor /~  from ~ to ~ ,  if, for / : X -~ Y, 

F ( t )  : H ( A ,  X )  ~ H ( A ,  Y )  
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is defined by  the  rule 

_~([) (g) = ]g, g E H ( A ,  X )  . 

The zero maps  of ~5 are just  the  funct ions sending sets to  base elements and 
the base element of H ( A ,  X )  is the  zero m ap  f rom A to  X. Thus  F certainly 
preserves zero maps.  We prove 

Theorem 3.39. I / ~  is a D-category then F = H (A, ) is a D-/unctor / tom 
~ to ~5. 

Proo]. We mus t  show t h a t  if X 1, X 2 . . . . .  X~ E ~ then  H ( A ,  X 1 × X2 × • • . 
• • • × X~; ~V(pj)) is the  direct  p roduc t  of H ( A ,  Xn), j = 1, 2 . . . . .  n, in ~ .  

Le t  Y E ~  and  let ] j : Y ~ H ( A , X ~ )  be maps  in ~ .  Wri t ing  X for 
X l × X ~ × . . . × X ~ , w e d e f i n e ] :  Y ~ H ( A , X )  b y t h e r u l e  

](Y) = (/~(Y),/~(Y) . . . .  ,/~(Y)}, Y E Y .  

Then / is a map  of based sets by  (3.2). Moreover 

(-F(pj)/) (y) = p ~ o / ( y ) = / j ( y ) ,  all ~) y E Y ,  
so t h a t  

~ ( p ~ ) !  = !~. 

Now suppose F ( p j ) ! = F ( p ~ ) g .  Then p ~ o / ( y )  = p ¢ o  g(y),  all y ~ Y, so tha t  
/ ( y )  : g(y),  ! = g. This proves the  theorem.  

I n  an obviously analogous w ay  we obtain,  by  fixing A E ~, a cont ravar ian t  
functor  H ( , A) f rom ~ to  ~ .  The dual i ty  principle ensures 

Theorem 3.40. I !  ~ is an I-category then F_ : H (  , A)  is a (contravariant) 
I-!unctor ]rom ~ to ~ .  

4. Multiplieative structures 

Let  ~ be a D-ca tegory  and  let A be an object  of ~. Then  an M-structure 
(or multiplication) on A is s imply a m ap  m : A × A -+ A in ~ and  the  pair  (A ,m)  
is called an  M-object. I f  (A, m) and  (A', m')  are two M-objects a map  g : A ~ A '  
is called primitive or homomorphic with respect to  the  given M-structures  if 
m'  (g × g) ~- g m :  A × A -+ A '  ; t h a t  is, if the  d iagram 

A × A  m * A  

A ,  x A , ~ ' ~ A  , 

commutes.  We observe t h a t  ident i ty  and  zero maps  are primitive.  I t  is easy to  
prove : 

Proposition 4.1. I [  (A, m), (A', m'),  (A" ,  m" )  are M-objects and g : A -~ A ' ,  
h : A '  ~ A "  are maps  then (i) i / g  and h are primitive 80 is hg; (ii) i / h g  and h 
a r e  primitive and h is a monomorphism then g is primitive.  

6) We use the notation o to indicate composition of maps where its omission might 
lead to confusion. 



Group-Like Structures. I 239 

Given an  M-object  (A, m) and  an  a rb i t r a ry  X E ¢ ,  the  m a p  m induces a 
composit ion in the  set H (X, A) by  the  rule 

(4.2) / ÷ g =  m( / ,g}  : X ~ A × A - ~  A,  / , g  E H ( X , A )  . 

Thus (H(X,  A), ÷ )  is an M-object  in the  ca tegory  ~ ,  or, as we m a y  say, an  
M-set. I f  h : X --> Y in ~, we wri te  h* for F (h) where _F : ~ ~ ~ is the  eontra-  
var ian t  func tor  of Theorem 3.40 and  prove 

Theorem4.3 .  h* : H ( Y , A ) - >  H ( X , A )  is primitive with respect to the 
M-structures in H ( Y, A ), H (X, A)  induced by the M-structure in A .  Conversely, 
i / /or  each X E ~ an M-structure ÷ is defined on H (X, A) in such a way that h* 
is primitive/or every map h o / ~ ,  then A admits a unique M_-structure m such 
that (4.2) holds. 

Proo]. Notice t h a t  to  assert  pr imi t iv i ty  for h* is s imply to  assert  t h a t  

(4.4) h*(/1 q-/s) =~ h*(/1) ÷ h*(/s), /1, /s E H ( Y ,  A)  . 

N o w  h*( l l  + Is) = (11 + ls )h  = m{ l l ,  l s}h = m { f l h , / ~ h }  = l lh  + tsh 
= h* (11) q- h* (/s), proving the  first pa r t  of the  theorem.  

Conversely let each set H ( X ,  A) have an __-structure + and let h* be 
primitive with respect  to  ÷ for all h. Take in par t icular  X ~ A x A and con- 
sider the map  Pl q- Ps : A x A -~ A. I f  now X is an a rb i t r a ry  object  of ~ and 
11,/3 E H ( X ,  A), then  {11, Is) : X --> A x A, so, by  (4.4), 

(pl + p~) {/1, ls) = { t .  ls)* (pl + ps) = {1. ls}* (pl) + {1. Is)* (ps) 

= p l { / .  Is} + ps { / . / , }  

= /1  + / s .  
This means t h a t  the M-structure  in H ( X ,  A) is induced by  the  map  m = 
Pl ÷ P~ : A × A -~ A. I f  the  m ap  n : A × A ~ A induces the  same M-structure  -k 
in H (X, A) for each X E ~, then  

Pl + Ps = n (Pl, Ps} ---- n 1A × A = n ,  

so t h a t  the  uniqueness is proved.  
We m a y  express the  conclusion of Theorem 4.3 in the  following way.  Let  Tt  

be the  ca tegory of M-sets and primit ive maps .  There  is then  an evident  func tor  
U f rom !~  to  ~ which s imply divests an M-set of its M-structure ,  and  the  rule 
(4.2) sets up  a one-to-one correspondence between M-structures  m on A and 
cont ravar ian t  functors  _F,~ : ~ ~ T~ such t h a t  U_F~ : _F. 

We now dualize. Le t  ~ be an  L e a t e g o r y  and let A be an  object  of ~. Then  
an ~.structure (or comultiplication) on A is a m a p  m : A ~ A • A and the  pair  
(A, m) is called an  ~.ob~ect. I f  (A, m) and (A',  m') are two ~ -ob jec t s  a map  
g : A '  -~ A is called primitive or homomorph ie  if the  d iagram 

A ' ~' ' A '  ------* A * 

A m--2~ A , A 
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commutes. We omit  the dual of Prop. 4.1 and pass to the observation that ,  
given an M-object (A, m) and an arbi t rary  X ~ ~, the map m induces an 
M-structure in the set H (A, X) by  the rule 

(4.5) / +  g =  (!,  g ) m  : A -~ A , A -+ X ,  /, g C H (A, X )  . 

We write h ,  for F(h)  where _~ : ~ -+ ~ is the covariant  functor of Theorem 
3.39 and h:  X - +  Y; the duali ty principle yields 

Theorem4.6.  h ,  : H ( A , X ) - + H ( A ,  Y)  is primitive with respect to the 
M-structures in H (A, X) ,  H (A, Y)  induced by the ~l-strueture on A .  Conversely 
i / / o r  each X an M-structure ÷ is defined on H (A, X )  in such a way  that h .  is 
pr imi t ive /or  every map  h o / ~ ,  then A admits a unique M-structure m such that 
(4.5) holds. 

