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Introduction

One goal of spectral algebraic geometry is to unify common techniques from algebraic geome-
try and homotopy theory. An example of this is a deep theorem of Lurie which constructs the
universal elliptic cohomology theory, originally constructed using chromatic homotopy theory,
using the derived moduli stack of elliptic curves. This article discusses, proves, and applies
Lurie’s theorem (Th.A)—a vast generalisation of the above statement for the moduli stack of
elliptic curves to the moduli stack of p-divisible groups. Lurie’s theorem unifies many algebro-
geometry constructions in stable homotopy theory, such as topological K-theory, topological
modular and automorphic forms, Lubin–Tate theories, and various endomorphisms of these
theories. The goal of this article is to address a proof of Lurie’s theorem (currently not avail-
able in the literature) and to advertise its utility with a handful of applications. To motivate
the statement of Lurie’s theorem, let us recall Quillen’s theorem and the birth of elliptic co-
homology.

Let E˚p´q be a multiplicative cohomology theory, so the underlying spectrum E is a ho-
motopy commutative ring spectrum. If E˚p´q has a theory of Chern classes, meaning E has
a complex orientation ([Ada74, §2]), then the formal spectrum E0CP8 has the structure of
a formal group. Quillen’s theorem is the remarkable fact that the cohomology theory MU of
complex cobordism carries the universal complex orientation and the universal formal group
lives over π˚ MU. This passage, from algebraic topology to arithmetic geometry has proven
extremely useful in the homotopy theory, especially in providing global structure for the stable
homotopy category; see [BB20].

The original constructions of elliptic cohomology theories were done in reverse. Given an
elliptic curve X over a ring R, its associated formal group pX is an algebro-geometric construc-
tion ([Sil86, §IV]) resembling the Lie algebra of X. If pX is nicely behaved, one can apply the
Landweber exact functor theorem (LEFT) to obtain an elliptic cohomology theory E˚p´q with
a complex orientation MU Ñ E such that its associated formal group can be identified with pX
through an isomorphism E0p˚q » R; see [Lan88]. A ring spectrum E that can be constructed
using the LEFT is said to be Landweber exact.

Such elliptic cohomology theories connect stable homotopy theory to arithmetic and alge-
braic geometry, provide examples of spectra of chromatic height 2, and also possess connections
to physics, differential geometry, and the theory of genera. However, these theories also have
their defects. For example, given an elliptic curve X over a scheme S, one might hope to apply
the LEFT to the restriction of X to an open affine cover of S, and glue together the associated
elliptic cohomology theories to obtain a cohomology theory “over the scheme S”. This idea is
not possible using the LEFT, as this theorem only produces a cohomology theory represented
by an object in the stable homotopy category, and neither the category of cohomology theo-
ries nor the stable homotopy category have enough limits or colimits for gluing. This suggests
that to adapt these algebro-geometric ideas to elliptic cohomology theories one needs to work
with an enhanced version of the stable homotopy category. One suitable enhancement is the
8-category of spectra Sp and the associated 8-category of commutative algebras CAlg, whose
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objects are known as E8-rings.

A major achievement in homotopy theory is a theorem of Goerss–Hopkins–Miller ([Goe10,
Th.1.2]) which produces a functor of 8-categories Otop from a category of elliptic curves to
the 8-category of E8-rings. This functor does have the ability to glue together elliptic co-
homology theories as E8-rings now, in other words, Otop is a sheaf. For example, one can
glue together all elliptic cohomology theories to obtain the universal theory TMF of topological
modular forms; see [Beh20, §6].

In [SUR09], Lurie sketches an alternative construction of Otop from the structure sheaf
of a derived moduli stack of oriented elliptic curves, Mor

Ell, and recently this construction was
carried out in detail; see [EC2, §7]. This alternative construction uses different methods to
those of Goerss–Hopkins–Miller, and also suggests a vast generalisation from elliptic curves to
arbitrary p-divisible groups. The following is often referred to as Lurie’s theorem, which first
appeared without proof in [BL10, Th.8.1.4]; see Th.1.6 for a more precise statement.

Theorem A. Fix a prime p and an integer n ě 1. There is a sheaf of E8-rings O
top

BT
p
n
from

a category of p-divisible groups of height n such that its value on a p-divisible group G over a
ring R is an E8-ring E with the following properties:

1. E has a complex orientation and is Landweber exact.

2. There is an isomorphism of rings π0E » R.

3. The homotopy groups π˚E vanishes for all odd integers and otherwise π2kE is the k-fold
tensor product of a line bundle on R.

4. There is an isomorphism between the formal group of the p-divisible group G and the
formal group of E.

The sheaves O
top

BT
p
n
are constructed using spectral algebraic geometry analogous to Lurie’s

construction of Otop. Interest in this theorem stems from its applications, all originally due to
Lurie [EC2] or Behrens–Lawson [BL10], which we discuss in §5.

• The cohomology theory of p-complete complex K-theory KUp can be recovered by apply-
ing O

top

BT
p
1

to the multiplicative p-divisible group µp8 over the p-adic integers Zp; see §5.1.

In fact, this reproduces KUp as an E8-ring, and a variation also produces p-complete
real K-theory KOp.

• All of the Lubin–Tate cohomology theories associated to a perfect field κ and a formal
group pG of exact height n can be recovered from O

top

BT
p
n
; see §5.2. The functorality of

this construction with respect to automorphisms of formal groups recovers the action of
the extended Morava stabiliser group on such E8-rings, as studied in [GH04].

• An elliptic curve E is an abelian variety of dimension 1 and its collection of p-power
torsion produces a p-divisible group Erp8s of height two. Applying O

top

BT
p
2

to the moduli
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stack of elliptic curves produces the p-completion of the Goerss–Hopkins–Miller functor
Otop and also the p-completion of the universal elliptic cohomology theory TMFp; see
§5.3.

• A more in-depth study of dimension g abelian varieties with PEL structure yields coho-
mology theories called topological automorphic forms due to Behrens–Lawson; see §5.4.
The only known construction of these theories requires Th.A.

• Finally, the cohomology theories from Th.A come with functorality predicted by the
LEFT; the sections of the sheaves O

top

BT
p
n
have an action of the underlying p-divisible

groups. Using this idea, we construct stable Adams operations (§5.5) and show these
agree with the classical Adams operations for complex K-theory.

Outline

The proof of Lurie’s theorem found here is broadly based on Lurie’s construction of TMF
in [EC2, §7]. In short, we want to define our sheaves using the instructive formula O

top

BT
p
n

“

D˚Ω˚Oor
BT

p
n
; our actual precise definition looks slightly different. In §2 we define D, in §3 we

define Ω and Oor
BT

p
n
, and in §4 we use this definition to prove Th.A. For some discussion on

the technical background used in this proof, see the Conventions section below. The reader is
also invited to the Leitfaden of the proof of Lurie’s theorem; see §1.2. In a little more detail,
this paper is divided up into the following five sections (plus an appendix).

(§1) We begin by introducing a precise statement of Lurie’s theorem and its supporting cast.
This is followed by a Leitfaden for the proof, which gives a synopsis of the following three
subsections.

(§2) Here we focus on building some foundations for the phrase formally étale in spectral
algebraic geometry; a manifestation of the deformation theory of Lurie ([SAG, §17-18]).
These techniques are then used to lift classical to spectral p-divisible groups; see Th.2.34.

(§3) Next, we explore the orientation theory for p-divisible groups à la [EC2, §4]. Using this
we define a sheaf Oor

BT
p
n
which takes a p-divisible group over a p-complete E8-ring and

produces its orientation classifier ; see Df.3.13 and Pr.3.15.

(§4) Finally, we define the sheaf O
top

BT
p
n
by first applying the process of §2 followed by the sheaf

Oor
BT

p
n
of §3. We are left to prove this sheaf satisfies the conditions of Th.A, and the

arguments here follow those by Lurie in [EC2, §7.3].

(§5) In this last section, we construct a variety of well-known E8-rings as well as some
operations and actions thereof.

(§A) In this appendix, we summarise some technical facts about formal spectral Deligne–
Mumford stacks are used elsewhere in this article.
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Conventions

Now, and forever, fix a prime p.

Higher categories and higher algebra

We will make free and extensive use of the language of 8-categories, higher algebra, and
spectral algebraic geometry, following [HTT09], [HA], [SAG], and especially the conventions
listed in [EC2]. In particular:

• For an 8-category C and two objects X and Y of C, we will write MapCpX,Y q for the
mapping space and HomCpX,Y q if C happens to be the nerve of a 1-category.

• Commutative rings and abelian groups will be treated as discrete E8-rings and spec-
tra. Moreover, the smash product of spectra will be written as b, even if the spectra
involved are discrete (this does not mean the output will be discrete). The same goes
for completions, and in this case the 8-categorical completions will be written as p´q^

I

following [SAG, §7].

• All module categories ModR refer to the stable 8-category of R-modules, where R is
an E8-ring. In particular, if R is a discrete commutative ring, then ModR will be the
stable 8-category of R-module spectra, and not the abelian 1-category of R-modules.
The same holds for 8-categories of quasi-coherent sheaves.

• Following [EC2] (and contrary to [SAG] and [EC1]), we will write SpecR for the non-
connective spectral Deligne–Mumford stack associated to an E8-ring R.

Moreover, all n-categories are pn, 1q-categories, for n “ 1, 2,8.

Sites and sheaves

Lurie’s theorem concerns sheaves between 8-categories. The 8-categories which we want to
consider as sites are not necessarily (essentially) small, so we a priori do need to be careful
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about potential size issues. However, we are interested in constructing particular functors and
proving they are sheaves, so we only really need to step into a large universal to quantify our
definition of a sheaf.

Definition 0.1. Given 8-category T with a Grothendieck topology τ ([HTT09, Df.6.2.2.1])
and an 8-category C then a functor F : T op Ñ C is a C-valued τ -sheaf on T if for all τ -sieves
T 0

{X Ď T{X , the composite
´

pT 0
{XqŹ

¯op

Ñ
`
pT{XqŹ

˘op
Ñ T op F

ÝÑ C

is a limit diagram inside C.

A hypercover is a generalisation of a cover in a Grothendieck site. In general, our sheaves,
including the sheaf occurring in the statement of Th.A will be hypersheaves. Following [SAG,
§A], this variation on a sheaf comes with a more concrete description.

Definition 0.2 ([SAG, Df.A.5.7.1]). Let ∆s,` denote the 1-category whose objects are linearly
ordered sets of the form rns “ t0 ă 1 ă ¨ ¨ ¨ ă nu for n ě ´1, and whose morphisms are strictly
increasing functions. We will omit the ` when considering the full 8-subcategory with n ě 0.
If T is an 8-category, we will refer to a functor X‚ : ∆

op
s,` Ñ T as an augmented semisimplicial

object of T . When T admits finite limits, then for each n ě 0, we can associate to an augmented
semisimplicial object X‚ the nth matching object and its associated matching map

Xn Ñ lim
risãÑrns

Xi “ MnpX‚q

where the limit above is taken over all injective maps ris ãÑ rns such that i ă n. Given a
collection of morphisms S inside T , we call an augmented semisimplicial object X‚ is an S-
hypercover (forX´1 “ X) if all the natural matching maps belongs to S, for every n ě 0. Given
a Grothendieck topology τ on T , then a presheaf of spectra F on T is called a τ -hypersheaf
if for all τ -hypercovers X‚ Ñ X, the natural map

F pXq Ñ lim
∆

op
s

F pX‚q

is an equivalence of spectra. Some useful general references for the prefix hyper in the homotopy
theory of sheaves are [CM21], [DHI04], and [SAG, §A-D].

Our favourite examples will be when T is the 8-category Affcn, Aff, CA0
, or CA, and S is

either fpqc or étale covers. When we discuss these concepts with respect to E8-rings, we will
implicitly be talking about their opposite categories.

Given T and τ from Df. 0.2, then for each τ -covering family tCi Ñ Cu in C one can
associate a Čech nerve C‚ which is a τ -hypercover of C. It is then clear that τ -hypersheaves
are τ -sheaves. It is also obvious that if S Ď S1 then S1-hypersheaves are S-hypersheaves. We
find the following diagram of implications useful, and they will often be used implicitly:

fpqc hypersheaf fpqc sheaf

étale hypersheaf étale sheaf
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Let us now state two useful lemmata regarding hypersheaves.

Lemma 0.3. Let T be an 8-category with a Grothendieck topology τ and let F : T op Ñ C at8{S

be a τ -sheaf such that the composite

G : T op F
ÝÑ C at8{S Ñ C at8

is also a τ -sheaf, where the second functor is the canonical projection. Then the functor H
defined by the composite

T op F
ÝÑ C at8{S

Un
ÝÝÑ C at8

is a τ -sheaf. If F and G are τ -hypersheaves, then H is a τ -hypersheaf.

More informally, applying a Grothendieck construction to a sheaf is a sheaf.

Proof. Write
š

α Cα Ñ C for a τ -cover of an object C in T . We then note the following
composite of natural equivalences is equivalent to the natural map HpCq Ñ limHpCαq:

HpCq “ UnpF pCq : GpCq Ñ Sq
»
ÝÑ UnplimF pCαq : limGpCαq Ñ Sq

»
ÝÑ lim UnpF pCαq : GpCαq Ñ Sq “ limHpCαq

The first equivalence comes from the fact that F and G are both τ -sheaves second equivalence
from the fact that Un is a right adjoint. The proof for τ -hypersheaves is the same, with
τ -covers replaced with τ -hypercovers.

Lemma 0.4 ([SAG, Cor.D.6.3.4 & Th.D.6.3.5]). The identity functor CAlg Ñ CAlg is a
hypercomplete CAlg-valued sheaf (with respect to the fpqc topology). In particular, for any
E8-ring R and any fpqc hypercover R‚ of R, the natural map

R
»
ÝÑ limR‚

is an equivalence.

Notice that if R Ñ R‚ is an fpqc hypercover of an E8-ring R, then there are natural
equivalences

τě0R
»
ÝÑ τě0limR‚ »

ÝÑ lim τě0R
‚ (0.5)

from the above lemma and as τě0 commutes with limits as a right adjoint.

Topological rings and formal stacks

With experience, one knows that the study of deformation theory comes hand-in-hand with
the study of rings with a topology and the associated algebraic geometry. We will follow the
definition of an adic E8-ring from [EC2, Df.0.0.11], except we will only consider the connective
case.
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Definition 0.6. An adic ring A is a discrete ring with a topology defined by an I-adic
topology for some finitely generated ideal of definition I Ď A. Morphisms between adic rings
are continuous ring homomorphisms, defining an 8-subcategory CAlg♥ad of CAlg♥. An adic
E8-ring is a connective E8-ring A such that π0A is an adic ring. We define the 8-category
of adic E8-rings as the following fibre product:

CAlgcnad “ CAlgcn ˆ
CAlg♥

CAlg♥ad

An adic E8-ring A is said to be complete if it is complete with respect to an ideal of definition
I; see [SAG, Df.7.3.1.1 & Th.7.3.4.1]. An E8-ring R is local if π0R is a local ring, and we call
an adic E8-ring R local if the topology on π0R is defined by the maximal ideal of π0R. We
give CAlg♥ad and CAlgcnad the usual Grothendieck topologies (fpqc, étale, etc.) via the forgetful
functors to CAlg♥ and CAlgcn, respectively.

The geometric definition of a formal (spectral) Deligne–Mumford stack follows.

Definition 0.7. Let Spf : CAlgcnad Ñ 8T opsHen
CAlg be the functor described in [SAG, Con.8.1.1.10

& Pr.8.1.2.1]. A spectrally ringed 8-topos X is said to be an affine formal spectral Deligne–
Mumford stack if it lies in the essential image of Spf. A formal spectral Deligne–Mumford
stack is a spectrally ringed 8-topos with a cover by affine formal spectral Deligne–Mumford
stacks; see [SAG, Df.8.1.3.1]. Let fSpDM denote the full 8-subcategory of 8T oplocCAlg spanned
by formal spectral Deligne–Mumford stacks. Similarly, one can define a 2-category fDM of
classical formal Deligne–Mumford stacks (Df.A.6) where we further assume all such objects
are locally Noetherian.

Definition 0.8. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. We call an
object U inside X affine if the locally spectrally ringed 8-topos pX{U ,OX|U q is equivalent to
Spf A for some adic E8-ring A. We will also say that X is locally Noetherian if for every affine
object U of X , the E8-ring OXpUq is Noetherian in the sense of [HA, Df.7.2.4.30].

Note that Spf B is locally Noetherian if and only if B itself is a Noetherian E8-ring; see
[SAG, Pr.8.4.2.2].

Notation 0.9 (Fixed adic E8-ring A). Let A denote some fixed complete local Noetherian
adic E8-ring with perfect residue field of characteristic p. Write A0 for π0A, mA for the
maximal ideal of A0, and κA for the residue field.

The reader should keep in her mind the initial case of the p-complete sphere A “ Sp with
associated A0 the p-adic integers Zp. Other choices include the spherical Witt vectors of a
perfect field of characteristic p; see [EC2, §5.1].

Functor of points

The classical moduli stack M
♥
BTp is neither a Deligne–Mumford nor an Artin stack. This

necessitates our use of a functorial point of view, for both classical and spectral (formal)
algebraic geometry.
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Notation 0.10. Write Aff “ CAlgop to which we will add super/subscripts such as p´qcn,
p´qad, and p´q♥ as they apply to CAlg.

When working in PpAff♥q or PpAffcnq, we will abuse notation and not distinguish between
the objects representing functors and the functors themselves. This is justified by the following
commutative diagram of fully faithful functors of 8-categories:

Aff♥
loc.N Affcn

Aff♥
ad,loc.N Affcn

ad

DMloc.N SpDM

fDM fSpDM PpAffcnq

paq
pcq

pbq pdq

(0.11)

The loc.N subscript denotes those full 8-subcategories spanned by Noetherian or locally
Noetherian objects; see Df.0.8. The definitions and fully faithfulness of the functors above
are explained in Cor.A.10, except the functors (a)-(d), which can be justified as follows:

(a) is fully faithful as this holds without the locally Noetherian hypotheses; see [SAG,
Rmk.1.2.3.6] and restrict to the underlying 2-category.

(b) is fully faithful by using part (d) below and Pr.A.9. Indeed, if G ˝ F and G are fully
faithful, then so if F .

(c) is fully faithful by making a connective version of [SAG, Rmk.1.4.7.1]; this is justified by
[SAG, Cor.1.4.5.3].

(d) is fully faithful as both SpDM and fSpDM being defined as full 8-subcategories of
8T oplocCAlg and the fact that spectral Deligne–Mumford stacks are examples of formal
spectral Deligne–Mumford stacks by [SAG, p. 628].

Similarly, we will consider most of classical algebraic geometry as living in the 2-category
FunpCAlg♥,Sď1q which we then embed inside the 8-category PpAff♥q using the inclusion
Sď1 Ñ S, which preserves limits.

Warning 0.12 (Quasi-coherent sheaves on formal spectral Deligne–Mumford stacks). When
we consider quasi-coherent sheaves on a formal spectral Deligne–Mumford stack X, then what
we write as QCohpXq is what Lurie would write as QCohphXq, in other words, we consider
the 8-categories of quasi-coherent sheaves of formal spectral Deligne–Mumford stacks through
their functors of points. By [SAG, Cor.8.3.4.6], we see that these two notations are equivalent
as long as one restricts to almost connective quasi-coherent sheaves on both sides. As all of our
quasi-coherent sheaves of interest will be cotangent complexes, which are almost connective
by definition ([SAG, Df.17.2.4.2]), this distinction does not matter to us.
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Cotangent complexes

Given a natural transformationX Ñ Y between functors in PpAffcnq which admits a cotangent
complex ([SAG, Df.17.2.4.2]), we will write this cotangent complex as LX{Y and consider it as
an object of QCohpXq; see [SAG, §6.2]. A few specific cases can be made more explicit.1

1. If X Ñ Y is a morphism of spectral Deligne–Mumford stacks and X Ñ Y is the associ-
ated transformation of functors in PpAffcnq, then LX{Y is equivalent to LX{Y under the
equivalence of categories QCohpXq » QCohpXq by [SAG, Cor.17.2.5.4]. If X “ SpecB
and Y “ SpecA, then we have further identifications of LX{Y with LB{A under the
equivalence of 8-categories QCohpSpecAq » ModA; see [SAG, Lm.17.1.2.5].

2. If X is a formal spectral Deligne–Mumford stack, and X is the associated functor in
PpAffcnq, then LX is equivalent to L^

X , the completed cotangent complex of [SAG,

Df.17.1.2.8], under the equivalence of categories ΘX : QCohpXqacn
»
ÝÑ QCohpXqacn of

[SAG, Cor.8.3.4.6], where the superscript acn indicates full 8-subcategories of almost
connective objects. If X “ Spf A for an adic E8-ring A, then LSpf A » pLAq^

I (under

the equivalence of 8-categories QCohpSpf Aq » ModCpl
A , where I is a finitely generated

ideal of definition for the topology on π0A; see [SAG, Ex.17.1.2.9].

3. If f : X Ñ Y is a morphisms of formal Deligne–Mumford stacks and F : X Ñ Y is
the associated morphism of functors in PpAffcnq, then the cofibre L^

X{Y of the natu-
ral map f‹LY Ñ LX is naturally equivalent to LX{Y under the equivalence of cat-

egories ΘX : QCohpXqacn
»
ÝÑ QCohpXqacn; see [SAG, Df.17.1.2.8] for a definition of

LX{Y. Indeed, the naturality of ΘX in X ([SAG, Con.8.3.4.1]) yields an equivalence
ΘX ˝f‹ » F ˚ ˝ΘY of functors. Our desired identification then follows from the existence
of the (co)fibre sequences

f‹LY Ñ LX Ñ LX{Y F ˚LY Ñ LX Ñ LX{Y ,

the absolute case (2), and the fact that QCohpXqacn and QCohpXq are stable under
(co)fibre sequences; see [SAG, Cor.8.2.4.13 & Pr.6.2.3.4], respectively.

Due to the equivalences above, we will drop the completion symbol from our notation for the
cotangent complex between formal spectral Deligne–Mumford stacks. The following standard
properties of the cotangent complex of functors will be used without explicit reference:

• For a map of connective E8-rings A Ñ B, we have a natural equivalence in Modπ0B

π0LB{A » Ω1
π0B{π0A

;

see [HA, Pr.7.4.3.9].

1Thank you to an anonymous referee for vastly simplifying example 3 for us.
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• For composable transformations of functors X Ñ Y Ñ Z in PpAffcnq, where each
functor (or each transformation) has a cotangent complex, we obtain a canonical (co)fibre
sequence in QCohpXq

LY {Z

ˇ̌
X

Ñ LX{Z Ñ LX{Y ;

see [SAG, Pr.17.2.5.2].

• If we have transformations X Ñ Y Ð Y 1 of functors inside PpAffcnq, where LX{Y exists,
then LXˆY Y 1{Y 1 exists and is naturally equivalent to π˚

1LX{Y ; see [SAG, Rmk.17.2.4.6].

Warning 0.13 (Topological vs algebraic cotangent complexes). The cotangent complexes con-
sidered in this article are not the same as those developed by André and Quillen; see [Sta,
08P5]. In particular, for an ordinary commutative ring R considered as a discrete E8-ring,
then LR is what some call the topological cotangent complex. For more discussion, see [SAG,
§25.3].

Deformation theory

We will be using ideas from classical deformation theory as well as Lurie’s spectral deformation
theory, so we take a moment here to clarify our definitions. What we discuss below is mostly
taken from [EC2, §3].

