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1 Introduction 

Let G be a compact, connected, simple Lie group and let 7r:P ~ S 4 be a 
principal G-bundle over S 4. Since 7r4(BG) = 7r3(G) = Z, we can classify the 
principal bundle Pk over S 4 by the map S 4 ~ BG of degree k. As Atiyah and 
Jones [1] pointed out, ~ ( G )  = Ak/.~b(Pk) is homotopy equivalent to ~23G 
y24BG, that is, y23G ~_ ~ ( G ) ,  where Ak is the space of  the all connections 
on Pk and ~¢J+(Pk) is the group of  all base-point preserving automorphisms on 
Pk. In this paper, we study the homology with coefficient Z / (p )  of  the double 
loop space and the triple loop space of  SO(n). Especially the homology of  the 
triple loop space of  SO (n) was one of  the questions in [3] because it contains 
the homological informations of  ~//gk(SO(n)), the moduli space of  instantons for 
SO(n) with instanton number k, by the natural inclusion ck : .i/gk(SO(n)) 
~(SO(n)). For more informations we refer to [4]. 

Harris [6] proved that for p odd 

SU(2n) ~--p SU(2n)/Sp(n) × Sp(n) 
SU(2n + I) ~-p SU(2n + I)/SO(2n + I) × SO(2n + I) 

where ~_p means the homotopy equivalence localized at p. But we already 
know H,(STkSU(n);Z/(p)) when k = 2,3 [8],[9]. From above facts we can 
get H.(I2kSO(n);Z/(p)) easily for odd p. Therefore we concentrate on the 
case at p = 2 . Since Spin(n) is the double covering space of  SO(n) , 
~2Spin(n) ~- ~2SO(n). Here we will study Spin(n) instead of SO(n). 

First we compute the cohomology of Y2Spin(n), and then using the the Serre 
spectral sequence for the following fibraton 

[22Spin(n - 1) > y22Spin(n) , J ' ~Zsn -1  

we compute H.(y22Spin(n); Z/(2)),  and determine some of the Steenrod actions 
on H.(y22Spin(n); Z/(2)). By the Bockstein spectral sequence, we get also the 
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2-torsion information for H.(y22Spin(n); Z). The interesting fact of  these compu- 
tations is that the structures of  H.(Y22Spin(n); Z/(2))  depend on the congruence 
of  n mod 8. Similarly we compute the homology of Y23oSpin(n) ~ {23S0(n). 

2 The basic facts and H * ( I2Spin (n); Z / (2)) 

Let E(x)  be the exterior algebra on x and P(x)  be the polynomial algebra on 
x and F(x)  be the divided power algebra on x which is free over 71(x) with 
coproduct 

/ /  

z3(%(x)) = ~ %-i(x) ® 7i(x) 
i = 0  

and the product 

7 i ( x ) T j ( x ) = ( i + J ) T i ÷ j ( x ) .  

For (n + 1)-fold loop spaces, there are homology operations 

Qi : Hq(F2n+lX; Z/(2))  , n2q+i (~f2n+lx; Z/(2)) 

defined for 0 < i < n which is natural for (n + l ) -fold loop spaces. Let Qa 
1 

be the iterated operation Qi • •. Qi(a times). I f  G is a Lie group, G is homotopy 
equivalent to $2BG. Hence Qz is defined in H.(Y22G; Z/(2))  and Q3 is defined 
in H.(~Q3G; Z/(2)).  Throughout this paper, the subscript of  an element always 
denotes the degree of  an element, i.e. ,i is the degree of  xi. We also recall the 
following. Let V (x i i , . . . ,  xi,) be the commutative associative algebra over Z/(2)  
such that 

1. { ( X i l ) e ' , . . .  , (Xi ,)  e' " f-i = 0 ,  1} is a basis. 
2. (xiq)2 = xi, if 2iq = is for some 1 < s < t 

(xiq)2 = 0 otherwise. 

Choose s such that 2 s < n < 2 TM . Then 

H*(Spin(n);Z/(2))  = V(x,13 _ < i _ < n - 1 and i ~ 2J)® E(z),  
Sqr(xi) = (~)Xi+r. (2.1) 

where ]zl = 2 TM - 1. In fact we have the Steenrod actions on z [7]. But we do 
not need it here. For small values of  n, it is well known that 

Spin(3) ~- S 3 
Spin (4) ~ $ 3 x S 3  

Spin(5) ~- Sp(2) 
Spin(6) ~- SU(4) 

Spin(7)(2) ~ (G2 x $7)C2) 
Spin(8)(2) ~- (Spin(7) x $7)(2) 

Now we will compute H*(Y2Spin(n); Z/(2)).  
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L e m m a  2.2 H*(f2Spin(8n);Z/ (2) ) ,  n > O, is 

P(a4i-2 : 1 < i < n)/(a4i_2) ® F(a4n+2+4k : 0 < k < (n - 1)) 
®F(c8n-2+2k : 0 < k < (4n - 2), k ~  3 m o d 4 )  

where vi is t h e p o w e r  o f  2such that 8n < vi(4i - 2 ) <  1 6 n -  8. 