We m a y  rephrase this by  saying tha t  (4.5) sets up a one-to-one corre- 
spondence between M-structures m on A and covariant functors Fm : ~ -+ 
such tha t  U F--~ = _F. 

We next  enunciate two theorems whose duals will remain implicit. 
Theorem 4.7. Let (A, m), (A', m') be two M-objects and let g : A ---> A '  be 

primitive; then g .  : H (X, A)  -+ H (X,  A ' )  is primitive with respect to the M_-struc- 
tures induced by m, m' .  

Proo/. Let/1,/9` ~ H ( X ,  A) .  Then 

~$(/1 ~- / 9,) = g(/i -~ 12) = ~m{/i , /9`} 

= m'  (g × g) {/1, /2), since g is primitive,  

= m'(g/1, g/s},  by Prop. 3.6, 

= g/1 + g/s 

= g,  (/1) + g,  (/s) • 

I t  is obvious tha t  the converse of Theorem 4.7 holds : if g,  : H (X, A)  -+ H (X, A ' )  
is primitive for all X E ~ then g is primitive. 

Theorem 4.8. Let (A1, ml) , (Ag`, ms) be two M_-ob]ects. Then there exists a 
unique M-structure m on A 1 × Ag` such that Pl and pg  ̀are primitive. Moreover i] 
(X,  m')  is an M_-object then (/1,/s} : X --> A 1 × Ag` is primitive (with respect 
to m '  and m )  i/]1 and/9` are primitive.  

Proo/. Define m : A 1 × A s × A 1 × A s -+ A 1 × Ag  ̀ by  m = ( m i ( P l  , Pa}, 
mg`{pg`, P4}}; using implicit bracketing m m a y  be described as (m 1 × rag`) 
(1 × ~ ×  1 ) . N o w t h e m a p p l × p l : A 1  × A g ` × A  1 ×Ag` -~A I × A  l i s g i v e n i n  
components by  {Pl, Pa}. Thus 

PI m = ml(Pl  × Pl) 
and, similarly, 

pg`m = m g ` ( p  2 × pg`) , 

so tha t  Pl and P2 are primitive. The uniqueness of m follows from the fact tha t  
the primit ivi ty of Pl (Pg`) determines the first (second) component  of m. 
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By  Prop. 4.1 I1 and 12 are primitive if {11, I,} is primitive. Conversely let 
11,/2 be primitive. Then 

p~({11, Is} x {h, 1~})= mh(pj x pj)({11,1~} x {h, 1,,}) 

= m5(t5 x 15) 

= t5 m',  since 1~ is primitive 

m I • = p 5 { 1 1 , / s }  , ~ = 1,  2 ,  

and {11, t2} is primitive. 
Corollary 4.9. 11 gs : A~ -> Bh, ] = 1, 2, are primitive then gl x gs : A1 x A 2 -> 

-> B 1 x B~ is primitive. 
The converse of this corollary also holds since g~----P~(gl x gs)l s. 
We call the M-object (A 1 x As, m) the direct product of the M-objects 

(As, ms), ?" : 1, 2. This terminology is amply justified since it is indeed their 
direct product in the category of M-objects and primitive maps. 

We now consider axioms which we might wish to impose on an _M-structure. 
These axioms which are natural  generalizations of those employed in group 
theory are as follows; they relate to the M-object (A, m). 

I (zero as unit) m { 1 , 0 } = m { 0 , 1 } = l : A - > A  x A - > A ;  
I I  (associativity) 

m(m x 1 ) = m ( l  x re)a: (A x A) x A -> A x (A x A)-> A x A - > A ;  

I I I  (existence of an inverse) there exists s : A -> A such that  

m{l , s} -~m{s ,  1 } - ~ 0 : A - > A  x A ~ A ;  

IV (commutativity) m = my : A × A -> A × A -> A.  
In  I I  the map a is the canonical equivalence of Theorem 3.21. We will 

generally omit it, writing simply m(m × 1 ) =  m(1 × m). In terms of 
components m x 1 = {re{p1, Ps}, Pa} and 1 × m = {Pl, m{p~, Pa}}- 

An M-structure satisfying I will be called an H-structure 
An M-structure satisfying I, I I  will be called an AH-structure.  
An M-structure satisfying I, II ,  I I I  will be called a G-structure. 
An M-structure satisfying I, II ,  I I I ,  IV will be called a C G-structure. 
An M-structure satisfying I, II ,  IV wilt be salled an ACH-structure.  
Similar conventions apply to M-objects and M-sets, except tha t  a G-set 

will usually be given its familiar name "group" and a C G-set its familiar name 
"commutat ive group" or "abelian group".  We now prove a basic theorem. 

Theorem 4.10. Let (A, m) be an M.ob]ect and let H (X, A)  have the induced 
M-structure ]or each X .  Then m satisfies axiom K (K = I, II ,  I I I ,  IV) i I and 
only i I the induced M-structures satisly axiom K. Indeed zero is a right (lelt) 
unit in A i I and only i / i t  is a right (le]t) unit in H ( X ,  A)  and a right (lelt) 
inverse exists in A it and only i I it exists in H ( X ,  A).  

Prool. I. Let  m { 1 , 0 } = l .  Then ] + O - - - - - m { l , O } = m { 1 , 0 } l = l .  Con- 
versely if 0 is a right unit in H(A ,  A) then 1 -- 1 + 0 ---- re{l,  0}. Similarly for 
left units. 
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I I .  I f  ]i E H ( X , A ) ,  i =  1 ,2 ,  3, t hen  (11-t- 12) ÷ /a=m{m{/1,/2}, /3},  
tl + (12 + I3) = m { / .  re{t2,13}}. N o w  

{re{t1, 12}, 13} = {m{Pl, P2}, P3} {11, 12,/3)- 

For {m{pl, P2}, P3} {11, 12,13} = { m { p .  p2} {11,12,13}, p3 {11,12,13} } 
= {m{Pl{/1, 12, Is}, P2{11, 12, 13}}, P3{11, 12, 13}} 
= {m{11,12}, 13}. 

Similar ly {11, m{12, Is}} = {Pl, m{P2, Pat} {11, I2,/3}. 
Thus  if m satisfies ax iom I I  H(X,  A) is associat ive and  if, in par t icular ,  
H(A x A x A, A) is associat ive then  m satisfies ax iom I I .  

I I I .  Le t  m{1, s} ---- 0. Then  / + s / =  m{/, s/} : m{1, s } / =  O. Conversely 
i f ' s  is a r ight  inverse of 1 in H(A,  A) t hen  0 = 1 + s = m{1, s}. Similar ly  for 
left  inverses.  

IV.  Le t  m y  = m. Then  if 11, 12 CH(X,  A), 11 + 12 : m{/1, 12} = my{/1, 12} 
= m {12, 11} : 12 27 11" Conversely  if H (A x A, A) is c o m m u t a t i v e  then  m : Pl + 
4" P2 = P2 + Pl = m {P2, Pl} = m v. 

Theorem 4.10 enables us to  t ransfer  cer tain theorems  f rom group  t heo ry  to  
general  G-objects.  Thus  let I n (I~) be the  ax iom t h a t  zero is a r ight  (left) uni t  
and  let  I I I  r (IIIz) be the  ax iom assert ing the  existence of r ight  (left) inverses.  
Then  we have  

Corollary 4.11. I/ the M-structure m : A x A -> A satisfies axioms In, I I ,  I I I , ,  
(or Ii, I I ,  I I Iz )  then it is a G-structure. Moreover the right inverse s is uniquely 
determined by m. 