Definition 0.14. Let G0 be a p-divisible group over a commutative ring R0 and write CAlgCpl
ad

for the 8-subcategory of CAlgcnad spanned by complete connective adic E8-rings. Define a

functor DefG0
: CAlgCpl

ad Ñ S by the formula

DefG0
pAq “ colim

I
BTppAq ˆ

BTppπ0A{Iq
HomCRingpR0, π0A{Iq

where the colimits is indexed over all finitely generated ideals of definition I for π0A. A priori an
8-category, but [EC2, Lm.3.1.10] states this is an 8-groupoid. Let pR,Gq be a deformation2

of G0. We say G is the universal spectral deformation of G0 with spectral deformation ring
A if for every B in CAlgCpl

ad , the natural map

Map
CAlg

Cpl
ad

pA,Bq
»
ÝÑ DefG0

pBq

is an equivalence. If R is discrete, we say G is the universal classical deformation of G0 with
classical deformation ring A if for every discrete B in CAlgCpl

ad , the natural map

Map
CAlg

Cpl
ad

pA,Bq
»
ÝÑ DefG0

pBq

is an equivalence. If such universal spectral (or classical) deformations pR,Gq exist, they are
evidently uniquely determined by the pair pR0,G0q.

2Recall from [EC2, Df.3.1.4], a deformation ofG0 is an adic E8-ring A, a finitely generated ideal of definition
I of π0A, a ring homomorphism R0 Ñ π0A{I , and an isomorphism of p-divisible groups pG0qπ0A{I » Gπ0A{I .
In other words, an object of DefG0

pAq.
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The above definition agrees with that in [EC2, Df.3.1.11] in the cases that the A above
is connective. Indeed, in this case, if B is a nonconnective complete adic E8-ring, the fact
connective cover is a right adjoint and BTppBq “ BTppτě0Bq by definition, we obtain the
following:

MapCAlgadpR,Bq » MapCAlgadpR, τě0Bq » DefG0
pτě0Bq » DefG0

pBq

The following will help us identify many classical deformation rings.

Remark 0.15. If a spectral deformation ring R exists for a pair pR0,G0q, then a classical
deformation ring also does, and it can be taken to be π0R. Indeed, if B is a discrete object
of CAlgCpl

ad as in Df.0.14, then the fact the truncation functor is a left adjoint on connective
objects yields the equivalences

DefG0
pBq » Map

CAlg
Cpl
ad

pR,Bq » Map
CAlg

Cpl
ad

pπ0R,Bq

showing that π0R is the classical deformation ring of pR0,G0q.

1 The statement of Lurie’s theorem

The titular theorem promises the existence of a sheaf O
top

BT
p
n
on some site over the classical mod-

uli stack of p-divisible groups satisfying certain properties. The idea behind the construction
of O

top

BT
p
n
is to construct morphisms of stacks

Mor
BT

p
n

Ω
ÝÑ Mun

BT
p
n

D
ÐÝ M

♥

BT
p
n
,

set O
top

BT
p
n

“ D˚Ω˚Oor
BT

p
n
, and check this possesses the desired properties. The maps of stacks

above do not quite exist in our set-up, but the above formula for O
top

BT
p
n
is instructive. In

this section, we state a precise version of Lurie’s theorem and give a more detailed outline
of the proof; in §2 we construct D (short for deformation) using spectral deformation theory
disguised as the adjective formally étale; in §3 we construct Ω (short for orientation) using
the orientation theory of Lurie; and in §4 we define O

top

BT
p
n
and check it satisfies the conditions

of Lurie’s theorem.

1.1 The precise statement

First, let us recall the definition of a p-divisible group over an E8-ring; see [EC2, Df.2.0.2] for
this definition, and [EC1, §6] or [EC3, §2] for a wider discussion.

Definition 1.1. Let R be a connective E8-ring. A p-divisible (Barsotti–Tate) group over a
connective E8-ring R is a functor G : CAlgcnR Ñ ModcnZ with the following properties:

1. For every connective E8-R-algebra B, the Z-module GpBqr1{ps vanishes.

2. For every finite abelian p-group M , the functor

CAlgcnR Ñ S B ÞÑ MapModZ
pM,GpBqq

is corepresented by a finite flat E8-R-algebra.

12



3. The map p : G Ñ G is locally surjective with respect to the finite flat topology.

A p-divisible group over a general E8-ring R, is a p-divisible group over its connective cover.
The 8-category BTppRq of p-divisible groups over an E8-ring R is the full 8-subcategory
of FunpCAlgcnτě0R

,ModcnZ q spanned by p-divisible groups. Let MBTp be the moduli stack of
p-divisible groups, which is the functor inside PpAffcnq defined on objects by sending R to the
8-groupoid core BTppRq»; see [EC2, Df.3.2.1]. We say a p-divisible group G has height n if
the E8-R-algebra corepresenting the functor

CAlgcnR Ñ S B ÞÑ MapModZ
pZ{pZ,GpBqq

is finite of rank pn; see [EC1, §6.5]. Using this notion of height, we can further define a
subfunctor MBT

p
n
for all n ě 1 consisting of all p-divisible groups of height n.

The reader is invited to check for herself that the definition above agrees with that of
[Tat67, §2] when R is discrete.

Remark 1.2 (Height is an open condition). We claim MBT
p
n

Ñ MBTp is an open embedding.
Lurie’s definition of a commutative finite flat group scheme over SpecR ([EC1, Df.6.1.1]) states
that GpZ{pZq » SpecB is affine and π0R Ñ π0B realises π0B as a projective π0A-module
of finite rank equal to pn. By [Sta, 00NX], this rank is locally (with respect to the Zariski
topology on |SpecR| “ |Specπ0R|) constant. In particular, if R is a local connective E8-
ring then the commutative finite flat group scheme GpZ{pZq has a well-defined height and we
obtain the formula:

SpecR ˆ
MBTp

MBT
p
n

»

"
SpecR htpGq “ n

∅ htpGq ‰ n

Definition 1.3. Let X be a formal spectral Deligne–Mumford stack. A p-divisible group over
X is a natural transformation G : X Ñ MBTp in PpAffcnq. We say G has height n if this
map factors through MBT

p
n
. By [EC2, Pr.3.2.2(4)], this is equivalent to a coherent family of

p-divisible groups GBi
on SpecpBiq

^
Ji
, where the collection tSpf Bi Ñ Xui form an affine étale

cover of X and Ji is an ideal of definition for Bi.

Our main object of study is the spectral moduli stack MBT
p
n
, although we are also inter-

ested in its relationship to the underlying classical moduli stack.

Notation 1.4. For a functor M : CAlgcn Ñ S, write M♥ for its restriction along CAlg♥ Ñ
CAlgcn. This commutes with finite products:

pX ˆ Y q♥
»
ÝÑ X♥ ˆ Y ♥

Given an adic E8-ring B, write xMB for the product xMB “ Mˆ Spf B in PpAffcnq. The hat
indicates a base-change over Spf, rather than Spec.

We can now define the sites upon which we will soon define our sheaves of E8-rings.
Adjectives used below that have not yet been defined will be discussed after Th.1.6.
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Definition 1.5. Recall the conventions of Nt.0.9, so fix a complete local Noetherian adic
E8-ring A with perfect residue field of characteristic p. Let

CA0
Ď PpAff♥q

{ xM♥

BT
p
n,A0

denote the full 8-subcategory spanned by those objects G0 : X0 Ñ xM♥

BT
p
n,A0

where X0 is

a locally Noetherian qcqs3 formal Deligne–Mumford stack with perfect residue fields4 at all
closed points, the cotangent complex5 L

X0{ xM
BT

p
n,A

is almost perfect6 inside QCohpX0q, and G0

is formally étale in PpAff♥q. Similarly, let

CA Ď PpAffcnq
{ xM

BT
p
n,A

denote the full 8-subcategory spanned by those objects G : X Ñ xMBT
p
n,A

where X is a locally
Noetherian qcqs formal spectral Deligne–Mumford stack with perfect residue fields at all closed
points, and G is formally étale in PpAffcnq. We will endow CA0

and CA with both the fpqc
and étale topologies through the forgetful map to PpAff♥q and PpAffcnq, respectively.

A simplified criterion for an object X Ñ xM♥

BT
p
n,A0

to lie in CA0
is discussed in Pr.1.8. The

precise version of Lurie’s theorem (Th.A) can now be stated.

Theorem 1.6 (Lurie’s theorem). Given an adic E8-ring A as in Nt.0.9, there is an étale

hypersheaf of E8-rings O
top

BT
p
n
on CA0

such that for a formal affine G0 : Spf B0 Ñ xM♥

BT
p
n
in

CA0
the E8-ring O

top

BT
p
n

pG0q “ E has the following properties:

1. E is complex periodic7 and Landweber exact.8

2. There is a natural equivalence of rings π0E » B0 and E is complete with respect to an
ideal of definition for B0. In particular, E is mA-complete, hence also p-complete.

3A locally Noetherian and quasi-compact scheme is called a Noetherian scheme. We choose to keep these
two adjectives separate though, as they play different roles in this article.

4As our fixed A is assumed to be p-complete, all these residue fields are necessarily of characteristic p.
5This relative cotangent complex exists as one does for X0 and xMBT

p

n,A—a consequence of [SAG, Pr.17.2.5.1]
and [EC2, Pr.3.2.2], respectively.

6Paraphrasing [SAG, §6.2.5], recall that a quasi-coherent sheaf F on a functor X : CAlgcn Ñ S is almost

perfect if for all connective E8-rings R and all morphisms of presheaves η : SpecR Ñ X, the R-module η˚
F is

almost perfect; see [HA, Df.7.2.4.10 & Pr.7.2.4.17] for the latter definition and a simple criterion for Noetherian
E8-rings.

7Recall from [EC2, §4.1], that an E8-ring A is called complex periodic if A is complex orientable and weakly

2-periodic. An object E of Sp
S{ is said to be complex orientable if the map given map e : S Ñ E admits a

factorisation e:
S » Σ´2

S
2 » Σ´2

CP
1 Ñ Σ´2

CP
8 e

ÝÑ E;

see [Ada74, §II] or [EC2, §4.1.1]. An E8-ring A is weakly 2-periodic if Σ2A is a locally free A-module of rank
1, or equivalently, that π2A is a locally free π0A-module of rank 1 and the natural map π2Abπ0A π´2A Ñ π0A

is an equivalence. Notice this is a condition, not data.
8A formal group pG over a ring R is Landweber exact if the defining map from SpecR to the moduli stack of

formal groups is flat. A complex periodic E8-ring is Landweber exact if its associated Quillen formal group is.
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3. The groups πkE vanish for all odd integers k. Otherwise, there are natural equivalences
of B0-modules π2kE » ωbk

G0
where ωbk

G0
is the dualising line9 of the identity component10

G˝
0 of G0.

4. There is a natural equivalence of formal groups G˝
0 » pGQ0

E over B0 where the former is
the identity component of G0 and the latter is the classical Quillen formal group11 of E.

We have included a few more details than in the original statement ([BL10, Th.8.1.4]) by
incorporating some work of Behrens–Lawson involving Landweber exactness.

For transparency, let us explain the adjectives in the definition of CA and CA0
.

(Locally Noetherian) We assume our formal Deligne–Mumford stacks are locally Noethe-
rian (Df.0.8) because completions of general rings in the classical world and derived world do
not agree; see [SAG, Warn.8.1.0.4]. Moreover, even in the world of spectral algebraic geometry
such objects are better behaved ([SAG, §8.4]), such as the existence of truncations; see Pr.A.1.

(Qcqs) This acronym stands for quasi-compact and quasi-separated ; see Df.A.13. When
a scheme X is qcqs, then it has a Zariski cover SpecA Ñ X (qc) and the fibre product
P “ SpecA ˆX SpecA is also a Zariski cover SpecB Ñ P (qs). Eventually, we will define an
étale (hyper) sheaf Oaff

BT
p
n
on the affine objects of CA, and to extend this to a formal Deligne–

Mumford stack X inside CA, one will use the adjective qcqs; see Rmk.3.14. One could write
this article again, with the word separated replacing the word quasi-separated and deleting all
occurrences of the prefix hyper, although the extra generality of hypersheaves can be useful in
practice.

(Formal geometry) One reason we work with formal spectral Deligne–Mumford stacks
(§A and [SAG, §8]) is related to topological modular forms. In this case, one must appeal to
the classical Serre–Tate theorem where one works with schemes where p is locally nilpotent,
ie, over Spf Zp; see Ex.2.7. Another, somewhat disjoint reason is for deformation theoretic
purposes. As stated in [EC2, Rmk.3.2.7]:

“The central idea in the proof of Theorem 3.1.15 (of [EC2]) is (. . . ) to guarantee the
representability of MBTp in a formal neighborhood of any sufficiently nice R-valued point.”

9Recall from [EC2, §4.2.5], the dualising line of a formal group pG over a commutative ring R is the R-linear

dual of its Lie algebra Liep pGq. This Lie algebra of a formal group can be defined in multiple ways, but we will
define it as the tangent space of pG over R at the unit section OxG Ñ R; see [Zin84] for a discussion about Lie
algebras associated to formal groups or here for an English translation.

10Recall from [EC2, Th.2.0.8], for each p-divisible group G over a p-complete E8-ring R there is a unique
formal group G˝ over R such that on connective E8-τě0R-algebras A which are truncated and p-nilpotent we
can describe G˝pAq as the fibre of GpAq Ñ GpAredq induced by the quotient by the nilradical; see [Tat67, (2.2)]
for a classical reference.

11Recall from [EC2, Con.4.1.13], that a complex periodic E8-ring A comes with an associated Quillen

formal group pGQ
A over A. The classical Quillen formal group pGQ0

A is the image of pGQ
A under the functor

FGrouppAq Ñ FGrouppπ0Aq, or equivalently as the formal spectrum Spf A0CP8. Notice the above definition
is independent of the choice of complex orientation for A—that would yield a chosen coordinate for our formal
group, ie, a formal group law ; see [Goe08, §2].
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As our moduli stack of interest is MBTp , we embrace formal spectral algebraic geometry.

(Closed points have perfect residue fields) A crucial step in showing our definition of
O

top

BT
p
n
satisfies the conditions of Th.1.6 is to reduce ourselves to the closed points of the affine

objects of CA0
, essentially reducing us to the Lubin–Tate theories of [EC2, §5]. It will then be

important that these residue fields are perfect (they will already be of characteristic p as we
are working over Spf Zp) to apply some of our formal arguments; see Pr.2.42.

(Formally étale over xMBT
p
n
) Again, one inspiration for Th.1.6 is the classical Serre–Tate

theorem, which posits that xM♥
Ell,Zp

is formally étale over xM♥

BT
p
2,Zp

. The phrase formally étale

is used in this article to control and package our deformation theory; see §2.

(Cotangent complex conditions in CA0
) These conditions are finiteness hypotheses, how-

ever, they are necessary to apply a deep existence criterion of Lurie (Th.2.39).

Let us now discuss a simple criterion for checking if an object lies in CA0
.

Definition 1.7. A morphism f : X0 Ñ Spf A0 of classical formal Deligne–Mumford stacks is
locally of finite presentation if for all étale morphisms Spf B0 Ñ X0, the induced morphisms
of rings A0 Ñ B0 are of finite presentation. By the usual arguments, it suffices to check this
on a fixed collection of étale morphisms Spf B0 Ñ X0 which cover X0. We say f is of finite
presentation if f is locally of finite presentation and quasi-compact (Df.A.13).

Proposition 1.8. Let A be as in Nt. 0.9 and G0 : X0 Ñ xM♥

BT
p
n,A0

be a p-divisible group

defined on a formal Deligne–Mumford stack X0 of finite presentation over Spf A0 such that the
associated map into xM♥

BT
p
n,A0

is formally étale. Then G0 lies in CA0
.

These simplified hypotheses are practical, but they do not apply to one of our favourite
examples, Lubin–Tate theory, as power series rings RJxK are simply never of finite presentation
over R.

Proof. First we note that X0 is locally Noetherian, qcqs, and has all residue fields corre-
sponding to closed points perfect of characteristic p as the morphism X0 Ñ Spf A0 is of finite
presentation.12 It remains to show that the cotangent complex in question,

L “ L
X0{ xM

BT
p
n,A

is almost perfect. To see this, we consider the composition in PpAffcnq

X0
G0ÝÝÑ xMBT

p
n,A

π2ÝÑ Spf A

12Indeed, for locally Noetherian one can use [Sta, 00FN], for qcqs one can use [GW10, §D], and the residue
fields are perfect as finite field extensions of perfect fields are perfect by [Sta, 05DU].
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which induces the following (co)fibre sequence in QCohpX0q:

G˚
0LxM

BT
p
n,A

{ Spf A
Ñ LX0{ Spf A Ñ L

Abbreviating the above to G˚
0L1 Ñ L2 Ñ L, we first focus on G˚

0L1. As a quasi-coherent sheaf
on a formal spectral Deligne–Mumford stack X0, to see G˚

0L1 is almost perfect, it suffices to
see that η˚G˚

0L1 is almost perfect inside QCohpXq for every morphism η : X Ñ X0 where X is
a spectral Deligne–Mumford stack; see [SAG, Th.8.3.5.2]. Using the base-change equivalence

L1 “ LxM
BT

p
n,A

{Spf A
» π˚

1LM
BT

p
n

it suffices to show L1
1 “ η˚G˚

0π
˚
1LM

BT
p
n
is almost perfect. By [SAG, Cor.8.3.5.3], it suffices to

check the affine case of X “ SpecR, where R is a connective E8-ring. Note p is nilpotent in
π0R as SpecR maps into Spf A, and p P mA by assumption; see Nt.0.9. Our conclusion that L1

1

is almost perfect in ModR then follows from [EC2, Pr.3.2.5]. Therefore, G˚
0L1 is almost perfect.

Focusing on L2 now, we consider the composition X0 Ñ Spf A0 Ñ Spf A and the induced
(co)fibre sequence of quasi-coherent sheaves over X0:

LSpf A0{ Spf A

ˇ̌
X0

Ñ LX0{ Spf A “ L2 Ñ LX0{Spf A0
(1.9)

By Pr.A.12, we see LSpf A0{ Spf A is almost perfect in QCohpSpf A0q, and pullbacks preserve
almost perfectness ([SAG, Cor.8.4.1.6]), hence the first term of (1.9) is almost perfect. To
see the third term of (1.9) is almost perfect, we may work locally and replace X0 with Spf B0

where B0 is a complete discrete adic ring. In this case we use the assumption that A0 Ñ B0 is
of finite presentation, which implies LB0{A0

is almost perfect in ModB0
; see [HA, Th.7.4.3.18].

By [SAG, Pr.7.3.5.7], LB0{A0
is complete with respect to an ideal of definition J for B0, and

it follows the B0-module

LB0{A0
»

`
LB0{A0

˘^

J
» LSpf B0{Spf A0

is almost perfect. Therefore L2 is almost perfect, so L itself is almost perfect.

1.2 Leitfaden of the proof of Th.1.6

Our proof moves in three distinct, but connected, stages.

(I) First, we move from classical algebraic geometry (in PpAff♥q) to spectral algebraic ge-
ometry (in PpAffcnq) using deformation theory, presented here through the adjective

formally étale. Given an object G0 : X0 Ñ xM♥

BT
p
n,A0

inside CA0
, we consider the object

X inside the following Cartesian diagram in PpAffcnq:

X τ˚
ď0X0

xMBT
p
n,A

τ˚
ď0

xM♥

BT
p
n,A0

G G0

f
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The functor τ˚
ď0PpAff♥q Ñ PpAffcnq above is induced by precomposition with τď0 : CAlg

cn Ñ

CAlg♥, and the maps XpRq Ñ τ˚
ď0XpRq “ Xpπ0Rq are induced by the truncation map

R Ñ π0R. The assumption that G0 was formally étale in PpAff♥q implies that X is

what Lurie calls the de Rham space of the map X0 Ñ xMBT
p
n,A

and that G is formally
étale; see Pr.2.35. Most of the adjectives defining CA0

then allow us to employ a power-
ful representability theorem of Lurie (Th.2.39), which identifies X as a formal spectral

Deligne–Mumford stack, which we denote as X. Some analysis shows G : X Ñ xMBT
p
n,A

lies in CA and that the functor

D : CA0
Ñ CA, pX0,G0q ÞÑ pX,Gq

is an equivalence of 8-categories (Th.2.34).

(II) Next, we apply the orientation theory of p-divisible groups devised by Lurie in [EC2].
This yields a moduli stack of oriented p-divisible groups Mor

BT
p
n
and a map of presheaves

on p-complete E8-rings
Ω: Mor

BT
p
n

Ñ Mun
BT

p
n
;

see Df.3.6. The bulk of this section is formalising a global form of the constructions of
[EC2, §4] and constructing the pushforward presheaf along Ω of the structure sheaf of
Mor

BTp , which when restricted to CA becomes the functor Oor
BT

p
n
: Cop

A Ñ CAlg. It will
follow rather formally that applying Oor

BT
p
n
to an affine object of CA yields the orientation

classifier construction of Lurie; see [EC2, §4.3.3].

(III) Finally, we set O
top

BT
p
n
to be the composition of D followed by Oor

BT
p
n
. In other words,

we first send pX0,G0q to pX,Gq using D, and then take the orientation classifier of
the identity component of G; see Df.4.1. To check this definition of O

top

BT
p
n
satisfies the

properties described in Th.1.6, we use descent ideas of Lurie.

The following three sections carry out these three steps given above.

2 Formally étale natural transformations

At the heart of spectral algebraic geometry is deformation theory—Lurie ([SAG, p.1385]) even
goes as far as to state the heuristic principle:

tspectral algebraic geometryu “ tclassical algebraic geometryu ` tdeformation theoryu

The adjective formally étale will help us navigate between the two worlds of classical and
spectral algebraic geometry using Lurie’s spectral deformation theory. More concretely, given
a (nice enough) formally étale morphism X0 Ñ M, where X0 is a classical formal stack, there is
a universal spectral deformation of X0, say X, such that X0 can be viewed as the 0th truncation
of X. This process allows us to lift objects in classical algebraic geometry to spectral algebraic
geometry without changing the underlying classical object; see Th.2.34.
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2.1 On presheaves of discrete rings

Let us first consider formally étale maps between presheaves of discrete rings.

Definition 2.1. A natural transformation f : X Ñ Y of functors in PpAff♥q is said to be
formally étale if, for all surjective maps of rings rR Ñ R whose kernel is square-zero, also called
square-zero extensions of R, the following natural diagram of spaces is Cartesian:

Xp rRq XpRq

Y p rRq Y pRq

Moreover, we say that f is formally unramified if the fibres of the map

Xp rRq Ñ XpRq ˆ
Y pRq

Y p rRq

are either empty or contractible.

Let us state some classical, useful, and also formal properties of formally étale morphisms;
the reader may enjoy verifying them herself.

Proposition 2.2. Formally étale morphisms in PpAff♥q are closed under composition. If

X
f
ÝÑ Y

g
ÝÑ Z are composable morphisms in PpAff♥q such that g is formally unramified and

gf is formally étale, then g is formally étale. Formally étale (resp. unramified) morphisms
are closed under base-change.

Let us now relate Df.2.1 to the definitions found in classical algebraic geometry.

Definition 2.3. A map f : X Ñ Y between functors in PpAff♥q is affine if every ring R, and
every R-point η P Y pRq, the fibre product SpecR ˆY X is represented by an affine scheme.

Note that maps between (functors represented by) affines in PpAff♥q are always affine, as
the Yoneda embedding Aff♥ Ñ PpAff♥q preserves limits.

