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1. Introduetion

The starting point of the investigation whose results are to be presented
in a series of three papers, of which this is the first, was an attempt to give
precise meaning to and to answer the question how group structures arise in
homotopy theory and why these group structures satisfy the familiar con-
ditions of naturality. This problem, set in the restricted context of homotopy
theory, was discussed in [2], but it was already clear that, by restricting the
category of study in this way, we were disguising the generality of the approach
and of the results. A more general treatment was indicated in Chapter 14 of [6]
but not taken very far.

A group is a set 4 with a multiplication m: 4 x 4 - A satisfying certain
axioms. The basic idea of this paper is to consider categories € rich enough in
objects and maps to enable us to formulate a set of axioms which, in the case
where € is the category & of (based) sets, are equivalent to the group axioms.
Of course these axioms are formulated entirely in terms of the maps of the
category €. It is then a basic observation that if (4, m) is a “group” in € or,
as we shall prefer to say, a G-object, and if H(X, 4) is the set of maps from X
to A4, then H(X, 4) acquires a group-structure, in the familiar sense, from the
structure mapm ; and the group-structure is commutative if mis “commutative’”
in a sense applicable to the category €. Moreover the group-structure is natural
with respect to maps X — Y in € in the sense that, for such a map f, the
induced set-transformation f*: H(Y, A) - H (X, 4) is a homomorphism; and
it may be shown (see [2] or Theorem 4.3 of this paper) that all such natural
group-structures are induced from G-structures m. The cohomology groups
H™(X; @) of a polyhedron X give us an example of such a natural group
structure. We may identify H* (X ; @) with IT (X, K (@, n)), the set of homotopy
classes of continuous maps of X into the Eilenberg-MacLane space K (@, n) and
the natural group structure of H"(X; &) is then acquired from a G-structure
or group-like multiplication on K(@, n) in the category €, of (based) spaces
and homotopy classes?).

By working in an arbitrary category €, we achieve, of course, & gain in
generality. However, other advantages also accrue which are worth mentioning.
The first advantage, which we will discuss in some detail, is the availability of

1) Added in proof: Thus H*{ ;@) is a “representable” functor in the sense of Gro-

THENDIECK; many of the notions of these three papers are related to those in the cate-
gorical foundations of GROTHENDIECK's work.
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the formal duality principle. With every category € is associated its dual
category €*. The objects of €* are the objects of € and the set of maps H* (B, 4)
in €* is precisely H (A4, B); moreover if we, temporarily, indicate composition
of maps in € by ¢g. f, f€H(4, B), g € H(B, C), then composition in €* is
given by

(L.L) f*g=g-f.

It is easy (but vital) to observe that €*, so defined, is a category whose
identity maps coincide with those of €; if € has zero-maps (see section 2) so has
€* and the zero-map in H*(B, 4) is just the zero-map of H(d4, B). Further
@r* = ¢,

The construction of €% is a formal device to enable us to dualize axioms,
definitions and theorems in the theory of eategories. Two statements in €,
in terms of objeots and maps, are called dual if they differ only in the direction
of the maps involved!?). More precisely, if S is a statement which is meaningful
in any category, let S(€) be the statement § applied to the category €. If we
interpret 8 (€*) as a statement about the objects and maps of € we get a statement
8*, meaningful in any category, given by 8*(€) = 8(€*). Then §* is the dual
of 8. Itis in this precise sense that we will speak of dual axioms, dual definitions
and dual theorems. If the proof of a theorem belongs to the theory of categories
the dual theorem is automatically true, being, in fact, logically equivalent to it.

This duality principle is exploited repeatedly in this series of papers. If a
theorem 7 is proved for all categories satisfying some axioms 4, then theorem
T* automatically holds for all categories satisfying axiom 4*. If one works
in a single category €, (say, the category of groups & or the category of based
sets @) then €, may satisfy axiom 4 but not axiom 4* so the duality principle
does not allow us to deduce the truth of T™* in €, even if the proof of theorem
T (€,) has been made in category-theoretic terms. It may also happen that
while theorem 7™ does hold in € it is trivial or even vacuous there; and that
the interesting categories for the applications of theorems 7' and 7* are
certainly not identical. Thus, for example, comultiplications with two-sided
units are definable only on the one-element sets of & and so are totally un-
interesting. However they are of great interest in ® and in the category €, of
{based) spaces and homotopy classes, and thus the theorems about multi-
plicative structures in general categories yield on dualization theorems of
interest in group theory and homotopy theory.

We should at this stage make a remark about notation in connection with
the application of the duality principle. In previous publications (e.g. [2],
[3], [4]) we have indicated the dual of a statement or concept by attaching
a prime ’. Thus we have talked of H'-spaces and referred to Theorem X - YZ'.
The choice of which of the two notions to regard as “‘basic” and which as *“‘the
dual” was determined in each case on various grounds-traditional, psycho-
logical, and pedagogic- and could not, in the nature of things, be systematic.

12) Indeed we speak of obtaining the dual of statement 8 by “reversing the arrows”
oecurring in §.
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Here we have preferred to start with a completely unprejudiced viewpoint and
have sought a notation appropriate to that viewpoint. Thus two notions which
are dual to each other are indicated by the same letter, underlined in the one
case and overlined in the other; for example a multiplication on an object 4
is called an M-structure and a comultiplication is called an M-structure. Where
a notation is represented by a symbol rather than a letter we have chosen a
comparable symbol for the dual notion; for example the direct product of 4,
and 4, is written 4, X A4, and the component form of a map X — 4, x 4, is
written {f,, f,}, while the inverse product of 4, and 4, is written 4, » 4, and
the component form of a map 4, * 4, - X is written {f;, f,». The break with
tradition is not complete, of course, as our choice of the phrase ‘‘direct product™
indicates; and since we refer to direct products and inverse products we have
felt compelled to refer to a category with direct products as a D-category and
a category with inverse products as an I-category although these concepts are
dual to each other. We do not index dual theorems in the way referred to above.
Usually only one of a pair of dual theorems is enunciated and in the exceptional
cases where we think it preferable to give both statements explicitely each
statement receives the enumeration appropriate to its position in the text.

A second advantage of working in a general category which we mention
briefly is that of the functorial approach. Since our theorems consist of asser-
tions about categories in which certain constructions may be carried out,
attention is naturally directed to those functors which respect the constructions.
Such functors effect the transport of the structures we are studying from one
category to another.

The contents of the present paper are as follows. Following a brief section
describing categories with zero-maps, section 3 contains the theory of direct
products in general categories and the dual theory of inverse products?). This
provides a preparation for section 4 wherein multiplicative structures in
categories are discussed. Simultaneously with the introduction of such a
concept we naturally define the notion of homomorphism or, as we prefer to
say to avoid confusion, the notion of a primitive map which is a map of the
category from one object with multiplication to another which is compatible
with the multiplications. Various axioms are considered to which the multi-
plicative structures may be subjected, in particular, axioms producing group-
like structures. Section 5 consists of examples of the fundamental notions of
the paper; one of the examples treated briefly here, namely that of the category
of groups @, is dealt with more extensively in a separate publication [5]. Sec-
tion 6 is concerned with the relation of Kan’s theory of adjoint functors (see
[7]) to the theory presented here. It turns out that the condition of possessing
an adjoint has important implications for the structure preserving properties of
the functor. Section 7 contains an example of a category with direct products
in which there exist epimorphisms whose direct product is not an epimorphism.
We would mention that the theory of operators and cooperators in general

?) For further details of this theory, see [9], [10].
16*
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categories, appropriate though it is to this paper, has not been discussed as it
appeared in sufficient generality in [3].

It may help the reader if we summarize the contents of the second and third
papers of this series. The second paper is concerned with generalized unions and
intersections in arbitrary categories and with a consequent notion of the length
of an object which generalizes the multiplicative and comultiplicative structures
of this paper; this generalization includes and dualizes, e.g., Lusternik-Schnirel-
mann ‘‘category” of spaces. The third paper is concerned with what we call
primitive categories, namely, categories in which the objects are multiplicative
objects of a given category € and in which the maps are primitive maps.
We show how various phenomena familiar in group theory and abelian group
theory (as well as certain less familiar ones) are explicable as properties of
primitive categories, and we derive a curious relation of symmetry between the
categories © and 6.

We wish to acknowledge the benefit of very fruitful correspondence with T. GANEA
on the topics covered by these three papers.

2. Categories with zero-maps

Let € be a category ; following [9] we will denote the set of maps associated
with the ordered pair of objects (4, B) of € by H(4, B), and we will permit
ourselves to write f: 4 — B for a mapin H(A, B) and call f a map from 4 to B.
We will denote the identity map of H (4, A) by 14, frequently abbreviated to 1,
and the dual category of € by €* (cf. 1).

A map f: A — B is called an equivalence (or invertible) if there is a map f:
B> A such that ff=1, and ff = 1z; in that case 4 and B are called
equivalent. Of course the equivalence f determines its inverse /' and we may
write f-1 for f’. The map f is called an epimorphism if for any C and any v,:
B C, i =1, 2, the relation v,f = v,f implies v, = v,. The map f is called a
monomorphism if for any D and any w;: D — A, i = 1, 2, the relation fw,=fw,
implies w, = w,. Notice that if f is an equivalence then f is both an epimorphism
and a monomorphism, but the converse is in general false.