H*U?Spin(8n + 1) ;Z / (2 ) ) ,  n > O, is 

P(a4i-2 " 1 < i < n)/(a~i'_2 ) ® F(a4n+2+4k : 0 < k < (n - l ) )  
@F(csn+2k : 0 < k < (4n - 1), k ~ 2 m o d 4 )  

where ui is the p o w e r  o f  2 such that 8n <__ ui (4i - 2) < 16n - 8. 

H*(g2Spin(8n + 2 ) ;Z / (2 ) ) ,  n > O, is 

//I 
P(a4i-2 : 1 < i < n)/(a4i_2) ® F(a4n+2+4tc : 0 < k < (n - 1)) 

®F(c8n+2+2k : 0 < k < (4n - 2), k ~  1 mod 4) 

( ~ i  >0 P ('3'2' (d8n))/((')'2i (ds,,))4) 
where ui is t h e p o w e r  o f  2such that 8n + 8 < vi(4i - 2) _< 16n 

H*(f2Spin(8n + 3 ) ; Z / ( 2 ) )  is 

//a 
P(a4i-2 : 1 < i < n)/(a4i_2) ® f'(a4n+2+4k : 0 < k < n - 1) 

®f'(c8,,+2+2k : 0 < k < 4n ,  k ~  1 mod 4) 
where u i is t h e p o w e r  o f  2 such that 8n + 8 < ui(4i - 2) < 16n. 

H*( f lSp in(8n  + 4 ) ; Z / ( 2 ) )  is 

Vt P(a4i-2 : 1 < i < n)/(a4i_2 ) ® F(a4n+2+4k : 0 < k < n) 
®P(c8n+2+2k : 0  < k < 4n ,  k ~  1 mod4)  

where vi is t h e p o w e r  o f  2such that 8n + 8 < vi(4i  - 2) < 16n. 

H*(f2Spin(8n + 5 ) ; Z / ( 2 ) )  is 

IIl 
P(a4i-2 : 1 < i < n)/(a4i_z)  ® F(a4n+2+4k : 0 < k < n) 

@F(csn+6+2k : 0 < k < 4n ,  k ~ 3 m o d 4 )  
where ui is the p o w e r  o f  2 such that 8n + 8 < vi(4i  - 2) < 16n. 

H*(f2Spin(8n + 6 ) ; Z / ( 2 ) )  is 

P(a4i-2 : 1 < i < n + 1)/(a~/'_2) ® 1"(a4n+6+4k : 0 < k < n - 1) 
@F(e8n+6+2k : 0 '~ k < 4n ,  k ~  3 m o d 4 )  

~ i  >0 e (~2' (b8n+4)) / ( ( ' f f2 '  (b8n+4)) 4) 
where ui is the p o w e r  o f  2 such that 8n + 8 < vi(4i - 2) < 16n + 8. 

H*(f2Spin(8n + 7 ) ; Z / ( 2 ) )  is 

P(a4i-2 : 1 < i < n + 1)/(a~[_2) ® F(a4n+6+4k : 0 < k < n - 1) 
®f'(c8n+6÷2k : 0 < k < 4n + 2 ,  k ~ 3 m o d 4 )  

where vi is the p o w e r  o f  2such that 8n + 8 < vi(4i - 2) < 16n + 8. 
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Proof  Let H* (g2S";Z/(2))  = F ( a , _ l ) .  We will prove this lemma by induction 
on k for H*U?Spin(k) ;Z/ (2) ) .  Assume that it hold for k _< 8n + 3. Remind that 
S2Spin(3) ..o DS 3. For H*U2Spin(8n +4); Z/(2)) ,  we have the following fibration 

Y2Spin(8n + 3) , J2Spin(8n + 4) , f2S 8n+3. 

Since both H*(Y2Spin(8n + 3) ;Z/ (2) )  and H*(~s8n+3;Z/(2))  are even dimen- 
sional, the Serre spectral sequence collapses. There is no extension problem by 
the dimension reason. 

For next step consider the following fibration 

Y2Spin(8n + 4) ~ Y2Spin(8n + 5) , J2S 8"+4. 

It is well known that H,(Y2Spin(8n + 5); Z/ (2))  concentrates in the even dimen- 
sions [2]. Therefore so does H*(Y2Spin(8n +5); Z/(2)) .  Since H*(y2S8n+4; Z/(2))  
contains an (8n + 3) dimensional element, we have the first non-zero differential 
which comes from an (8n +2)-dimensional generator in H * (Y2Spin (8n +4); Z/(2))  
and goes to ash+3. But in H* (Y2Spin (8n +4); Z/ (2))  we have two generators a8,,+2, 
c8,+2 of  that dimension. So consider the morphism of fibrations 

Y2Spin(8n + 3) , g2Spin(8n + 5) , l?Spin(8n + 5)/Spin(8n + 3) 

f i  .~ i 
Y2Spin(8n + 4) ~ f2Spin(8n + 5) ~ Y2S 8n+4 

g i  1 h i  
J'~S 8n+3 ~ , ~ S 8n+3" 

From the naturality of  the differential we have 

r(a*(as.+2)) = h*(7-(a8n+2)) 
= h*(x8n+3) 
= 0 

,where H*(sSn+3; Z/(2))  = E(xsn+3) and ~- is the transgression. Hence we have 
the differential with the source c8n+2 to ash+3 and from 72(c8,+~) to c8,+ea8,+3 
and so on. "72,+~(a8n+3) survives permanently for i > 0. Put 3'2(a8n+3) = C 1 6 n + 6 .  