Proposition 2.4. Let f : X Ñ Y be a natural transformation of functors in PpAff♥q. Then f
is formally étale if and only if for every ring R, every square-zero extension of rings rR Ñ R,
and every commutative diagram of the form

SpecR X

Spec rR Y

f (2.5)

the mapping space
Map

PpAff♥qR{{Y
pSpec rR,Xq
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is contractible.13 Moreover, if f is affine, then f is formally étale if and only if for every ring
A, and every A-point η P Y pAq such that the fibre product SpecA ˆY X is equivalent to any
affine scheme SpecB, the natural projection map A Ñ B is formally étale as a map of rings.14

Proof. Given a ring R, a square-zero extension rR Ñ R, and a commutative diagram (2.5),
consider the following diagram of spaces:

MapR{{Y p rR,Xq Map{Y p rR,Xq Map{Y pR,Xq

MapR{p rR,Xq Mapp rR,Xq MappR,Xq

MapR{p rR,Y q Mapp rR,Y q MappR,Y q

By definition, the rows and columns are fibre sequences,15 we have abbreviated the categories
above to express only the over/under categories, and we suppressed the functor Spec. By the
Yoneda lemma, the bottom-right square is naturally equivalent to (2.5), hence f is formally
étale if and only if this bottom right square is Cartesian. In turn, this is equivalent to the
space in the top-left corner being contractible.

For the “moreover” statement, suppose that f is affine. If f is formally étale, then Pr.2.2
states that the map SpecB Ñ SpecA is formally étale by base-change. Conversely, suppose
we are given a diagram of the form (2.5), then by assumption the fibre product Spec rRˆX Y »
SpecB is affine and SpecB Ñ Spec rR is formally étale, giving us the following diagram:

SpecR

SpecB X

Spec rR Y

f

One then observes the following sequence of natural equivalences of spaces

Map
R{{ rRp rR,Bq » MapR{p rR,Bq ˆ

MapR{p rR, rRq

tid rRu

» MapR{p rR,Xq ˆ
MapR{p rR,Y q

MapR{p rR, rRq ˆ
MapR{p rR, rRq

tid rRu » MapR{{Y p rR,Xq

13Ie, “there exists a unique lift Spec rR Ñ X for (2.5).”
14For the definition of a formally étale map of rings simply apply Df.2.1 to the transformation (co)representing

this map of rings, or see [Sta, 02HF].
15The fibres in this diagram have been taken with respect to the maps from (2.5).

20

https://stacks.math.columbia.edu/tag/02HF


where we have used the same abbreviations from earlier in the proof. The first apce above is
contractible as SpecB Ñ Spec rR is formally étale, hence f is formally étale as the last space
is contractible.

Let us list some instances of formally étale morphisms found in algebraic geometry.

Example 2.6 (Formally étale morphisms of schemes). In the setting of classical algebraic ge-
ometry, we usually take the existence of a unique map Spec rR Ñ X (under SpecR and over
Y ) as the definition of a formally étale maps of rings (or schemes); see Pr.2.4. An object in
PpAff♥q represented by a scheme factors through FunpCAlg♥,Setq, as mapping spaces between
classical schemes are discrete, and we see Pr.2.4 precisely matches [Sta, 02HG].

Example 2.7 (Classical Serre–Tate theorem). The classical Serre–Tate theorem (see [CS15,
p.854] for the original source, or [EC1, Th.7.0.1] for statement of the spectral version) states
that if rR Ñ R is a square-zero extension of commutative rings and p is nilpotent within them,
then the diagram of 1-groupoids

AVargp rRq» AVargpRq»

BTp
2gp rRq» BTp

2gpRq»

rp8s rp8s (2.8)

is Cartesian. This implies the morphism of classical moduli stacks rp8s : M♥
AVarg

Ñ M
♥

BT
p
2g

sending an abelian variety X to its associated p-divisible group Xrp8s ([Tat67, §2]) is formally
étale after base-change over Spf Zp. This base-change is crucial, as there only exists a map
SpecR Ñ Spf Zp is when p is nilpotent inside R, as the continuous map of rings Zp Ñ R must
send tpiuiě0 to a convergent sequence in R, where R is equipped with the discrete topology.
If we fail to make this base-change, then (2.8) may not be Cartesian.16

Example 2.9 (Classical Lubin–Tate theorem). Another classical example of a formally étale
map in PpAff♥q comes from Lubin–Tate theory. The original source for this is [LT66] with
respect to formal groups, but we will follow [EC2, §3] as our intended application is for p-
divisible groups; see [EC2, Ex.3.0.5] for a statement of the dictionary between deformations
of formal and p-divisible groups. Let G0 be a p-divisible groups of height 0 ă n ă 8 over a

16Indeed, consider the elliptic curve E over F3 defined by the equation y2 “ x3 ` x2 ` x` 1. The 2k-torsion

subgroups of E are, by [KM85, Th.2.3.1], equivalent to the constant group schemes
`
Z{2kZ

˘2
over F3, hence

the associated 2-divisible group Er28s is equivalent to the constant 2-divisible group pQ2{Z2q2 over F3. Define
two deformations E1 and E2 of E over the dual numbers F3rǫs (augmented by the morphism ǫ ÞÑ 0), by the
formulae

E1 : y2 “ x
3 ` x

2 ` x ` 1 ` ǫ, E2 : y2 “ x
3 ` x

2 ` x ` 1 ´ ǫ.

Once more, by [KM85, Th.2.3.1], we calculate E1r28s and E2r28s to both be the constant 2-divisible group
pQ2{Z2q2 over F3rǫs, and hence these 2-divisible groups also base-change to Er28s over F3. As a final observa-
tion, note that E1 and E2 are not equivalent as elliptic curves over F3rǫs, as one can calculate their j-invariants
([Sil86, §III.1]):

jpE1q “ ǫ´ 1 ‰ ǫ` 1 “ jpE2q

Hence r28s : M♥

Ell Ñ M
♥

BT
p

2

is not formally étale over SpecZ.
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perfect field κ of characteristic p. Then there exists a universal classical deformation G of G0

over the classical deformation ring RLT
G0

; see [EC2, Df.3.1.4] or the proof of Pr.2.10.

This formally implies that the map into M
♥

BT
p
n
defining G is formally étale. In fact, we

generalise the Lubin–Tate case above using [EC2, §3] to formally obtain:

Proposition 2.10. Let R0 be a discrete Fp-algebra such that LR is an almost perfect R-
module17 and G0 is a nonstationary18 p-divisible group over R0 of height n. Then the map
Spf RG0

Ñ xM♥

BT
p
n,Zp

induced by the universal classical deformation of G0 is formally étale.

Conversely, if G : Spf R Ñ xM♥

BT
p
n,A0

is formally étale for a complete Noetherian discrete ring

R and A0 from Nt.0.9, then for every maximal ideal m Ď R such that the residue field R{m “ κ

is perfect, then GB^
m

is the universal classical deformation of Gκ.

Proof. The existence of such an RG0
follows by taking π0 of the spectral deformation ring;

the spectral deformation ring exists by [EC2, Th.3.4.1] and then we apply Rmk.0.15. Let
R Ñ R{J be the quotient map where R is discrete and J is a square-zero ideal. First, we wish
to show the following commutative diagram of spaces is Cartesian:

pSpf RG0
qpRq pM♥

BT
p
n

qpRq

pSpf RG0
qpR{Jq pM♥

BT
p
n

qpR{Jq

l r

b

(2.11)

Following [EC2, Df.3.1.4], for an adic E8-ring A the 8-category DefG0
pAq is defined as

DefG0
pAq “ colim

I

ˆ
BTppAq ˆ

BTppπ0A{Iq
HomCAlg♥pκ, π0A{Iq

˙

where the colimit is indexed over the filtered system of finitely generated ideals of definition
I Ď π0A. By [EC2, Lm.3.1.10], if A is complete, then DefG0

pAq is a space, which in particular
holds if A is a discrete ring equipped with the discrete topology. As RG0

is the universal
deformation of G0 one obtains for any such A an equivalence of (discrete) spaces

Hom
CAlg♥

ad
pRG0

, Aq
»
ÝÑ DefG0

pAq “ colim
IPNil0pAq

ˆ
BTppAq ˆ

BTppA{Iq
HomCAlg♥pR0, A{Iq

˙
(2.12)

where the colimit is taken over all finitely generated nilpotent ideals I inside A; see [EC2,
Th.3.1.15]. By assumption, the cotangent complex LR0

is almost perfect in ModR0
, and [EC2,

Pr.3.4.3] then implies that the natural map

DefG0
pAq

»
ÝÑ colim

IPNilpAq
FA,I

17See [EC2, Pr.3.3.7 & Th.3.5.1] for many equivalent conditions to LR being almost perfect.
18Recall the definition of a nonstationary p-divisible group G0 from [EC2, Df.3.0.8], or the equivalent con-

dition for G0 over a discrete Noetherian Fp-algebra R0 whose Frobenius is finite, that the cotangent complex
LSpecR{MBTp induced by the defining morphism of G0 is 1-connective; see [EC2, Rmk.3.4.4 & Th.3.5.1]. In
particular, by [EC2, Ex.3.0.10], all p-divisible groups over Fp-algebras R0 whose Frobenius is surjective are
nonstationary.
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is an equivalence, where now the colimit is indexed over all nilpotent ideals I Ď A and FA,I is
the fibre product of (2.12). Given a fixed nilpotent ideal J Ď A, denote by NilJpAq the poset of
nilpotent ideals of A which contain J . We obtain a natural inclusion functor NilJpAq Ñ NilpAq,
which is cofinal, as any nilpotent ideal I lies within the nilpotent ideal I`J . Hence the natural
map

colim
IPNilJ pAq

FA,I
»
ÝÑ colim

IPNilpAq
FA,I

is an equivalence. The map l of (2.11) is then equivalent to

colim
IPNilJ pRq

FR,I
l

ÝÑ colim
IPNilJpRq

FR{J,I{J

where we used the fact that ideals inR{J correspond to ideals inR containing J . If pSpf RG0
qpR{Jq

is empty, then so is pSpf RG0
qpRq and we are done. Otherwise, choose some x in pSpf RG0

qpR{Jq
and consider the fibre of l over x. As filtered colimits of spaces commute with finite limits we
calculate this fibre as follows:

fibxplq » colim
IPNilJ pRq

fibxI

´
FR,I

g
ÝÑ FR{J,I{J

¯

To simplify this further, we contemplate the following diagram in C at8:

BTppRq ˆ
BTppR{Iq

HompR0, R{Iq BTppR{Jq ˆ
BTppR{Iq

HompR0, R{Iq HompR0, R{Iq

BTppRq BTppR{Jq BTppR{Iq

g

f

The right square and outer rectangle above are Cartesian by definition, so the left square is
also Cartesian. This means the natural map fibpgq Ñ fibpfq is an equivalence in C at8, hence
our fibre of l becomes

fibxplq » colim
IPNilJ pRq

´
fibbpxIqpBT

ppRq
f
ÝÑ BTppR{Jqq

¯
» fibbpxq

´
BTppRq

f
ÝÑ BTppR{Jq

¯
.

This shows the fibre of f lies in the essential image of S Ñ C at8 as fibxplq is. As r is f» we
obtain a natural equivalence fibplq » fibprq. As the fibres of l and r are naturally equivalent,
we see that (2.11) is Cartesian, so the composition

Spf RG0
Ñ xMBT

p
n,Zp

Ñ MBT
p
n

Ñ MBTp

is formally étale. To see the first map in the composition above is formally étale, we use that
the last map is open (Rmk.1.2) and hence formally étale, the second last map is the base-
change of the formally unramified map Spf Zp Ñ SpecZ, and the cancellation statement from
Pr.2.2.

Let us omit a proof of the converse statement; the E8-version is Pr.2.42 and the proofs in
both cases are analogous.
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2.2 On presheaves of connective E8-rings

We are now in the position to make a spectral definition. See [HA, §7.4] for definition of the
definition of (trivial) square-zero extension of E8-rings, and and [SAG, §17.2] for the definition
of (infinitesimally) cohesive and nilcomplete functors in PpAffcnq and the definition of LX{Y .

Definition 2.13. Let f : X Ñ Y be a natural transformation of functors in PpAffcnq. For an
integer 0 ď n ď 8, we say f is n-formally étale if for all square-zero extensions of connective
n-truncated E8-rings rR Ñ R the natural diagram of spaces

Xp rRq XpRq

Y p rRq Y pRq

is Cartesian. We abbreviate 8-formally étale to formally étale.

Remark 2.14. If f is n-formally étale, then f is also m-formally étale for all 0 ď m ď n ď 8.
In particular, for any 0 ď n ď 8, if f is n-formally étale then X♥ Ñ Y ♥ is formally étale
inside PpAff♥q.

A converse statement also holds.

Remark 2.15. Write τ˚
ď0 : PpAff♥q Ñ PpAffcnq for the functor induced by the truncation

CAlgcn Ñ CAlg♥. If X Ñ Y is formally étale in PpAff♥q, then it follows that τ˚
ď0X Ñ τď0Y

is (8-) formally étale inside PpAffcnq. Indeed, for each square-zero extension of connective
E8-rings rR Ñ R we want to show the the diagram of spaces

Xpπ0 rRq Xpπ0Rq

Y pπ0 rRq Y pπ0Rq

is Cartesian. If we can show the map ρ : π0 rR Ñ π0R is a square-zero extension of classical
rings, so we are done by our hypotheses. The (co)fibre sequence

M Ñ rR Ñ R

of connective R-modules shows that ρ is surjective. Moreover, we see the kernel of ρ is not
π0M , but the image of the map π0M Ñ π0 rR. This does not worry us, as the multiplication
map M b rR M Ñ M is nullhomotopic by [HA, Pr.7.4.1.14], hence the image of π0M in π0 rR
squares to zero, and we see ρ is a square-zero extension of rings.

Remark 2.16. If X Ñ Y is a formally étale morphism of (locally Noetherian) classical formal
Deligne–Mumford stacks inside PpAff♥q, then the corresponding morphism inside PpAffcnq is
0-formally étale. This follows by the fully faithfulness of fDM Ñ fSpDM; see Pr.A.9.
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Remark 2.17. Our definition of formally étale deviates from Lurie’s definition of étale mor-
phisms ([HA, Df.7.5.0.4]) as there is no flatness assumption. However, even in PpAff♥q a
formally étale morphism of discrete rings need not be flat.19 This means there is no inherent
descent theory for formally étale morphisms. For more in this direction, the reader is advised
to make her way to Rmk.2.25.

The basic properties of Pr.2.2 also hold in PpAffcnq.

Proposition 2.18. Let 0 ď n ď 8 and X
f
ÝÑ Y

g
ÝÑ Z be composable morphisms in PpAffcnq

where g is n-formally étale. Then f is n-formally étale if and only if h is n-formally étale.
Moreover, n-formally étale morphisms are closed under base-change.

We would now like alternative ways to test if a map X Ñ Y is formally étale in PpAffcnq.
Although Lurie does not directly discuss the adjective formally étale in [SAG, §17], many of
the techniques below follow his ideas.

Proposition 2.19. Let X Ñ Y be a natural transformation of functors in PpAffcnq and
0 ď n ď 8.

1. The map X Ñ Y is n-formally étale for finite n if and only if X Ñ Y is 0-formally
étale and for every connective n-truncated E8-ring R the natural diagram of spaces

XpRq Xpπ0Rq

Y pRq Y pπ0Rq

is Cartesian. If X Ñ Y is nilcomplete, then the n “ 8-case also holds.

2. If X Ñ Y is infinitesimally cohesive, then X Ñ Y is formally étale if and only if for
all trivial square-zero extensions of connective truncated E8-rings rR Ñ R the natural
diagram of spaces

Xp rRq XpRq

Y p rRq Y pRq

is Cartesian.

19For example, the map of discrete rings C rtq|q P Q, q ą 0s Ñ C sending t ÞÑ 0 is formally étale but not
flat. Indeed, one can always lift square-zero extensions of rings uniquely, as we have all square roots of t in the
above ring, hence it is formally étale. To see this map is not flat, we can tensor it with the exact sequence

0 Ñ ptq Ñ Crtqs Ñ Crtqs{ptq Ñ 0,

which yields the clearly not exact sequence

0 Ñ C Ñ C Ñ C Ñ 0.
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3. If X Ñ Y is infinitesimally cohesive and admits a connective cotangent complex LX{Y ,
then X Ñ Y is formally étale if and only if LX{Y vanishes.

If X Ñ Y is infinitesimally cohesive, nilcomplete, and LX{Y exists and is connective, then
X Ñ Y is n-formally étale if certain Ext-groups ExtmR pη˚LX{Y ,Mq vanish in a range, for cer-

tain discrete objects pR, η,Mq of ModXcn, à la the deformation theory of [Ill71]. There is also a
sharpening of part 4 above which deals with an n-connective cotangent complex LX{Y , which
we note for the readers benefit is not equivalent to X Ñ Y being n-formally étale. These
ideas will not be used here though.

Thank you to an anonymous referee for correcting a previous version of (2) above.

Proof. Write f for the transformation X Ñ Y in question.

1. Suppose f is n-formally étale for a finite n ě 0, then f is 0-formally étale by Rmk.2.14.
Given a connective n-truncated E8-ring R, then for any 0 ď m ď n we can consider the
following diagram:

Xpτďm`1Rq XpτďmRq Xpπ0Rq

Y pτďm`1Rq Y pτďmRq Y pπ0Rq

(2.20)

Above, the left square is always Cartesian by virtue of f being n-formally étale as
τďm`1R Ñ τďmR is a square-zero extension of E8-rings by [HA, Cor.7.1.4.28]. To show
the outer rectangle Cartesian we use induction. The base case of m “ 0 is tautological.
For m ě 1, the right square is Cartesian by our inductive hypotheses, hence the whole
rectangle is Cartesian. Conversely, if the second condition of part 1 holds, we consider
a square-zero extension of n-truncated connective E8-rings rR Ñ R and the following
natural diagram of spaces:

Xp rRq Xpπ0 rRq

XpRq Xpπ0Rq

Y p rRq Y pπ0 rRq

Y pRq Y pπ0Rq

The back and front faces are Cartesian by the second condition of part 1, and the
rightmost face is Cartesian as the second condition of part 1 also assumes f is 0-formally
étale. Hence by a base-change argument, we see the leftmost square is Cartesian, and we
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are done. For the n “ 8-case, suppose X Ñ Y is nilcomplete, meaning that for every
connective E8-ring R, the diagram of spaces

XpRq limXpτďnRq

Y pRq lim Y pτďnRq

is Cartesian. Combining this diagram with the finite case above yields the desired con-
clusion.

2. If f is formally étale, then logic implies the second condition holds. Conversely, let
e : rR Ñ R be a square-zero extension of a connective E8-ring R by a connective R-
module M and a derivation d : LR Ñ ΣM . By definition ([HA, Df.7.4.1.6]) rR is defined
by the Cartesian diagram of connective E8-rings

rR R

R R ‘ ΣM

e

ρ

0

where the bottom-horizontal map is induced by the zero map LR Ñ ΣM and the right-
vertical map is induced by the derivation d. This Cartesian diagram of connective E8-
rings then induces the following natural diagram of spaces:

Xp rRq XpRq

XpRq XpR ‘ ΣMq XpRq

Y p rRq Y pRq

Y pRq Y pR ‘ ΣMq Y pRq

Xpeq

Xpρq

Y pρq

Y p0q

(2.21)

The left cube is Cartesian from our assumption that f is infinitesimally cohesive. By
assumption the rightmost square is Cartesian, and the only rectangle in the diagram
is also Cartesian as the composition R Ñ R ‘ ΣM Ñ R is equivalent to the identity,
hence the left square in that same rectangle (the front face of the cube) is Cartesian. By
a base-change argument20 we see that the desired back square of the cube (containing
Xpeq and Y peq) is also Cartesian, and we are done.

20This base-change argument is simple, but let us outline the argument. Write I for the poset of nonempty
subsets of t1, 2, 3u, ordered by inclusion, and use this poset to index the cube in (2.21) by setting F∅ “ Xp rRq,

F1 “ XpRq (in the top-right), F2 “ XpRq (in the centre), F3 “ Y p rRq, etc. As the whole cube is Cartesian we
have F∅ » lim I0PIFI0 and as the front face is also Cartesian we have F2 » lim pF12 Ñ F123 Ð F23q. These two
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3. Our proof outline here is essentially that of [SAG, Prs.17.3.9.3-4]. On the one hand,
by [SAG, Pr.6.2.5.2(1)] and [SAG, Df.6.2.5.3], we see that for some fixed integer m, an
object F of QCohpXq is m-connective if and only if for all connective E8-rings R and
transformations η : SpecR Ñ X, the object η˚F is m-connective inside QCohpSpecRq »
ModR. Furthemore, if F is connective and m ě 0, the object η˚F is m-connective if and
only if the mapping space

MapModcnR
pη˚F , Nq » MapModcnR

pτďmη
˚F , Nq

is contractible, for all connective pm´1q-truncated R-modules N , by the Yoneda lemma.
On the other hand, the object LX{Y in QCohpXq exists if and only if the functor

F : ModXcn Ñ S, given on objects by

F pR, η,Mq “ fib

ˆ
XpR ‘Mq Ñ XpRq ˆ

Y pRq
Y pR ‘Mq

˙
(2.22)

is locally almost representable, meaning that we have a (locally almost; see [SAG,
Df.17.2.3.1]) natural equivalence for all triples pR, η,Mq in ModcnX

F pR, η,Mq » MapModR
pη˚LX{Y ,Mq

where R is a connective E8-ring, η : SpecR Ñ X a map in PpAffcnq, andM a connective
R-module. If LX{Y vanishes, then we immediately see F pR, η,Mq is contractible for all
triples pR, η,Mq, which by part 3 implies X Ñ Y is formally étale, courtesy of the
definition (2.22) of F . Conversely, if X Ñ Y is formally étale, then F pR, η,Mq is
contractible for all triples pR, η,Mq, hence the mapping space

MapModR
pη˚LX{Y ,Mq » F pR, η,Mq

is contractible for all triples pR, η,Mq and LX{Y vanishes.

There are many examples of formally étale maps in spectral algebraic geometry.

Note that all formal spectral Deligne–Mumford stacks are cohesive, nilcomplete, and
absolute cotangent complexes always exist, which follows by copying the proof of [SAG,
Cor.17.3.8.5] (the same statement for SpDM), as all of the references made there also ap-
ply to fSpDM.

Example 2.23 (Étale morphisms of connective E8-rings). Let A Ñ B be an étale morphism of
connective E8-rings, then by [HA, Cor.7.5.4.5] we know LB{A vanishes, hence A Ñ B is also
a formally étale morphism of E8-rings by Pr.2.19.

facts, together with [MV15, Ex.5.3.8] give us the following natural chain of equivalences of spaces

F∅ » lim
I0PI

FI0 » lim pF2 Ñ G123 Ð G13q » G13,

where G123 “ lim pF12 Ñ F123 Ð F23q » F2 and G13 “ lim pF1 Ñ F13 Ð F3q. This shows the back face of the
cube (indexed by ∅, t1u, t3u, and t1, 3u, is Cartesian.
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Example 2.24 (Relatively perfect discrete Fp-algebras). Another classic example, which will
not show up explicitly in this note but is at the heart of much of the work done in [EC2], is that
a flat relatively perfect map of discrete commutative Fp-algebras has a vanishing cotangent
complex ([EC2, Lm.5.2.8]), and hence is formally étale.

Remark 2.25. In Rmk.2.17, we noted that formally étale morphisms of connective E8-rings
were not necessarily flat. However, [EC2, Pr.3.5.5] states that morphisms of (not necessarily
connective) Noetherian E8-rings with vanishing cotangent complex are flat. Combining this
with Pr.2.19, we see formally étale morphisms of connective Noetherian E8-rings are flat. It
also follows (as in classical algebraic geometry, see [Sta, 02HM]) that formally étale morphisms
of almost finite presentation between connective Noetherian E8-rings are étale.