For  if m satisfies In, I I ,  I I I r  so does the  M-s t ruc ture  + in H(A,  A) with s 
as the  r ight  inverse of 1. Thus,  b y  classical g roup  theory ,  H(A,  A) is a group,  
where  0 + 1 = 1, s + 1 = 0, and  s is unique.  The  first two conclusions asser t  
t h a t  m satisfies ax ioms I and  I I  and  the  th i rd  asser ts  t h a t  m de termines  s. 

Again we m a y  prove  b y  using Theorem 4.10 
Corollary 4.12. Let (A 1 x A2, m) be the direct product o/ the M_-ob]ects (A1, ml) , 

(A2, m2). Then i I the structures ml, m 2 satis/y axiom K, so does the structure m. 
Proo I. I n s t ead  of a direct  proof  we use Theorem 4.10 and  refer to  known (or 

obvious) facts  in the  ca tegory  ~ .  We show t h a t  if H(X,  A1) , H(X ,  A2) have  the  
M-s t ruc tures  induced by  m 1, m 2, then,  in the  direct  p roduc t  H (X, A1) x H (X, A2) 
= H(X ,  A 1 x A2), the  direct  p roduc t  M-s t ruc ture  coincides wi th  the  s t ruc ture  
induced b y  m. Fo r  if/~, l'~ EH(X,  At), i = 1, 2, t hen  

m{h, I2,1~, 1~} = {m~{p. p3}, m,{p,, p,}} {11, 12, Ii, 1'2} 
= {m~{p.  p~} {1,, 12, 1;., 1;}, 'n2{p2, p,} {1,, 1.~, I i ,  1;}} 
= {~,{1, ,  1~}, m2{l~, 1~}} 
= {5 + I;, 12 + I ; } ,  

or 
{/1,/~} + {/i,/~} = {h +/~, /~ + /~ } ,  

where + on the left is induced by m. We now conclude the proof of the Corollary 
b y  claiming t h a t  the  asser t ion is t r iv ia l  in ~ and  then  inferr ing the  asser t ion 
in an  a rb i t r a ry  ca tegory  b y  means  of Theo rem 4.10. 
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We next  prove the general associativity law for M-structures satisfying 
axiom I I .  This could also be achieved by  referring to properties of the category 
but  we prefer a direct proof. We define an n-product in the M-object (A, m) 
as fotlows. 

(a) An n-product in (A, m) is a map  in H(A n, A), where A ~ is the direct 
product of n copies of A ; 

(b) The unique 1-product in (A, m) is the ident i ty map  in H(A, A); 
(c) Assume n-products defined for n < k. Then a k-product is any map of 

the form 

Ak W , A q x A  ~ ]×g~A × A - : m ~ A ,  

where q + r = k, w is the canonical equivalence, / is a q-product and g is a 
r-product. Notice tha t  (by a simple inductive argument) there are n-products 
for every n ~ 1. 

Theorem 4.13. I / ( A ,  m) satisfies axiom I I  then the n.product in (A, m) is 
unique. 

Pro@ We argue by  induction on n, the assertion being true by  definition if 
n ~ l .  

Suppose the assertion t rue for n < k and consider two k-products 

A k ~ A  q x A ~ ]×g-'+A x A ' -m~A , 

A k ~ ' A q ' x A  ~' r×~'~A x A - ~ - ~ A ;  

notice tha t  we use the generic symbol w for the canonical equivalence. I f  q = q' 
it is clear by  the inductive hypothesis tha t  these two k-products coincide. Thus 
we m a y  suppose without  real loss of generality tha t  q > q', say q = q' + s. Let 
h : A s -+ A be an s-product. Then consider 

A k ~ A q x A ~  w×I , (Aq ,×As)xA  r (t 'xh)xg+(A×A)xA ,nxl " A x A  m'A 

, lxw , ]'x(hxg) lxm A 
A q ' x A " - -  "Aq x ( A " x A ' )  + A x ( A x A )  x A  

where a is the canonical equivalence of Theorem 3.21. This diagram is commu- 
ta t ive because (i) the canonical equivalence A e =+ Aq' x (A s x A n) is unique, 
(ii) a is natural,  (iii) m satisfies axiom I I .  But  

m(m x 1) ((I' x h) x g)(w x 1)w=m((m(r  x h)w) x g ) w = m ( l  x g)w, 

by the inductive hypothesis, and similarly 

~n(1 x m) ( r  x (h x g)) (1 x w)w = ~n(r x (m(h x a )w))w = m(l '  x g ) w  . 

This completes the induction. We will later adopt  the notat ion m" :A  n -~ A 
(m ~ = m), for the unique n-product  in an associative M-object (A, m). 

That, par t  of Theorem 4.10 which asserts t ha t  the lVI-structure in H(X,  A) 
inherits properties from the _M-structure m on A admits  an evident generaliza- 
tion. For let F be a covariant D-functor f rom the category ~ to the category ~ ' .  
Then if m is an ~ . s t r u c t u r e  on A, F(m) is evidently an ~ . s t ruc tu re  on F(A) 
and it is easy  to  show 

bIath. Ann, 145 17 
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ms( { f  , 0}, {0, ~ ' } )m 1 = 

while 

ms{q, o>, <o, g>im  = 

Theorem 4.14. The M.structure F(m) satisfies axiom K if the M-structure m 
satisfies axiom K, (K = I,  I I ,  I I I ,  IV). 

The following elementary result has important  consequences when the 
question of uniqueness of s tructure is under discussion. 

Proposition 4.15. Let (A, m) be an M-object and let T : A x A -~ A x A be 
the switch. Then m~ is an M-structure on A and m satisfies axiom K if and only 
i / m T  satisfies axiom K ( K  = I ,  I I ,  I I I ,  IV). 

We next  prove 
Proposition 4.16. Let (A, m), (A', m') be two G_-ob}ects and let g : A -~ A '  be 

primitive. Then g commutes with inverses; i.e., if s : A -> A,  s" : A '  -~ A '  are 
inverses with respect to the structures m, m', then gs ~ s' g. 

Proof. Consider g ,  : H ( X ,  A)  -+ H(X ,  A'). By Theorems 4.7 and 4.10 g,  
is a homomorphism of groups and so maps inverses to inverses. Moreover if 
] ~ H ( X ,  A) its inverse if s / ;  similarly the inverse o f / '  in H ( X ,  A') is s'/'. 

Take X = A. Then in H(A,  A),  s is the inverse of 1 so tha t  g,(s) is the 
inverse of g.  (1) in H (A, A'),  or g s is the inverse of g in H (A, A').  Thus g s = s '  g. 

Assertions 4.7--4.16 m a y  all be dualized, but  we will not  make the duals 
explicit. However the following important  theorem {which is self-dual) relates 
to DI-categories.  

Theorem 4.17. Let (A, ml) be an ~-object and (B, ms) an It-object in the 
D I-eategory ~ ; and let m I induce the H-structure ~ l  in H (A, X), m 2 induce the 
Hi-structure +2 in H ( Y, B). Then +1 -~ ÷s in H (A, B), and is a commutative 
H-structure. 