We shall suppose — though this is by no means necessary for all our sub-
sequent definitions and results — that € possesses zero-maps. That is, we
suppose that for any two objects 4, B of € the set H (4, B) is non-empty and
contains a distinguished element, 0 = 04 g, such that

(2.1) fO4p=0,4c forall Candall fcH(B,U(C),
04p9=0pp forallDandall geH(D, A).
Note that the zero-maps are unique; for if also

1045="04c,0489=0pp, all fg,
then
048=088045=045-
We list some elementary but important observations in the following
propositions.
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Proposition 2.2. (i) The map f is an equivalence in € if and only if it is an
equivalence tn €*;

(ii) The map f is a monomorphism in € if and only if it is an epimorphism
in €*;

(iii) € possesses zero-maps if and only if €* possesses zero-maps, and the
zero-map in H (A4, B) coincides with the zero-map in H* (B, 4).

Proposition 2.3. (i) If f is an epimorphism and vf = 0 then v = 0.

(ii) If f is a monomorphism and fw = 0 then w = 0.

In the light of Prop. 2.2 (ii) the two parts of this proposition are dual to
each other. Note that the converse of Prop. 2.3 is, in general, false.

Since in our discussion all categories will be assumed to possess zero-maps
we will henceforth simply use the word “category’ to denote a category with
zero-maps and the word “functor” to denote a (unary) functor which preserves
zero-maps. Examples of such categories and functors are given below (§ 5).

3. Direct and inverse products

Let A4, 4,, ..., 4, be a finite collection of objects of €. A direct product
(P; Py Pgs -+ +» Py), abbreviated to (P; p;) or even P, of 4,, 4,,...,4, is an
object P of € and a system of maps p;: P—> A;, j=1,2,...,n, with the
property3): (D) For any object X of € and any system of maps f;: X - 4,,
j=1,2,..., n, there exists a unique map f: X - P with p;f = f,.

The maps p; are called the projections of P, and the maps f; are called the

components of f; we write f={f;, f», . . ., fu}, so that

(3.1 Pithofo -ty =1Fi-
Notice that

{3.2) {0,05...,0,}=0,

in view of (3.1) and the uniqueness of f.
Suppose that (P’; p;) is a direct product of the objects A7, 4, . .., 4, and
let maps g;: 4; - A] be given, j=1,2, ..., n The map

(3.3) 9 =A{9101: 92Dz - - -» Gu D} : P> P

will frequently be written g, x gy X -+ + X g,. In particular setting 4/ = 4;,
g;,=1,9=1,2,...,n wehave

(3.4) 1=1x1x""-X1={p,ps...,00: P> P.

We now list some rules which may be deduced immediately from the
definitions.
Proposition 3.5. Given h: X' > X and {f;, f5, .. ., o} : X — P, then

{fofar- s fupb={fib, foh, ..., fuh}: X' > P.

3) There is, of course, no difficulty in generalizing this definition and the subsequent
discussion to arbitrary collections of objects of €, but we are content to leave this generali-
zation to the reader.
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Proposition 3.6. Given {f,,f,,....[,} : X > Pand g, X g, X - =+ X g,: P—> P,
then

(g X ga X X gu) {fus for - - o> o} = {1 f1 Gafer - - o5 Gufu}: X = P
Proposition 3.7. Given

G X G X X Gyt P> P and hyXhyx -+ xXh,: P> P,
where (P’ p}’) is a direct product of Ay, Ay, ..., A;], then
(hy X hg X = oo X ) (g1 X ga X = v - X @) =Iygy X gy X -+ + X bpgy: P— P

From Prop. 3.6 we immediately infer

Theorem 3.8. If g;: A; — A} is a monomorphism for each j, then g =g, x
X go X *++ X g, P— P'is a monomorphism.

(The corresponding statement for epimorphisms is false; see the appendix.)

From Prop. 3.7 and (3.4.) we immediately infer

Theorem 3.9. If g;: 4; — A} is an equivalence for each j, then g =g, x
X gg X "+ X g, P> P is an equivalence such that

(3.10) Pig=g;pi, §=12,...,m;

and g is uniquely determined by (3.10).

By taking 4] = A; in this theorem and all g; = 1, we see that if (P; p,),
(P’; p{) are both direct products of 4,, 4,,..., 4, then there is a unique
equivalence g : P — P’ such that

(3.11) D= p;;

we say that g is the canonical equivalence between (P; p;) and (P’; pj). Con-
versely if (P; p;) is a direct product of 4,,4,,...,4, and g: P> @ is an
equivalence then (@; p;g~1) is a direct product of 4;, 4,, ..., 4, and g is the
canonical equivalence between (P; p;) and (@; p;g71).

The definition of a direct product refers to an unordered?) set of objects
so that it is, per definitionem, commutative as a function of two objects. On the
other hand if we wish to form the direct product of objects presented as
A4, B, C, ..., it is necessary to assign to them a definite but arbitrary order so
that we may be able to refer to a map f: X — P by means of its components
fis fas -+ -5 o without ambiguity. Once this order is assigned the notations
f={f.te - .., .} and p, for the projections become unambiguous.

Let us take the case of two objects which is quite typical. If then we say that
(P k, 1} is a direct product of A and B it is to be understood that k, [ are maps
in H(P, A), H (P, B) respectively; and if we refer to a map f : X - P by means
of its components, f = {g, b}, it is to be understood that g ¢ H(X, 4),
h€H(X,B)and kf =g, If = h. Now let (P’; k', 1') be a direct product of B
and 4. Then (P’; I', k') is a direct product of 4 and B so that there is a canonical
equivalence

T (P k, Iy (P U, F)

1) An alternative procedure is to define the direct product for ordered sets of objects.

This procedure leads, of course, to a different development of the basic concepts.
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such that
{3.12) V'r=k, kKr=1.

If we regard 7 as a map from P to (P'; ¥, I') it follows from (3.12) that we may
write it

(3.13) t={L,k: P> (P;k,T).

Of course we may have P’ = P,v=1,1' =k, k" = I. On the other hand in the
particular case 4 = B we may take P'= P, k' =k, I’ = I, giving rise to an
equivalence,

(3.14) t={Lk}: P~ (P;kL])

which is, in general, different from the identity map.

We shall henceforth adopt the notation (4 X B X C X ...; Py, Pos Pas - - -)s
usually contracted to A x B x € x ..., for an arbitrary representative of the
class of canonically equivalent direct products of the objects 4, B, C, ...,
Indeed by writing the object 4 X B x C x ... in this way we are exhibiting
the range of thejth projection p; and rendering unambiguous the expression by
components of a map into 4 x B x € x ... . In this notation the symbol p;
becomes a generic symbol for the projection of a direct product onto its jth
factor and assumes the nature of an operator which, when applied to a map
f={ff» fs . . .} yields its jth component (see (3.1}). With these notational
conventions (3.13) assumes the form

(3.15) T = {py P} Ay X Ag—> A, x 4
and (3.14) becomes
(3.16) T={py,p}:AdxAd>A4xA4.

We call the map v in (3.15) or (3.16) the switching map or switch; it switches
components in the precise sense that

(317) T{fl’ f2} = {fz: fl} s
f,cH(X, A4,)), i =1, 2. We can, of course, have 4; = 4, = 4 in this formula,
as in the following theorem.

Theorem 3.18. Let o, A, — B,, ¢ = 1,2. Then, assuming the direct products
to exist, the diagram

4, % Agﬂ-*Bl x B,

l 4

Ay x 4,—*> B, x B,

18 commulative.

For t(oq X &) = {Py, Py} (0g X 0t5)
= {pyloy X o), Py(at; X a5)} by Prop. 3.5,
= {otg Py, 2y 1} by definition of &, X oy,
= (a3 X o) {ps, p} by Prop. 3.6,
== (g X 04)7T.
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We will call € a category with direct products or D-category if any finite5)
collection of objects of € has a direct product. We prove

Theorem 3.19. € ¢s a D-category if and only if any two objects of € have
a direct product.

This follows immediately from

Lemma 3.20.  ((4; X -+ X 4,) X (Appy X~ X 4,); PPy - -, PrPys
P1P2s + + s PurpPy) 38 @ dirvect product of Ay, A, .. ., A,.

Proof. Suppose given f,:X —> A, ¢=1,...,n. Then there exist
f:X—>A x-+-xA, sach that p;f =f;, j=1,...,r, and f': X >
> A4,45 X - x 4, such that p.f’ = fi4,, k=1,...,n— r. Consequently
there exists f: X — (4; x -~ x 4,) x (4,41 X * - x 4,) such that p,f= [,
pof = f', whence

1’5271f==fj, j‘:l,...,’l‘; pkp2f=fk+r’ ;C—':‘«l,.,.,?&——?‘.

Now suppose that pipf=mpmg, j=1,....7 and ppf = Pppay,
kE=1,...,n—r. Then p;f = 9,9, Dsf = Psg, 80 that f = g and the lemma is
proved.