The functor MBTp is cohesive, nilcomplete, and admits a cotangent complex by [EC2,

Pr.3.2.2]. It follows that MBT
p
n
(as well as all base-changes xMBT

p
n,A

) also satisfy these prop-
erties as MBT

p
n

Ñ MBTp is open (Rmk.1.2).

Example 2.26 (Spectral Serre–Tate theorem). It follows from the spectral Serre–Tate theorem

([EC1, Th.7.0.1]) and Pr.2.19 that the map rp8s : xMAVarg ,Sp Ñ xMBT
p
2g ,Sp

is formally étale.

Example 2.27 (Spectral Lubin–Tate theory). For a nonstationary (18) p-divisible group G0

over a discrete ringR0 where p is nilpotent and whose absolute cotangent complex LR0
is almost

perfect, Lurie uses his de Rham space formalism to construct a mapG : Spf R Ñ MBT
p
n
([EC2,

Th.3.4.1]) which is formally étale by [SAG, Cor.18.2.1.11(2)] and Pr.2.19. The p-divisible group
G is the universal spectral deformation of G0 and R its spectral deformation ring; see Df.0.14.

Example 2.28 (Formal spectral completions). Let X be a spectral Deligne–Mumford stack and
K Ď |X| be a cocompact closed subset, then the natural map from the formal completion of X
along K ([SAG, Df.8.1.6.1]) X

^
K Ñ X is formally étale by [SAG, Ex.17.1.2.10] and Pr.2.19.

Example 2.29 (Spectral de Rham space). Given a morphism X Ñ Y of functors in PpAffcnq,
one can associate a de Rham space pX{Y qdR inside PpAffcnq, whose value on a connective
E8-ring is

pX{Y qdRpRq “ colim
I

ˆ
Y pRq ˆ

Y pπ0R{Iq
Xpπ0R{Iq

˙

where the colimit is taken over all nilpotent ideals I Ď π0R, which we note is a discrete filtered
system; see [SAG, §18.2.1]. By [SAG, Cor.18.2.1.11(2)], the natural map pX{Y qdR Ñ Y is
nilcomplete, infinitesimally cohesive, and admits a vanishing cotangent complex, so by Pr.2.19,
it is formally étale.

This last example will help us study the moduli stack MBT
p
n
.

2.3 Applied to the moduli stack of p-divisible groups

Let us now apply the theory of formally étale natural transformations to the functor xMBT
p
n

and the categories CA0
and CA of Df.1.5.

Notation 2.30. Write ι : CAlg♥ Ñ CAlgcn for the inclusion (a right adjoint, inducing a
left adjoint p´q♥ on presheaf categories), and τď0 for the truncation functor (a left adjoint,
inducing a right adjoint τ˚

ď0 on presheaf categories) CAlgcn Ñ CAlg♥. Also write τď0 for the
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composition p´q♥ ˝ τď0 (this should seldom cause confusion). For each functor M in PpAffcnq
there is a natural unit M Ñ τ˚

ď0M induced by the truncation R Ñ π0R of a connective
E8-ring R. One can also check the functor τ˚

ď0M is the right Kan extension of M♥ along ι.

Warning 2.31. In §A we introduce the truncation of a locally Noetherian formal spectral
Deligne–Mumford stack τď0X à la Lurie [SAG, §1.4.6] and we note that this is not equivalent
to τ˚

ď0X.

For mostly formal reasons, we obtain a functor CA Ñ CA0
.

Proposition 2.32. The functor p´q♥ : CA Ñ PpAff♥q
{ xM♥

BT
p
n,A0

factors through CA0
.

Our proof of the above proposition relies on §A.

Proof. By definition, a object X of CA is qcqs and so has an affine étale hypercover U‚ Ñ X ;
see Pr.A.17. The formal spectral Deligne–Mumford stack τď0X “ X0 then lies in the essential
image of fDM Ñ fSpDM and hence can be considered as a classical spectral Deligne–Mumford
stack. Moreover, X♥ and X♥

0 are naturally equivalent by Cor.A.5. As each affine formal
spectral Deligne–Mumford stack Un is Noetherian, X♥ “ X0 has an affine étale hypercover by
U♥

‚ Ñ X♥ “ X0 inside fDM. By Pr.A.17, we see X0 is qcqs. From Cor.A.5 we also see that X0

is represented by τď0X inside PpAff♥q, so X0 and X have the same closed points. As U♥
0 is a

Noetherian affine classical formal Deligne–Mumford stack, we also see X0 is locally Noetherian.
It also follows from Rmk.2.14 that X0 Ñ xM♥

BT
p
n,A0

is formally étale inside PpAff♥q. To see the

cotangent complex L of the map X0 Ñ xMBT
p
n,A

is almost perfect inside QCohpX0q, consider
the following composition of maps in PpAffcnq

τď0X » X0 Ñ X Ñ xMBT
p
n,A

from which we obtain a (co)fibre sequence in QCohpX0q of the form:

L
X{ xM

BT
p
n,A

ˇ̌
ˇ̌
X0

Ñ L Ñ LX0{X

By part 3 of Pr.2.19, the first term in the above (co)fibre sequence vanishes, and our desired
conclusion follows as LX0{X is almost perfect by Pr.A.12.

To see p´q♥ is an equivalence, we will construct an explicit inverse.

Definition 2.33. Define a functorD : CA0
Ñ PpAffcnq

{ xM
BT

p
n,A

by sending an objectG0 : X0 Ñ

xM♥

BT
p
n,A0

of CA0
to the de Rham space of [SAG, §18.2.1] (and Ex.2.29):

DpG0q “
´
X0{ xMBT

p
n,A

¯
dR

The notation D is supposed to conjure the word “deformation”.

Theorem 2.34. The functor D factors through CA, preserves affine objects and étale hyper-
covers, and is an inverse to p´q♥.
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This equivalence of 8-categories fits into the general paradigm of spectral algebraic geometry—
a well-behaved site over a classical moduli stack should be equivalent to the same site over
the associated spectral moduli stack; see the example of the moduli stack of elliptic curves in
[EC1, Rmk.2.4.2] and [EC2, §7], or the affine case in [HA, Th.7.5.0.6].

To prove Th.2.34, we will use the interaction of the de Rham space technology of Lurie
([SAG, §18.2.1]) with formally étale morphisms, and a representability theorem also due to
Lurie.

Proposition 2.35. Recall Nt.0.9. Let X be a formal spectral Deligne–Mumford stack and
X Ñ xMBT

p
n,A

be a 0-formally étale map whose associated cotangent complex is almost perfect.
Then the following natural diagram of functors in PpAffcnq

pX{ xMBT
p
n,A

qdR τ˚
ď0X

xMBT
p
n,A

τ˚
ď0

xMBT
p
n,A

GdR

u

d

(2.36)

is Cartesian, the natural map X Ñ pX{ xMBT
p
n,A

qdR induces an equivalence when evaluated on
discrete E8-rings, and GdR is formally étale.

The above proposition and its proof generalise to a wider class of functors in PpAffcnq of
which we could not find a neater formulation than our leading example—we leave the reader
to exploit the general example as she wishes.

Proof of Pr.2.35. Recall the value of the de Rham space pX{Y qdR on a connective E8-ring R
from (2.37)

pX{Y qdRpRq “ colim
I

ˆ
Y pRq ˆ

Y pπ0R{Iq
Xpπ0R{Iq

˙
(2.37)

where colimit is taken over all nilpotent ideals of π0R. Define a functor pX{Y q0dR : CAlgcn Ñ S

by the same formula as (2.37) above but index the colimit over finitely generated nilpotent
ideals of π0R. One readily obtains a map of functors

pX{Y q0dR Ñ pX{Y qdR

and we claim this map is an equivalence for X “ X and Y “ xMBT
p
n,A

in our hypotheses.
Indeed, one can copy the proof of [EC2, Pr.3.4.3] mutatis mutandis, exchanging only R0 for
X; the crucial step comes at the end and uses the almost perfect assumption on our cotangent
complex. Writing FR,I for the fibre product within the colimit of (2.37) where X “ X and

Y “ xMBT
p
n,A

, we place FR,I into the following commutative diagram of spaces:

FR,I Xpπ0Rq Xpπ0R{Iq

xMBT
p
n,A

pRq xMBT
p
n,A

pπ0Rq xMBT
p
n,A

pπ0R{Iq

fπ0R fπ0R{I
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The outer rectangle is Cartesian by definition and we claim that the right square is also
Cartesian. Indeed, this follows as I is finitely generated and hence is nilpotent of finite degree
n for some integer n ě 2, and our 0-formally étale hypotheses can be sequentially applied to
the composition of square-zero extensions:

R Ñ R{In Ñ R{In´1 Ñ ¨ ¨ ¨ Ñ R{I2 Ñ R{I

This implies that the left square above is Cartesian, so the R-points of the de Rham space in
question naturally take the form

colim
I

¨
˝xMBT

p
n,A

pRq ˆ
xM

BT
p
n,A

pπ0Rq

Xpπ0Rq

˛
‚» xMBT

p
n,A

pRq ˆ
xM

BT
p
n,A

pπ0Rq

Xpπ0Rq

as the diagram indexing our colimit is filtered. This implies that (2.36) is Cartesian. For the
second statement, we use the facts that (2.36) is Cartesian and d induces equivalences when
evaluated on discrete rings to see that u induces an equivalence when evaluated on discrete
rings. Noting that the maps

pX{ xMBT
p
n,A

qdR Ñ τ˚
ď0X Ð X

induce equivalences on discrete rings, we see the natural map X Ñ pX{ xMBT
p
n,A

qdR induces an

equivalence on discrete rings. Finally, to see pX{ xMBT
p
n,A

qdR Ñ xMBT
p
n,A

is formally étale we
refer to Ex.2.29, or alternatively to the Cartesian diagram (2.36), Rmk.2.15, and Pr.2.18.

The proof of the above theorem exposes us to something quite useful.

Remark 2.38 (D produces universal spectral deformations). Recall that associated to a classical

p-divisible group G0 : Spf B0 Ñ xM♥

BT
p
n,A0

, such as those in CA0
, then we can ask if there

exists a universal spectral deformation of G0 and its associated spectral deformation ring; see
Df.0.14. It follows from the proof of Pr.2.35 above, that if G0 lies in CA0

, then the formal
spectrum Spf of the spectral deformation ring of G0 is equivalent to the de Rham space
pG0 : Spf B0 Ñ xMBT

p
n,A

qdR. By Th.2.34, we see that this de Rham space is represented by a
formal spectral Deligne–Mumford stack Spf B. This means that DpG0q is represented by the
universal spectral deformation of G0. This is even true in a nonaffine sense, but we will not
need to venture further in that direction.

The following representability theorem of Lurie is crucial.

Theorem 2.39 ([SAG, Th.18.2.3.1]). Let f : X Ñ M be a map of functors in PpAffcnq such
that X is a formal spectral Deligne–Mumford stack, M is nilcomplete, infinitesimally cohesive,
admits a cotangent complex, and is an étale sheaf, and LX{M is 1-connective and almost perfect.
Then pX{MqdR is represented by a formal thickening21 of X.

21Recall from [SAG, Df.18.2.2.1], a morphism f : X Ñ Y of formal spectral Deligne–Mumford stacks is called
a formal thickening if the induced map on reductions Xred Ñ Yred is an equivalence ([SAG, §8.1.4]) and the
map f is representable by closed immersions which are locally almost of finite presentation.
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Importantly, we can apply this theorem to CA0
.

Remark 2.40. By definition the cotangent complex L “ L
X0{ xM

BT
p
n,A

corresponding to an object

inside CA0
is almost connective, meaning ΣnL is connective for some positive integer n; see

[SAG, Var.8.2.5.7 & Rmk.8.2.5.9]. However, we claim that L is actually 1-connective. Indeed,
by [SAG, Cor.8.2.5.5] we may check this étale locally on X0, so let us replace X0 with Spf B0

for some complete Noetherian discrete adic ring B0. In particular, L is now an almost perfect
J-complete B0-module, where J is an ideal of definition for B0. As L is almost perfect, the
fibrewise connectivity criterion of [SAG, Cor.2.7.4.3] states that it suffices to check L^

m is 1-
connective for every maximal ideal m Ď B0 which contains J . Moreover, considering the
maps

SpfpB0q^
m Ñ Spf B0 Ñ SpecB0

the composition is formally étale (as discussed for PpAffcnq by Ex.2.28 and hence in PpAff♥q by
Rmk.2.14), and the latter map is unramified, so by Pr.2.2 we see the first map is formally étale.
We may then assume B0 is a complete local Noetherian ring. The morphism G : Spf B0 Ñ
xM♥

BT
p
n,A0

is formally étale, so by the converse statement in Pr.2.10, we see that B0 is the

classical deformation ring of Gκ, where κ is the residue field of B0, which is necessarily perfect
of characteristic p by assumption. For such a pair pGκ, κq, there exists a spectral deformation
ring B by [EC2, Th.3.1.15], as κ is perfect and Gκ is nonstationary by [EC2, Ex.3.0.10], which

implies π0B » B0 by Rmk.0.15. This means the map Spf B0 Ñ xMBT
p
n,A

in PpAffcnq factors
as

Spf B0 Ñ Spf B Ñ xMBT
p
n,A

(2.41)

where the first map is induced by the truncation. Associated to the above composition is the
following (co)fibre sequence of complete B0-modules:

L
Spf B{ xM

BT
p
n,A

ˇ̌
ˇ̌
Spf B0

Ñ L
Spf B0{ xM

BT
p
n,A

Ñ LSpf B0{ Spf B

The first object vanishes as Spf B is the de Rham space for the composite (2.41) and such
objects always vanish; see Ex.2.29. We then see the middle cotangent complex above is 1-
connected and almost perfect as this holds for LSpf B0{ Spf B by Pr.A.12.

Proof of Th.2.34. First, let us check D factors through CA. Using Th.2.39 and Rmk.2.40, we
see DpG0q is represented by a formal thickening X of X0; see [SAG, §18.2.2] or (21). To see X

satisfies the conditions of Df.1.5, we note the following:

• X is locally Noetherian, as it is a formal thickening of the locally Noetherian X0; see
[SAG, Cor.18.2.4.4].

• X is qcqs as a formal thickening of a qcqs formal spectral Deligne–Mumford stack is qcqs;
see Pr.A.19.

• X has perfect residue fields at closed points as this is true for X0 and X0 “ τď0X has the
same residue fields as X.
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• G is formally étale, as L
X{ xM

BT
p
n,A

vanishes, either by Ex.2.29 or Pr.2.35.

Notice that by [SAG, Cor.18.2.3.3], if X0 » Spf B0 is affine, then the image of anyG0 : Spf B0 Ñ
xM♥

BT
p
n,A0

in CA0
under D is also affine. To see D is inverse to p´q♥, notice the composite

p´q♥D is equivalent to the identity as G0 Ñ DpG0q induces an equivalence on discrete rings
by Pr.2.35. For the other composition, part 1 of Pr.2.19 states that the following diagram of
spaces is Cartesian for every connective E8-ring R:

XpRq Xpπ0Rq

xMBT
p
n,A

pRq xMBT
p
n,A

pπ0Rq

G

By Pr.2.19, we then see the natural map DppGq♥q Ñ G is an equivalence in CA. Finally, to
see D preserves étale hypercovers, we first note this may be checked étale locally, so take an
étale hypercover Spf C‚

0 Ñ Spf B0 in CA0
and write Spf C‚ Ñ Spf B for its image under D.

From the above, we know that Spf C‚ Ñ Spf B is an étale hypercover on zeroth truncations,
so it suffices to see each map B Ñ Cn is étale as morphism of E8-rings. Two applications of
Pr.2.35 show the commutative diagram in PpAffcnq

Y‚ X xMBT
p
n,A

τ˚
ď0Y

0
‚ τ˚

ď0X0 τ˚
ď0

xMBT
p
n,A

consists of Cartesian squares, hence Spf Cn Ñ Spf B is formally étale by Rmk.2.15 and base-
change Pr.2.18. It follows from Rmk.2.25 that B Ñ Cn is étale as a map of E8-rings, hence
also as a map of adic E8-rings.

Finally, let us solidify some of the connections between formally étale morphisms and
universal deformations. The following is analogous to Pr.2.10 and our proof follows that of
[EC2, Pr.7.4.2] (we will even copy some of Lurie’s notation).

Proposition 2.42. Recall Nt.0.9. Let G : Spf B Ñ xMBT
p
n,A

be formally étale map where B is
a complete adic Noetherian E8-ring with ideal of definition J . Fix a maximal ideal m Ď π0B

containing J such that π0B{m is perfect of characteristic p. Then the p-divisible group GB^
m

is the universal spectral deformation of Gκ (in the sense of [EC2, Df.3.1.11]), where κ is the
residue field of Bm.

Proof. As κ is perfect of characteristic p, combining [EC2, Ex.3.0.10] with [EC2, Th.3.1.15]
one obtains the spectral deformation ring Run

Gκ
“ Bun with a universal p-divisible group Gun.

By definition GB^
m

is a deformation over Gκ ([EC2, Df.3.0.3]), so from the universality of

pBun,Gunq we obtain a canonical continuous morphism of adic E8-rings Bun α
ÝÑ B^

m “ pB
inducing the identity on the common residue field κ. By [EC2, Th.3.1.15], we see Bun belongs
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to the full 8-subcategory C of pCAlgcnadq{κ spanned by complete local Noetherian adic E8-
rings whose augmentation to κ exhibits κ as its residue field. To see α is an equivalence in
this 8-category, consider an arbitrary object C of C and the induced map

MapcontCAlg{κ
p pB,Cq

α˚

ÝÝÑ MapcontCAlg{κ
pBun, Cq.

By writing C as the limit of its truncations we are reduced to the case where C is truncated,
and by writing π0C as a limit of Artinian subrings of π0C we are further reduced to the case
when π0C is Artinian.22 In this situation, when have a finite sequence of maps

C “ Cm Ñ Cm´1 Ñ ¨ ¨ ¨ Ñ C1 Ñ C0 “ k

where each map is a square-zero extension by an almost perfect connective module. Hence, it
would suffice to show that for every C Ñ κ in C, and every square-zero extension rC Ñ C of C
by an almost perfect connective C-module, with rC also in C, the natural diagram of spaces

MapcontCAlg{κ
p pB, rCq MapcontCAlg{κ

pBun, rCq

MapcontCAlg{κ
p pB,Cq MapcontCAlg{κ

pBun, Cq

(2.43)

is Cartesian, the C “ κ case being tautological. As pB is the m-completion of Bm, then for any
D in C (which in particular is complete with respect to the kernel of its augmentation D Ñ κ)
the map

MapcontCAlg{κ
p pB,Dq

»
ÝÑ MapcontCAlg{κ

pBm,Dq

induced by Bm Ñ pB, is an equivalence. Moreover, for any D inside C we have the following
natural identifications:

MapcontCAlg{κ
pBun,Dq » fib

BunÑκ

`
MapcontCAlgpBun,Dq Ñ MapcontCAlgpBun, κq

˘

» fib
BunÑκ

ppSpf BunqpDq Ñ pSpf Bunqpκqq » fib
Gun

pDefGκpDq Ñ DefGκpκqq

» DefGκpD, pD Ñ κqq » BTp
npDq ˆ

BT
p
npκq

tGκu

The first equivalence is a categorical fact about over/under categories, the second is the iden-
tification of the R-valued points of Spf Bun ([SAG, Lm.8.1.2.2]), the third is from universal
property of spectral deformation rings ([EC2, Th.3.1.15]), and the fourth and fifth can be
taken as two alternative definitions of DefGκpD, pD Ñ κqq ([EC2, Df.3.0.3 & Rmk.3.1.6]).
These natural equivalences show (2.43) is equivalent to the upper-left square in the following

22Our conventions demand that local adic E8-rings have their topology determined by the maximal ideal.
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natural diagram of spaces:

MapcontCAlg{κ
pBm, rCq BTp

np rCq ˆ
BT

p
npκq

tGκu BTp
np rCq»

MapcontCAlg{κ
pBm, Cq BTp

npCq ˆ
BT

p
npκq

tGκu BTp
npCq»

tGκu BTp
npκq»

(2.44)

The bottom-right square and right rectangle are both Cartesian by definition, so the upper-
right square is Cartesian. It now suffices to see the upper rectangle is Cartesian, so we consider
the following natural diagram of spaces:

pSpf Bmqp rCq pSpf BmqpCq

BTp
np rCq» BTp

npCq»

pSpf Bmqpκq pSpf Bmqpκq

˚ ˚

The top square is Cartesian as Spf B Ñ xMBT
p
n,A

(and hence Spf Bm Ñ xMBT
p
n,A

) is formally
étale, and the bottom square is trivially Cartesian. Taking the fibres of the vertical morphisms
(at the given map Bm Ñ κ) we obtain the upper rectangle of (2.44), whence this upper rectangle
is also Cartesian and we are done.

3 Orientations of p-divisible groups

The study of orientations of p-divisible (and formal) groups over E8-rings is the focus of
[EC2]. Using Lurie’s work, we construct a “derived stack” classifying oriented p-divisible
groups, Mor

BT
p
n
, defined on (not necessarily connective) p-complete E8-rings. The technical

complications of this section stem from our movement between presheaves on connective and
general E8-rings.

Let us suggest that the reader keeps a copy of [EC2] in her vicinity when reading this
section.
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3.1 The sheaf of oriented p-divisible groups

Recall the concept of an orientations of a formal group23 over an E8-ring, as detailed in [EC2,
§1.6 & 4.3].

Definition 3.1. Let R be an E8-ring and pG be a formal group over R. A preorientation of pG
is an element e of Ω2pΩ8 pGqpτě0Rq. Altnertaively, assuming now that R is complex periodic
(7), then an orientation of pG is a morphism of formal groups pGQ

R Ñ pG over R, where pGQ
R is

the Quillen formal group of R; see (11). Such a preorientation e : pGQ
R Ñ pG is an orientation

if it is an equivalence of formal groups over R; see [EC2, Pr.4.3.23]. Denote by OrDatp pGq the
component of Ω2pΩ8 pGqpτě0Rq consisting of orientations—by definition this is empty if R is
not complex periodic. An orientation of a p-divisible group G over a p-complete E8-ring is
an orientation of G˝, its identity component (10).

Recall that each time we associate to a functor F : C Ñ C at8 (resp. C Ñ S) a coCartesian
(resp. left) fibration

ş
C
F Ñ C, or visa versa, we are using the straightening–unstraightening

adjunction of [HTT09, Th.3.2.0.1]—the 8-categorical Grothedieck construction.

Definition 3.2. 1. Let Mnc
BTp : CAlg Ñ S be the composite of τě0 : CAlg Ñ CAlgcn and

MBTp ; see [EC2, Var.2.0.6]. Define a functor Mnc
BT

p
n
: CAlg Ñ S analogously.

2. Denote by CAlgp the full 8-subcategory of CAlg consisting of p-complete E8-rings, and
write Affp for pCAlgpqop. Let Mun

BTp : CAlgp Ñ S be the composition of Mnc
BTp with the

inclusion CAlgp Ñ CAlg. Define a functor Mun
BT

p
n
: CAlgp Ñ S analogously.

3. Let R be a p-complete E8-ring. Write OrBTppRq Ñ BTppRq» for the left fibration
associated to the following functor ([EC2, Rmk.4.3.4]):

BTppRq» Ñ S G ÞÑ OrDatpG˝q “ OrDatpGq

Define OrBTp
npRq analogously.