For H*(J2Spin (8n + 6)) consider the following fibration 

f2Spin(8n + 5) ~ f2Spin(8n + 6) , g2S s"+5. 

By the same reason as the case H*(g?Spin(8n + 4); Z/(2)) ,  the spectral sequence 
collapses. So we get that the E ~ - t e r m  for H*(f2Spin(8n + 6); Z / (2) )  is 

vi P(a4i-2 : 1 < i < n)/(a4i_2) ® F(a4n+2, a4n+2 . . . .  , ash+2) ® F(a8n+4) 
®/'(Csn+6+2k : 0 < k < 4n, k ~ 3 m o d 4 )  

where ui is the p o w e r  o f  2such that 8n + 8 < ui(4i - 2) _< 16n. 
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But in this case there are extension problems. We claim that (a4n+2) 2 = a8n+4. 
From H*(Spin(8n + 6); Z/(2))  we can compute Tor H*(spin(sn+6)(Z/(2)~ Z/(2)).  

i4n+3\  
S i n c e  sqan+2x4n+3 = t4n+2)X8n+5 = X8n+5 in H*(Spin(8n + 6); Z/(2))  by (2.1), 
( a n n + 2 )  2 = sqan+2a4n+2 = Sq4n+20"(Xan+3) = o-(Sq4n+2x4n+3) = O'(X8n+5) = a8n+4 
where cr is the cohomology suspension. So (72, (aan+2))  2 = ")'2' (a8n+4) for each i > 
0 and F(aan+2) ® F(a8n+4) produces Qi>>_oP(72, (ann+2))/((72, (aan+2)) 4) as an alge- 
bra. Let ®i>_oP("/2,(aan+2))/((72,(a4n+2)) 4) = P(a4n+2)/(a4n+2) ®i>_o 
P(~2,.~(aan+2))/((~/2,+~(a4n+2)) 4) a n d  let "y2(a4n+2) = bsn+4. Hence we extend the 
conditions: 1 < i < n + 1, ui(4i - 2) < 16n + 8. 

Consider the next fibration 

g2Spin(8n + 6) ~ Y2Spin(8n + 7) > Y2S 8n+6. 

Since H*(~)S  8n+6) contains ash+5, we have the first nonzero differential from 
b8~+4 to a8,,+5 and the next differentials from 72(bsn+4) to a8,+5 • b8n+4 and so 
on. Then ('Y2, (b8,+4)) 2 survives permanently for each i > 0 but in fact, by the 
previous step (72, (b8n+4)) 2 = ('T2'+~ (a4n+2)) 2 = "f2 TM (a8n+4) for i > 0. "~2,+~ (a8,+5) is 
also permanent for each i > 0. L e t  ( ' ) ' l (b8n+4)) 2 = C16n+8 and 3'2(a8n+5) = cl6~+10. 

We can prove the other cases in similar way. The induction from 
H * (Y2Spin (8n + i ); Z/(2) )  to H * ( g2Spin (8n + 1 + i); Z / (2)) is almost same as that 
from H*(f2Spin(8n+4+i); Z/(2)) to H*(Y2Spin(8n+5+i); Z/(2)). However, com- 
pared with H*(Y2Spin(8n +6); Z/(2)),  we have little different extension problems 
for H*(~2Spin(8n + 2); Z/(2)).  Note that in H* (Spin (8n + 2); Z/(2))  Sq4~x4n+l = 
X8n+l ,  Sq2nx2n+l = X4n+l.  S o  a8n = cr(X8n+l)  = cr(Sq4nX4n+l) = Sq4ncr(X4n+l) = 
Sq 4n ( a 4 n )  : (a4n)2 = (o ' (X4n+l ) )2  = (o.(Sq2nx2n+l))2 = (SqZna2n)2 = a 4 .  I n  f a c t ,  t h e  

difference come from the property of  the number: 8n = 222n, 8n + 4  = 2(4n +2).  
[] 

Remark 2.3 If  we use the Eilenberg-Moore spectral sequence of  Steenrod mod- 
ules converging to H*(Y2Spin(n); Z/(2)) with E2 = Tor n*~Spin(n);z/(2)) 
(Z/(2),  Z/(2)),  then E2 = Eo~ and after solving algebra extension problems by 
the Steenrod actions we get the same result. So we can choose the primitive 

2 k 
generators ai, bi, ci such that a(xi) = aj where 2kj = i - 1 or a(xi) = bi-1 

2 k 
according to the dimension and cr(zi) = ci-1 and p(X i ) : C2ki_ 2 where cr is 

2 k 2 k 
the cohomology suspension and p(x i ) is the transpotence of x i . Note that ai 
becomes the stable element. 