Proof. Let f, g ~ H(A,  B). Then by  Theorem 3.33 

<{/, 0}, {0, g}) = {</, 0), <0, g ) } :  A • A -+ B x B 
Bu t  

(ms{ l, 0}, ms{0, g})m I, by the dual of Prop. 3.5 

(/, g )ml ,  since m~. is an H_-structure 

f + l g ;  

m,{<l, 0>m,, <0, g>m,}, by Prop. 
m2{f, g}, since m 1 is an l~-structure 

= / + ~ g .  

To prove commUtat ivi ty  we simply consider the M-structure ~ = m2~ on B. 
By Prop. 4.15 r~ 2 is an Hi-structure since m s is, and, if ~7~ s induces ~ in H ( Y, B) 
then  

/ ~ y = g + ~ / ,  / , g E H ( Y , B ) .  

But,  by  what  we have already proved, if Y = A then f -~sg ----- f + i  g- Thus 

/ ÷ i g - - : g + l f ,  f, g E H ( A , B ) .  

We close this section with some brief remarks about  I t -s t ructures  in 
D I-categories. 
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Proposition 4.18. Let ~ be a D I-category and let ~ : A * A -> A x A be the 
canonical map (3.34). Then an M_-structure ra on A is an H-structure i/ and only i/ 

m g =  (1, 1 ) : A  . A - > A  . 

]For m~ = re(q ,  ~ )  ~- ( m h ,  mt~), and m is an  H_-structure if and only if 
mt 1 = 1 ,  m,~ ~ 1. We apply  this proposi t ion in proving 

Theorem 4.19. Let ~ be a DI-category and let g:  A . A - > A  x A be an 
epimorphism. Then i/ A admits an H-structure that structure is unique and 
commutative. I] also B admits an H_-structure then every map in  H (A, B) is 
primitive. 

Proo]. I f  m, m '  are two _H-structures on A, then  by  Prop.  4.18 m~ = m 'u .  
Thus,  ~ being an  epimorphism, m = m' .  The c o m m u t a t i v i t y  of m follows f rom 
Prop.  4.15, since m r  is also an H_-structure on A. 

Now let (B, m) be an  H-objec t  and  ~0 : A -+ B. Consider the  d iagram 

A * A  ~ ' A x A -  m ~ A  

~ ~n 

B , B  , B × B  ~ B  

The canonical map  ~ is cer ta inly na tura l  so x ( 9  • 9) ---- (9  × 9) u. On the other  
hand  

9 r a n  = 9 ( 1 ,  I )  = (9 ,  9 )  = (1, 1) ( 9 "  9) = r a n ( 9 *  9) 
Thus  

9 m~ = m~(9* 9) = m(9 X 7,)~. 

But  ~ : A , A - > A  xA is an  epimorphism so 9m-----m(gx 9) and  9 is 
primitive.  

There is, in fact,  a s tronger result  under lyng Theorem 4.19. ]For the  con- 
clusion of the theorem holds in any  D-category ~ i n  which m a p s / :  A × A -+ X 
are determined b y / l l  a n d / ~ ;  and if A * A exists this condition is equivalent  
to  the conditions t h a t  n: A * A -+ A × A be an epimorphism. 

5. Examples 

5.1. The category ~ o/based sets. We have a l ready discussed this category 
extensively in connect ion with the sets H ( A ,  B)  and the  funetors  _F, F .  We 
have remarked  tha t  it is a D-category,  the direct product  of the based sets S I, S 2 
being the  Cartesian produc t  S 1 x $2 based a t  the  direct  product  of the base- 
points  of S~ and  Su. I t  is indeed a DI -ca tegory ,  S 1 • S ,  being the  union of S 1 
and  S ,  wi th  base-points identified, and  u : S 1 • S ,  -~ S 1 × S 2 is given by  
u(xl) = (x 1, o), n(x,)  = (o, x,), x i E S,, where o is the base-point  ~) of S 1 or S~. 
Notice t h a t  ~ is a monomorph i sm in ~ .  

As remarked  G-objects of ~ are just  groups and  C G-objects are commutative 
groups. On the  other  hand  the  not ion  of  l~-object is uninterest ing in ~ ;  for 

~) I t  is convenient to adopt a common notation for all base-elements in ~ and all 
base-points in it:. 

17" 
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Proposition 5.1.1. The only ~-objeets in ~ are the one.point sets. 

Proo/. Let  (S, m) be an ~-objec t  in ~ ,  so tha t  m is a map from S to S • S. 
By the dual of Prop. 4.16 u m =  (1, 1} : S -+  S × S. Now u(S • S) intersects 
the diagonal in S × S in the single point (o, o) where o is the base-point of S. 
Thus for any  x C S, (x, x) = urn(x) = (o, o) or x ~- o. 

5.2. The category ~ o/based topological spaces. The objects of ~ are topological 
spaces with a base-point 7) o, the maps continuous maps preserving the base- 
point. An equivalence is a homeomorphism. As in ~ there exist direct and 
inverse products:  the direct product  of X I and X~ is the Cartesian product  
XI  × X s with the usual product  topology and base-point, and the inverse 
product  is the union X I v X~ with base-points identified, topoiogized so tha t  
a subset is closed if and only if it intersects X~ in a closed subset of X i, i ~ 1, 2. 
The map  x : X 1 * X~ --> X 1 × X 2 is defined as in ~ and is a monomorphism. 
The functor from ~: to ~ which associates with every space the underlying set 
is a DI- func tor  and the only ~-objec ts  in ~ are the one-point spaces. 

5.3. The category °i a el based topological spaces and based homotopy classes. 
The objects of ~:a are the same as those of ~ ;  the elements of H(A,  B) in ~:h 
are, however, the homotopy  classes of continuous maps A ~ B, the base- 
points o being preserved by  maps and homotopies. The clement 0 E H(A,  B) 
is the class of nullhomotopic maps;  an equivalence A --> B in ~h is a (based) 
homotopy equivalence. Direct (and inverse) products in ~ and ~:a coincide in the 
sense tha t  the objects are the same in the two categories and the projections 
(injections) in ~:a are the homotopy  classes of the projections (injections) in ~ ;  
but  the canonical map  ~ : X 1 v X s -+ X 1 × X~ in ~a (which is the homotopy  
class of the canonical map in ~) is, in general, neither a monomorphism nor an 
epimorphism. The functor  h : ~ -> ~a which puts each map  in its homotopy 
class is a DI-functor ,  and we sometimes permit  ourselves to use this functor 
implicitly s) in referring to notions in ~a. 

An H_-object (A, m) in ~:a is usually called an H-space (a space with a 
continuous multiplication ha~4ng o as two-sided homotopy-unit) .  A G-object 
in ~n is a homotopy-associative H-space with homotopy-inverse.  All topological 
groups are G-objects in Ta; and loop-spaces furnished with the multiplication 
given by  composition of loops are also G-objects in Ta- The loop-space funetor ~ ,  
regarded as a functor  from !E to ~ or from ~a to !$ n, is a D-functor  but  not  an 
I . functor .  

In  ~:a there exist non-trivial l~-objects, indeed ~-objects,  namely the 
suspensions Z X ( = I  × X/(O) × X ~J (I) × X ~d I × (0)). The comultiplication 
in t7X is the homotopy  class of the map  m : Z X  -+ 2~X * Z X ,  given by  

1 
m(t, x) = ql(2t, x), 0 ~ t ~ -~ , x C X , 

1 = q ~ ( 2 t -  1, x) ,-~_ t ~  1, x ~ X ;  

• ) As in the next paragraph where, for example, we refer to _H-spaces; strictly, an 
H_-space is an M-object (A, m) of ~: such that (A, h(m)) is an H-object of ~a. 
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here ql, q~ are the injections of 27X into the inverse product X X  • 2:X. With 
respect to this eomultiplication the inverse is the homotopy class of the map 
s : 27X -+ 2:X given by  

s( t ,  x) - -  (1 - t, x ) .  