We restrict to p-complete E8-rings above as we will often use [EC2, Th.2.0.8] to associate
to a p-divisible group G its identity component G˝. This is not strictly necessary, as demon-
strated by [EC3, §2], however, we only care about the p-complete case to prove Th.1.6.

Our goal here is to define a moduli functor Mor
BTp : CAlgp Ñ S sending R to OrBTppRq»,

a sort of iterated Grothendieck construction. To do this honestly in the language of 8-
categories, we will construct the associated left fibration; the reader is invited to skip the
following technical construction for now, and only return if she is unconvinced by our heuristics.

23Recall from [EC2, Df.1.6.1 & Var.1.6.2], a that a formal group over an E8-ring R is a functor
pG : CAlgcnτě0R

Ñ Modcn
Z whose post-composition with Modcn

Z Ñ S is a formal hyperplane over τě0R in the
sense of [EC2, Df.1.5.10]. The latter can be identified as the essential image in PpAffcn

τě0R
q of certain cospectra

of smooth coalgebras; see [EC2, §1.5].
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Construction 3.3. Let CAlgpco be the full 8-subcategory of CAlgp spanned by those p-
complete complex periodic E8-rings. Using [EC2, Rmk.1.6.4], define the functor MFGroupp´q

CAlgpco
FGroupp´q
ÝÝÝÝÝÝÝÑ S R ÞÑ FGrouppRq»

sending a p-complete E8-ring to the 8-groupoid core of its associated 8-category of formal
groups ([EC2, Df.1.6.1]), and write F : MFGroup Ñ CAlgpco for the associated left fibration. The
functor F has a section Q which sends a p-complete complex periodic E8-ring R to its Quillen
formal group pGQ

R ([EC2, Con.4.1.13]); which is functorial as taking the R-homology and then
cospectrum are functorial. Let MOrFGroup be the comma 8-category pQF Ó idMFGroup

q, in
other words, there is a Cartesian diagram inside C at8

MOrFGroup pMFGroupq∆
1

MFGroup MFGroup ˆ MFGroup

ps,tq

pQFˆidq˝∆

(3.4)

where ∆1 is the 1-simplex, ∆ is the diagonal map, and ps, tq sends an arrow in MFGroup to its
source and target. More informally, an object of MOrFGroup is a complex periodic p-complete

E8-ring R, a formal group pG over R, and a equivalence pGQ
R » pG of formal groups over R.

By [EC2, Pr.4.3.23], such a equivalence of formal groups over R is precisely the data of an
orientation of pG, hence the name OrFGroup. The functor

MOrFGroup Ñ MFGroup, pR, pG, eq ÞÑ pR, pGq (3.5)

is a left fibration with associated functor

MFGroup Ñ S pR, pGq ÞÑ OrDatp pGq.

Indeed, this assignment is a functor by [EC2, Rmk.4.3.10] and the above identification comes
by contemplating the fibre product of categories

tpR, pGqu ˆ
MFGroup

MOrFGroup » MapMFGrouppRqp pGQ
R ,

pGq » OrDatp pGq,

where the second equivalence again comes from [EC2, Pr.4.3.23]. Now, write G : Mco
BTp Ñ

CAlgpco for the left fibration associated to the following composition:

Mco
BTpp´q : CAlgpco

inc.
ÝÝÑ CAlgp

Mun
BTp

ÝÝÝÝÑ S R ÞÑ BTppRq»

The natural assignment sending a p-divisible group G over a p-complete E8-ring R to its iden-
tity component induces a functor p´q˝ : Mco

BTp Ñ MFGroup between categories over CAlgpco.
Define an 8-category MOrBTp by the following Cartesian diagram of 8-categories:

MOrBTp MOrFGroup

Mco
BTp MFGroup

p´q˝
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As (3.5) is a left fibration, then MOrBTp Ñ Mco
BTp is also a left fibration by base-change.

Similarly, we define the 8-category Mco
BT

p
n
, which comes with a natural map Mco

BT
p
n

Ñ Mco
BTp

associated to the inclusion BTp
npRq» Ñ BTppRq». Finally, define a left fibration MOrBT

p
n

Ñ
Mco

BTp by the Cartesian diagram in C at8:

MOrBT
p
n

MOrBTp

Mco
BT

p
n

Mco
BTp

In total, we have a left fibration

MOrBTp Ñ MBTp Ñ CAlgpco

and unravelling the construction above, one can calculate the functor associated to this com-
position:

CAlgpco Ñ S R ÞÑ OrBTppRq

Simarily, we have MOrBT
p
n

Ñ CAlgpco and its associated functor.

Definition 3.6. Given a morphism A Ñ B in CAlgp, then if A is complex periodic, we see B
is also complex periodic; see [EC2, Rmk.4.1.3]. Define a functor Mor

BTp : CAlgp Ñ S first on
CAlgpco as the functor associated to the composition of left fibrations

MOrBTp Ñ Mco
BTp Ñ CAlgpco

defined in Con.3.3, and then as the empty space on objects in CAlgp who are not complex
periodic. More informally, Mor

BTp is the assignment:

R ÞÑ

#
OrBTppRq» if R is complex periodic

∅ if R is not complex periodic

Define Mor
BT

p
n
by the Cartesian square in PpAffpq

Mor
BT

p
n

Mor
BTp

Mun
BT

p
n

Mun
BTp

Ω Ω

where right Ω is the functor naturally induced by Con.3.3.

The notation Ω is reminiscent of the word “orientation”. sAt present, we have constructed
a presheaf Mor

BT
p
n
, and a routine check shows this functor is a sheaf.

Proposition 3.7. Let R be an E8-ring and n a positive integer. Then the functors

Mun
BTp ,Mun

BT
p
n
,Mor

BTp ,Mor
BT

p
n
: CAlgp Ñ S

are all fpqc (hence also étale) hypersheaves.
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As a first step, let us state a slight generalisation of [EC2, Pr.3.2.2(5)]; the proof is exactly
as Lurie outlines in ibid but with fpqc hypercovers replacing fpqc covers.

Lemma 3.8. The functors MBTp ,MBT
p
n
: CAlgcn Ñ S are fpqc hypersheaves.

Proof of Theorem 3.7. To see Mun
BTp in PpAffpq is an fpqc hypersheaf, it suffices to see Mnc

BTp

in PpAffq is an fpqc hypersheaf as the inclusion CAlgp Ñ CAlg sends fpqc hypercovers to fpqc
hypercovers. To see Mnc

BTp is an fpqc hypersheaf, take an E8-ring R and an fpqc hypercover
R Ñ R‚. From Lm.0.4, (0.5), and Lm.3.8 we see that the natural maps

Mnc
BTppRq “ MBTppτě0Rq

»
ÝÑ MBTpplim pτě0Rq‚q

»
ÝÑ limMBTpppτě0Rq‚q “ limMnc

BTppR‚q

are all equivalences. Hence Mnc
BTp , and also Mun

BTp , are fpqc hypersheaves. It follows that
Mun

BT
p
n
is also an fpqc hypersheaf as it is an open subfunctor of Mun

BTp ; see Remark 1.2.

By Lm.0.3, it suffices to see that the functor Mun
BTp : CAlgp Ñ S is an fpqc hypersheaf,

and that the functor F defined on objects by

F : CAlgp Ñ pC at8q{S , R ÞÑ

ˆ
BTppRq» Ñ S

G ÞÑ OrDatpG˝q

˙
(3.9)

is an fpqc hypersheaf; to define this functor honestly, one can use the standard techniques as
done in Con.3.3. We have just seen this for Mun

BTp , so it suffices to see that (3.9) is an fpqc hy-
persheaf. Again, write R Ñ R‚ for an fpqc hypercover of R in CAlgp. As BTpp´q : CAlgcn Ñ S

is an fpqc hypersheaf (Lm.3.8), we obtain the following natural equivalence from the definition
of OrDatplimR‚q:
ˆ

BTpplimR‚q» Ñ S

G ÞÑ OrDatpG˝q

˙
»
ÝÑ

ˆ
limBTppR‚q» Ñ S

G‚ ÞÑ OrDatpplimG‚q˝q

˙
(3.10)

Above, we have writtenG‚ for the base-change ofG over R‚. Using the characterising property
of the identity component (as seen in [EC2, Th.2.0.8]), we take some A P E (using the notation
of [EC2, Th.2.0.8] and (10)) and obtain the following sequence of natural equivalences where
all fibres are taken over the identity element:

plimG‚q˝pAq “ fibplim pG‚qpAq Ñ lim pG‚qpAredqq » lim fibpG‚pAq Ñ G‚pAredqq

“ lim pG˝
‚pAqq

»
ÐÝ plimG˝

‚qpAq

The first equivalence comes from the fact that fibres commutes with small limits and the
second equivalence from the fact that limits in functor 8-categories are computed levelwise.
From this we see that (3.10) is naturally equivalent to

ˆ
limBTppR‚q» Ñ S

G‚ ÞÑ OrDatplim pG˝q‚q

˙
(3.11)

where pG˝q‚ is the base-change of G˝ over R‚. For a fixed pointed formal hyperplane X over
an E8-ring R, the functor

CAlgR Ñ S, A ÞÑ OrDatpXAq
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is representable by [EC2, Pr.4.3.13], hence it commutes with small limits. In particular, this
implies that the expression (3.11) is naturally equivalent to

ˆ
limBTppR‚q» Ñ S

G‚ ÞÑ lim OrDatpG˝
‚q

˙
“ limF pR‚q

Combining everything, we obtain our desired natural equivalence F pRq
»
ÝÑ limF pR‚q. The

corresponding statement for Mor
BT

p
n
follows as it is a fibre product of fpqc hypersheaves.

3.2 Orientation classifiers

It is our goal now to try and understand universal orientations and their relation to Mor
BT

p
n
.

We would like to formally construct a functor Oor
BT

p
n
which we think of as Ω˚Oor

BT
p
n
. We perform

this construction by first restricting ourselves to affines.

Definition 3.12. Recall Nt.0.9. Write Caff
A0

(resp. Caff
A ) for the full 8-subcategory of CA0

(reps.
CA) spanned by affine objects.

We will now define a CAlg-valued presheaf Oaff
BT

p
n
on Caff

A as a composite of certain functors,
which we describe now.

Definition 3.13. Write Affp
{Mun

BT
p
n

for the 8-subcategory of PpAffpq{Mun

BT
p
n

spanned by affines.

1. Define a functor a : Caff
A Ñ Affp

{Mun

BT
p
n

by sending an object24 G : Spf B^
J Ñ xMBT

p
n,A

first to the composite with the canonical maps xMBT
p
n,A

Ñ MBT
p
n
, then from Spf B^

J Ñ

MBT
p
n
to its algebraisation25 Galg : SpecB^

J Ñ MBT
p
n
which naturally lives in PpAffcn,pq

as mA, and hence J , contains p, and then we apply τ˚
ě0 : PpAffp,cnq Ñ PpAffpq.

2. Define a functor ΓpΩ˚p´qq : pAffp
{Mun

BT
p
n

qop Ñ CAlg by pullback along Ω: Mor
BT

p
n

Ñ Mun
BT

p
n

followed by the global sections functor pAffp
{Mor

BT
p
n

qop Ñ CAlgp, which is just a forgetful

functor.

Let Oaff
BT

p
n
: pCAqop Ñ CAlg be the composition of a followed by ΓpΩ˚p´qq, which is an étale

hypersheaf as a sends étale hypercovers to étale hypercovers by construction, and Mun
BT

p
n
and

Mor
BT

p
n
are étale hypersheaves by Pr.3.7. We also define Oor

BT
p
n
: Cop

A Ñ CAlg by right Kan

extension along the inclusion pCaff
A qop Ñ C

op
A . As a right Kan extensions preserve limits, we

see Oor
BT

p
n
is an étale hypersheaf.

24Recall that the formal spectrum Spf B is equivalent to Spf B^
J where J is a finitely generated ideal of

definition for B; see [SAG, Rmk.8.1.2.4].
25Recall from [EC2, Th.3.2.2(4)], the map MBTppSpecBq Ñ MBTppSpf Bq is an equivalence of spaces if B

is complete with respect to its ideal of definition. We call any Galg : SpecB Ñ MBTp the algebraisation of the
corresponding G : Spf B Ñ MBTp . This also implies the natural map MBT

p

n
pSpecBq Ñ MBT

p

n
pSpf Bq is an

equivalence for B which are complete with respect to their ideal of definition, and we likewise use the phrase
algebraisation.
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Remark 3.14. The right Kan extension defining Oor
BT

p
n

on CA can be made more explicit.
Indeed, by assumption, each object X in CA is qcqs, so by Pr.A.17, we have an étale hyper
cover Y‚ Ñ X such that each Yn “ Spf Bn is affine. The fact that Oor

BT
p
n
is an étale hypersheaf

(as this is true étale locally on affines) then gives us a formula for Oor
BT

p
n

pXq:

Oor
BT

p
n

pXq » lim
´
Oaff

BT
p
n

pSpf B0q ñ Oaff
BT

p
n

pSpf B1q ⇛ ¨ ¨ ¨
¯

By Pr.3.15 below, the terms in the above limit take a known form.

The above is a formal construction of an étale hypersheaf Oor
BT

p
n
: Cop

A Ñ CAlg, however,
we would like to be able to calculate with this functor as well.

Proposition 3.15. Given a p-complete E8-ring R and an associated p-divisible group G of
height n, then there is a natural equivalence of p-complete E8-rings

ΓpΩ˚pGqq » pOG˝

where the latter is the p-completion of OG˝ , the orientation classifier26 for G˝.

Proof. From the definition of ΓpΩ˚p´qq, it suffices to show that the following natural square
of presheaves of p-complete E8-rings is Cartesian:27

Spec pOG˝ Mor
BT

p
n

SpecR Mun
BT

p
n

Ω

G

(3.16)

Fix a p-complete E8-ring A and evaluating the above diagram at A. If there are no maps of
p-complete E8-rings R Ñ A, then the two left-most spaces are empty and we are done, so
let us then fix a map ψ : R Ñ A. We then note the following chain of natural equivalences
between the fibres of the vertical morphisms from left to right:

Spec pOG˝pAq » MapCAlgpOG˝ , Aq » OrDatpG˝
Aq » tψu ˆ

Mun

BT
p
n

pAq
Mor

BT
p
n

pAq

The first equivalence follows as p-completion is a left adjoint, the second from [EC2, Pr.4.3.13],
and the third from the construction of Ω; see Con.3.3. As these equivalences are natural in A,
this shows (3.16) is Cartesian.

Now that we can calculate Oor
BT

p
n
when restricted to affines, we are close to definition O

top

BT
p
n

and proving Th.1.6.

26Recall from [EC2, §4.3.3], for a formal group pG over an E8-ring R, the orientation classifier of pG is the

corepresenting R-algebra for the functor CAlgR Ñ S A ÞÑ OrDatp pGAq.
27We are abusing notation here and writing Spec for the Yoneda embedding Affp Ñ PpAffpq.
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4 The sheaf O
top
BTp

n

and a proof of Th.1.6

The definition of O
top

BT
p
n
mirrors Lurie’s definition of Otop ([EC2, §7.3]) and the proof that this

definition satisfies Th.1.6 also follows Lurie’s proof.

Definition 4.1. Fix an adic E8-ring A as in Nt.0.9. Let O
top

BT
p
n
be the étale hypersheaf on

CA0
defined by the composition

C
op
A0

Dop

ÝÝÑ C
op
A

Oor

BT
p
nÝÝÝÑ CAlg (4.2)

or in other words, first one calculates the universal spectral deformation ofG0 : X0 Ñ xM♥

BT
p
n,A0

giving DpG0q “ G (Rmk.2.38), then the identity component G˝ of G, and O
top

BT
p
n

pG0q is then
the p-completion orientation classifier of G˝; we will see in the proof of Th.1.6 below that
this p-completion is unnecessary. It follows from Th.2.34 and Df.3.13 that O

top

BT
p
n
is an étale

hypersheaf.

With our sheaf in hand, we can prove Lurie’s theorem; the following follows the outline of
the proof of [EC2, Th.7.0.1].

Proof of Th.1.6. We have an étale hypersheaf O
top

BT
p
n
on CA0

from Df.4.1. It remains to show

that when restricted to objects G0 : Spf B0 Ñ xM♥

BT
p
n,A0

in Caff
A0

, where we may assume B0 is

complete with respect to its ideal of definition J , the E8-ring E “ O
top

BT
p
n

pG0q has the expected

properties 1-4 of Th.1.6. As mentioned in Df.4.1, O
top

BT
p
n
can equivalently be described as ap-

plying the functor D followed by Oor
BT

p
n
. Under D, the object G0 is sent to the affine object

G : Spf B Ñ xMBT
p
n,A

of Caff
A such that π0B » B0 and Gun is equivalent to G0 over Spf B0;

see Df.2.33. By Pr.3.15 and (4.2), we see E is the p-completion of the orientation classifier of
the identity component G˝ of G, denoted by OG˝ . First we will argue that the E8-ring OG˝

satisfies the desired properties 1-3, and then for E .

Firstly, note that as OG˝ is an orientation classifier, [EC2, Pr.4.3.23] states that OG˝ is
complex periodic (we will discuss Landweber exactness at the very end). It follows that E is
complex periodic as it receives an E8-ring homomorphism OG˝ Ñ E from a complex oriented
one; see [EC2, Rmk.4.1.10].

To see conditions 2 and 3 (except for the identification of π2kE), it suffices to show the
formal group G˝ is balanced28 over B. Indeed, as we have proven condition 1 of Th.1.6 which
states that Σ2OG˝ is a locally free of rank 1 so each π2kOG˝ is a line bundle over π0OG˝ . If
G˝ is balanced over B, then each πkOG˝ is complete with respect to the ideal of definition J
of π0OG˝ » B0, so OG˝ itself is J-complete, hence also mA-complete and p-complete. This
would also imply that E » OG˝ . To show G˝ is balanced over B, we use [EC2, Rmk.6.4.2]

28Recall from [EC2, §6.4.1], that a formal group pG over a connective E8-ring R is balanced if the unit map
R Ñ OxG induces an equivalence on π0 and the homotopy groups of OxG are concentrated in even degree.
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(twice) to reduce ourselves to showing that G˝
B^

m
is balanced over B^

m for every maximal ideal
m Ď π0B » B0; these ideals contain J as B0 is J-complete. By Pr.2.42, we see GB^

m
is the

universal spectral deformation of Gκ, where κ is the residue field of B^
m , and a powerful state-

ment of Lurie [EC2, Th.6.4.6] then implies the identity component G˝
B^

m
of GB^

m
is balanced.

Hence OG˝ » E satisfies conditions 2 and 3 (except for the identification of π2kE).

For condition 4, [EC2, Pr.4.3.23] states that the canonical orientation of the p-divisible
group G over E supplies us with an equivalence pGQ

E

»
ÝÑ G˝ between the Quillen formal group

of E and the identity component of G. In particular, this implies the classical Quillen formal
group pGQ0

E
is isomorphic to the formal group G˝

0 after an extension of scalars along the unit
map B0 » π0B Ñ π0E . As G

˝ is a balanced formal group over B, this unit map is an isomor-
phism, giving us property 4.

To round off condition 3 and calculate π2kE , we note this follows from the facts that E is
weakly 2-periodic, the p-divisible group G over E comes equipped with a canonical orientation
and hence a chosen equivalence of locally free E-modules of rank 1 β : ωG Ñ Σ´2E , and the
equivalence of B0-modules π0ωG » ωG0

:

π2kE » pπ2Eqbk » pπ0ωGqbk » ωbk
G0

Finally, to finish condition 1 and the Landweber exactness of E , we appeal directly to
Behrens–Lawson’s arguments in [BL10, Lm.8.1.6 & Cor.8.1.7], as they are checking the same
conditions on a sheaf with the same properties as ours above.

Remark 4.3. Let us close this section by stating that there have, of course, been other iterations
of Lurie’s theorem; see [BL10, Th.8.1.4] and [Beh20, §6.7]. The statements made there are
certainly not aesthetically identical29 to our Th.1.6, however, we believe that the section to
follow, detailing applications of Lurie’s theorem, justifies that all available statements of Lurie’s
theorem apply to the same set of examples. In particular, as we can construct Lubin–Tate
theories, TMF, and TAF, all using Th.1.6, we do not find any reason to compare all available
statements in too much detail—neither would we know how to.

5 Applications of Lurie’s theorem

To advertise Lurie’s theorem to a wider audience and lay (known) groundwork for future
applications, let us now discuss how the titular theorem of this article can be used. A vast
majority of the applications below can be found in either [BL10], [EC2], or [Beh20, §6.7], in
some form.

29Phrases such as “(locally) fibrant in the Jardine model structure” can be translated to “étale hypersheaf”,
and compatibility with checking fibres are universal deformation spaces and the adjective “formally étale” is
explained in [Beh20, Rmk.6.7.5]; see Pr.2.10 for a similar iteration of that idea.
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5.1 Complex topological K-theory

As our first application of Th.1.6, we would like to prove that one of the simplest p-divisible
groups gives us an example of an E8-ring near and dear to stable homotopy theory: complex
topological K-theory. To define the E8-ring KU, we will follow the construction of [EC2,
§6.5], which we will repeat here for the reader’s convenience. Then we will discuss some
specific classes in KU-cohomology.

Construction 5.1. Denote by Vect»
C the 1-category of finite-dimensional complex vector

spaces and complex linear isomorphisms. Considering this as a topologically enriched cat-
egory with a symmetric monoidal structure given by the direct sum of vector bundles, the
(topological) coherent nerve NpVect»

Cq is a Kan complex with an E8-structure. The inclusion

ž

ně0

BUpnq Ñ NpVect»
Cq

classified on each summand BUpnq by the universal n-dimensional complex vector bundle, is
an equivalence of spaces and the E8-structure restricts to one on the domain. The group com-
pletion of this E8-space is the zeroth space of a connective spectrum ku, connective complex
topological K-theory, and the natural group completion map can be identified with the map

ξ :
ž

ně0

BUpnq » NpVect»
Cq Ñ Ω8 ku » Z ˆ BU

sending each BUpnq component to tnu ˆ BU via the canonical inclusion, which represents the
universal complex vector bundle ξn over BUpnq. There is also a multiplicative E8-structure
on NpVect»

Cq given by the tensor product of vector bundles, which also gives the connective
spectrum ku the structure of a connective E8-ring; see [GGN15, Ex.5.3(ii)]. The map ξ is
also a morphism of E8-spaces with respect to this multiplicative E8-structure. By identifying
CP8 » BUp1q as a summand of NpVect»

Cq, thenCP8 inherits the multiplicative E8-structure,
as the tensor product of line bundles are line bundles. As ξ restricted to CP8 lands in the
identity component of Ω8 ku, that is t1u ˆ BU, we obtain a map of E8-spaces CP8 Ñ
GL1pkuq. Under the adjunction30

Σ8
` : CMon Õ CAlg : GL1

we obtain a morphism of E8-rings ρ : Σ8
`CP8 Ñ ku. Furthermore, the based inclusion

ι : S2 » CP2 Ñ CP8 post-composed with the unit η : CP8 Ñ Ω8Σ8CP8 followed by Ω8

of the inclusion into the first summand j : Σ8CP8 Ñ Σ8CP8 ‘ S » Σ8
`CP8 gives us

an element β inside π2Σ
8
`CP8. The image of β under the map ρ is also called β P π2 ku,

30Recall the pΣ8
` ,GL1q-adjunction (see [ABG`14, §2] for a modern reference) is the composite of two

adjunctions:

CMongrp inc.
Õ

GL1

CMon
Σ8

`

Õ
Ω8

CAlg

The superscript p´qgrp denotes those E8-spaces whose π0 is a group. The functor GL1 : CMon Ñ CMongrp

sends an E8-space X to the subspace GL1X spanned by those path components of X with inverses in π0X.
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which one can identify with the element rγ1s ´ 1 inside Ăku0pCP1q, where γ1 is the tautological
line bundle over CP1; a consequence of Pr.5.2. We define the E8-ring of periodic complex
topological K-theory as the localisation KU “ kurβ´1s; see [EC2, Pr.4.3.17] for a discussion
about localising line bundles over E8-rings, and [HA, §7.2.3] for the E1-ring case.