The lemma implies also the associativity of direct products:

Theorem 3.21. There is a canonical equivalence a . (A, x Ay) x Ay > A; X
X (Ay x Ag) such that

a{{fl’ fz}: fs} = {{fl’ {fzn fa}}
where f;c H(X, 4,),1=1,2,3.
Note that the map a may be written {p, p;, p, x 1} and a~! may be written
{1 X py, pyps}. There is also a canonical equivalence

b:{d, x Ay) x A; >4, x Ay, X 4,4,
given by

(3.22) b= {p1p1, P2P1> Pa}» 071 = {{P1, Do}, 03} -

We may use such equivalences as b implicitly to introduce brackets into a
direct product object. Thus, for example, we may refer to the map

1xz:4;, x Ag x A3~ A4, x 4, x A,
as a shorthand notation for ¢(1 X 7)c¢~%, where ¢ is the canonical equivalence
¢=>ba"1={py, 1Py, PaPa} 1 Ay X (A X Ag) > A; X A3 X 45.

In fact in calculations involving implicit bracketing it is usually preferable
to present the maps by means of their components in the unbracketed form.
Thus, for example the map 1 X 7 above is given in components by

(3.23) 1 X 7={p1, ps. s}
To prove (3.23) we must show that

(3.24) {P1 D102 I’zpz} (1 X {pqs Py}) = {P1, Das 2’2} {271, P1P2s P2Ps} -
%) See footnote 3.
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Now 1 x {Pz, P} = {Pl’ {pz’ P} Pot = {pl? {pzpm Py P2}}- Thus
{P1, P1P2> PaP2} (1 X {D2, 21}) = {P1> D1{P2D0> P12} D2{D2P2> D1 1}}
= {p1, P2P2> P1P2}

= {p1, D3, P2} {P1, P12, P2ps} -
In this calculation we have made repeated use of (3.1) and Prop. 3.5; in future
we will state the component forms of such maps as 1 x v without proof,
leaving the verification to the reader. We illustrate the notation in the following
proposition which will be used in a later paper of the series.
Proposition 3.25. The diagram
4xBxC
X lg

BxAx0>Bx0x4
commutes.

Notice that the description of the maps in the diagram involves implicit
bracketing. However in component form the maps are given by
7 X 1 ={ps Py, Ps}»
Ix7= {pI: Ps» pz} 4
7= {py P3, P}
and in this form the commutativity is trivial.
Frequent use will be made of the following special maps related to direct

products. If 4, 4,, ..., 4, are objects of a D-category € then there exists for
eachj, 1 £j =< n,amap

(326) 4 ={0,...,0,1,0,...,0}:4, >4, X Agx -+ x 4,,

where the jth component is 1 and the rest are zero. Since p;t; = 1 it follows that

each p; is an epimorphism and each ¢;is a monomorphism. If 4, = 4,=---=4,
there is a map

(3.27) z={l,l,...,l}:A—>A><A><~~><A,

called the diagonal map; it is evidently a monomorphism, and, moreover
(3.28) ot ohl=Hhxfix - xf)d,

formaps f; CH(4,B,;),j=1,2,...,n.
Propesition 3.29. The diagram

4dx B
a
lﬁxg \
Ax Ax Bx B—221 4« Bx Ax B

18 commutative.
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For, in terms of components, the assertion is that

{P1: Ps: P2 Pa} {P1: D1 Do D2} = {P1> P D1 Do}
which is obviously true.

We turn now to the concept dual to that of direct product; this will be
called the inverse product and it is sufficient of course to establish terminology
and notation. Thus an inverse product of the objects 4, 4,,..., 4, is an
object @ and a system of mapsg;: 4, > @,j =1, 2, ..., n, with the property:
(I) For any object X of € and any system of maps f;: 4, - X,7=1,2,...,n,
there exists a unique map f: @ - X with fq; = f,.

The maps ¢; are called the injections into ¢, and the maps f; are called the
components of f; we write f = {f;, fa, . . ., f», s0 that

(3.30) <f1’ f2’ ) fn)% = fa'

If (@'; ¢}) is an inverse product of 4, 4, ..., 4, and maps g;: 4} — 4,
i=1,2,..., n, are given, the map g = {q1¢1, 9292 - - - Iufuy : @ — @ will be
written g, *x g, * - - - % g,. Further we shall write 4, x4, %---+ 4, for an
arbitrary representative of the class of canonically equivalent inverse products
of the objects 4;, 4,, ..., 4,. If in € any two objects and hence any finite
number of objects have an inverse product we say that € is a cafegory with
inverse products or an I-category.

Dual to the maps ¢; we have the maps

(3.31) i =40,...,0,1,0,...,00: 4« Ayx---x4,— A4,

in an I-category; and if 4; = 4,= - - - = A4, we have the folding map
d=<,1,..,1):Ad% A% xA-> A4,

such that

(3.32) Cfisto - hy=a(f s fax - % fa),

formaps f; € H(B;, A),7=1,2,...,n.

If no ambiguity is to be feared we will write d for d or d.

A category with direct and inverse products is called a DI-category. We
prove the following theorem for such categories.

Theorem 3.33. Let A,,..., 4,,; By, ..., B, be objects and f;;: A;—~ B;,
t=1,...,m,j=1,..., n, maps in the DI-category €. Then

f=f:4;%+-%4,>B x---xB,,

t{&}here f:f <{§1}1,..‘.,fm},...,{fml,...,fmp, and f={{fis s fm)s -
For py 7= Bylfus s b - s Bylfnts - - fua}, by the dual of Prop. 3.5,

= fuis oo fms)
=pif, 1=j=n
In particular we may take m=mn, 4;,=B;, j=1,...,n, and f;; =1,

fis = 0, == j. We thus obtain a map
(334) x=C .. styy={my, ..., }: A % x4, >4, x - -xA4,,



Group-Like Structures. I 237

called the canonical map, from inverse to direct product. It is natural in an
obvious sense.

We close this seetion with a brief discussion of the functors which are of
special interest to us in considering D-categories and I-categories. Since our
categories will always be categories with zero-maps, we shall always insist that
a functor preserve zero maps. Now let F': € - €' be a covariant functor from
the D-category € to the D-category €. We will say that F is a D-functor if it
preserves direct products in the following sense: If (P; p;) is a direct product
of 4, 4,,..., 4,, then (F(P); F(p;)) is a direct product of F(4,),
F(dy), ..., F(A,). We shall write this property briefly as

Fld; x dyx - x Ay=F{4;) x F(4dy) x -~ x F(4,),
F(p;)=p;.
Proposition 3.35. If F:€ - € 4is a D-functor and f; ¢ H(X, 4;),
j=1,2,...,n, then
F{fl’fzv o "fn}z{Fvafz’ N 4
For P;' F{fl? for v os fu} = F(py) F{fl’ fas -« s fu}
ZF(pi{fl’ fzs L) fn})
=F(f;)
:Z’}{F/I’Ffz’ e ’an} .

We omit the proofs of the following propositions, in which F is understood
to be & D-functor.

Proposition 3.36. F (1) =1": F(4,) x F(4,) > F(4,) x F(4,).

Proposition 3.37. (i) F(y)=;: F(4;) > F(4)) x F{dy) x + - - x F(4,)

(i) Fd)=d 1 F(A4)—>F(4) x F{4) x -+ - x F(4).

Of course an I-functor from the I-category € to the I.category €' is defined
similarly; in particular a D-functor from € to €' can be interpreted as an
I-functor from €* to € *. A contravariant functor from the I-category € to the
D-category & will be called an I-functor (or, more explicitly, a contravariant
I-functor) if it is an I-functor from € to the I-category €'*; a contravariant
D-functor is defined analogously. If € and € are both DI-categories then we
may define covariant and contravariant D I-functors from € to € in an evident
way; and we have

Proposition 3.38. If F: € » € is a DI-functor then

Fix) =o' : F(A) % F(dg)» -+ % F(4,) > F(4y) x F(4y) x - - x F(4,).

We are deferring our principal examples to section 5, but we mention here
two very important examples of the special functors we have been discussing.
Let & be the category of based sets and let € be any category (with zero maps).
Then for each fixed object 4 of € the transformation

X->H(4,X)
induces a (covariant) functor F from € to &, if, for f: X ~ ¥,
Fif): HA,X)~>H(A, Y)
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is defined by the rule
F(f)g)=1g, g €H(4, X).

The zero maps of & are just the functions sending sets to base elements and
the base element of H (A4, X) is the zero map from A4 to X. Thus F certainly
preserves zero maps. We prove

Theorem 3.39. If € is a D-category then F — H(A, ) is a D-functor from
€t &.

Proof. We must show thatif X;, X,, ..., X, ¢€then H(4, X; x Xy x - -+
s X Xﬂ;F(pj)) is the direct product of H(4, X,),j==1,2,...,n,in &.

Let Y ¢ & and let f;: ¥ - H(4, X;) be maps in &. Writing X for
X, x Xy x -+ x X, wedefine f: ¥ - H(A4, X) by the rule

Then f is a map of based sets by (3.2). Moreover

FoIN) W) =p - f @) =F(y), all® yc¥,

Fp)f=1;.