3 The homology of I22Spin (n) 

Theorem 3.1 There are choices o f  the primitive generators ui, ~i, "ll)i such that 
as a Hopf  algebra 
H.(y22Spin8n; Z/(2)), n > 0, is isomorphic to 
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E(U4k+l : 0 < k <_ n - 1) ® P(v8n+Sk-1 : 0 < k < n - 1)(~) 
P(O~u4n+4k+l : a  >_ 0 , 0  < k < n - 1 ) ( ~  

P(Q~wsn-3+2t : a > 0,0  < k < 4n - 2 and k S 3 m o d  4) 

H.(S2ZSpin(8n + 1); Z/(2)),  n > 0, is isomorphic to 

E(Uak+l : 0 < k < n - 1) ® P(vsn+8k-2 : 0 < k < n - 1) ( ~  
P(Q~u4n+4k+l : a >_ 0, 0 < k < n - 1)(~) 

P(Q~ws,,-l+Zk : a  >_ 0 , 0  < k < 4n - 1 and k S 2 m o d 4 )  

H.(g22Spin(8n + 2); Z/(2)),  n > 0, is isomorphic to 

E(Uak+l : 0 < k < n - 1) Q P(V8n+8k+6 : 0 < k < n - 2) ( ~  
P(Q~u4n+4k+l : a , b  > 0 ,0  < k < n - 1 ) ( ~  

P(Q~wsn+2k+l : a >_ 0 ,0  < k < 4n - 2 and k S 1 mod 4) 

® E ( Q ~ w s n - 1  : a > O) Q P(Q~vt6n-2  : a >_ O) 

H.(g22Spin(8n + 3); Z/ (2))  is isomorphic to 

E(u4k+l : 0 < k < n - 1) ® P(v8n+8k+6 : 0 < k < n - 1) 
P(Q~u4n+4k+l : a >_ 0 ,0  < k < n - 1 ) ~  

P(Q~wsn+2k+I : a >_ 0, 0 < k < 4n and k S I mod 4) 

H . (  J22 Spin(8n + 4); Z / (2) )  is isomorphic to 

E(u4k+l : 0 < k < n - 1) ® P(V8n+8k+6 : 0 < k < n - 1) 
P(Q~u4n+ak+l : a >_ 0 ,0  < k < n ) ~  

P(Q~w8n+2k+l : a >__ 0, 0 < k < 4n and k S 1 mod 4) 

H.(g22Spin(8n + 5); Z/ (2))  is isomorphic to 

E(U4k+l : 0 "( k < n - 1) ® P(V8n+8k+6 : 0 < k "( n - 1) (~) 
P(a~u4n+4k+l : a > 0 ,0  < k < n ) ~ )  

P(Q~ws.+5+2k : a >_ 0,0  < k < 4n and k S 3 m o d  4) 

H.(S22Spin(8n + 6); Z/ (2))  is isomorphic to 

E(u4k+l : 0 < k < n)  ® e(v8n+8k+6 : 0 < k < n - 1) ( ~  
P(Q~u4n+4k+5 : a >_ 0,0 < k < n - 1 ) ~ )  

P(Q~w8n+5+2k : a >_ 0, 0 < k < 4n and k S 3 mod 4) 
®E(Q~+Iu4n+I : a > O) ® P(Q~v16n+6;a >_ O) 

H.(g22Spin(8n + 7); Z/ (2))  is isomorphic to 

E(u4k+l : 0 < k < n)  ® P(vsn+Sk+6 : 0 < k < n ) @  

P(Q~u4n+4k+5 : a > 0 ,0  < k < n - 1 ) ( ~  
P(Q~wan+5+2~ " a > 0 ,0  < k < 4n + 2  and k S 3 m o d 4 )  
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Proof Recall that there is a choice of  a generator ~,-2 such that H,( I?2S"  ; Z/(2))  
is isomorphic to P(Qfc,_21a _> 0), n > 2 as a Hopf  algebra. We will compute 
H,(J2ZSpin(m)) by induction on m by studying the Serre spectral sequence for 
the fibration 

~?2Spin(m) ----+ g22Spin(m + 1) ~ J~2sm. 

Note that g?2Spin(3) ~-- S?2S 3. Hence we can start the induction. 

(Case 1). From H,(~ZSpin(8n + 3); Z/(2))  to H,(j'22Spin(Sn + 4); Z/(2)) .  
Consider the map of fibrations 

~-238 8n+3 ~ , > ~-228 8n+3 

+ + II 
Y22Spin(8n + 3) , y22Spin(8n +4) , g22sSn+3. 

We know that the source of the first non-trivial differential is an indecompasable 
element and the target is a primitive element in the spectral sequence of a Hopf  
algebra. But in H,U?2Spin(8n + 3); Z/(2))  there is no 8n-dimensional  primitive 
element. So in the Serre spectral sequence for the second row, ~'(L8,+1) = 0. 
From the commutativity of  the diagram and the naturality of  the Dyer -  Lashof 
operation, the spectral sequence of the second row fibration collapses and we let 
cgn+t = USn+l. Note that Spin4 ~-- S 3 × S 3. 