Proposition 5.2. The composition

CP8 η
ÝÑ Ω8Σ8CP8 Ω8j

ÝÝÝÑ Ω8Σ8
`CP8 Ω8ρ

ÝÝÝÑ Ω8 ku

represents the class rξ1s ´ 1 in Ăku0pCP8q, where ξ1 is the universal line bundle over CP8.

Let us recall that for a spectrum E and a based space X, one defines the unreduced and
reduced E cohomology groups of X as the abelian groups:

E0pXq “ π0 MapSppΣ8
`X,Eq » π0MapSpX,Ω8Eq

rE0pXq “ π0MapSppΣ8X,Eq » π0MapS˚
pX,Ω8Eq

Let us also state a lemma we will use regarding the pΣ8
` ,GL1q-adjunction; we only state it to

keep track of base points.

Lemma 5.3. If R is an E8-ring, then the composite

GL1pRq Ñ GL1pRq`
η`
ÝÑ Ω8Σ8

`GL1pRq
Ω8ǫ
ÝÝÑ Ω8R

is homotopic to the inclusion GL1pRq Ñ Ω8R, where ǫ : Σ8
`GL1pRq Ñ R is the counit of the

pΣ8
` ,GL1q-adjunction.

Note that the unit and the counit appearing in the lemma above do not come from the
same adjunction.

Proof. The pΣ8
` ,GL1q-adjunction is a composite of the adjunctions

CMongrp
inc.
Õ
GL1

CMon
Σ8

`

Õ
Ω8

CAlg

so the counit ǫ : Σ8
`GL1pRq Ñ R factors as the composite Σ8

`GL1pRq Ñ Σ8
`Ω8R Ñ R where

the first map is induced by the defining inclusion GL1pRq Ñ Ω8R and the second is the counit
of the pΣ8

` ,Ω
8q-adjunction. This implies the diagram of spaces

GL1pRq GL1pRq` Ω8Σ8
`GL1pRq

Ω8R pΩ8Rq` Ω8Σ8
`Ω8R Ω8R

η`

Ω8ǫ

commutes, where the vertical maps are all induced by the defining inclusion. Similarly, the
first two maps in the bottom composition compose to the unit of the pΣ8

` ,Ω
8q-adjunction on

Ω8R, and by the triangle identity for this adjunction, the bottom horizontal composite is the
identity. This is what we wanted to prove.
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Proof of Pr.5.2. Consider the natural commutative diagram of spaces

CP8 CP8
` Ω8Σ8

`CP8

GL1pkuq GL1pkuq` Ω8Σ8
`GL1pkuq Ω8 ku

ξ|BUp1q

η`

ξ|BUp1q` ΩΣ8
` ξ|BUp1q

Ω8ρ

η` Ω8ǫ

where ǫ is the counit of the pΣ8
` ,GL1q-adjunction. By Lm.5.3, the bottom horizontal composite

is the inclusion GL1pkuq Ñ Ω8 ku. This implies the composition CP8 Ñ Ω8 ku above
corresponds to the morphism ξ|BUp1q : CP8 Ñ Ω8 ku which lands in t1u ˆ BU defining the

universal line bundle ξ1 over CP8. As this morphism represents rξ1s in ku0pCP8q, it follows
by the pΣ8

` ,Ω
8q-adjunction that ρ also represents the element rξ1s. Our desired composite is

then represented by the image of ρ under the map

j˚ : ku0pCP8q Ñ Ăku0pCP8q.

To identify j˚ we write down the split (co)fibre sequence of spectra

Σ8CP8 j
ÝÑ Σ8

`CP8 » Σ8CP8 ‘ S
q

ÝÑ S

where q is induced by the unique map of pointed spaces CP8
` Ñ S0 which is surjective on

π0. We can calculate q˚ : ku0p˚q Ñ ku0CP8 it induces a map of rings on ku0-cohomology,
and ku0p˚q » Z, so q˚ is the unique map. More explicitly, q˚ sends an integer n to the n-
dimensional virtual vector bundle on ku0 CP8. One can also calculate that the splitting i of
q induces a map i˚ : ku0 CP8 Ñ Z sending a virtual vector bundle to its dimension. Indeed,
this can be seen geometrically, as a class x : CP8 Ñ Z ˆ BU is sent to the composition
˚ Ñ CP8 Ñ Z ˆ BU which only remembers which Z-component the original x landed in, ie,
its virtual dimension. We can then identify the map p˚ induced by the splitting p of j with
the inclusion of the kernel of i˚, ie, the inclusion of those virtual vector bundles over CP8

with dimension 0. We rather formally see that j˚ can then be identified by the formula:

j˚pxq “ x´ q˚i˚pxq “ x´ dimpxq

Back to the question at hand, we wish to calculate j˚pρq. Using the above yields our desired
conclusion:

j˚pρq “ j˚prξ1sq “ rξ1s ´ 1

The consequence of the above is that we obtain the usual complex orientation on KU.

Remark 5.4. The map j : Σ8CP8 Ñ Σ8
`CP8 defines a class

j P p ČΣ8
`CP8q0pCP8q.

Let us also write j P rE0pCP8q for the image of the above element under the localisation map:

Σ8
`CP8 Ñ Σ8

`CP8rβ´1s “ E
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A complex orientation xE can be defined as xE “ j
β

P rE2pCP8q as we have ι˚pxE q “ β ¨β´1 “ 1.
It follows that the image of xE inside KU under the map

ρrβ´1s : E “ Σ8
`CP8rβ´1s Ñ kurβ´1s “ KU

is a complex orientation xKU of KU, as complex orientations are sent to complex orientations
by morphisms of E8-rings; see [EC2, Rmk.4.1.3]. This complex orientation on KU is also the
orientation we were all expecting, as by Pr.5.2 we obtain the equalities

xKU “ ρ˚pxEq “
rξ1s ´ 1

β
P ĄKU

0
pCP8q

where ξ1 is the universal line bundle over CP8.

With this geometric definition and discussion of KU, let us define an algebraic object to
compare it to.

Definition 5.5. Let µ♥p8 denote the multiplicative p-divisible group over SpecZ, whose R-
valued points (for a discrete ring R) are defined as:

µ♥pnpRq “
 
x P R |xp

n

“ 1
(

This lifts to a p-divisible group µp8 over SpecS by [EC2, Pr.2.2.11].

Proposition 5.6. The object µ♥p8 over Spf Zp is an object of CZp (for n “ 1), and there is a
natural equivalence of E8-rings

O
top

BT
p
1

pµ♥p8q » KUp.

One can view this proposition as a special case of the Lubin–Tate example Pr.5.12, but
a more direct comparison to the geometric discussion above is also possible using Lurie’s
machinery from [EC2, §6.5]. Our argument below is a combination of [EC2, §3-4 & 6.5].

Proof. The fact that µ♥p8 lies in CZp follows immediately from Pr.1.8 and Pr.2.10. Alterna-
tively, one can view this as a special case of Pr.5.12.

We now follow the argument of Lurie from [EC2]. First, notice the natural equivalence
Dpµ♥p8{Spf Zpq » pµp8{Spf Spq. Indeed, [EC2, Cor.3.1.19] states that the universal spectral

deformation of µ♥p8 over Zp is µp8 over Sp which is identified withDpµ♥p8{Spf Zpq via Rmk.2.38.

By [EC2, Pr.2.2.12], we see that the identity component of µp8 over Spf Sp is precisely the

multiplicative formal group pGm over Spf Sp. It remains to compute our desired E8-ring then

takes the form of the orientation classifier E of pGm over Sp. By the p-completion of [EC2,

Pr.4.3.25], the preorientation classifier of pGm over Sp is Σ8
`CP8

p . Taking a p-completion in
Con.5.1, we obtain a map of E8-rings ρp : Σ

8
`CP8

p Ñ kup. Similarly, by [EC2, Cor.4.3.27], the
localisation Σ8

`CP8
p rβ´1s, where β P π2Σ

8
`CP8 is the Bott element of Con.5.1 (we copied the

definition from [EC2, §6.5]), is the orientation classifier E we are after. Again, from Con.5.1,
this naturally admits a map of E8-rings ρprβ´1s : E Ñ KUp. We claim this map ρprβ´1s is an
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equivalence.

Now we follow [EC2, §6.5]. As µp8{Sp is the universal spectral deformation of both

µ♥p8{Spf Zp and µ♥p8{SpecFp (Pr.2.42), it follows from [EC2, Th.6.4.6] that pGm is balanced
(28) over Sp. This and the complex periodicity of E yield an isomorphism of graded rings

Zprβ˘s
»
ÝÑ π˚E

defined by the invertible element β P π2E . The p-completion of the classical Bott periodicity
theorem then states the composite Zprβ˘s Ñ π˚KUp through ρprβ´1s is an equivalence, hence
ρprβ´1s is an equivalence.

There is a standard trick to obtain the integral E8-ring KU from O
top

BT
p
1

pµ♥p8q by purely

algebraic methods.

Remark 5.7. Consider the symmetric monoidal Schwede–Shipley equivalence of 8-categories

ModR » DpRq (5.8)

where R is a discrete commutative ring; see [SS03] or [HA, Th.7.1.2.13]. Replacing R with
Q, we note that the E8-Q-algebra kuQ, the rationalisation of ku, has homotopy groups
π˚ kuQ » Qrβs, for |β| “ 2. Define a map of Q-cdgas ΛQrx2s Ñ kuQ from the free Q-cdga
on one element in degree 2 to kuQ, defined by the element β. This is easily seen to be a
equivalence of Q-cdgas, and moreover, one obtains an equivalence upon localisations at x2

ΛQrx˘1
2 s

»
ÝÑ kuQrβ´1s » KUQ

where KUQ is the rationalisation of KU. Carrying out the same construction in CAlg, we
obtain a morphism Λrx˘1

2 s Ñ KUp of E8-rings from the free E8-ring on a single invertible
generator in degree two to KUp defined by β P π2KUp. Taking the product of these morphisms
over all primes p and rationalising gives a morphism in CAlgQ

θ : ΛQrx˘1
2 s Ñ

˜ź

p

KUp

¸

Q

where we note that pΛrx˘1
2 sqQ is naturally equivalent to ΛQrx˘1

2 s. One then obtains KU from
the following Hasse Cartesian square of E8-rings:

KU
ś

pKUp

ΛQrx˘1
2 s p

ś
pKUpqQ

θ

where the two products are taken over all prime numbers p; see [Bau14].

The E8-ring KO can also be obtained through these means. The following is a carbon
copy of Con.5.1, replacing C with R.
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Construction 5.9. Denote by Vect»
R the topological category of finite-dimensional real vector

spaces and real linear isomorphisms. This category has two symmetric monoidal structures
given by the direct sum and tensor product of vector bundles, the (topological) coherent nerve
NpVect»

Rq is a commutative monoid object in the 8-category of E8-spaces. Moreover, the
functor

c : Vect»
R Ñ Vect»

C V ÞÑ V bR C

is symmetric monoidal with respect to both monoidal structures, hence we obtain a morphism
of commutative monoid objects in E8-spaces:

c : NpVect»
Rq Ñ NpVect»

Cq

The group completion (with respect to the direct sum E8-structure) of NpVect»
Rq is the zeroth

space of the connective E8-ring ko, connective real topological K-theory, and c induces a
morphism ko Ñ ku of E8-rings. There is an element βR inside π8 ko, represented by an
element which maps to the element β4 inside π8 ku; see [Ada74, §III] for example. We define
the E8-ring of periodic real K-theory as the localisation KO “ korβ´1

R s, and we notice this
induces a morphism c : KO Ñ KU. By [HS14], the map c can be identified with the E8-
inclusion of the C2-fixed points of KU through the C2-action given by complex conjugation of
vector bundles.

Definition 5.10. Let BC2 be the quotient stack Spf Zp{C2 with respect to the trivial action
on Spf Zp. This formal spectral Deligne–Mumford stack has a cover Spf Zp Ñ BC2 given
by the canonical quotient map. By [LN14, A.3-4], this is the base-change over Spf Zp of the
moduli stack of forms of the multiplicative group scheme Gm. The reason for the quotient by
C2 is to remove the automorphism on Gm given by inversion. Moreover, the multiplicative
p-divisible group µ♥p8 lives over BC2, so we obtain a map BC2 Ñ xM♥

BT
p
1,Zp

.

Proposition 5.11. The map BC2 Ñ xM♥

BT
p
1,Zp

lives in CZp. Moreover, the map O
top

BT
p
1

pSpf Zp Ñ

BC2q is homotopic (as maps of spectra) to the p-completion of the map c : KO Ñ KU.

The proof below uses some results about stable Adams operations which we discuss in §5.5.

Proof. As Spf Zp Ñ BC2 is a finite étale cover and the composite Spf Zp Ñ xM♥

BT
p
1,Zp

lies

in CA0
, then so does BC2. It suffices now to show that O

top

BT
p
1

pBC2q “ E is the inclusion of

the C2-fixed points of KUp with respect to the complex conjugation action on KUp. We can
rewrite E using the fact that O

top

BT
p
1

is an étale sheaf:

E » lim

ˆ
O

top

BT
p
1

pµ♥p8{Spf Zpq ñ O
top

BT
p
1

pµ♥p8{Spf Zp ˆ
BC2

Spf Zpq ⇛ ¨ ¨ ¨

˙

As Spf Zp Ñ BC2 is a C2-torsor by construction and using Pr.5.6, we can rewrite the above
limit as

lim

˜
KUp ñ

ź

C2

KUp ⇛

ź

C2ˆC2

KUp ¨ ¨ ¨

¸
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which is simply the homotopy fixed points KUhC2
p . We are only left to check that this C2-

action on KUp is homotopic as maps of spectra to that given by complex conjugation. By the
construction of BC2, we see that Spf Zp Ñ BC2 is the quotient by the inversion action on
the multiplicative group scheme Gm, hence E Ñ KUp is the inclusion of the the C2-homotopy
fixed point of KUp with action given by r´1s˚. As we will discuss in Pr.5.30, this is homotopic
to the action of spectra ψ´1, and following arguments of ibid we see this is determined as a
map of spectra by what is does on line bundles on KUp-cohomology of finite spaces.31 We
now refer to [MS74, p.168], which states that complex conjugate of a complex line bundle L
is isomorphic to the dual of a complex line bundle L, the latter also being given by ψ´1pLq.
This finishes the proof.

5.2 Lubin–Tate and Barsotti–Tate theories

The above example of O
top

BT
p
1

pµ♥p8q » KUp can be extended to arbitrary heights. The following

is a combination of [EC2, §5-6]. Recall the Lubin–Tate deformation theory of Ex.2.9.

Proposition 5.12. Let pG0 be a formal group of exact height n over a perfect field κ and
G0 for a p-divisible group over κ whose identity component is equivalent to pG0; see [EC2,
Pr.4.4.22]. Write G for the classical universal deformation of G0, which is a p-divisible group

over the discrete ring RLT
pG0
. The object G : Spf RLT

pG0
Ñ xM♥

BT
p
n,Zp

lies in CZp. Moreover, there

is an equivalence of E8-rings O
top

BT
p
n

pGq » En where En “ Ep pG0q is the Lubin–Tate E8-ring

of pG0 (also known as Morava E-theory); see [EC2, §5].

This will follow from a more general family of p-divisible groups in CZp .

Proposition 5.13. Let R0 be a discrete Noetherian Fp-algebra such that the Frobenius endo-
morphism on R0 is finite and G0 be a nonstationary (18) p-divisible group of height n over
R0. Write R for the universal spectral deformation adic E8-ring of G0 from [EC2, Th.3.4.1]
and assume the residue fields of π0R are perfect of characteristic p. Then the morphism
G : Spf π0R Ñ xM♥

BT
p
n,Zp

defined by the base-change of the universal spectral deformation of G0

along R Ñ π0R lies in CA0
. Moreover, there is a natural equivalence of E8-rings DpGq » R.

The E8-rings produced by applying O
top

BT
p
n
to the p-divisible groups G occurring in Pr.5.13

seem interesting enough to name.

Definition 5.14. Let R0, G0, and G be as in Pr.5.13. We call O
top

BT
p
n

pGq the Barsotti–Tate

E8-ring associated to pR0,G0q.

Proof of Pr.5.13. Let us first see G lies in CA0
by checking the conditions of Df.1.5. It is

shown in Pr.2.10 that the morphism G is formally étale. As R0 is Noetherian, then [EC2,
Th.3.4.1(6)] tells us that R and hence also π0R are Noetherian as well. Consider the maps in
PpAffcnq

Spf π0R Ñ Spf R Ñ xMBT
p
n,A

31Recall from [HA, Nt.1.4.2.5], that the 8-category of finite spaces is the full 8-subcategory of S generated
by the termal object under finite colimits.
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and the associated (co)fibre sequence of complete π0R-modules:

L
Spf R{ xM

BT
p
n,A

ˇ̌
ˇ̌
Spf π0R

Ñ L
Spf π0R{ xM

BT
p
n,A

Ñ LSpf π0R{ Spf R

By construction ([EC2, Pr.3.4.3]), R corepresents the de Rham space of the map SpecR0 Ñ

MBTp , or equivalently, the de Rham space of SpecR0 Ñ xMBT
p
n,Zp

, as R0 is an Fp-algebra
and G0 is of height n. Identifying R as representing this de Rham space and using Ex.2.29,
we see that L

Spf R{ xM
BT

p
n,A

vanishes. Hence L
Spf π0R{ xM

BT
p
n,A

is almost perfect as LSpf π0R{ Spf R

is almost perfect; see Pr.A.12. Rmk.2.38 identifies R with DpGq.

Proof of Pr.5.12. The fact that G lies in CZp follows from Pr.5.13. The fact that O
top
BTppGq is

equivalent to En follows as the universal spectral deformation of G0 is given by DpGq (Pr.5.13)
and the orientation classifier of DpGq is En ([EC2, Cor.6.0.6]).

From the functorality of O
top

BT
p
n
we obtain an action of the automorphism group of the pair

pκ, pG0q on the E8-ring En. In other words, En obtains an action of the extended Morava
stabiliser group; see [EC2, §5] and [GH04, §7]. It is not clear from these techniques that these
account for all E8-endomorphisms of En; this requires a dash of chromatic homotopy theory
as done in [EC2, §5].

5.3 Topological modular forms

Another exciting application of Th.1.6 is to construct the E8-ring TMF of periodic topological
modular forms. Of course, this also uses the ideas of Lurie from [EC2] and [SUR09], but
reinterpreting TMFp as a section of O

top

BT
p
2

yields additional endomorphisms to those previously

known. In particular, by §5.5, TMFp will obtain stable Adams operations, and we also outline
how TMFp obtains stable Hecke operators.

Proposition 5.15. The map rp8s : xM♥
Ell,Zp

Ñ xM♥

BT
p
2,Zp

lies inside CZp.

Proof. Using Pr.1.8, we only need to show that the map rp8s above is formally étale inside

PpAff♥q and that xM♥
Ell,Zp

is finitely presented over Spf Zp. The former follows from Ex.2.7;

a consequence of the classical Serre–Tate theorem. The latter follows from [Ols16, Th.13.1.2],
which states that M♥

Ell is locally of finite presentation over SpecZ, the fact that the adjective

“locally of finite presentation” is stable under base-change, and the fact that xM♥
Ell,Zp

is qcqs.

Indeed, to see xM♥
Ell,Zp

is qc, we recall that it is also well known that after inverting an integer

n that there is a surjective étale map M1pnq Ñ M
♥
Ell ˆ SpecZr 1

n
s from the moduli stack of

elliptic curves with exact level n structure, and for n ě 4 the Deligne–Mumford stacks M1pnq

are affine, hence xM♥
Ell,Zp

has a finite affine étale cover for all primes p; see [KM85, Th.3.7.1].

Moreover, the iterated fibre products of this cover are affine too, as M
♥
Ell is separated over

SpecZ; see [Ols16, Th.13.1.2] again. Hence we obtain a finite affine étale hypercover of xM♥
Ell,Zp

.

By Pr.A.17, we see xM♥
Ell,Zp

is qcqs.
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As promised in the introduction, we should relate O
top

BT
p
2

to a more classical object:

Definition 5.16. Let Otop denote the Goerss–Hopkins–Miller sheaf of E8-rings on the étale
site DMét

{M♥

Ell

of M♥
Ell; see [EC2, Th.7.0.1] or [Goe10, Th.1.2] for a version over the compacti-

fication of M♥
Ell.

We also have functors DMét

{M♥

Ell

Ñ fDMét

{ xM♥

Ell,Zp

defined by base-change along the canonical

map Spf Zp Ñ SpecZ and fDMét

{ xM♥

Ell,Zp

Ñ CZp by post-composition along the map rp8s of

Pr.5.15.

Theorem 5.17. The following diagram of 8-categoties commutes up to homotopy:

´
DMét

{M♥

Ell

¯op

CAlg

ˆ
fDMét

{ xM♥

Ell,Zp

˙op `
CZp

˘op
CAlg

Otop

p´q^
p

O
top

BT
p
2

In particular, there is an equivalence of E8-rings:

O
top

BT
p
2

´
rp8s : xM♥

Ell,Zp
Ñ xM♥

BT
p
2 ,Zp

¯
» TMFp

The following proof is essentially that of [EC2, Th.7.0.1] which proves an integral statement.

Proof. As done in the proof of [EC2, Th.7.0.1], we will conclude the proof by checking that for
each affine object E0 : SpecB0 Ñ M

♥
Ell of DMét

{M♥

Ell

, the E8-ring E “ O
top

BT
p
n

pErp8sq satisfies

the following conditions:

1. E is weakly 2-periodic (7).

2. The homotopy groups πkE vanish in odd degrees, so in particular E is complex orientable.

3. There is a natural (in affines in DMét

{M♥

Ell

) isomorphism of rings pB0q^
p » π0E .

4. There is a natural (in affines in DMét

{M♥

Ell

) isomorphism of formal groups pEpB0q^
p

» pGQ0

E

over SpfpB0q^
p .

Once one applies [EC2, Pr.7.4.1] to identify pE » Erp8s˝, these conditions above are precisely
the properties of O

top

BT
p
2

by Th.1.6, hence they hold. The étale sheaf of E8-rings Otop (followed

by p-completion) is determined up to homotopy by the four conditions above, the desired
diagram of 8-categories commutes up to homotopy; for a statement about the connectedness
of the moduli space of such sheaves, see [EC2, Rmk.7.0.2] or [Goe10, Th.1.2] and the two
paragraphs that follow. A proof of the connectedness of this moduli space, including the
p-complete case used above, can be found in [Dav21b].
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As done in [Beh20, §6], we can use the collection of all p-complete E8-rings and a little
rational information to construct integral TMF, similar to Rmk.5.7.