Now suppose F(p;)f=F (p;)g9. Then p; . f(y)=p;. g(y), all y €Y, so that
f{y) = g(y), f = g. This proves the theorem.

In an obviously analogous way we obtain, by fixing 4 ¢ €, a contravariant
functor H( , 4) from € to &. The duality principle ensures

Theorem 3.40. If € is an I-category then ¥ = H( , A) is a (contravariant)
I-functor from € to &.

so that

4. Multiplicative structures

Let € be a D-category and let 4 be an object of €. Then an M-structure
(or multiplication ) on A issimply amapm : A x A — A4 in €and the pair (4,m)
is called an M-object. If (4, m) and (4’, m') are two M-objects a mapg: A—>A4’
is called primitive or homomorphic with respect to the given M-structures if
m' (g X g)=gm:4 x A— A’; that is, if the diagram

A xA4-"-4

JFXU lﬂ
A x A" 4

commutes. We observe that identity and zero maps are primitive. It is easy to
prove:

Proposition 4.1. If (4, m), (4’,m"), (4", m"’) are M-objecis and g: A —~ A’,
h: A" — A" are maps then (i) if g and kb are primitive so is hg; (ii) if hg and b
are primitive and h is a monomorphism then g is primitive.

%) We use the notation - to indicate composition of maps where its omission might
lead to conf usion.
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Given an M-object (4, m) and an arbitrary X € €, the map m induces a
composition in the set H (X, 4) by the rule

4.2) j+g=mi{fg}: X>Ax4>4,fgcH(X, 4).

Thus (H(X, 4), +) is an M-object in the category &, or, as we may say, an
M-set. If h: X — Y in €, we write A* for ' (k) where F : € - & is the contra-
variant functor of Theorem 3.40 and prove

Theorem 4.3. A*: H(Y, A)~ H(X, 4) ts primitive with respect to the
M-structures in H(Y, A), H(X, A) induced by the M-structure in 4. Conversely,
if for each X € € an M-structure + is defined on H(X, A) tn such a way that h*
8 primitive for every map h of €, then A admits a unique M-structure m such
that (4.2) holds.

Proof. Notice that to assert primitivity for ~* is simply to assert that

(4~4) k*(f1+f2)mh*(fl)+h*(f2)’f1’ fz QH(Y, A) .

Now k*(fy + fo) = (L + [k = 'm'{fp foth = m{flh" fah} = [k + f3h
= h*(f,) + h*(f,), proving the first part of the theorem.

Conversely let each set H (X, 4) have an M-structure + and let A* be
primitive with respect to + for all k. Take in particular X = 4 x 4 and con-
sider the map p; + p;: 4 x 4 — A. If now X is an arbitrary object of € and
fi, fs €H(X, A), then {f,, fo} : X — 4 X A, so, by (4.4),

(P1 -+ pa) {fos fo} = {1 fo}* (D14 po) = {fus fo}* (21) + {Fr, fo}* (22)
= pi{fi; fa} + Pe{fis 12}
=f+ /.

This means that the M-structure in H(X, 4) is induced by the map m =
P+ Py A x A— A Iithemapn: 4 x 4 — 4 induces the same M-structure +
in H(X, A) for each X €€, then

Pt pa=n{p, Pt =0l 4=mn,

so that the uniqueness is proved.

We may express the conclusion of Theorem 4.3 in the following way. Let M
be the category of M-sets and primitive maps. There is then an evident functor
U from I to & which simply divests an M-set of its M-structure, and the rule
(4.2) sets up a one-to-one correspondence between M-structures m on A and
contravariant functors F,, : € - M such that UF,, = F.

We now dualize. Let € be an I-category and let 4 be an object of €. Then
an M-structure (or comultiplication) on 4 is a map m: A — A » 4 and the pair
{4, m) is called an M-object. If (4, m) and (4’, m’) are two M-objects a map
g: A’ - A is called primitive or homomorphic if the diagram

AT g e !
b Joso

A4-">4 %4
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commutes. We omit the dual of Prop. 4.1 and pass to the observation that,
given an M-object (4,m) and an arbitrary X € €, the map m induces an
M-structure in the set H (4, X) by the rule

(4.5) frg=<gdm:A>AxA>X, fgcHA, X).

We write h, for F (h) where F : € > & is the covariant functor of Theorem
3.39 and h: X — Y; the duality principle yields

Theorem 4.6. hy:H(A, X)—> H(A, Y) is primitive with respect to the
M-structures in H(A, X), H(A, Y) induced by the M-structure on A. Conversely
if for each X an M-structure + is defined on H (A, X) in such a way that by is
primitive for every map b of €, then A admits a unique M-structure m such that
(4.5) holds.

We may rephrase this by saying that (4.5) sets up a one-to-one corre-
spondence between M-structures m on A and covariant functors ¥, : € -~ M
such that U F,, = F.

We next enunciate two theorems whose duals will remain implicit.

Theorem 4.7. Let (A, m), (A', m") be two M-objects and let g: A > A’ be
primitive; then g, : H(X, 4) —~ H(X, A’) is primitive with respect to the M-struc-
tures induced by m, m'.

Proof. Let f,, fs € H(X, A). Then

geth+f)=9(fi+1)= gm{fv fa}
=m'(g X g) {f1, [}, since g is primitive,
=m'{gf1, gfs}, by Prop. 3.6,
=gh+9f.

= g4 (f) + u (f2) -

It is obvious that the converse of Theorem 4.7 holds: if g, : H(X, 4) - H(X,A4")
is primitive for all X ¢ € then g is primitive.

Theorem 4.8. Let (4,, my), (4,, m,) be two M-objects. Then there exists a
untique M-structure m on A, x A, such that p; and p, are primitive. Moreover if
(X, m') is an M-object then {f,,fs}: X — A, x A, is primitive (with respect
to m’ and m) if f; and f, are primitive.

Proof. Define m:4; x 4y x A4y X A3~ A, x 43 by m = {m,{p,, s},
my{Pe, Pa}}; using implicit bracketing m may be described as (my X my)
(1 x 7 X 1). Now the map p, X py: 4y x Ay x 4; X 43> 4, X A, is given in
components by {p,, ps}. Thus

pym = my(p; X py)
and, similarly,
Pam = my(Pg X Py) ,

so that p, and p, are primitive. The uniqueness of m follows from the fact that
the primitivity of p, (p,) determines the first (second) component of m.
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By Prop. 4.1 f, and f, are primitive if {f,, f;} is primitive. Conversely let
f1» 12 be primitive. Then

pim({fy, fa} X {fi, f23) = my (s ¥ p;) ({fo. fo} < {f. fo})
=m;(f; X ;)
= fym’, since f; is primitive

= pﬂ'{fp fam',j=12,
and {f;, f,} is primitive.

Corollary 4.9. Ifg,: A, B;,j =1, 2, are primitive then g; X gy: A3 X Ay —
- By x B, is primitive.

The converse of this corollary also holds since g; = p;(g; X ga)t;.

We call the M-object (A4, x A,, m) the direct product of the M-objects
(4;, my), =1, 2. This terminology is amply justified since it is indeed their
direct product in the category of M-objects and primitive maps.

We now consider axioms which we might wish to impose on an M-structure.
These axioms which are natural generalizations of those employed in group
theory are as follows; they relate to the M-object (4, m).

I (zero as unit) m{1,0} =m{0,1} =1:4 > A x A>A4;

IT (associativity)

mmx =mlxma:(dxAd)xAd-4Ax(AxA)>4x4->4;
I11 (existence of an inverse) there exists s: 4 ~> 4 such that
m{l,s}=m{s,1}=0:4>4Ax A~ 4;

IV (commutativity) m =mr: 4 x 4~ A4 x 4 - 4.

In II the map a is the canonical equivalence of Theorem 3.21. We will
generally omit it, writing simply m(m x 1) = m(l x m). In terms of
components m X 1 = {m{p;, p;}, pa} and 1 x m = {py, m{p,, ps}}-

An M-structure satisfying I will be called an H-structure

An M-structure satisfying I, 11 will be called an AH-structure.

An M-structure satisfying I, II, III will be called a G-structure.

An M-structure satisfying 1, II, II1, IV will be called a CG-structure.

An M-structure satisfying I, 11, IV will be salled an ACH -structure.

Similar conventions apply to M-objects and M-sets, except that a G-set
will usually be given its familiar name “group” and a CG-set its familiar name
“commutative group” or “abelian group”. We now prove a basic theorem.

Theorem 4.10. Let (4, m) be an M-object and let H(X, A) have the induced
M-structure for each X. Then m satisfies axtom K(K =1, 11, 1IL, IV) if and
only if the induced M-structures satisfy axiom K. Indeed zero is a right (left)
unit in A if and only if it is a right (left) unit in H(X, 4) and a right (left)
tnverse exists in A if and only if it exists in H (X, A).