(Case 2). From H,(g?ZSpin(8n + 4); Z/(2))  to H,((22Spin(8n + 5); Z/(2)) .  
Consider the map of fibrations 

y23SSn+4 ~ , ~ y22S8n+4 

: ~ i LI 
g22Spin(8n + 4) °2i, y22Spin(8n + 5) ~ g22S 8n+4 

(3.2) 

We will show that the first differential of  the spectral sequence of the second 
row fibration is not zero. Assume that it is zero. Then we have a surjection 
f227r, from H,(g22Spin(8n + 5); Z/ (2))  onto H,(f22S 8n+4; Z/(2))  sending (8n + 2) 
dimensional element, we call it Xsn+2, to ~8,+2. But we have the map of fibrations 

By naturality, 

(22Spin(8n + 5) ~ [22S 8n+4 

J'2Spin(8n + 5) t~Tr g2S8,+4 ) 

(J~Tr),(t;r(Xsn+2)) ~- O'(/,8n+2 ) ¢ 0 

Therefore a(x8,+2) should be non-zero odd dimensional primitive element in 
H,(~?Spin(8n + 5); Z/(2)) .  But H,(f2Spin(8n + 5); Z/(2))  concentrates in even 
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dimensions, so this is a contradiction. Thus we have nonzero first differential 
from tsn÷2 to a (8n + 1) dimensional primitive element, however, we have two 
primitive elements u8,+1, ws,+l of  8n+ 1 dimension in H,(fg2Spin(8n +4); Z/(2)) .  
Consider the morphism of  fibrations 

(22Spin(8n + 3) , [22Spin(Sn + 5) ~ ~22Spin(8n + 5)/Spin(8n + 3) 

~2Spin(8n + 4) ~ ~2Spin(8n + 5) ) ~2  S8n+4 

g~ ~ hi 
f22S 8n+3 ) , ) f2S 8n+3. 

9,(T(~8,÷2)) = T(h,(~sn+2)). We can check easily from the Serre spectral sequence 
of  the third column fibration that h,(t8n+2) = 0 . So 9,(7-(t8,+z)) = 0. From the 

Case 1 we know that 9,(u8,+1) = ~8n÷1. Hence we should choose wsn+l for 
the target of  the first differential in the second row spectral sequence. Since 

a 
~(Q~(~sn+2) = f , (Ol  tsn+l) = Q~(f,(ts~+l)) = a~w8,+t  in (3.2) , P(O~ws~+l : 
a > 0) is contained in ker(j22i),. Next we claim that Q2(w8n+l) = 0. If so, 

in 3.2 T(Q~(t8,+2) = f,(Q2csn+l) = Q2ff,(ts~+l)) = Q2wsn+l = 0. Then we get 
the conclusion as we expect. From now on we will show that Qz(w8~+l) = O. 
Consider the following fibration 

f22Spin(Sn + 5) , $22Spin Y , S22Spin/Spin(8n + 5). 

By the Ei lenberg-Moore  spectral sequence converging to H,(g22Spin(8n + 

5); Z / (2 ) )  

E2 = Cotorlt*(azSpin/Spin(8n+5);z/(2))(H.( g22Spin; Z/(2)) ,  Z/(2))  
= Cotor H*(s2zSpin/spin(sn+5);z/(2))//f* (Z/(2) ,  Z / (2 ) )  (3.3) 

®H. ( f22Spin; Z / ( 2 ) ) \ k f ,  • 

This is a spectral sequence of  Hopf  algebras but it depends on the coalgebra 

structure. 

Now we will  compute H,(f12Spin/Spin(8n + 5 ) ; Z / ( 2 ) ) .  First consider the 

following fibration 

Spin(8n + 5) .... ~ Spin , Spin/Spin(8n + 5). 

Since H*(Spin(8n + 5) ;Z / (2 ) )  = V(xil3 < i < 8n + 4  and i ¢ 2 j )  ® E(z)  and 
n*(Spin;Z/ (2) )  = v(xili > 3 and i ~ 2J), H*(Spin/Spin(8n + 5) ;Z / (2 ) )  = 
V(xili >_ 8n + 5  and i ~ 2J)®P(z ' ) ,  where Iz[ = 2 s+l - 1, 2 s < 8n + 5  < 2 s+l 

and~-(z) = z ' .  So 8 n + 5  <__ Iz'l < 16n + 10. From the Steenrod actions onxi (2.1) 

we get 

H*(Spin/Spin(8n + 5); Z / (2 ) )  = P(XSn+5+2k ]k >_ O)® P(Ysn+6+2k ]0 < k "( 4n + 1) 
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where we put X8n+6+2k = Y8n+6+2k and z '  = Y2-~. Using the Eilenberg-Moore 
spectral sequence with the path loop fibration converging to H *  ( Q S p i n / S p i n ( 8 n  + 

5); Z/(2)), 

Ez = Tor n*(Spin/Spin(8n+5);Z/(2))(Z/(2),Z/(2)) 
= E(asn+4+2k I k >_ 0)® 

E(wsn+5+2k ]0 < k < 4n + 1). 