Remark 5.18. We have an étale hypersheaf of E8-rings on the small étale site over M
♥
Ell

defined by the following composition:

´
DMét

{M♥

Ell

¯op π˚
p

ÝÝÑ
ź

p

ˆ
fDMét

{ xM♥

Ell,Zp

˙op ś
rp8s

ÝÝÝÝÑ
ź

p

`
CZp

˘
ś

O
top

BT
p
2ÝÝÝÝÝÑ

ź

p

CAlg Ñ CAlg

This sheaf comes with a canonical map into its rationalisation which we will use shortly. To
construct O

top
Q algebraically, recall the symmetric monoidal equivalence of 8-categories (5.8).

Define an étale hypersheaf of E8-rings O
top
Q first one affines by sending E0 : SpecB0 Ñ M

♥
Ell

in DMét

{M♥

Ell

to the formal32 rational cdga:

O
top
Q pE0qn “

#
ωbk

pE0
b Q n “ 2k

0 else

Extend this to the small étale site over M
♥
Ell by right Kan extension (ie, taking affine étale

covers and using the sheaf condition). Let us now construct a morphism

O
top
Q Ñ

ź

p

πp˚

´
O

top

BT
p
2

˝ rp8s
¯
Q

first on affines E0 : SpecB0 Ñ M
♥
Ell as the morphism

ωb˚
pE,Q

Ñ

˜ź

p

ωb˚
pE,Zp

¸

Q

given by the rationalisation, of the product over all primes of the map from ωb˚
pE to its p-

completion. Extend this to a morphism of sheaves on the whole small étale site by Kan
extension. One can then recover Otop itself as the pullback in the following Cartesian square
of sheaves on the étale site of M♥

Ell:

Otop
ś

p π
p
˚

´
O

top

BT
p
2

˝ rp8s
¯

O
top
Q

´ś
p π

p
˚

´
O

top

BT
p
2

˝ rp8s
¯¯

Q

32The rationalisation of O
top is formal by construction if we use that of [Beh14], however, as discussed in

[Mei21, Pr.4.8 & Cor.4.9] the formality of the rationalisation of such a sheaf on such a Deligne–Mumford stack
is inevitable.
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Taking global sections, one obtains the Cartesian square of E8-rings

TMF
ś

pTMFp

TMFQ

´ś
pTMFp

¯
Q

where everything in sight has been constructed using O
top

BT
p
2

or a dash of rational information.

Let us also mention a few variations on TMF that one can obtain from Otop.

Definition 5.19. There exist moduli functors CAlg♥ Ñ S denoted as MΓ for each congruence
subgroup Γ ď SL2pZq. Of particular interest are Γ “ Γpnq, Γ1pnq, and Γ0pnq, which yield
moduli stacks Mpnq, M1pnq, and M0pnq for each n ě 1. These are defined in [KM85, §3],
and they sit in a commutative diagram in PpAffcnq

Mpnq M1pnq M0pnq

MEll

where all the transformations above are some kind of forgetful functor. Moreover, by [KM85,
Th.3.7.1], we see that when working over SpecZr 1

n
s, all of the morphisms above are finite

étale. Using these maps one then defines the E8-rings TMFpΓq “ OtoppMΓq called periodic
topological modular forms with level structure. These E8-rings are naturally E8-TMFr 1

n
s-

algebras for Γ “ Γpnq, Γ1pnq, or Γ0pnq.

Once again, the functorality of these constructions ensures us that the natural GL2pZ{nZq-
action on Mpnq over MEll,Zr 1

n
s yields a natural equivalence of E8-rings

TMFr
1

n
s

»
ÝÑ TMFpnqhGL2pZ{nZq;

this is explained and explored in more detail in [MM15, §7]. We have another use for these
moduli stacks. Let us further explain M0pnq; from now on, we assume a little familiarity with
elliptic curves, from [Sil86] or [KM85, §2], for example.

Construction 5.20. The moduli stack of elliptic curves has R-valued points MEllpRq given
by the space of elliptic curves over R and equivalences between them. The moduli stack M0pnq
has R-valued points M0pnqpRq given by the space of elliptic curves E over R with a choice of
cyclic subgroup H ď E of order n. As we will only study M0pnq over Zr 1

n
s a cyclic subgroup

H ď E of order n is a subgroup H ď E of order n, hence it is necessarily finite étale over
R, and we demand that for any (or every) geometric point Specκ Ñ SpecR, Hκ is a cyclic
group of order n. There is a canonial map π : M0pnq Ñ MEll,Zr 1

n
s given by forgetting the level

structure. There is also a quotient map q : M0pnq Ñ MEll,Zr 1
n

s defined on R-valued points by
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sending a pair pE,Hq to the elliptic curve E{H. It is explained on [Beh06, p.12] why q is étale,
and this fact essentially comes down to decomposing q into a composition of étale maps of
stacks. By construction there is an isomorphism q˚E » E0pnq{H of elliptic curves over M0pnq,
where E is the universal elliptic curve over MEll,Zr 1

n
s and pH ď E0pnqq is the universal pair

over M0pnq.

Using this quotient map q (which is induced by a quotient map of elliptic curves, rather
than literally being a quotient map of stacks), we can construct spectral lifts of classical
Hecke operators. Recall from [Mei22, Pr.2.13] that the morphism of E8-rings π˚ : TMFr 1

n
s Ñ

TMF0pnq witness the target as a compact object of ModTMFr 1
n

s. In particular, this implies

the existence of a transfer map defined by the compsite

trp : TMF0pnq Ñ F pTMF0pnq,TMF0pnqq
»

ÐÝ F pTMF0pnq,TMFq b
TMF

TMF0pnq Ñ TMF

the middle map being an equivalence coming from the compactness above, and where F
indicates TMFr 1

n
s-linear internal hom, and we have implicitly inverted n.

Definition 5.21 (Stable Hecke operators on TMFp). Write Q : E0pnq Ñ E0pnq{H for the
quotient homomorphism. For a prime33 ℓ different to the ambient prime p, we define the ℓth
stable Hecke operator Tℓ on TMFp as the composition

O
top

BT
p
2

pErp8s, xMEll,Zp
q O

top

BT
p
2

pE0pnq{Hrp8s, xM0pℓqZpq

O
top

BT
p
2

pE0pnqrp8s, xM0pℓqZpq O
top

BT
p
2

pErp8s, xMEll,Zp
q

q˚

Q˚»

1
ℓ
trπ

where we have implicitly used Th.5.17. Put more plainly, this stable Hecke operator is given
by the composition

Tℓ : TMFp
q˚

ÝÑ TMFq
0pnqp

Q˚

ÝÝÑ TMF0pnqp
1
ℓ
trπ

ÝÝÝÑ TMFp

where the supscript p´qq reminds us that particular section has been defined using q rather
than the projection π.

A key part of the above construction is the fact that Q induces an isomorphism on associ-
ated p-divisible groups, hence Q˚ exists; this is not clear if we only consider Otop as a sheaf
over MEll. The above construction can also be refined to one on TMFr1

ℓ
s using Rmk.5.18.

33We restrict ourselves to the stable Hecke operators Tℓ for a prime ℓ as the general definition requires a
construction with more elaborate moduli stacks; we want to consider moduli stacks with level structure without
the restriction to cyclic subgroups. However, inspired by [Bak98], we can also inductively define Tpr`1 for r ě 1
by the formula:

Tpr`1 “ TprTp ´
1

p
ψ

pTpr´1

The formula for general positive integers follows by setting Tmn “ TmTn for coprime m and n.
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One can show that the above Hecke operators agree with those defined classically onrings
of modular forms upon taking rational homotopy groups, but this will take us too far afield.

These Hecke operators have already been outlined in [BL10, §11.2] and when working with
6 inverted, such operations were originally defined and studied by Baker; see [Bak98] and
[Bak90]. The above stable Hecke operators can be refined in three significant ways: first, one
can hope to intrinsically define Tn with a moduli stack, rather than using Tp; second, one
can hope to define stable Hecke operators on the connective tmf and dualisable Tmf versions
of TMF; third, the functorality might be improved from a construction for each Tn individu-
ally, to a single construction of all Hecke operators Tn at once, encoding higher coherences of
transfers and the like. These refinements have been undertaken by the author and will appear
in [Dav22].

Another prominent use the maps Q˚ ˝ q˚ : TMFp Ñ TMF0pℓqp appear in the work of
Behrens constructing his Qpℓq spectra, which form resolutions of the Kp2q-local sphere; see
[Beh06].

5.4 Topological automorphic forms

The first examples of new cohomology theories constructed with Th.1.6 come from Behrens–
Lawson [BL10]. The main idea is that the Serre–Tate theorem, which was vital in our construc-
tion of TMFp from O

top

BT
p
2

, actually applies to the moduli stack of dimension g abelian varieties

for any g ě 1; the g “ 1 case recovers the moduli stack of elliptic curves. A new problem now
arises: we need our p-divisible groups to be of dimension 1, and then and only then can they
have an orientation. To obtain a 1-dimensional p-divisible group from an abelian variety A of
dimension g ě 2, one needs more structure on A to split its associated p-divisible group into
one of dimension 1 and another of dimension g´1 (which we forget about). This comes in the
form ofpolarisations, endomorphisms, and level structure, leading us PEL-Shimura varieties;
for a full introduction to the subject and the intended application to stable homotopy theory,
see [BL10]. What appears below is simply a restatement of [BL10] and [Beh20].

Notation 5.22. Fixed an integer n ě 1.

• Let F be a quadratic imaginary extension of Q, such that p splits as uu.

• Let OF be the ring of integers of F .

• Let V be an F -vector space of dimension n equipped with a Q-valued nondegenerate
Hermitian alternating form of signature p1, n ´ 1q.

• Let L be an OF -lattice in V such that the alternating form above takes integer values
on L and makes Lppq self-dual.

Definition 5.23. Write XV,L for the formal Deligne–Mumford stack over Spf Zp (of [BL10,
Th.6.6.2] with Kp “ K

p
0 ) where a point in XV,LpSq for a locally Noetherian formal scheme S

over Spf Zp, is a triple pA, i, λq where:
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• A is an abelian scheme over S of dimension n.

• λ : A Ñ A_ is a polarisation (principle at p), with Rosati involuation : on EndpAqppq.

• i : OF,ppq Ñ EndpAqppq is an inclusion of rings satisfying ipzq “ ipzq:.

These triples have to satisfy two conditions assuring they are locally modelled by V and L;
see [Beh20, §6.7].

In the situation above, the splitting p “ uu induces a splitting of p-divisible groups

Arp8s » Aru8s ‘Aru8s

and our assumption on pA, i, λq ensure that Aru8s is a 1-dimensional p-divisible group. This

yields a morphism of stacks ru8s : XV,L Ñ xM♥

BT
p
n,Zp

which sends pA,λ, iq to Aru8s.

Proposition 5.24. Given V and L as in Nt.5.22, then the morphism ru8s : XV,L Ñ xM♥

BT
p
n,Zp

is an object of CZp.

Proof. Pr.1.8 reduces us to show that ru8s is formally étale inside PpAffcnq and that XV,L

is of finite presentation over Spf Zp. The first statement, that ru8s is formally étale, follows
straight from the definitions of a formally étale morphism and [BL10, Th.7.3.1], which itself is
a consequence the classical Serre–Tate theorem and an analysis of XV,L. We now use [BL10,
Cor.7.3.3] to see XV,L is of locally finite presentation over Spf Zp, so it suffices to show now
that XV,L is qcqs. To do this, we first use [BL10, Th.6.6.2], which states that XV,L has an étale
cover by a quasi-projective scheme. As a quasi-projective formal scheme X is separated and
qc, we see X itself has a Zariski cover by an affine formal scheme Spf B, meaning XV,L has an
étale cover by Spf B. By Pr.A.17, this implies XV,L is qcqs.

We can now define the spectra of topological automorphic forms as done in [BL10, §8.3].

Proposition 5.25. Let V and L be as in Nt.5.22. Define the E8-ring of topological auto-
morphic forms

TAFV,L “ O
top

BT
p
n

ˆ
XV,L

ru8s
ÝÝÝÑ xM♥

BT
p
n,Zp

˙

As with topological modular forms (Df.5.19), we can also define variants of TAFV,L which
incorporate level structures. Such extra structure can then be used to define restriction maps,
transfers, and Hecke operators on TAFV,L; see [BL10, §11].

5.5 Stable Adams operations

The next example exploits the intrinsic functorality of the sheaf O
top

BT
p
n
.

Definition 5.26. Let k “ pk1, k2, . . .q be a p-adic integer and G be a p-divisible group over
an arbitrary scheme (or stack) S. Write rks : G Ñ G for the endomorphism of G given on
pn-torsion by the kn-fold multiplication rkns : Gn Ñ Gn. These assemble to an endomorphism
of G as the sequence pk1, k2, . . .q represents a p-adic integer and the closed immersions Gn Ñ
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Gn`1 witness the equality Gn “ Gn`1rpns. If k is a unit inside Zp then each rkns is an
isomorphism of finite flat groups schemes on S, hence rks is an automorphism of G. If G

defines a morphism S Ñ xM♥

BT
p
n,A0

inside CA0
and k P Zˆ

p , then write

rks˚ : O
top

BT
p
n

pGq Ñ O
top

BT
p
n

pGq

for the induced endomorphism of E8-rings. These are the (p-adic) stable Adams operations
O

top

BT
p
n

pGq; we will justify this name shortly.

Many properties expected of Adams operations are formal.

Proposition 5.27. Let l, k be two units in Zp, G be an object of CA0
, and write E “ O

top

BT
p
n

pGq.

Then ψ1 is homotopic to the identity map on the E8-ring E, and the maps of E8-rings ψlψk

and ψlk on E are homotopic.

The homotopy H between ψlψk and ψlk above are coherent in the following sense: if
j is another p-adic unit, then the homotopy between ψjψlψk and ψjlk factors through H.
This follows straight from the fact that O

top

BT
p
n
: Cop

A0
Ñ CAlg is first and foremost a functor of

8-categories, and the calculations rlsrks “ rlks hold up to equality in CA0
.

Proof. As these facts hold for rks in CA0
and O

top

BT
p
n
is a functor, we obtain the result.

Using the information we already have at hand, we can calculate rks˚ on the homotopy
groups of the E8-rings O

top

BT
p
n

pGq over affine objects of CA0
.

Proposition 5.28. Let k be a unit in Zp and G be a p-divisible group defining an affine object
in CA0

. Then for each integer n, we have the following equality of morphisms of Zp-modules:

rks˚ “ kn : π2nO
top

BT
p
n

pGq Ñ π2nO
top

BT
p
n

pGq

Proof. Using Th.1.6, we see that π2nO
top

BT
p
n

pGq is naturally isomorphic to the line bundle ωbn
G

over π0O
top

BT
p
n

pGq “ B. It then suffices to calculate the n “ 1 case. As ωG is the dualising line
for the identity component G˝ of G, we see the B-module ωG is naturally equivalent to the
dual of the Lie algebra LiepG˝q (9), so it now suffices to calculate rks˚ on this Lie algebra.
This is quite elementary, but let us recall some details. The question can be answered by
localising at each minimal ideal m of B containing its ideal of definition J , and over Bm the
1-dimensional formal group G˝ has coordinate t and an associated formal group law G—the
choice of coordinates forms a line bundle over Bm and line bundles over local rings are trivial;
see [Goe08, §2]. Assume B is local then. If k is an integer, can write rks on BJtK, the global
sections of G˝ using the coordinate t, as the composite

rks : BJtK
ckÝÑ BJt1, . . . , tkK

µ
ÝÑ BJtK (5.29)

where the first map is the comultiplication on BJtK induced by G and the second is the
completed multiplication map. As ckptq ” t1 ` ¨ ¨ ¨ ` tk modulo higher degree terms, then
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rksptq ” kt modulo higher degree terms. Finally, the Lie algebra LiepG˝q can be written as a
Zariski tangent space:

LiepG˝q » HomModB ptBJtK{ptBJtKq2, Bq

It is now clear that rks˚ : LiepG˝q Ñ LiepG˝q is simply multiplication by k if k is an integer.
For a general p-adic unit k, we approximate k by integers using its p-adic expansion, and our
conclusion then follows in this more general case by taking the limit.

The following justifies why we call the operations rks˚ stable Adams operations.

Proposition 5.30. For integers k not divisible by p, the map of E8-rings rks˚ : KUp Ñ KUp

is homotopic to classical stable Adams operation ψk; see [Ati67, §3.2].

Using a slight variant of Rmk.5.7, one can construct maps of E8-rings rns˚ : KUr 1
n

s Ñ
KUr 1

n
s for every integer n. It is well-known ([Ada74, §II.13]) that to construct a stable Adams

operation ψn as a map of spectra, one must invert n. The same goes for stable Adams
operations ψn : TMFr 1

n
s Ñ TMFr 1

n
s; these operations, as well as stable Adams operations on

the connective tmf and dualisable Tmf variants, which have been further explored in [Dav21a].

Proof. By restricting ourselves to the case of an integer k not divisible by p, we have assured
that rks : µ♥p8 Ñ µ♥p8 is an automorphism of p-divisible groups.

Let us write E “ O
top

BT
p
1

pµ♥p8q. We claim that rks˚ can be calculated on the universal line

bundle over CP8 using just the algebraic geometry of pGm. By (the proof of) Pr.5.6, the
map ρprβ´1s : E Ñ KUp is an equivalence of E8-rings, and Rmk.5.4 states this equivalence
sends the canonical complex orientation xE of E to the usual complex orientation xKU of KUp.
We obtain orienations (now in the sense of Df.3.1) eE and eKU of the formal multiplicative
group pGm over E and KUp, respectively, ([EC2, Ex.4.3.22]) such that ρpeE q “ eKU. As these

orientations of pGm determine morphisms from the associated Quillen formal group to pGm

([EC2, Pr.4.3.23]) and ρpeE q “ eKU, we obtain the commutative diagram of equivalences of
formal groups over Zp courtesy of [EC2, Pr.4.3.23]:

pGQ0

KUp

pGQ0

E

pGm,Zp

ρ˚

Focusing on KUp now, let us rewrite the above diagram of equivalences of formal groups over
Spf Zp:

Spf KU0
ppCP8q

»
ÝÑ Spf ZpJtK “ pGm (5.31)

We know exactly how rks acts by taking k-fold multiplication, which on the multiplicative
formal group is an operation represented by the map of rings:

rks˚ : ZpJtK
ck
ÝÑ ZpJt1, . . . , tkK

µ
ÝÑ ZpJtK, t ÞÑ pt ` 1qk ´ 1
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Recall from (5.29) that the first map is the k-fold iteration of the comultiplication34, and the
second map is the completed multiplication map. As the map (5.31) induces a map of adic
rings sending t to βxKU, we then obtain the same formulae for rks˚ in KU0

ppCP8q:

rks˚pβxKUq “ pβxKU ` 1qk ´ 1

As βxKU P KU0
ppCP8q is represented by rξ1s ´ 1 one obtains:

rks˚prξ1sq “ rks˚pβxKU ` 1q “ rks˚pβxKUq ` 1 “ pβxKU ` 1qk ´ 1 ` 1 “ rξbk
1 s

It follows that for any finite space (31) X and any complex line bundle L over X with corre-
sponding map g : X Ñ CP8, the inherent naturality of rks˚ gives us the formula:

rks˚prLsq “ rks˚prg˚ξ1sq “ g˚prks˚pξ1qq “ g˚rξ1sk “ rLbks

It follows from [Ati67, Pr.3.2.1(3)] that the operations rks˚ on KU0
ppXq are the Adams opera-

tions ψk as maps of cohomology theories.

To lift this statement from one about cohomology theories to one about the spectra that
represent them, we now show there are no phantom maps of spectra KUp Ñ KUp, as this is
the only obstacle to the fully faithfulness of the functor

hSp Ñ CohomTh E ÞÑ E˚p´q

where CohomTh denotes the 1-category cohomology theories on finite spaces; see [HS99, §2
& Cor.2.15] and [CHT10, Lec.17]. As KUp represents an even periodic Landweber exact
cohomology theory, it follows there exists no phantom endomorphisms of KUp; see [CHT10,
Cor.7, Lec.17].

Remark 5.32. There is a C2-action on the sections of O
top

BT
p
n
coming from the inversion action

on p-divisible groups, ie, coming from ψ´1. Any C2-action on an E8-ring E can be used to
upgrade E to a genuinely commutative C2-ring spectrum (the kind with norms); see [HM17,
Th.2.4]. When p “ 2, this has interesting results, for example, the C2-structure on sections
of O

top

BT
p
n
can be used to obtain a C2-equivariant refinement of part 1 of Th.1.6: the complex

orientability and Landweber exactness of affine sections of O
top

BT
p
n
can be upgraded to Real

orientability and Real Landweber exactness à la [HM17, §3]. This essentially follows from the
regular homotopy fixed point spectral sequences of [Mei22], the descent theory developed by
Lurie in [EC2, §6], and the analogous result of Hahn–Shi [HS20] for Lubin–Tate spectra.

Remark 5.33. Let p be an odd prime. Using the Teichmüller character, a map of groups
Fˆ
p Ñ Zˆ

p , which sends d to the limit of the Cauchy sequence tdp
n

uně0, one obtains an action

34The comultiplication on the ring ZpJtK representing the multiplicative formal group is given by

ZpJtK Ñ ZpJx, yK, t ` 1 ÞÑ xy ` x` y ` 1 “ px ` 1qpy ` 1q.
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of Fˆ
p » Cp´1 on any sections of O

top

BT
p
n
. In particular, for any G in CA0

(it need not be just an

affine object), then the E8-ring E “ O
top

BT
p
n

pGq has an E8-Fˆ
p -action, and the homotopy fixed

points EhFˆ
p split off a summand of E using the idempotent map:

1

p´ 1

ÿ

dPFˆ
p ĎZ

ˆ
p

ψd : E Ñ E

In particular, if E “ KUp as in §5.1, this summand is the periodic Adams summand.

A Appendix on formal spectral Deligne–Mumford stacks

Throughout this article we have used basic properties of formal spectral Deligne–Mumford
stacks that are not explicitly contained in [SAG] (at least not obviously to the author), so we
have arranged this appendix to prove these statements. Every single statement below is an
extension of a proof in [SAG] and the author claims no originality for the ideas below.

Truncations

We would like to show that for locally Noetherian formal spectral Deligne–Mumford stacks,
there is a well-defined truncation functor. The following is a generalisation of [SAG, Pr.1.4.6.3]
to formal spectral Deligne–Mumford stacks; we will even use the same proof and notation.

Proposition A.1. Let X “ pX ,OXq be a locally Noetherian formal spectral Deligne–Mumford
stack. For each n ě 0, the object τďnX “ pX , τďnOXq is a locally Noetherian formal spectral
Deligne–Mumford stack. Moreover, for every pY,OYq inside 8T opsHen

CAlg, if OY is connective
and n-truncated, then the canonical map τďnX Ñ X induces an equivalence

Map8T opsHen
CAlg

ppY,OY q, τďnXq Ñ Map8T opsHen
CAlg

ppY,OY q,Xq.

Proof. The first half of the proof of [SAG, Pr.1.4.6.3] applies mutatis mutandis. That is, by
copying that proof we see that for every strictly Henselian spectrally ringed 8-topos pY,OYq
which is connective and n-truncated, the canonical map

Map8T opsHen
CAlg

ppY,OY q, τďnXq Ñ Map8T opsHen
CAlg

ppY,OY q,Xq (A.2)

is an equivalence of spaces. Hence, we are left to show that τďnX “ pX , τďnOXq is a
locally Noetherian formal spectral Deligne–Mumford stack. By [SAG, Prs.8.1.3.3 & 8.4.2.7],
being a formal spectral Deligne–Mumford stack and being locally Noetherian are local con-
ditions, hence we may assume X “ Spf A for a complete Noetherian adic E8-ring A. Set
B “ τďnA, equipped with the same topology as A induced by I Ď π0A using the isomorphism
π0A » π0B. Here we need to show Spf B is connective, n-truncated, and construct an equiv-
alence with τďnX.