Proof. 1. Let m{l,0}=1. Then f+4 0= m{f, 0} =m{l,0}f=f. Con-
versely if 0 is a right unit in H(4, 4) then 1 =1 + 0 = m {1, 0}. Similarly for
left units.
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II. f /,¢H(X, 4), i=1,2,3, then (f; + f,}) + fz = m{m{fp fa}s fa}s
fL + (fo + f3) = m{fy, m{fy, f3}}. Now

{mify, fos f3} = {m{py, 2}, 23} {Frs foo 1} -

For {m{py, pa}, Ps} {f1; fo 3} = {mA{py, pa} {f1: fos o}, Dsifus for Fo}
- {m{pl{h’ fzr f3}7 Pz{fp f2’ fa}}, Pa{fp f2’ f3}}
= {m{fy, fa}, fs} -

Similarly {f m{ts fo3} = {P1, m{ps, 2a}} {f1s fos o} -
Thus if m satisfies axiom II H (X, 4) is associative and if, in particular,

H(4 x A x A, A) is associative then m satisfies axiom II.

III. Let m{l,s} =0. Then f+ sf=m{f, sf} = m{l, s}f = 0. Conversely
if 's is & right inverse of 1 in H (A4, 4) then 0 =1 + s = m{l, s}. Similarly for
left inverses.

IV. Let mt — m. Then if fy, fy € H(X, 4), fy + fy = m{hy, fa} = me{fy, fu}
= m{fy, 1} = fz + f,. Conversely if H (A4 x 4, 4)is commutative then m = p, +
+ Pa = P2+ Py =m{py, p1} = M.

Theorem 4.10 enables us to transfer certain theorems from group theory to
general G-objects. Thus let I, (I;) be the axiom that zero is a right (left) unit
and let IIL, (III;) be the axiom asserting the existence of right (left) inverses.
Then we have

Corollary 4.11. Ifthe M-structurem : A x A - A satisfiesaxtoms I, 11,111,
(or I, 11, I11;) then it is a Q-structure. Moreover the right inverse s is uniquely
determined by m.

For if m satisfies I,, II, I1I, so does the M-structure + in H (A4, 4) with s
as the right inverse of 1. Thus, by classical group theory, H(4, 4) is a group,
where 0 + 1 =1, s + 1 =0, and s is unique. The first two conclusions assert
that m satisfies axioms I and II and the third asserts that m determines s.

Again we may prove by using Theorem 4.10

Corollary 4.12. Let (4, x A,, m) be the direct product of the M-objects (A4,, m,),
(A,, my). Then if the structures m,, my satisfy axiom K, so does the siructure m.

Proof. Instead of a direct proof we use Theorem 4.10 and refer to known (or
obvious) facts in the category ©. We show that if H(X, 4,), H(X, 4,) have the
M-structures induced by m,, m,, then, in the direct product H (X, 4,) x H (X, 4,)
= H(X, 4, x A,), the direct product M-structure coincides with the structure
induced by m. For if f,, f; ¢ H(X, 4,),7=1, 2, then

mify, fo f1> fo} = {mu{De, o} ma{pe, 23} {f1s for F1, 13}
= {my{p1, Ps} {f1; for 15 2} me{Dos 24} {11, for 11, 1233

= {my{fp, 11}, ma{fa, o3}
={h+ffatfo},

{fn fz} + {f1" fé} = {fl + f{» 2+ fé} ’
where + on the left is induced by m. We now conclude the proof of the Corollary
by claiming that the assertion is trivial in & and then inferring the assertion
in an arbitrary category by means of Theorem 4.10.

or
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We next prove the general associativity law for M-structures satisfying
axiom II. This could also be achieved by referring to properties of the category &
but we prefer a direct proof. We define an n-product in the M-object (4, m)
as follows.

(a) An n-product in (4, m) is a map in H (4", 4), where A" is the direct
product of n copies of 4;

(b) The unique 1-product in (4, m) is the identity map in H (4, 4);

(c) Assume n-products defined for n < k. Then a k-product is any map of

the form
Ixg

A" gax AT 4 x A4

where g + r ==k, w is the canonical equivalence, f is a g-product and g is a
r-product, Notice that (by a simple inductive argument) there are n-products
forevery n = 1.

Theorem 4.138. If (4, m) satisfies axiom X1 then the n-product in (4, m) is
unique.

Proof. We argue by induction on n, the assertion being true by definition if
n=1.

Suppose the assertion true for » < k and consider two k-products

Ar o o s 4r T g 4T g

A= 40 5 AT X0 g 4T g
notice that we use the generic symbol w for the canonical equivalence. If ¢ = ¢’
it is clear by the inductive hypothesis that these two k-products coincide. Thus

we may suppose without real loss of generality that ¢ > ¢/, say ¢ = ¢’ -+ 5. Let
h: A% - A be an s-product. Then consider

A= Aoy AT (40 Ay ) 4D (4 Ayx A4 - A A4
AN la ia e
m

AQIXAT'“%AQ'X(ASXAT)M"’AX(AXA) ixm

where a is the canonical equivalence of Theorem 3.21. This diagram is commu-
tative because (i) the canonical equivalence A% -» A9 x (4% x A7) is unique,
(ii) a is natural, (iii) m satisfies axiom II. But

m(m % 1) (f x k) x g) (w x V)w=m((m(f x h)w) x g)w=m(f x g)w,

by the inductive hypothesis, and similarly

m(1 x m) (f x (b x g)) (1 x wyw=m{f’ x (mh x gyw))w=m(f x g)w.
This completes the induction. We will later adopt the notation m*: 4» - 4
{m? = m), for the unique n-product in an associative M-object (4, m).

That part of Theorem 4.10 which asserts that the M-structure in H (X, 4)
inherits properties from the M-structure m on 4 admits an evident generaliza-
tion. For let ¥ be a covariant D-functor from the category € to the category €.
Then if m is an M-structure on 4, F(m) is evidently an M-structure on F(4)
and it is easy to show

Math, Ann, 145 17
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Theorem 4.14. The M-structure F (m) satisfies axiom K if the M-structure m
satisfies axtom K, (K =1, 11, I11, IV).

The following elementary result has important consequences when the
question of uniqueness of structure is under discussion.

Proposition 4.15. Let (4, m) be an M-object and let 1: A x A -~ A x A be
the switch. Then mt is an M-structure on A and m satisfies axiom K if and only
if m7 satisfies axiom K{K = 1, I1, 111, 1V).

We next prove

Proposition 4.16. Let (4, m), (4’, m') be two G-objects and let g: A > A’ be
primitive. Then g commules with inverses; i.e., if s:A—~> A4, §: 4" > A" are
inverses with respect to the structures m, m’, then gs = 8'g.

Proof. Consider g, : H(X, 4) ~ H(X, 4’). By Theorems 4.7 and 4.10 g,
is a homomorphism of groups and so maps inverses to inverses. Moreover if
f € H(X, 4)its inverse if sf; similarly the inverse of f' in H(X, A"} is s'f.

Take X = 4. Then in H(4, 4), s is the inverse of 1 so that g,(s) is the
inverse of g, {1)in H(A4, 4'), orgsisthe inverse of gin H(4, A’). Thusgs = s'yg.

Assertions 4.7—4.16 may all be dualized, but we will not make the duals
explicit. However the following important theorem (which is self-dual) relates
to DI-categories.

Theorem 4.17. Let (4, m,) be an H-object and (B, m,) an H-object in the
D1I-category €; and let m, induce the H-structure -, in H(A, X), m, induce the
H-structure +, in H(Y, B). Then +, = +, tn H(4, B), and is a commultative
H-structure.

Proof. Let f,g ¢ H(A4, B). Then by Theorem 3.33

{101, {0,93) ={{f,0), 0,90} : Ax4~>Bx B
But

mg{{f, 0}, {0, g}>my = {my{f, 0}, my{0, g}>my, by the dual of Prop. 3.5
= {f,g>m,, since myis an H-structure
=f+19;
while
my{<f, 0, (0, gp}my = my{<f, 0)my, €0, gpmy}, by Prop. 3.5
= my{f, g}, since m, is an H-structure
=f+.9.

To prove commutativity we simply consider the M-structure M, = m,7on B.
By Prop. 4.15 7ii, is an H-structure since m, is, and, if 7, induces +,in H(Y, B)
then

fFag=g+.f, fg€H(Y, B).
But, by what we have already proved, if ¥ = 4 then f ¥,¢ = f +, ¢. Thus
f+ig=9+f, },gcH(4, B).

We close this section with some brief remarks about H-structures in
DI.categories.
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Proposition 4.18. Let € be a DI-category and let n: A x A > A x A be the
canonical map (3.34). Then an M-structure m on A is an H-structure if and only if

mu={_1,1: 44> A.

For mux = m (i, 1,y = {my, miyy, and m is an H-structure if and only if
muy =1, miy= 1. We apply this proposition in proving

Theorem 4.19. Let € be a DI-category and let %: Ax A+ A x A be an
epimorphism. Then if A admits an H-structure that structure is unique and
commutative. If also B admits an H-structure then every map in H(A, B) is
primative.

Proof. If m, m’' are two H-structures on 4, then by Prop. 4.18 mx = m'x.
Thus, % being an epimorphism, m == m'. The commutativity of m follows from
Prop. 4.15, since m<7 is also an H-structure on 4.