There exist in ~a H-objects which are not G-objects ; if we confine at tent ion to 
polyhedra then a space A admits  an N-structure  in ~:a if and only if it is of 
Lusternik-Schnirelmann category g 2 and there exist (see [1 ]) non-suspensions 
(even non-U-objects) with this property.  The suspension functor 2:, regarded as 
a functor from ~ to ~ or from ~n to ~:a, is an I- functor  but  not a D-functor. 

Double loop-spaces /22X are C G-objects ; i ndeed /2A is a C G-object if A 
is an H-object.  Similarly double suspensions z~2X, and suspensions z~A where A 
is an N-object,  are C G-objects. We refer again to the func tors /2  and Z' in the 
appendix on adjoint functors. 

We will adopt  the notat ion of [2] and write / / (A ,  B) for H(A, B) when we 
are working in the category ~:h. I f  (A, m) is a U-object in Ta then by  the dual of 
Theorem 4.10 the induced _M-structure in / / ( A ,  B) is a group structure. In  
particular if A is the n-sphere Sn with its suspension structure then II(A, B) 
= ~rn(B), the nth homotopy group of B; and if A = 2 :P  then II(A, B) 
= / / I ( P ,  B); see [2]. From Theorem 4.17 we deduce tha t  if B admits  an 
H_-structure then the group structure i n / / 1  (P, B) is commutat ive and may  be 
obtained from the H-structure  in B. This is a classical theorem if P =- S o and 
B is a topological group. We also infer from Theorems 4.6 and 4.10 tha t  the 
only natural  group structure which could be introduced into the sets ~r~ (X), 
n > 1, is the homotopy group structure, and the only two natural  group struc- 
tures which could be introduced into the sets re I(X) are the/undamental  group 
structure and its anti-isomorph. For Sn, n > 1, admits a unique U-structure 
in ~h, and S 1 admits  only the usual U-structure 9) m : S 1 -+ S 1 • S 1 and the 
U-structure ~m : S 1 -+ S 1 • S 1. 

5.4. The category ~b o/groups. The objects of ~5 are groups and H(A, B) 
consists of homomorphisms from A to B; we write H e m  (A, B) for H (A, B) in ®. 
The zero-map in H(A, B) is the tr ivial  homomorphism mapping A to the unit 
element e of B. An equivalence in ~ is an isomorphism of groups. 

Direct products in ~ are those considered as usual in group theory;  inverse 
products in ~ are just free products of groups. The projections Pl : A × B ~ A, 
p~:A × B ~  B are given by pl(a, b) = a, p~(a, b) = b; the injections ql :A -~ 
~ A . B ,  q ~ : B ~ A . B  by ql(a)=a, q~(b)=b (and A . B  is the group 
generated without further relations by  ql(A) and q~(B)). The theory of G- and 
_H-objects in ~ and their duals has been discussed in a separate paper [5]; here 
we merely list a few elementary facts, together with some results from [5]. 

First  we note tha t  for all A, B E ® the canonical map  u : A • B -~ A × B, 
given by  u(a) ---- (a, e), z(b) = (e, b), a E A, b E B, is an epimorphism. Thus by 
Theorem 4.19 an H-structure on A E ~ is unique and commutat ive.  Now if 

g) Actually S,, n ~ 1, admits only one H-structure, but ~I admits infinitely many 
H-structures. 
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(A, m) is an H-object then 

(5.4.1) m(a~, a2) = m(al, e) • m(e, a2) -~ alag. by axiom I, as, a 2 EA , 

whence, m being commutative, ala ~ -~ a, al; conversely if A is an abelian group 
the rule (5.4.1) does give an H-structure on A. Thus 
Theorem 5.4.2. (A, m) is an H_.object in ~ i /and  only if A is an abelian group, 
the H-structure m being the group operation in A.  I / A ,  B are abelian groups 
every element of Horn (A, B) is primitive. 

Of course the H-structures in ~5 are, in fact, _G-structures. 
Turning to R-structures in ~5 we quote from [5] (see also [8]). 
Theorem 5.4.3. A group A admits an R.structure if and only i] it is free. 

There are, in a free group, several _~-structures. The AH.structures in A are in 
one-to-one correspondence with the sets o/free generators o / A .  There are no non- 
trivial commutative R-structures in ~.  I / ( A ,  m), (B, m') are AH-objects in ~ an 
element of Horn (A, B) is primitive if and only if it maps each generator of the 
generating set of A corresponding to the A H-structure m to e E B or to a generator 
o / the  generating set of B corresponding to m'. 

The functor {~-> ~ which associates with each group its underlying set 
is a D-functor but  not an I-functor. A more interesting functor is the funda- 
mental group functor ~1 which may be regarded either as a functor ~ --> ~ or 
as a functor ~a -> ~5 ; we will take the latter view. Then ~1 is a D-functor ; if we 
impose some restriction on the spaces we study, e.g., if we consider spaces of 
the based homotopy type of CW.complexes, then ~1 not only remains a D- 
functor but  indeed is a D I-functor. We infer immediately from this and the 
results above 

Theorem 5.4.4. I / X  is an H-space then ~1 (X) is commutative; if X is a 
space o/the based homotopy type of a CW-eomplex and if X admits an R-structure 
then ~1 (X) is free. 

The first assertion of this theorem has already been deduced from Theo- 
rem 4.15; the second assertion, restricted to suspension spaces, is fairly well- 
known and may be proved, for example, by purely combinatorial methods. 

5.5. The category 9.1 of abelian groups. The objects of 02 are (additive) 
abelian groups, and H(A,  B), which we again write as Hom (A, B), consists of 
homomorphisms from A to B. The direct sum A ~- B of the two abelian groups 
A and B has the properties both of the direct product and of the inverse 
product;  the injections of A and B into A ÷ B are given by  ql = {1, 0), 
q~----- {0, 1}. Thus the canonical map u is the identity. All objects B admit a 
unique H-structure,  given by  the group operation, and this structure is a 
C G-structure; similarly all objects A admit a unique IT-structure, given by 
a -~  (a, a), a C A,  and this structure is a L~-G-strueture. The abelian group 
structure induced by  either of these structures in Horn(A, B) is the usual 
abelian group structure in Horn(A, B). These remarks apply, of course, 
equally to the category T/I of (right) A-modules where A is any ring. In  parti- 
cular, it  follows from Prop. 4.18 tha t  in any DI-category in which u is the 
identity each object admits a unique H-structure m = (1, 1) and a unique 
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]~[-structure m = (1, 1}. On the other hand we show in the third paper of the 
series how tha features of the category ~ m a y  be derived by considering its 
special relation to the category ~ ,  and the latter category's  special relation to 
the category ~ .  

The functors Hn (nth reduced homology group, n : 0 ,  1,2 . . . .  ) are 
I-functors from ~: or ~:h to 9A ; the functors H ~ (nth reduced cohomology group, 
n : 0, 1, 2 . . . .  ) are contravariant  I-functors from ~: or ~:h to P2; the functors ~ 
(nth homotopy group, n ~ 2, 3 , . . . )  are D-funetors from ~: or ~:h to PA. The 
failure of Hn to be a D-functor is measured by  the Kfinneth formula, but  no 
such universal formula has yet  been found for measuring the failure of ~n to 
be an I-functor. 