By [SAG, Pr.8.1.1.13], we see Spf B “ pXSpf B,OSpf Bq is connective. For n-truncatedness,
one can argue as follows: for affine objects U of XSpf B we have OSpf BpUq » C^

I for some étale

62



B-algebra C. As C is an étale E8-B-algebra, then it is almost of finite presentation, and as B
is Noetherian (as a truncation of the Noetherian E8-ring A), then the spectral Hilbert basis
theorem ([HA, Pr.7.2.4.31]) implies that C is also Noetherian. It then follows from [SAG,
Cor.7.3.6.9] that the natural map of E8-A-algebras C Ñ C^

I is flat. As the composition

B Ñ C Ñ C^
I » OSpf BpUq

is flat, we see OSpf BpUq is n-truncated as B is so. The 8-topos XSpf B is generated by affine
objects under small colimits ([SAG, Pr.8.1.3.7]) and the structure sheaf OSpf B : X op

Spf B Ñ CAlg
preserves limits, so it follows that OSpf BpXq is n-truncated for all X P XSpf B , hence Spf B is
n-truncated; see [SAG, Rmk.1.3.2.6]. By (A.2), the natural map Spf B Ñ Spf A “ X factors
as:

Spf B
φ
ÝÑ τďnX “ pX , τďnOXq Ñ pX ,OXq “ X

Using [SAG, Rmk.8.1.1.9], we see the map of underlying 8-topoi induced by φ : A Ñ τďnA “ B

is an equivalence,

Shvétπ0B{I » ShvadB
φ˚
ÝÑ ShvadA » Shvétπ0A{I

where we used the notation of [SAG, Nt.8.1.1.8]. Under this map, the structure sheaf of Spf B
is sent to the functor

φ˚OSpf B : CAlgétA Ñ CAlgcn D ÞÑ pD bA Bq^
I » pτďnDq^

I . (A.3)

The equivalence above comes from the facts that A Ñ D is étale and a degenerate Tor-spectral
sequence calculation; see [HA, Pr.7.2.1.19]. To see φ is an equivalence, it therefore suffices to
see that (A.3) is equivalent to τďnOSpf A. This is slight variation on an argument made above.
As D is étale over the Noetherian E8-ring A, then the spectral Hilbert basis theorem implies
that D is also Noetherian. It follows straight from the definition that the E8-ring τďnD is
Noetherian, so the natural completion map of E8-A-algebras

τďnD Ñ pτďnDq^
I

is flat. This implies that pτďnDq^
I is n-truncated. As τďnpD^

I q is I-complete by [SAG,
Cor.7.3.4.3], there is a natural equivalence of E8-A-algebras:

pτďnDq^
I » τďnpD^

I q

Hence φ is an equivalence of spectrally ringed 8-topoi.

The following is a formal generalisation of [SAG, Cor.1.4.6.4]:

Corollary A.4. For each integer n ě 0, write fSpDMďn
loc.N for the full 8-subcategory of

fSpDMloc.N spanned by those n-truncated locally Noetherian formal spectral Deligne–Mumford
stacks. The inclusion fSpDMďn

loc.N ãÑ fSpDMloc.N has a right adjoint, given on objects by

X “ pX ,OXq ÞÑ τďnX “ pX , τďnOXq.
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Proof. This follows straight from the universal property of Pr.A.1 and the observation and trun-
cations of locally Noetherian formal spectral Deligne–Mumford stacks remain locally Noethe-
rian.

Corollary A.5. Let X be a locally Noetherian formal spectral Deligne–Mumford stack. Then
for any integer n ě 0 the truncation τďnX and X represent the same functor on n-truncated
E8-rings.

Proof. Follows straight from Pr.A.1, as SpecR is a connective n-truncated spectrally ringed
8-topos when R is a connective n-truncated E8-ring; see [SAG, Ex.1.4.6.2].

The fully faithful embedding fDM Ñ fSpDM

To formalise the relationship between the classical and spectral worlds of formal algebraic
geometry, we need a functor fDM Ñ fSpDM. Let us begin by defining these categories.

Definition A.6. Let A be a discrete adic Noetherian ring with finitely generated ideal of
definition I Ď A, cutting out a closed subset V Ď |SpecA|.

1. Define the topos ShvadSetpCAlg
ét
Aq is the full 8-subcategory of ShvétSetpCAlg

ét
Aq spanned by

those étale sheaves F such that if the space V ˆ|SpecA| |SpecB| is empty, then FpBq is
a point.

2. One has a sheaf of discrete rings OSpecA on ShvétSetpCAlg
ét
Aq as in [SAG, Df.1.2.3.1],

which we complete at I to obtain a sheaf pO . This sheaf factors through ShvadSetpCAlg
ét
Aq

as pOpBq » B^
I vanishes if whenever the image of I generates the unit ideal of B.

Define the ringed topos Spf A “ pShvadSetpCAlg
ét
Aq, pOq, the formal spectrum of A, leaving the

dependency on the specific topology on A implicit. A locally Noetherian formal Deligne–
Mumford stack is a ringed topos X “ pX ,OXq such that X has a cover Uα such that each
ringed topos X{Uα

is equivalent (in the 2-category of ringed topoi of [SAG, Df.1.2.1.1]) to Spf Aα

for some discrete adic Noetherian ring Aα. Write fDM for the full 2-category of 1T oploc
CAlg♥

spanned by locally Noetherian formal Deligne–Mumford stacks.

The 8-category of formal spectral Deligne–Mumford stacks fSpDM can be defined simi-
larly; see Df.0.7 or [SAG, Df.8.1.3.1].

As in [SAG, §8], when dealing with classical formal Deligne–Mumford stacks, we restrict
ourselves to the locally Noetherian case by definition, as opposed to the spectral case, when
we only add this assumption when we need it. As mentioned in [SAG, Warn.8.1.0.4], this is
due to the incompatibility between completions in the classical and derived worlds.

Remark A.7. If an adic discrete ring A has a nilpotent ideal of definition, then Spf B is
naturally equivalent to SpecB by definition. In this way, we can see (Noetherian) affine
Deligne–Mumford stacks as affine formal Deligne–Mumford stacks. It then also immediately
follows from the definitions that DMloc.N is a full 2-subcategory of fDM.

The following is [SAG, Rmk.1.4.1.5].
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Construction A.8. There is a fully faithful embedding of 8-categories from classical ringed
topoi to spectrally ringed 8-topoi

1T opCAlg♥ ãÑ 8T opCAlg; pX ,OX q ÞÑ pShvpX q,Oq.

In other words, it associates to a classical Grothedieck topos X the associated 8-topos ShvpX q
(this is done using [HTT09, Pr.6.4.5.7]) and by [SAG, Rmk.1.3.5.6] we obtain a connective
0-truncated structure sheaf on ShvpX q, denoted as O. In fact, the essential image of the above
embedding is spanned by the spectrally ringed 8-topoi pX ,OX q where X is 1-localic and OX

is connective and 0-truncated.

By definition [HTT09, Df.6.4.5.8], we see the 8-topoi ShvpX q produced by Con.A.8 are
1-localic. By [SAG, Rmk.1.4.8.3], the fully faithful embedding of Con.A.8 restricts to the
full-faithful embedding DM Ñ SpDM. Let us show that the same holds for formal Deligne–
Mumford stacks.

Proposition A.9. The functor of Con.A.8, when restricted to fDM factors through fSpDM.
Moreover, the essential image of this fully faithful functor fDM Ñ fSpDM consists of those
locally Noetherian formal spectral Deligne–Mumford stacks X “ pX ,OXq for which the 8-topos
X is 1-localic ([HTT09, Df.6.4.5.8]) and the structure sheaf OX is 0-truncated.

Proof. The fully faithful functor of Con.A.8 descends to a fully faithful functor between (not
full) 8-subcategories of local topoi:

1T oploc
CAlg♥

ãÑ 8T oplocCAlg

Indeed, we say X “ pX ,OX q in 8T opCAlg is local if π0OX is local on X♥ ([SAG, Df.1.4.2.1]),

and given X0 “ pX0,O0q in 1T opCAlg♥ , then the ringed topos pShvpX q♥, π0Oq is naturally
equivalent to X0 by [HTT09, Pr.6.4.5.7]. Local morphisms between local spectrally ringed
8-topoi are morphisms of spectrally ringed 8-topoi whose underlying morphism of ringed
topoi is local.

Let X0 “ pX0,O0q be a classical formal Deligne–Mumford stack, and write X “ pX ,Oq for
the image of X0 under Con.A.8, so X “ ShvpX0q. By [SAG, Pr.8.1.3.3], the property of being
a formal spectral Deligne–Mumford stack is a local one, so it suffices to show that there exists
a cover Uα of X such that each X{Uα

is in fSpDM. Consider a formal affine cover of X0 in
1T opCAlg♥ , so a collection of Uα inside X0 such that

š
Uα Ñ 1X0

is an effective epimorphism
and pX0q{Uα

is equivalent in 1T opCAlg♥ to Spf Aα. Considering Uα as a discrete object V of
X (as in [HTT09, Pr.6.4.5.7]), then [SAG, Lm.1.4.7.7(2)] states that X{V is 1-localic, as X is
1-localic and V is 0-truncated in X . One then notes the following natural equivalences:

X{V
»
ÝÑ ShvppX{V q♥q » ShvppX0q{Uα

q » ShvpShvadSetpCAlg
ét
Aα

qq
»

ÐÝ ShvadpCAlgétAα
q

The first equivalence holds as X{V is 1-localic, the second by identifying X0 as the underlying
discrete objects of X (and then [HTT09, Rmk.7.2.2.17]), the third from the choice of Uα as an
affine object of X0, and the forth from the fact that affine formal spectral Deligne–Mumford
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stacks are 1-localic; see [SAG, Rmk.8.1.1.9]. Furthermore, as O was defined as the sheaf of
connective 0-truncated E8-rings on X associated to the commutative ring object O0 on X0, we
claim that by [SAG, Rmk.1.3.5.6] the spectrally ringed 8-topos X{Uα

is equivalent to Spf Aα.
To see this, one notes that OpSpf Bq “ B^

I for some étale morphism Spf B Ñ Spf Aα in
X0 Ď X , and one also has a natural equivalence OSpf Aα

pSpf Bq » B^
I by [SAG, Con.8.1.1.10].

The “moreover” statement follows by [SAG, Rmk.1.4.1.5].

Combining the functor of points approach with the above, we obtain the following:

Corollary A.10. The following diagram of 8-categories and fully faithful functors commutes:

Aff♥
loc.N Aff♥

ad,loc.N fDM

Affcn Affcn
ad fSpDM PpAffcnq

a

c

b

d e

f g h

Warning A.11. One might want to place PpAff♥q in the top-right corner of the diagram
above, however, we do not see a functor PpAff♥q Ñ PpAffcnq such that the diagram above
commutes. Indeed, the right Kan extension mentioned in Nt.2.30 doesn’t commute with the
other constructions above by inspection and a left Kan extension would not necessarily preserve
sheaves. The existence of the functors c, d, and e above, are all due to nontrivial theorems
of Lurie, and the lack of a similar functor PpAff♥q Ñ PpAffcnq indicates one reason why we
restrict our attention to (formal) Deligne–Mumford stacks.

Proof of Cor.A.10. The funtors a, b, f , and g are all the inclusions of full 8-subcategories, c
and d are the inclusions of 8-subcategories as shown by Lurie ([HA, Pr.7.1.3.18]), e is Con.A.8,
and h is the functor of points functor. The diagram commutes as c and d are restrictions of e.
To see why each functor is fully faithful, we have:

• By definition, we see that a, b, f , and g are fully faithful.

• By [HA, Pr.7.1.3.18], we see c and hence d are fully faithful.

• Pr.A.9 shows e is fully faithful.

• The fact that h is fully faithful is the content of [SAG, Th.8.1.5.1].

Finiteness and compactness in fSpDM

Next, let us discuss finiteness and compactness conditions in fSpDM.

Proposition A.12. Let X be a locally Noetherian formal spectral Deligne–Mumford stack.
Then for any n ě 0 the natural map τďnX Ñ X admits an pn ` 1q-connective and almost
perfect cotangent complex.
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Proof. These are local conditions, so we may take X “ Spf A for a complete Noetherian adic
E8-ring A with finitely generated ideal of definition I Ď π0A. By the Hilbert basis theorem
for connective E8-rings ([HA, Pr.7.2.4.31]) we see τďnA is almost finitely presented as an
E8-A-algebra and the cofibre of map A Ñ τďnA is pn ` 1q-connective. By [HA, Cor.7.4.3.2]
and [HA, Th.7.4.3.18], we then see L “ LτďnA{A is pn ` 1q-connective and almost perfect
inside ModτďnA. It follows from [SAG, Pr.7.3.5.7] that L is in fact I-complete, hence we have
a natural equivalence L1 » LSpf τďnA{Spf A by [SAG, Df.17.1.2.8], and we are done.

Definition A.13. A formal spectral Deligne–Mumford stack X “ pX ,OXq is quasi-compact
(qc) if the underlying 8-topos X is quasi-compact, ie, every cover of X has a finite subcover;
see [SAG, Df.A.2.0.12]. A morphism of formal spectral Deligne–Mumford stacks

f : X “ pX ,OXq Ñ Y “ pY,OYq

is qc if for any qc object U of Y, the pullback f˚pUq is qc in X , meaning Xf˚U is qc. A morphism
of formal spectral Deligne–Mumford stacks is called quasi-separated (qs) if the diagonal map
∆: Y Ñ Y ˆX Y is qc. We say X is qs if X Ñ SpecS is qs.

It is a purely formal exercise that qc (and qs) maps are stable under base-change; a fact
we will use without further reference.

Proposition A.14. Let A be an adic E8-ring. Then Spf A is qc.

Proof. By [SAG, Rmk.8.1.1.9], we see the underlying 8-topos of Spf A is equivalent to Shvétπ0A{I

where I is a finitely generated ideal of definition for the topology on π0A. As this is the same
underlying 8-topos of Specpπ0A{Iq, it follows from [SAG, Pr.2.3.1.2] that Spf A is qc.

The following is a formal generalisation of a special case of [SAG, Pr.2.3.2.1].

Proposition A.15. Let X “ pX ,OXq be a formal spectral Deligne–Mumford stack. Then the
following are equivalent.

1. X is qs.

2. For all qc objects U, V of X , the product U ˆ V in X is qc.

3. For all affine objects U, V of X , the product U ˆ V is qc.

Proof. It is clear that 1 implies 2 as U ˆ V “ ∆˚pU, V q inside X ˆ X , and 2 also implies 1 as
the quasi-compact objects of X ˆ X are all of the form pU, V q for U and V quasi-compact in
X . Pr.A.14 shows that 2 implies 3. Conversely, for two arbitrary qc objects U and V of X ,
using the fact they are qc, there exists two effective epimorphisms U 1 Ñ U and V 1 Ñ V where
U 1 and V 1 are affine. It then follows that U ˆ V is qc as there is an effective epimorphism
U 1 ˆ V 1 Ñ U ˆ V from a qc object of X .

Corollary A.16. Let A be an adic E8-ring. Then Spf A is qcqs.
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Proof. By Pr.A.14, we see Spf A is qc, and by Pr.A.15 it suffices to see that for all affine
objects U “ Spf B and V “ Spf C inside XSpf A, that the product U ˆ V in XSpf A is qc. This
product can be recognised as the fibre product ([SAG, Lm.8.1.7.3])

Spf B ˆ
Spf A

Spf C » Spf

ˆ
B b

A
C

˙^

I

where I is an ideal of definition for the topology on π0A, which is qc by Pr.A.15.

The following statement is why we care about the adjectives of Df.A.13.

Proposition A.17. Let X be a formal spectral Deligne–Mumford stack. Then X is qcqs if
and only if there exists an étale hypercover U‚ of X such that each Un is an affine formal
spectral Deligne–Mumford stack for every n ě 0. In particular, the same holds for classical
Deligne–Mumford stacks.

Proof. First, let us assume X is qcqs and write X “ pX ,OXq and set U´1 “ X. As a formal
spectral Deligne–Mumford stack, there exists a collection of affine objects Uα in X such thatš

α Uα cover X , and as X is qc, this collection can be taken to be finite. As X{Uα
» Spf Aα

for some adic E8-ring Aα, we see the fact that
š
Uα covers X is equivalent to the statement

that
Spf A0 “ Spf

´ź
Aα

¯
»
ž

Spf Aα Ñ X

is an étale surjection, where we have used the finiteness of the above (co)product. Set
U0 “ Spf A0 and U0 Ñ M0pUď´1

‚ q » U´1 “ X to be the étale surjection above. The rest
of the proof can be summarised informally by inductively calculating MnpUďn´1

‚ q which must
be affine as they are defined by taking finites limits over mostly affine formal spectral Deligne–
Mumford stacks, and using that affines are qcqs (Cor.A.16) we find Un`1 by taking an affine
étale cover of MnpUďn´1

‚ q. To formalise this outline, we will need to play around with these
matching objects more carefully, but the rest of this half of the proof is essentially index chasing.

Inductively, let us assume the following three hypotheses:

1. Suppose we have the nth stage of an étale hypercover Uďn
‚ such that Um » Spf Am is

affine for each 0 ď m ď n.

2. Suppose that for every 0 ď m ď n,MmpUďm´1
‚ q is affine. The base case that U0 » Spf A0

is affine holds by construction.

For every 1 ď k ď m ď n, write Uďm´k
‚`k for the functor defined by precomposition with the

shift functor defined on objects by

∆ďm´k
s,` Ñ ∆ďm

s,` , ris ÞÑ ri` ks,

and on morphisms by sending φ : ris Ñ rjs to φ1 : ri`ks Ñ rj`ks which sends a`k ÞÑ φpaq`k

for a ě 0 and ´1 ÞÑ ´1. The third hypothesis is then:
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3. Suppose that for every 1 ď k ď m ď n, Mm´k`1pUďm´k
‚`k q is affine. This condition is

vacuous in the base-case.

We claim that there is a natural equivalence

M “ Mn`1pUďn
‚ q “ lim

risãÑrn`1s
Uďn
i » Un ˆ

MnpUďn´1
‚ q

MnpUďn´1
‚`1 q (A.18)

which occurs in fSpDM, as by using [SAG, Pr.8.1.7.1] the 8-category fSpDM has finite limits.
To see this (A.18) is an equivalence, recall that our diagram 1-category above is the poset of
proper subsets of rn` 1s. Using notation from [MV15, §5.1], we see the opposite of this poset
is precisely the 1-category P0pn` 2q of nonempty subsets S of t1, . . . , n` 2u. This yields the
equivalence:

M » lim
SPP0pn`2q

Uďn
n´|S|`1

Using the cubical limit manipulations of [MV15, Lm.5.3.6], we obtain the natural equivalence
of (A.18):

M » lim
SPP0pn`2q

Uďn
n´|S|`1

» Un ˆ
MnpUďn´1

‚ q

MnpUďn´1
‚`1 q

Note that the map Un Ñ MnpUďn´1
‚ q is an étale cover by our first inductive hypothesis and

the natural map
MnpUďn´1

‚`1 q Ñ MnpUďn´1
‚ q

is an étale cover by base-change. Indeed, this latter condition follows as Um`1 Ñ Um is an étale
cover for each m, and Mnp´q is a finite limit diagram of such covers. We also note that M is
qcqs, which follows from (A.18), our inductive assumptions 1-3, and Cor.A.16. This guarantees
the existence of an étale cover Un`1 Ñ Mn`1pUďn

‚ q with Un`1 an affine formal spectral Deligne–
Mumford stack, from which we obtain our first inductive conclusion for pn` 1q. We also saw
M “ Mn`1pUďn

‚ q is qcqs, so we also have our second inductive conclusion for pn` 1q. For the
last one, we consider Mpkq “ Mn´k`2pUďn`1´k

‚`k q, the only case left to consider; the others fall
under part 3 of the the previous inductive step. We claim that Mpkq is affine. To see this, use
an index shift of (A.18) to obtain:

Mpkq » Un´k`2 ˆ
Mn´k`1pUďn´k

‚`k
q

Mn´k`1pUďn´k
‚`k`1q

The left and bottom objects in the fibre product above are affine by our inductive hypothe-
ses 1 and 2, respectively, so it suffices to show the right object in the above fibre product is
affine. This can be done by applying (A.18) again, noting the left and bottom objects are
affine by inductive hypotheses 1 and 2 again and again considering the right factor. Applying
this process pn ´ kq-many times, we are left with M0pUď´1

‚`n`2q » Un`1, which is affine by our
construction above.

Conversely, assume that X has an étale hypercover U‚ Ñ X where each Un is affine, which
we write as U‚ Ñ 1 when considered as objects in X . Given an arbitrary cover tVαuαPI of X,
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so an effective epimorphism
š
Vα Ñ 1, then we can consider the Cartesian square inside X of

the form:
W U0

š
I Vα 1

All of the maps above are effective epimorphisms either by assumption or as the class of such
maps is stable under pullback; see [HTT09, Pr.6.2.3.15]. Products commute with colimits in
an 8-topos as colimits in 8-topoi are universal,35 hence we have a natural equivalence in
W »

š
I Wα in X , where Wα “ Vα ˆ U0. As U0 is quasi-compact (as an affine object of X ;

see Pr.A.14), we can choose a finite subset of I, say I0, such that
š

I0
Wα Ñ U0 is an effective

epimorphism. We then consider the commutative diagram inside the 8-topos X :

š
I0
Wα U0

š
I0
Vα 1

The top and right maps are effective epimorphisms by assumption, and the bottom map is an
effective epimorphism by [HTT09, Cor.6.2.3.12(2)], hence X is qc. To see X is qs, we look at
the Cartesian diagram of formal spectral Deligne–Mumford stacks:

U0 U0 ˆ U0

X X ˆ X

∆U0

∆X

As U‚ Ñ X is an étale hypercover, the map U0 ˆ U0 Ñ X ˆ X is an effective epimorphism.
As U0 is the 8-topos of an affine formal Deligne–Mumford stack, then by Cor.A.16 we see U0

is qs and the map ∆U0
is qc. It follows from [SAG, Cor.A.2.1.5] that ∆X is qc; in ibid, a qc

morphism is called relatively 0-coherent. Hence, X , and therefore X, is qs.

Let us now show the formal thickenings of [SAG, §18.2.2] preserve the adjective qcqs.

Proposition A.19. Let X0 be a qcqs formal spectral Deligne–Mumford stack and X0 Ñ X a
formal thickening. Then X is qcqs.

Proof. The adjective qcqs depends only on the underlying 8-topoi, so it suffices to show if
that X0 Ñ X is an equivalence of 8-topoi. To see this, consider the reduction of a formal
spectral Deligne–Mumford stack of [SAG, Pr.8.1.4.4]. From this one obtains the following

35We say that colimits in a presentable 8-category C are universal if pullbacks commute with all small
colimits; see [HTT09, Df.6.1.1.2]. This holds in an 8-topos due to the 8-categorical version of Giraud’s
axioms; see [HTT09, Th.6.1.0.6].
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commutative diagram of formal spectral Deligne–Mumford stacks:

Xred
0 X0

Xred X

We know the natural map from the reduction of a formal spectral Deligne–Mumford stack X

back into X is an equivalence of underlying 8-topoi (by [SAG, Pr.8.1.4.4]), and the underlying
8-topoi of the reduction of a formal thickening is also an equivalence (by [SAG, Pr.18.2.2.6]).
Hence the horizontal and the left vertical maps are equivalences of underlying 8-topoi, hence
the right vertical map is as well.
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