Now let {B, m) be an H-object and ¢ : 4 - B. Consider the diagram

Ax A~ AxA—"-4

l‘?’*‘l’ PX@ lw
+

BxB—"—>Bx B——B

The canonical map » is certainly natural so x (@ * ) = (¢ X @)x. On the other
hand
gmx= gL, 1) = (p, @) =L 1) (¢ * ¢) = mx(g * ¢)
Thus
pmu = mu(p* g)=m(p X ¢)x.
But x: 4+ 44 x4 is an epimorphism so gm=m(p X ) and ¢ is
primitive.

There is, in fact, a stronger result underlyng Theorem 4.19. For the con-
clusion of the theorem holds in any D-category €in whichmapsf: 4 X 4> X
are determined by fi, and fi,; and if 4 * 4 exists this condition is equivalent
to the conditions that x: A% 4 >4 X A be an epimorphism.

5. Examples

5.1. The category & of based sets. We have already discussed this category
extensively in connection with the sets H(A, B) and the functors F, F. We
have remarked that it is a D-category, the direct product of the based sets S,, S,
being the Cartesian product S, x 8, based at the direct product of the base-
points of 8; and 8,. It is indeed a DI-category, 8; * 8, being the union of &,
and 8, with base-points identified, and »:8; % S, 8, x 8, is given by
w{xy) = {7, 0), #{Xp) = (0, 7,), %; € 8, where o is the base-point?) of §; or S,.
Notice that » is a monomorphism in &.

Asremarked G-objects of © are just groups and C G-objects are commutative
groups. On the other hand the notion of H-object is uninteresting in &; for

") It is convenient to adopt a common notation for all base-elements in © and all
base-points in €.
17*
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Proposition 5.1.1. The only H-objects in & are the one-point sets.

Proof. Let (8, m) be an H-object in &, so that m is a map from Sto S * S.
By the dual of Prop. 4.16 xm = {1,1}: § - 8 x 8. Now »(S % 8) intersects
the diagonal in § x 8 in the single point (0, o) where o is the base-point of 8.
Thus fer any z € §, {#, 2) = xm(x) = (0, 0) or 2 == 0.

5.2. The category € of based topological spaces. The objects of € are topological
spaces with a base-point®) o, the maps continuous maps preserving the base-
point. An equivalence is a homeomorphism. As in & there exist direct and
inverse products: the direct product of X, and X, is the Cartesian product
X, x X, with the usual product topology and base-point, and the inverse
product is the union X; v X, with base-points identified, topologized so that
a subset is closed if and only if it intersects X in a closed subset of X, ¢ =1, 2.
The map »: X, x X, - X, x X, is defined as in @€ and is a monomorphism.
The functor from € to & which associates with every space the underlying set
is & DI-functor and the only H-objects in & are the one-point spaces.

5.3. The category €, of based topological spaces and based homotopy classes.
The objects of €, are the same as those of ¥ ; the elements of H(4, B) in §,
are, however, the homotopy classes of continuous maps 4 — B, the base-
points o being preserved by maps and homotopies. The element 0 € H (4, B)
is the class of nullhomotopic maps; an equivalence 4 — B in &, is a (based)
homotopy equivalence. Direct (and inverse) products in € and €, coincide in the
gense that the objects are the same in the two categories and the projections
(injections) in ¥, are the homotopy classes of the projections (injections) in €;
but the canonical map »: X; v X, + X, x X, in €, (which is the homotopy
class of the canonical map in %) is, in general, neither a monomorphism nor an
epimorphism. The functor % : & — €, which puts each map in its homotopy
class is a DI-functor, and we sometimes permit ourselves to use this functor
implicitly8) in referring to notions in &,.

An H-object (4, m) in €, is usually called an H-space {a space with a
continuous multiplication having o as two-sided homotopy-unit). A G-object
in §, is 8 homotopy-associative H-space with homotopy-inverse. All topological
groups are G-objects in §,; and loop-spaces furnished with the multiplication
given by composition of loops are also G-objects in €. The loop-space functor £2,
regarded as a functor from € to € or from &, to €,, is a D-functor but not an
I-functor.

In €, there exist non-trivial H-objects, indeed G-objects, namely the
suspensions ZX (=1 x X/(0) x X v (1) x X u I x (0)). The comultiplication
in 2 X is the homotopy class of the map m: £X - XX % XX, given by

mt, )= q,(2,2),0S t < 5,2 €X,
—q@t—L2), 5=t lzeX;

%) As in the next paragraph where, for example, we refer to H-spaces; strictly, an
H-space is an M-object (4, m) of € such that (4, k(m)) is an H-object of L.
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here ¢,, ¢, are the injections of Z'X into the inverse product 2 X » X' X. With
respect to this comultiplication the inverse is the homotopy class of the map
s§: 2X - XX given by

st,x)=(1—¢ ).

There exist in €, H-objects which are not G-objects; if we confine attention to
polyhedra then a space 4 admits an H-structure in €, if and only if it is of
Lusternik-Schnirelmann category =< 2 and there exist (see [1]) non-suspensions
(even non-G-objects) with this property. The suspension functor X, regarded as
a functor from € to € or from &, to &, is an I-functor but not a D-functor.

Double loop-spaces 22X are CG-objects; indeed £24 is a CG-object if 4
is an H-object. Similarly double suspensions 22 X, and suspensions 2’4 where 4
is an H-object, are C G-objects. We refer again to the functors £ and X' in the
appendix on adjoint functors.

We will adopt the notation of [2] and write I7(A4, B) for H (4, B) when we
are working in the category &,. If (4, m) is a G-object in €, then by the dual of
Theorem 4.10 the induced M-structure in I7(4, B) is a group structure. In
particular if 4 is the n-sphere S, with its suspension structure then 71(4, B)
= m,(B), the nth homotopy group of B; and if 4= 2P then II(4, B)
= II, (P, B); see [2]. From Theorem 4.17 we deduce that if B admits an
H-structure then the group structure in I7; (P, B) is commutative and may be
obtained from the H-structure in B. This is a classical theorem if P = S, and
B is a topological group. We also infer from Theorems 4.6 and 4.10 that the
only natural group structure which could be introduced into the sets =, (X),
n > 1, is the homotopy group structure, and the only two natural group strue-
tures which could be introduced into the sets 7, (X) are the fundamental group
structure and its anti-isomorph. For S,, » > 1, admits a unique G-structure
in €,, and S; admits only the usual G-structure®) m: 8; -~ S; * S, and the
G-structure tm : S; > 8, * S,.

5.4. The category & of groups. The objects of & are groups and H (4, B)
consists of homomorphisms from 4 to B; we write Hom (4, B)for H (4, B)in &.
The zero-map in H (A, B) is the trivial homomorphism mapping 4 to the unit
element e of B. An equivalence in & is an isomorphism of groups.

Direct products in ® are those considered as usual in group theory; inverse
products in ® are just free products of groups. The projections p; : 4 x B~ A4,
py: A x B-> B are given by p,(a, b) = a, py(a, b) = b; the injections ¢, : 4 —
—~AxB, gg: B>Ax*B by ¢q,(a)=2a, ¢3(b)=> (and A4 = B is the group
generated without further relations by ¢,(4) and ¢,(B)). The theory of G- and
H-objects in ® and their duals has been discussed in a separate paper [5]; here
we merely list a few elementary facts, together with some results from [5].

First we note that for all 4, B € ® the canonical map x: 4 * B~ 4 x B,
given by x(a) = (a, e), %(b) = (¢, b), @ € 4, b ¢ B, is an epimorphism. Thus by
Theorem 4.19 an H-structure on 4 ¢ ® is unique and commutative. Now if

%) Actually 8,, » > 1, admits only one H-structure, but &, admits infinitely many
H-structures.
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(4, m) is an H-object then
(5.4.1) m(ay, ay) = m(a,, e) - mle, ay) == a,a, byaxiomI, a,a,€4,

whence, m being commutative, a,a, = a,a,; conversely if 4 is an abelian group
the rule (5.4.1) does give an H-structure on 4. Thus

Theorem 5.4.2. (4, m) is an H-object in ® if and only if 4 is an abelian group,
the H-structure m being the group operation in 4. If A, B are abelian groups
every element of Hom (4, B) is primitive.

Of course the H-structures in & are, in fact, G-structures.

Turning to H-structures in & we quote from [5] (see also [8]).

Theorem 5.4.3. A group A admits an H-structure if and only if it is free.
There are, in a free group, several H-structures. The AH-structures in A are in
one-to-one correspondence with the sets of free generators of A. There are no non-
trivial commutative H-structures in &. If (4, m), (B, m') are AH-objects in & an
element of Hom (4, B) is primitive if and only if it maps each generator of the
generating set of A corresponding to the AH-structure m to e € B or fo a generator
of the generating set of B corresponding to m’.

The functor ® — © which associates with each group its underlying set
is a D-functor but not an I-functor. A more interesting functor is the funda-
mental group functor 7, which may be regarded either as a functor £ — ® or
as a functor €, - & ; we will take the latter view. Then =, is a D-functor; if we
impose some restriction on the spaces we study, e.g., if we consider spaces of
the based homotopy type of CW.complexes, then n;, not only remains a D-
functor but indeed is a DI-functor. We infer immediately from this and the
results above

Theorem 5.4.4. If X is an H-space then m,(X) is commutative; if X is a
space of the based homotopy type of a CW-complex and if X admits an H-structure
then 7, (X) is free.