5.6. The category o] pairs o/ a given category. Given any category ~ we may  
form a new category ~ = ~ (~) in which the objects are the maps of ~ and in 
which H(/ ,  g), where /, g are objects of ~ ,  consists of maps (a, b) such tha t  
ga = b], i.e., such tha t  the diagram 

A ~ - ~ C  

r, lg 
B ~ - - , D  

is commutative.  I f  also (a', b'):g-+ h then, by definition, 

(a', b') (a, b) : (a' a, b'b) . 

I t  is plain that ,  ~ being a category with zero maps,  ~ is also a category with 
zero maps, with 0 = (0, 0). 

Now let g~ : A t -~ B~, j : 1, 2 . . . . .  n in the D-category ~. Then 
Theorem 5.6.1. ~ (~) is a D-category in which the direct product o/gl,g2 . . . . .  g~ 

is gl × g2 × " " " × gn, the projections being the pairs o/projections (p~ (A), p~ (B)). 
We leave the proof to the reader. 
Let  (A, mA) and (B, roB) be M-objects in ~ and let g : A -~ B be a map. Then 

(mA, roB) E H(g × g, g) if and only if g is primitive;  and every M-structure 
in ~ is such a pair (mA, mB) of M-structures, belonging to a set H(g × g, g) 
where g is primitive with respect to m A and m B. We again leave to the reader 
the proof of 

Theorem 5.6.2. The M.structure (mA, ran) satisfies axiom K ( K  ---- I ,  I I ,  
I I I ,  IV) i / a n d  only i / m  A and mB each satis/y axiom K.  

Notice, too, tha t  the categories ~ * ( ~ )  and ~ ( E * )  are isomorphic; for 
i f / ,  g are maps of ~ and if (a, b) is a map  from ] to g in c~. then (b, a) is a map 
from ] to g in ~ (~*). 

Categories of pairs play an important  role in topology and algebra and have 
been used in homotopy  theory (see [2], [4]). 

5.7. The category o/ /unctors  ~ -+ 9 .  Let  ~, ~ be two categories and let 
= ~ ( ~ ,  ~D) be the category whose objects are the covariant funetors 

F, G . . . .  : ~ -~ ~ and whose maps  are the natura l  transformations l°) : F -> G. 

lo) See, for example, [9]. 
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I t  is plain t h a t  if 9 is a category with zero-maps, so is ~ ; precisely 0 : F -~ G 
is given by  0(X) -~ 0 : F ( X )  --> G(X), X E ~. 

Theorem 5,7.1, I]  9 is a D-category so is ~ (~, 9 ) .  
Proo/. Given functors  El, F 2 : ~ -+  ~ ,  define F 1 × F2 : ~ -+ ~ by  (F 1 × F2) (X) 

- ~ F I ( X  ) × F 2 ( X  ), (F 1 × F ~ ) ( / ) =  F l ( / ) x  Fz(/) .  Clearly F 1 × F 2 is a functor.  
Define na tura l  t ransformat ions  pj : F 1 × F2 ~ F j b y  p j (X)  -~ pj : F I ( X  ) × 
× F~(X)  ~ F ~ ( X ) ,  ~ = 1, 2. These t ransformat ions  are indeed na tu ra l  since if 

/ : Z -+ Y in ~ then Fj  (/)o pj (X) = pj (Y) o (F  1 (/) × Fz(/)).  
Now let J be an a rb i t r a ry  func to r  and  let 0j : J -~ F j  be na tu ra l  t ransforma-  

tions, ~ ---- 1, 2. Define 0 : J -~ F 1 × F~ by  0 (X) : {01 (X), 0 2(X)}, X ~ ~. Then  0 
is na tu ra l ;  for if / : X -~ Y then  

O ( r ) o J ( / )  -~ (ox(r ) ,  o~(r ) )o  J(])  

= (01(Y) o J( / ) ,  O~(Y) o J(])} 

= (F 1 (/)o 01 (X), F2(/)o 02(X)}, by  the na tu ra l i ty  of 0~, 02 

~-~ ( F I ( I )  × F~ (1))o {01 (x), 02 (x)} 

= (El × F2)(1)o 0 ( X ) .  

Moreover pj 0 = 0~., evidently.  
Final ly let p~ ~ = 0j for ~ : J --> F 1 × F 2. Then~p~ ~ (X) ~- 0~ (X) so t h a t  ~ (X) 

is uniquely determined and  hence so too  is ~. 
Now an M-structure  on the  func tor  F is a na tura l  t ransformat ion/~ : F × F 

- ~ F .  This is a collection of M-structures  /~{X) on F ( X )  for each X ~  
such t h a t  F (l) is pr imit ive for each i : X -+ Y in ~. We discuss such ~ - s t ruc tu r e s  
in the  next  section where we refer to  t hem as natural ]amilies of M-structures.  

We remark  t h a t  5.6 is a special case of the  not ion of ca tegory  of functors  : 
we take  for E a ca tegory  with two objects (which we m a y  call " d o m a i n "  and 
"range")  and, apar t  f rom identities, one m ap  (which we m a y  call "ar row",  
going f rom " d o m a i n "  to  " range") .  Then an object  of ~ ( ~ ,  ~D) is a map  of 
and a map  of ~ ( ¢ ,  9 )  is a pair  of maps  yielding a commuta t ive  diagram. 

Notice tha t ,  in general, 

(5.7.2) ~*  (~, ~ )  = ~ (~*, ®*) .  

Thus  we m a y  deduce f rom Theorem 5.7.1. 
Theorem 5.7.3. I l ~ is an I-category so is ~ (~, 9 ) .  

6. Adjotnt funetors 

KA~ [7] has given the  following definition of adjoint  functors.  Le t  ~, 
be two categories and  let S : ¢ -~ ~ ,  T : ~ -~ ~ be covar iant  funetors.  I f  A,  B 
are objects of  ¢ then  H ( A ,  B)  is an  element of  the  ca tegory  ~ and  we write tl) 

i~) The notion of direct product of two categories presents no difficulty. Objects of 
× ~D are pairs (A, ]8), A E ~, B E 9,  and similarly maps of • × ~ are pairs of maps 

(t, g), t in ~,  g in 9 ;  moreover composition of maps in ~ × ~ is componentwise. Direct 
products of (covariant) functors are defined in the obvious way. 
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M 1 for the associated functor ~ x ~ -~ ~ ; similarly M~ is a functor ~ x ~ ~ ~ .  
We also have func to r s  S x  l : ~ x  ® - ~ x ~  and l x  T : ~ x  ~ x  
and we declare S to be le/t-ad]oint to T (T to be right-adjoint to S) if there is a 
natural  equivalence ~ between the functors M~(S  x 1) and Mi(1 x T) from 

x ~ to ~ .  In  other words, given A ( ~, B ( 9 ,  there exists a one-to-one 
correspondence ~7 = ~ B between the sets H ( S A ,  B)  and H (A, T B) such that ,  
for all ] : A '  -+ A in ~ and g : B ~ B'  in ~ ,  

(6A) ~(go ~o S / ) = T g o ~ ( ~ ) o / ,  ~ H ( S A ,  B ) .  