By the bidegree reason the spectral sequence collapses from E2-term. But since 
the Eilenberg-Moore spectral sequence preserves the Steenrod actions, we have 
the following extensions, t',~8n+4+2k_ 2 ,9q tt8n+4+2k = a16n+8+4k , that is, a8n+4+2 k = 

a16n+8+4k for k > 0. Hence we get 

H*(g2Sp in /Sp in (8n  + 5); Z/(2)) = P(a8n+6+4k : k > 0)@ 

e(z8n+4+ak : 0  < k < 2n)@ E(ws,+5+2~10 < k < 4n + 1) 

where we put asn+4+4k = Z8n+4+4k • For the next step consider the morphism of 
fibrations 

~22Spin , ~22Spin/Spin(8n + 5) , ~ S p i n ( 8 n  + 5) 

II + & 
g22 Spin , * ~ U2Spin 

• ~ ~2Spin /Spin(8n + 5) ~ ~2Spin/Spin(8n + 5). 

From Lemma 2.2 H*(S2Spin(8n + 5);Z/(2))  is 

U4 
P(a4i -2  : 1 < i < n) / (a4i_2)  @ F(a4,+2+4~ : 0 < k < n) 

®-F(C8n+6+Zk : 0 < k < 4 n ,  k ~ 3 m o d 4 )  

where  ui is the p o w e r  o f  2 s u c h  that 8n + 8 < ui(4i - 2) <_ 16n 

and we know that H * ( g 2 S p i n ; Z / ( 2 ) )  = P(a4i -2  : i >__ 1) and 
H * ( ~ 2 2 S p i n ; Z / ( 2 ) )  = E(e4 i -3  : i > 1) where cr(a4i_2) = e4i -3 .  

Studying the behaviors of  the the Serre spectral sequence of the second row 
fibration and the third column fibration and the naturality of  the differentials, we 
have 

a4j-2 ,1 <_j < (2n + 1) 
~-(e4j-3) = 0 , j  > (2n + 1) 

in the Serre spectral sequence converging to H * ( O 2 S p i n / S p i n ( 8 n  + 5);Z/(2))  
of  the top row fibration and a4i_2eai_ 3 survives permanently for 1 < i < n. 

a ~, -1 We put 4 i _ 2 e 4 i _ 3  = q(4i-2)v,,-l, 1 < i < n. a4i-2e4i-3 is also permanent for 
n + 1 < i < 2n + 1 and let a4i-2e4i-3 = q8i-5.  We also have a permanent element 
"y2(a4i-2) for n + 1 < i < 2n + 1 and let 72(a4i-2) = ¢8i-4. Then/ ' ( c8 i -4 )  is also 
permanent, n + 1 < i < 2n + 1. From above, we get the following Eo~-term for 
H*(g22Sp in /Sp in (8n  + 5); Z/(2))  in the Serre spectral sequence for the top row 
fibration 
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E ~  =E(esn+5+4k : k > O) ®E(qs i -5  : n + 1 < i < 2n + 1) 
E(q~4i-2)u,-1 : 1 < i < n) @ F(c8n+4+2k : 0 < k < 4n + 1). 

Here we can check that (q(4i-2)ui-1 : 1 < i < n} is {q8,+7,qs,+~5,... ,q l6n- l ) .  
In fact, in the Serre spectral sequence of  the second column path loop fibration 

~(a8n+6+4k ) = e8n+5+4k 

~(ZSn+4+4k ) = q8n+3+4k 
O'(W8n+5+2k ) = C8n+4+2 k . 

Now we will solve the extension problem. By the dimension reason only 
possibility is whether 2 0 or not. Assume that q2 qsn+3 8n+3 ¢ 0. Then 2 = q8n+3 
should be c16~+6, that is, Sq8n+3qsn+3 = c16,+6. Since Sq 8n+3 = SqlSq 8n+2, 
SqSn+2q8n+3 ~ O. But e16n+5 is the only primitive element of  that dimen- 
sion. The fact that Sq8n+2q8n+3 = e16n+5 imply that SqSn+2Zsn+4 = a16n+6 in 
H*(~Sp in /Sp in (8n  + 5);Z/(2)) .  This implies that SqS"+2X8n+5 = X16n+7 in 
H*(Spin/Spin(8n + 5);Z/(2)) .  However from the Steenrod action ( 2 . 1 )  in 
H*(Spin;Z/ (2) )  we have Sq8"+2xs,+5 = (5)X16n+ 7 = 0. This is a contradiction. 
Hence there is no extension and we get H*(g22Spin/Spin(8n + 5); Z/(2)). Since 
every generator in H*(~2Spin /Spin(8n  + 5);Z/(2))  is the image of the coho- 
mology suspension, it is primitive. Passing to homology, we get 

H,(g22Spin/Spin(8n +5) ;Z / (2) )  = E(u8n+5+4k : k >_ 0)® 
E(s8n+3+41~ : 0 < k < 2n)® 
P(d8n+4+2k : 0 < k < 4n + 1) 

,where < U8n+5+4k~ e8n+5+4k ~>= 1, < S8n+3+4k~ q8n+3+4k > =  1, 
< d8,+n+2k, c8,+4+zk >=  1. Here < ,  > is the natural pairing of H,  and H*. Hence 
every generator in H,(g2ZSpin/Spin(8n +5); Z/(2))  is primitive. So back to (3.3) 

we have 

H, (  g22Spin/Spin(8n + 5); Z/ (2 ) ) /  / f ,  = 
E(S8n+3+4k : 0 < k < 2 n )  ® P(d8n+4+2k : 0 ' (  k < 4 n  + 1) ,  

H . ( J 2 2 S p i n ; Z / ( 2 ) ) \ ~ f .  = E(uak+l : 0  < k " ( 2 n ) .  