The first assertion of this theorem has already been deduced from Theo-
rem 4.15; the second assertion, restricted to suspension spaces, is fairly well-
known and may be proved, for example, by purely combinatorial methods.

5.5. The category U of abelian groups. The objects of A are (additive)
abelian groups, and H (4, B), which we again write as Hom (4, B), consists of
homomorphisms from 4 to B. The direct sum 4 + B of the two abelian groups
A and B has the properties both of the direct product and of the inverse
product; the injections of 4 and B into 4 + B are given by ¢, = {1, 0},
¢, = {0, 1}. Thus the canonical map # is the identity. All objects B admit a
unique H-structure, given by the group operation, and this struecture is a
CG-structure; similarly all objects 4 admit a unique H-structure, given by
a—(a,a), a €A, and this structure is a CG-structure. The abelian group
structure induced by either of these structures in Hom (4, B) is the usual
abelian group structure in Hom(4, B). These remarks apply, of course,
equally to the category M of (right) 4-modules where A is any ring. In parti-
cular, it follows from Prop. 4.18 that in any DI-category in which x is the
identity each object admits a unique H-structure m = (1, 1) and a unique
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H-structure m = {1, 1}. On the other hand we show in the third paper of the
series how tha features of the category U may be derived by considering its
special relation to the category &, and the latter category’s special relation to
the category &.

The functors H, (nth reduced homology group, n=0,1,2,...) are
Lfunctors from & or &, to A; the functors H* (nth reduced cohomology group,
n=0,1,2,...)are contravariant I-functors from € or €, to A; the functors 7,
(nth homotopy group, n =2, 3, . ..) are D-functors from € or &, to . The
failure of H, to be a D-functor is measured by the Kiinneth formula, but no
such universal formula has yet been found for measuring the failure of s, to
be an I-functor.

5.6. The category of pairs of a given category. Given any category € we may
form a new category P = P(€) in which the objects are the maps of € and in
which H(f, g), where f, g are objects of P, consists of maps (e, b) such that
ga = bf, i.e., such that the diagram

A—"=C
Jl,f ly
B—>D

is commutative. If also (a’, b’):¢g —> kh then, by definition,

(@', ") (@, b)= (a'a,b'b) .
It is plain that, € being a category with zero maps, P is also a category with
zero maps, with 0 = (0, 0).

Now let g,: 4;—> B;,7=1,2,...,n in the D-category €. Then

Theorem 5.6.1. P (€) 15 a D-category in which the direct product of gy, s, . . ..gn
i8¢y X gy X+ * X gy, the projections being the pairs of projections (p;(4), p;(B)).

We leave the proof to the reader.

Let (4, m4) and (B, mg) be M-objects in € and let g : 4 — B be a map. Then
(my, mg) €H(g X g,9) if and only if g is primitive; and every M-structure
in P is such a pair (m,, my) of M-structures, belonging to a set H(g x g, 9)
where ¢ is primitive with respect to m, and my. We again leave to the reader
the proof of

Theorem 5.6.2. The M-structure (my, mp) satisfies axiom K(K =1, 11,
111, IV) if and only if m 4 and my each satisfy axiom K.

Notice, too, that the categories T*(€) and B (C€*) are isomorphic; for
if f, g are maps of € and if (@, b) is a map from f to g in P* then (b, a) is a map
from f to g in P (€*).

Categories of pairs play an important role in topology and algebra and have
been used in homotopy theory (see [2], [4]).

5.7. The category of functors € - D. Let €, ® be two categories and let
& = F(€, ®) be the category whose objects are the covariant functors
F,. @G ....€-»>9 and whose maps are the natural transformations?): ¥ - G.

10) See, for example, {9].
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It is plain that if ® is a category with zero-maps, so is {§; precisely 0: F — @
is given by 0(X) = 0: F (X) > G(X), X €€C.

Theorem 5.7.1. If ® is a D-category so is F(€, D).

Proof. Given functors Fy, F,: € > 9, define F; x Fy: € > D by (F; X F,) (X)
=F (X) X Fo(X), (Fy x Fy) (f) = F,(f) x Fy(f). Clearly F; x F, is a functor.
Define natural transformations p;:F; x Fy—F; by p;(X)=p;: F;(X) x
X Fo(X)— F;(X), j =1, 2. These transformations are indeed natural since if
f:X > Yin € then Fy(f) - p;(X) = p;(¥) . (Fu(f) x P ().

Now let J be an arbitrary functor and let 8, : J — F; be natural transforma-
tions, j = 1, 2. Define 6 : J — F, x F, by 8(X) = {6,(X), 0,(X})}, X €€. Then 8
is matural; for if f: X — ¥ then

§(Y)od (f) = {6.(Y), 0(Y)} . J()
={0.(Y) J(f), 0(Y) - J ()}
= {Fy (). 0,(X), Fy(f} . 0,(X)}, by the naturality of 8,,6,

= (Fy(f) x Folf)) - {0:(X), 0,(X)}
= (Fy x Fy) (f) . 0(X) .

Moreover p;0 = 0;, evidently.

Finally let p; = 0, for ¢ : J — F; x F,. Then p, p(X) = 0,(X) so that ¢ (X)
is uniquely determined and hence so too is ¢.

Now an M-structure on the functor F is a natural transformation y: F x F
—F. This is a collection of M-structures u{X) on F(X) for each X €€
such that F (f) is primitive for each f : X - Y in €. We discuss such M-structures
in the next section where we refer to them as natural families of M-structures.

We remark that 5.6 is a special case of the notion of category of functors:
we take for € a category with two objects (which we may call “domain” and
“range”’) and, apart from identities, one map (which we may call “arrow”,
going from “‘domain” to “range”). Then an object of F (€, ®) is a map of
and a map of F(€, ) is a pair of maps yielding a commutative diagram.

Notice that, in general,

(5.7.2) F* (€, 9) = F(C*, 9%).

Thus we may deduce from Theorem 5.7.1.
Theorem 5.7.3. If © is an I-category so is F (€, D).

6. Adjoint funetors

Kax [7] has given the following definition of adjoint functors. Let €, ®
be two categories and let §: € - D, 7: ® — € be covariant functors. If 4, B
are objects of € then H (A4, B) is an element of the category @ and we writel!)

1) The notion of direct product of two categories presents no difficulty. Objects of
€x 9 are pairs (4, B), 4€¢€, B¢ D, and similarly maps of € x D are pairs of maps
(f,9), fin €, g in ®; moreover composition of maps in € x P is componentwise. Direct
products of (covariant) functors are defined in the obvious way.
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M, for the associated functor € x € — & ; similarly M,isa functor® x ® — &.
We also have functors S x 1:€ X D+ Px D and 1 x T:EXxD-ECx €
and we declare S to be left-adjoint to T' (T to be right-adjoint to S) if there is a
natural equivalence # between the functors M,(S x 1) and M, (1 x 7) from
€ x © to &. In other words, given 4 €€, B €9, there exists a one-to-one
correspondence 1 = 74 g between the sets H (8.4, B) and H(4, T B) such that,
forallf: 4’ >A4in€andg: B~ B'in®,

(6.1 nilg. e Sfy=Tg.n{x}.f, «a ¢ H(S4, B).

We eall 5 the adjugant of S and T. Of particular interest in homotopy theory
are the adjoint functors X and £, regarded either as functors from € to § or
trom &, to §,. If 4, B €% the adjugant 9: H(X'4, By~ H(4, 2 B) is given
by n{f} (a) () = f(a, f); the adjugant of the functors 2'and £ in &, is the map
of homotopy classes induced by the adjugant in £. We remarked in 5.3 that 2
is an I-functor and £2 a D-functor. That this is merely a consequence of their
adjointness is attested by

Theorem 6.2. Let €, D be D-categories and let T: 9D — € be a covariant
functor. Then if T admits a left-adjoint, T is a D-funcior.

Proof. We have to show that (T'(4; x 4,); Tp,, Tps) is a direct product
of T4,and TAyin €forall 4, 4,in ©. Let 8: € - D be left-adjoint to T and
let 17 be the adjugant of § and 7. Given f;: X~ T4,,7=1,2, in € let
g; = n~1(f;) : SX — 4;, and consider the map n{g,, g,} : X - T(d; x A4,). Then

T p; o n{gr, 9o} = n(pi{gr, 923) by (6.1)
== 7 (g;)
—~f, j=1,2.

It remains to show that if f, f': X — T'(4; x A,) are such that Tp,0f= Tp;of,
j=1,2, then f=f". Let f=mn(g), /= n(g'). Then T'p,of=n(p;g), Tp;- [
= n{p;g’) so p;9=1p;9’, j=1,2, whence g =g’, f=f, and the theorem is
proved.

Next we relate the two facts that every loop-space carries a “natural”
multiplication and every suspension a “natural” comultiplication. Let € be a
D-category and T': ® — € a covariant functor. We denote by my a family of
M-structures, one for each T'B as B ranges over the objects of ® and we say
that mp is natural®) if Tf is primitive for each map f in ®. We say that my
satisfies axiom K if mq p satisfies axiom K for each B € ®. Similar definitions
apply to a functor §: €~ D where ® is an I-category, and mg denotes a
family of M-structures.