We call ~ the ad]ugant of S and T. Of particular interest in homotopy  theory 
are the adjoint functors 2: and .(-2, regarded either as functors from ~ to ~ or 
from ~h to ~h- I f  A, B ( ~  the adjugant  ~ : H ( X A ,  B)  - > H ( A ,  t~B)  is given 
by  ~ (]) (a) (t) = / (a, t) ; the adjugant  of the functors 2: and ~ in ~h is the map  
of homotopy classes induced by  the adjugant  in ~.  We remarked in 5.3 tha t  2: 
is an I-functor  and Y2 a D-functor. That  this is merely a consequence of their 
adjointness is a t tes ted by  

Theorem 6.2. Let ~, ~ be D-categories and let T : ~ ~ ~ be a covariant 
/unctor. Then i / T  admits a le/t-ad]oint, T is a D-/unctor. 

Proo]. We have to show tha t  ( T ( A  i x A2); TpD Tp~) is a direct product 
of T A  i and T A  2 in ~ for all Ai, A 2 in ~ .  Let  S : ~ ~ ~ be left-adjoint to T and 
let ~ be the adjugant  of S and T. Given / i : X - + T A j , ~ - - - - - 1 , 2 ,  in ~ let 
g¢ = ~-i(/¢) : S X  ~ A~, and consider the map ~{gi, g~} : X -+ T ( A  i x A2). Then 

TP~°V{g~,g2} = V(P~{g~,g~}) by (6.1) 

= v (g~) 

= / .  j = 1 , 2 .  

I t  remains to show tha t  i f / , / ' : X  ~ T ( A i x A ~) are such tha t  T p¢ o / = T p¢ o/ ' ,  
= 1, 2, then / = / ' .  Let  / = v(g), ] '  = v(g'). Then Tp¢ o / =  V(p¢g), Tp~o /' 

= V(p~g') so p~g =p¢g ' ,  ] = 1, 2, whence g = g', / = / ' ,  and the theorem is 
proved. 

Next  we relate the two facts tha t  every loop-space carries a "natura l"  
multiplication and every suspension a "na tura l"  comultiplieation. Let  ~ be a 
D-category and T : ~ ~ ~ a covariant  functor.  We denote by  m7 a family of 
_M-structures, one for each T B  as B ranges over the objects of ~ and we say 
tha t  mT is naturaP ~) if T~ is primitive for each map  / in ~ .  We say tha t  mz 
satisfies axiom K if m r ~  satisfies axiom K for each B ( ~ .  Similar definitions 
apply  to a functor S : ~ -+ ~ where ~ is an I .eategory,  and m s denotes a 
family of ~-s t ruc tures .  

In  fact  we apply these definitions when ~ is a D-category, ~ is an I-category 
and S : ~ - +  ~ is teft-adjoint to T : ~ - +  ~ with adjugant  ~. Let  mT be a 
family of l~I-structures as above and let A ( ~. Then we m a y  define an ~-s t rue-  
ture on S A ,  

n =  ns .  ~ : S A  ~ S A  * S A  , 

1~) See 5.7. 
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by  the rule 

(6.3) ~(n) = mT~,o (~ql, ~q~}:A ~ T B  o × TBo-~  T B o ,  

where B 0 = SA • SA.  
We suppose in enunciating the next  theorem tha t  each T B, B C 9 ,  is 

endowed with its _M-structure mT~ and each S A ,  A E ~, is endowed with its 
M-structure nSA. We prove 

Theorem 6.4. Let the ]amily mT be natural. Then 
(i) U : H (SA,  B) --> H (A, T B) is an isomorphism o/M_-sets/or each A E ~, 

B ~ ;  
(ii) the/amily n s is natural; 
(iii) n s satisfies axiom K i /mT  satisfies axiom K (K = I,  I I ,  I I I ,  IV). 
Proo/. Fix A and give H(A,  T B )  the M-structure induced by  mTB for 

each B E 9 .  I f  we define an M-structure in each H ( S A ,  B) by the rule 

(6.5) ~(gl + gs) = ~(gl) + ~(gs), gl, g2 ~ H ( S A ,  B ) ,  

then it follows from the natural i ty  of m r  and Theorem 4.7 t h a t / ,  is primitive 
with respect to the _M-structures (6.5) for each / :B--> B' in ~ .  Hence by  
Theorem 4.6 there exists an R-s t ruc ture  n '  SA on S A  which induces the given 
M-structures in H ( S A,  B), B E ~ .  Moreover since h* : H (A, T B) -+ H (A', T B) 
is primitive for all h : A '  -~ A in ~ and since, by (6.1), 

((Sh)* g) = h* ~ (g), 

it follows from the converse of Theorem 4.7 tha t  Sh  is primitive with respect 
t n p P to the ]~-structures nSA, , SA SO tha t  the family n s is natural.  Thus, in the 

light of Theorem 4.10, Theorem 6.4 is proved when we have shown tha t  n~ = n z. 
Bu t  n' = ql + q2 E H ( S A ,  S A  * S A )  so 

U(n') = ~(ql) + ~(q~) = mTB, o {~ql, Vq2}, B0 = S A  • S A  

and the  theorem is proved. 
Notice that ,  of course, the  family n s determines the family m r by the rule 

dual to (6.3) provided the family m r is natural .  I t  is easy to  verify tha t  the 
natural  structures in Q B  and 2~A, A, B C ~ or Ta, are related exact ly as in 
(6.3). 

We now put  the extra  condition on the category ~ t ha t  i t  be also a D-cate- 
gory (and so, in fact, a DI-category) .  Let  (B,/z) be an M-object in 9 .  Then by  
theorem 4.14 (T B, T/z) is an H-object  in ~ if # is an H-s t ructure ;  here again T 
is a covariant functor ~ --> ~ with left-adjoint S and adjugant  7, but  for the 
moment  we do not  postulate a natural  family m~. We remark tha t  for any 
D E~D,A ~ ,  /~: S A - ~  D in ~ ,  ~= 1,2, 

(6.6) ~{11, 1~} = (~1~, ~[s} .  

For  T is a D-functor, Tpj  = pj, whence 

pJ .  ~{h, h} = Tp~.  ~{h, Is} = ~(p~{/~,/s}) = v/~, i = 1, ~ .  
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Proposition 6.7. Let H (SA ,  B) be given the M-structure induced by ~ and 
H (`4, T B) the m-structure induced by T g. Then ~ : H {S`4, B) ~ H (.4, T B) is 
an isomorphism o/M-sets. 

For ~(/Xo {5,/~}) = T/~o ~{]~,/~} by (6.1) 

= T # o  {V]1,~/2} by  {6.6). 

Now let m T be a natural family of H-structures in ~ and let # be an H-struc- 
ture. We prove 

Theorem 6.8. Under these hypotheses mT~ = T I.t and is commutative. 

Proo/. Let A be a fixed but arbitrary object of ~. Then H ( S A ,  B) receives 
an H-structure either from the ~-s t ructure  nSA in S A  given by {6.3) or from 
the H-structure # in B. By Theorem 4.17 these two H-structures coincide in 
H ( S A ,  B) and arc commutative. On the other hand ~ : H(S.4 ,  B) ~ H(A ,  T B )  
is an isomorphism of H-sets either if we use the structures nZA and mTB'(Theo- 
rem 6.4) or if we use the structures ~u and T~t (Prop. 6.7). I t  follows that  the 
structures mrB and T/x induce the same commutative structure in H (A, T B). 
Since this is true for every A in ~, we must have mTB = T #  and each is 
commutative. 