Hence 

E2 = CotorH*(g22Spin/spin(8n+5);z/(2))(H,(g22Spin; Z/(2)),  Z/(2))  

= CotorH*(~2Spln/Spin(8n+5);Z/(Z))//f*(z/(2),Z/(2)) 

®H, ($22Spin ; Z/ (2)) \~f ,  

= P(v8n+2+4k : 0 < k < 2n)® 
P(Q~wsn+3+2k : a >_ 0, 0 < k < 4n + 1) @E(u4~+l : 0 < k < 2n). 

For some technical reason, we express E2 like 

E(U4k+l : 0 < k < n - 1) ® E(U4n+l+4k : 0 < k < n) @ P(v8n+2+8k : 0 < k < n)® 
P(vsn+6+Sk : 0 < k < n - 1) ® P(Q~wsn+3+8k : a > 0, 0 < k < n) 

®P(Q~wsn+5+2k : a > 0, 0 < k < 4n and k ~  3 rood 4). 
(3.4) 
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This is the same size as the Eo~-term of the previous Serre spectral sequence 
converging to H,(y22Spin (8n + 5) in (3.2) under the assumption that Q2(w8~+l) = 
0. Now we go back to the original question of deciding whether Q2(ws,+l) is 
0 or not for ws~+l in H,(O2Spin(8n + 4);Z/(2)) .  Assume that it is not zero. 
Then Q2(ws,,÷l) = (u4n+l)4 because (Uan+l) 4 is only the primitive element at that 
dimension. So in the bottom row fibration of  (3.2), we have 

7-(QI (/,8n+2) = Q2(zO8n+l ) = (Uan+l)4. 

That means that the Eilenberg-Moore spectral sequence of  (3.4) have a dif- 
ferential from w16.+5 to (V8n+2) 2. But the bidegrees of wl6~+5 and (V8n+2) 2 
are ( - 1 ,  16n + 6) and ( - 2 ,  16n + 6). So there can not exist a differential 
from w16.+5 to (v8.+z) e. Therefore Qz(wsn+l) = 0. Hence we finish the proof 
of  Case 2. In fact the result says that the above the Eilenberg-Moore spec- 
tral sequence collapses from Ee but has extensions, (u4.+4k+~) 2 = vs,,+sk+2 for 
0 < k < n and we have the choices of  the primitive generators U4n+4k+l SO that 
E(u4n+4k+l)®P(v8n+8k+2)®P(Q]W8n+8k+3) produces P(Q~u4n+4k+l)for 0 < k < n 
in H.(g22Spin(8n + 5); Z/(2))  . 

(Case 3). From H.(S22Spin(8n + 5); Z/(2))  to H.(g22Spin(8n + 6); Z/(2)) .  
Consider the morphism of fibrations 

~23Spin/Spin(8n + 5) ~ (22Spin(8n + 5) , f22Spin 

y23Spin/Spin(8n + 6) ~ f22Spin(8n + 6) , y22Spin 

f22S sn+5 ~ ~Q2S 8n+5 ) * 

Look at the spectral sequence of the first column fibration. By the connectivity 
of  y23Spin/Spin(8n + 5) and g23Spin/Spin(8n + 6) we have non-zero differential 
from c8n+3 in H,(y22S8n+5; Z/(2))  to the (8n + 2) dimensional element, we call it 
tsn+2, in H,(Y23Spin/Spin(8n + 5); Z/(2)).  Consider the spectral sequence of the 
first row fibration. Since there does not exist 8n + 3 dimensional indecompasable 
element in H,(y22Spin; Z/(2)) ,  tsn+2 survives ,i.e. ,f,(tsn+2) ~ 0. So in the spectral 
sequence for the second column fibration 

I22Spin(8n +5) , J22Spin(8n +6) ~ ~-~2s8n+5, (3.5) 

by the naturality of  the differential, we have nonzero first differential from 
c8.+3 tof.(tsn+2). Since the target of  the first differential is the primitive element, 
the only possible element is (u4~÷1)2 by the dimension reason. From the Cartan 
formula for the Dyer -Lashof  operations ( See p 217 [5]), 

Ql((U4n+l) 2) = 2Ql(U4n+t)Qo(u4.+l) = 0 
Q2(u24n+l) = 2Qz(u4n+l)Qo(u4n+l) + Ql(U4n+l) 2 

+ U4n+l )~2(U4n+l, U4n+l )U4n+l 

= Ql(U4n+l) 2. 
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Similarly 
O2((a~u4n+l) 2) = (O~+lu4,,+l)2 ,a > 0 
Ql((Q~u4n+l) 2) = 0 ,a > O. 