In fact we apply these definitions when € is a D-category, ® is an I-category
and 8:€— D is left-adjoint to T:® —~ € with adjugant %. Let mp be a
family of M-structures as above and let 4 € €. Then we may define an M-strue-
ture on SA4,

n=1ngy: S4->S4x*84,

12} See 5.7,
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by the rule
(6.3) n(n)=mgpp . {nq, nes}: 4> TByx TBy—~TB,,

where By = 84 = SA.

We suppose in enunciating the next theorem that each TB, B( 9D, is
endowed with its M-structure myp and each S84, 4 €€, is endowed with its
M-structure ng .. We prove

Theorem 6.4. Let the family my be natural. Then

(i) n: H(S4, B)—> H(4, T B) is an isomorphism of M-sets for each A € €,
B(9;

(ii) the family ng is natural;

(iii) ng satisfies axiom K if my satisfies axiom K (K = I, I1, 111, IV).

Proof. Fix A and give H(A4, T B) the M-structure induced by myp for
each B ¢ D. If we define an M-structure in each H (S A4, B) by the rule

(6.5) (g1 + g2) = n(g1) + 1(92), 1. 92 € H(SA4, B),

then it follows from the naturality of mp and Theorem 4.7 that f, is primitive
with respect to the M-structures (6.5) for each f: B— B’ in ©. Hence by
Theorem 4.6 there exists an M-structure n%, on SA4 which induces the given
M-structures in H (S A, B), B ¢ ®. Moreover since b* : H(4, T B) - H(A',T B)
is primitive for all h: 4" - 4 in € and since, by (6.1),

n((Sh)*g) = k*n(g) ,

it follows from the converse of Theorem 4.7 that Sk is primitive with respect
to the M-structures n'y 4., 7, so that the family s is natural. Thus, in the
light of Theorem 4.10, Theorem 6.4 is proved when we have shown that ng = ng.
Butn' =¢, + ¢ €H(SA, 84 % 84)s0

n(n') = 5(q)) + 9(q2) = Mrp, - {Nq, 19}, By= S84 x 54

and the theorem is proved.

Notice that, of course, the family ng determines the family my by the rule
dual to (6.3) provided the family m, is natural. It is easy to verify that the
natural structures in 2B and X4, 4, B¢% or §,, are related exactly as in
{6.3).

‘We now put the extra condition on the category ® that it be also a D-cate-
gory (and so, in fact, a DI-category). Let (B, u) be an M-object in ®. Then by
theorem 4.14 (T B, T u) is an H-object in € if 4 is an H-structure; here again T
is a covariant functor ® — € with left-adjoint S and adjugant #, but for the
moment we do not postulate a natural family myp. We remark that for any
Dc®, 4¢C f,:84>Din®D,j=1,2,

(6.6) ’7{]‘11 fa} = {77/1: 77’2} .

For T is a D-functor, Tp; = p;, whence

Pio ifis fa = Tp; o ity fad = n(ps{f fo}) = nfni=1,2.
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Proposition 6.7. Let H(S A, B) be given the M-structure induced by u and
H{A, T B) the M-structure induced by T u. Then vy: H{(SA, B)—>H(4, TB)is
an isomorphism of M-sets.

For n(u. {fi. f}) = Tu. n{f, fa} by (6.1)
=Tu.{nh,nfs} by (6.6).

Now let mqp be a natural family of H-structures in € and let u be an H-strue-
ture. We prove

Theorem 6.8. Under these hypotheses mypp = T p and is commutative.

Proof. Let A be a fixed but arbitrary object of €. Then H (S A, B) receives
an H-structure either from the H-structure ng, in 84 given by (6.3) or from
the H-structure 4 in B, By Theorem 4.17 these two H-structures coincide in
H (S A, B)and are commutative. On the other hand 5 : H(S4, B) -~ H(4,T B)
is an isomorphism of H-sets either if we use the structures ng , and mqp z*(Theo-
rem 6.4) or if we use the structures y and 7'y (Prop. 6.7). It follows that the
structures mypp and T'u induce the same commutative structure in H(A4, T B).
Since this is true for every 4 in €, we must have mpp = T u and each is
commutative.

The assertion of Theorem 6.8 is familiar for the functor 2. Our proof yields
simultaneously, by the duality principle, the corresponding conclusion for X
these conclusions were referred to near the end of 5.3.

7. Appendix: a counterexample

In this appendix we show that there exist D-categories in which the direct
product of epimorphisms is not always an epimorphism {(compare Theorem 3.8);
it will be shown in the third paper of this series that, in an important class of
D-categories (namely, the primitive categories), the direct product of epi-
morphisms is an epimorphism.

The category of our example is a subcategory of the category &. Let
A4 = (a, 0), B={b, b',0). Then the objects of our category € are precisely all the
finite direct products 4™ x B*, m 2 0, » = 0, of copies of 4 and B. A map
A™ x B*—~ A" x B* of & is in € if and only if its components are in € (this
will ensure that € is a D-category) so it remains to describe those maps
A™ x B"+ A, A™ x B*—> B of & which belong to €. For this description we
will write an element of 4™ as a *“‘vector’ a, and an element of B"as a “vector”b;
and the fact that @ is among the components of a will be denoted by a € a;
similarly & €b, b’ €b.

The maps of € are determined as follows. Amapf: 4™ x B* > 4 is in €if
and only if the equation f(a, b) = a implies that f is a projection or b, b’ €b or
atca, b ch. Amapg:4™ x B*-» B is in € if and only if the equation
g(a, b) = b implies that g is a projection or b, ¥’ €b or o € a and the equation
g(a, b) = b’ implies that g is a projection.



254 B. Ecrmaxy and P. J. Hiwrox:

To illustrate this definition we describe the maps for small values of m, n.
Thus we exclude from € the map 4 — B sending a to b'; we include only the
zero map B — A4 ; we include only the zero and identity maps B - B; we include
in € only the maps 0, p,, k: 4 x B> A, where k(a, b') = a and maps the rest
of 4 x B to o; the maps 4 X B Bin € are p, and any map sending (o, b)
and (0, b')too;themaps 4 x 4 >4 inCare 0, p, p,; themaps 4 x 4> B
in € are all those whose image does not contain '; the maps Bx B4 in €
are those which map all elements except (b, b') and (b’, b) — and possibly these
elements, too — to o; and the maps B x B Bin € are p, and p, and those
which map all elements except (b, &) and (b’, b) to 0 and map (b, b') and (b, b)
to o or b. Notice that € contains all projections 4™ x B* - 4, A™ x B*— B.

Proposition 7.1. € is a category.

Proof. We call the maps f: 4™ x B*— 4, g: A™ x B* > B admissible if
they are in €. Thus we must show that if w={f,... fu o ... 9:}:
A" x B*— A™ x B* has admissible components and if f: A™ x B* > 4,
g: 4™ x B —» B are admissible then fu and gu are admissible.

Let u(a, b) = («, B), and suppose fu(a,b)=a. Then f(x, f)=a so | is
a projection or b, b’ €Poraca b ¢ p.1f f= p; then fu = f; and is admissible;
If b= B b = B;, then g; is a projection, so b’ €b and g, is a projection or
b, €boraca. Thus b,b' €boraca, V' cbif b,b' ¢f lfa=oa;, b =24
then &’ € b and f; is a projection or b, b’ ¢bora ¢a, b ¢b. Thusa €a, b’ ¢b or
b, €bif a €&, b ¢ B. This shows that fu is admissible.

Now suppose that gu(a, b)=b. Then g(x, ) = b so ¢ is a projection or
b cforace If g=p,,,; then gu = g; and is admissible. If b, b’ € f then,
as above b, b’ €bora ca, b’ €h, so certainly b, b ¢bh or a €a. If a = «, then,
as above, f; is a projection or b, b’ ¢bora€a, b’ €¢b. Thus,ifa€a, a€aor
b,v €h.

Finally suppose that gu(a, b) = b’. Then g(«, B) = b’ so g is a projection,
88Y ¢ = Pp+;- Then gu = g; and g,{a, b) = b’ so g; is a projection. Thus gu is
a projection and the proposition is proved. Plainly € is a D-category.

Proposition 7.2. Let h: A — B be the map given by hia) =b. Then k is an
epimorphism in € but h x 1: A x B> B x B is not an epimorphism in €.

Proof. To test whether k is an epimorphism it is sufficient to compose it
with maps B—> 4, B-> B. Since only 0: B— 4 isin €, it is trivial that v,A
== v, = vy = v, for v, v,: B> 4 in €. Since only 0,1: B > B are in € and
0h == 1h: A — B, it is plain that v; b = vyh = v, = v, for v, v,: B~ B. Thus b
is an epimorphism in €. On the other hand let v: B x B-> 4 be the map
sending all of B x B to o except that (b", b) is mapped to a. Then v is in € and
v = 0. On the other hand v{(h x 1) = 0(k x 1) = 0 so that % x 1 is not an
epimorphism.

We should remark that a far simpler example is available of this phenomenon
if we do not insist on D-categories; it is comparatively trivial to find a category
with two epimorphisms whose direct product is not an epimorphism.
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