The assertion of Theorem 6.8 is famihar for the functor ~.  Our proof yields 
simultaneously, by the duality principle, the corresponding conclusion for 2:; 
these conclusions were referred to near the end of 5.3. 

7. Appendix: a counterexample 

In  this appendix we show that  there exist D-categories in which the direct 
product of epimorphisms is not always an epimorphism {compare Theorem 3.8) ; 
it will be shown in the third paper of this series that,  in an important class of 
D-categories (namely, the primitive categories), the direct product of epi- 
morphisms is an epimorphism. 

The category of our example is a subcategory of the category ~ .  Let 
`4 = (a, o), B = (b, b', o). Then the objects of our category ~ are precisely all the 
finite direct products -4 ~ × B n, m > 0, n ~ 0, of copies of .4 and B. A map 
.4~ × B ~ --> A r x B 8 of ~ is in ~ if and only if its components are in ~ (this 
will ensure tha t  ~ is a D-category) so it remains to describe those maps 
A m × B ~ -+ A, A n × B" -> B of ~ which belong to ~. For this description we 
will write an element of A m as a "vector" a, and an element of B n as a "vector" b; 
and the fact that  a is among the components of a will be denoted by a E a; 
similarly b E b, b' E b. 

The maps of ~ are determined as follows. A map ] : A m × B n -~ A is in ~ if 
and only if the equation ](a, b) = a implies that  ] is a projection or b, b' E b or 
a E a ,  b 'Eb .  A m a p g : A  m× B ~ - + B  is in ~ if and only if the equation 
~/(a, b) = b implies that  g is a projection or b, b' E b or a E a and the equation 
g (a, b) = b' implies that  g is a projection. 
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To i l lus t ra te  th i s  def ini t ion we descr ibe  the  maps  for  smal l  va lues  of m, n. 
Thus  we exclude f rom ~ the  m a p  A -~ B sending a to  b ' ;  we include on ly  the  
zero m a p  B -+ A ; we inc lude  on ly  t he  zero a n d  i d e n t i t y  m a p s  B -~ B ;  we inc lude  
in  ~ only  t h e  m a p s  0, Pl, k : A x B -+ A,  where  k(a ,  b') = a and  m a p s  the  res t  
of A x B to  o; t h e  m a p s  A x B --> B in ~ a r e  P2 and  a n y  m a p  sending  (o, b) 
a n d  (o, b') t o  o; t h e  m a p s  A x A -+ A in ~ are  0, Pl, P~; t h e  m a p s  A x A -+ B 
in ~ are  a l l  those  whose image  does  n o t  con ta in  b' ; t he  m a p s  B x B -~ A in 
are  those  which m a p  al l  e lements  excep t  (b, b') and  (b', b) - -  and  poss ib ly  these  
e lements ,  t o o  - -  t o  o; and  t h e  m a p s  B x B -~ B in ~ are  Pl a n d  p~ a n d  those  
which  m a p  al l  e lements  excep t  (b, b') and  (b', b) to  o a n d  m a p  (b, b') a n d  (b', b) 
t a  o or  b. Not ice  t h a t  ~ conta ins  al l  p ro jec t ions  A m x B" -+ A,  A m x B"  -~ B. 

Proposi t ion 7.1. ~ is a category. 

Proo]. W e  call  t he  m a p s  ] : A m x B ~ -~ A ,  g : A '~ x B ~ -+ B admissible if 
t h e y  are  in ~ .  Thus  we m u s t  show t h a t  if u =  {]~ . . . . .  ]m, gl . . . . .  g ,} :  
A r x B ~ - + A  m x  B n has  admiss ib le  componen t s  a n d  if ] : A  ~ x B a - + A ,  
g : A "~ x B ~ -+ B are  admiss ib le  t h e n / u  a n d  g u  are  admiss ib le .  

Le t  u(a ,  b ) =  (a~, fl),  and  suppose  / u ( a ,  b ) =  a. Then 1(~, p ) =  a so / is 
a p ro jec t ion  or b, b' ( p or a ( ~, b' ( ft. I f  / = pj t h e n / u  = / i  and  is admiss ib le  ; 
I f  b = fl~, b ' =  fit, t hen  gj is a p ro jec t ion ,  so b' ( b  a n d  gi is a p ro jec t ion  or 
b , b ' E b  or  a ( a .  Thus  b , b ' ( b  or  a ( a ,  b ' ( b  if b , b ' ~ p .  I f  a = ~ / ,  b ' = / 3 j  
t h e n  b' ( b and  ]t is a p ro jec t ion  or b, b' ( b or  a ( a, b' ( b. Thus  a ( a, b' ( b or 
b, b' ( b if a ( a,  b' ( ft. This  shows t h a t  [ u  is admiss ible .  

Now suppose  t h a t  g u ( a ,  b) = b. Then  g(~,  f l)  = b so g is a p ro jec t ion  or 
b, b' ( ~ or a ( ~. I f  g = p ~ + j  t hen  g u  = gj a n d  is admiss ib le .  I f  b, b' ( f l  then ,  
as  a b o v e  b, b '  ( b or  a E a, b' ( b, so ce r t a in ly  b, b' ( b or  a ( a.  I f  a = c¢ i then ,  
as  above ,  ]~ is a p ro j ec t i on  or  b, b'  ( b or  a ( a, b' ( b. Thus ,  if a ( a,  a ( a or 
b , b ' ( b .  

F i n a l l y  suppose  t h a t  g u ( a ,  b) = b'.  Then  g(a ,  ~ )  = b' so g is a p ro jec t ion ,  
s a y  g = Pm+s. Then  g u  ---- gi and  g~(a, b) = b' so gj is a p ro jec t ion .  Thus  g u  is 

a p ro jec t ion  a n d  t h e  p ropos i t ion  is p roved .  P l a in ly  ~ is a D-ca tegory .  

Propos i t ion  7.2. Let  h : A ~ B be the m a p  given by  h (a) = b. T h e n  h is an  

e p i m o r p h i s m  in  ~ but h x 1 : A x B -~ B x B is not an  e p i m o r p h i s m  in  ~ .  

Proo]. To t e s t  whe the r  h is a n  e p i m o r p h i s m  i t  is suff icient  t o  compose  it. 
w i th  maps  B -~ A,  B -~ B. Since on ly  0 : B -~ A is in  ~ ,  i t  is t r i v i a l  t h a t  v l h  

= v~h ~ v I ----- v~ for  v 1, v~. : B -~ A in ~ .  Since on ly  0, 1 : B -~ B a re  in ~ and  
Oh 4: l h  : A -+ B,  i t  is p la in  t h a t  v l h  = v2h ~ v I = v~ for  v~, v~ : B -~ B. Thus  h 
is  an  ep imorph i sm in ~.  On t h e  o t h e r  h a n d  le t  v :  B x B - ~  A be t h e  m a p  
sending  al l  of B x B to  o excep t  t h a t  (b', b) is m a p p e d  to  a. Then  v is in  ~ and  
v =V 0. On the  o t h e r  h a n d  v(h  x 1) = 0(h  x 1) = 0 so t h a t  h x 1 is n o t  an  
ep imorph i sm.  

W e  should  r e m a r k  t h a t  a far  s impler  example  is ava i l ab le  of th is  phenomenon  
if we do  no t  ins is t  on D.ca tegor ies ;  i t  is c o m p a r a t i v e l y  t r i v i a l  to  f ind a ca t egory  
w i th  two ep imorph i sms  whose d i rec t  p roduc t  is no t  a n  ep imorphism.  
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