Note that Qz is the top operation. Thus we should consider the Browder operation 
~2. But i f p  = 2, )~2(x,x) = 0. So we get the following differentials in the Serre 
spectral sequence for the fibration (3.5). 

T(Q~b8n+3) a 2 = Q2(u4n+l) = (Q~u4, ,+t)2 ,a>O 
7-((Q~isn+3) 2) = 0 , a  > 0. 

This imply that P((Q{~e8,+3) 2 : a > 0) and E(Q~u,+l : a _> 0) are the per- 
menant cycle in the spectral sequence. Let (i8~+3) z = Vl6n+ 6. Hence we get the 
H.(~2Spin(8n + 6); Z/(2)) .  

(Case 4). From H.(f2ZSpin(8n + 6); Z/ (2))  to H.(J22Spin(8n + 7); Z/(2)) .  
Consider the following fibration 

$22Spin(8n + 6) ~ J22Spin(8n + 7) ~ ~'22S 8n+6. (3.6) 

Using the same method as case 2 or case 3, we can show that we have the first 
nonzero differential from i8,+4 in H.(~22S8"+6; Z/ (2) )  to QlU4n+l, since Qlu4n+l 
is the only (8n + 3) dimensional primitive element in H.(~22Spin(8n + 6); Z/(2)) .  
From the commutativity of  the Dyer-Lashof operation with the homology sus- 
pension and the naturality of  the Dyer-Lashof operation, 

7 - ( Q ~ L 8 . + 4 )  = Q~+lu4n+l ,a ~ O. 

Since there is no (16n + 8) dimensional primitive element, Q2(alu4n+l) = 0. So 
Ql (c8~+4) is the permanent cycle and let QI (~s,+4) = w16,+9. Since (Q~ uan+l)2 = 0 
for a > 0 in H.(g22Spin(8n + 6); Z/(2)) ,  ,~a+l , , ~ a  - -  ~ 1  U4n+l~,~0~8n+4, a > 0, are also 
permanent cycles and 

a+ l  a 2 
(Q1 U4n+l Qo ~8n+4) = 0. 

¢-aa+l ~ a  a Let OlU4n+lb8n+4 = "//316n+7, s o  ~ 1  U4n+l~'~0 bSn+4 = Q1 2/)16n+7" Hence we get that 
E ~  is 

E(u4k+l : 0 < k < n) ® P(v8n+8k+6 : 0 < k < n) (~  
P(Q~u4n+4k+5 : a 3> 0,0  < k < n - 1)~P(Q~Wl6n+9 : a >__ 0 )~  

P(Q~w8n+5+zk : a > 0, 0 < k < 4n and k ~ 3 mod 4) 
E(Q~Wl6n+7 : a > O)® P(Q~+lvl6n+6;a >_ 0).  

(3.7) 

We claim that there are the following extensions: 

(Q~Wl6n+7) 2 = (Q~+lvl6n+6) ~a > 0. 

From Lemma 2.2, H*(g2Spin(8n + 7); Z/ (2))  is 
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P(a4i -2  : 1 < i < n + l)/(a~/'_2) (~ F(a4n+6+4k : 0 < k < n - 1) 
@F(csn+6+2k : 0 < k < 4n +2 ,  k ~ 3 m o d 4 )  

whereui is the p o w e r  o f  2such that 8n + 8 < ui(4i - 2) < 16n + 8. 

Using the Eilenberg-Moore spectral sequence converging to H,(g22Spin(8n + 
7); 2 / ( 2 ) ) ,  

E 2 = EXtH.(g2Spin(Sn+7);Z/(2))(2/(2), 2/ (2) )  
= E(uak+l : 0 < k < n)® 

P(vsn+Sk+6 : a > 0, 0 < k < n)® 
P(a~u4n+4k+5 : a >_ O~ 0 < k < n - 1)® 
P(Q~wsn+s+2k : a >__ 0,0  < k < 4n + 2  and k ~ 3  mod 4). 

However the size of this E2-term is the same as the Era-term of the Serre 
spectral sequence (3.7). This means that above the Eilenberg-Moore spectral 
sequence collapses from the E2-term and in other side, the Eoo-term of the Serre 
spectral sequence have the extensions as we claimed. So we get the conclusion. 

Note that Q2•16n+6 = (W16n+7)  2. 

The other four cases is almost same as the previous four cases. In case 7 if 
we keep the track of  the computation we can observe that Q2(vs,-2) = w2,_l in 
H.(g22Spin(8n + 1); Z/(2)). [] 

Remark 3.8 In fact, if we use the Eilenberg-Moore spectral sequence with 
E2 = EXtH*O2Spin(n);Z/(2))(Z/(2), Z/(2))  for H,(f22Spin(n); 2/(2)) ,  the above the- 
orem says that the Eilenberg-Moore spectral sequence collapses from E2-term. 
So we can choose ui, vi, wi such that < bti,cY(ai+l) >= 1 , < LOi,O'(Ci+l) > =  1, 

2 k 
< v2ki_2, p(a i ) > =  1 where ai and ci are the elements of  Lemma 2.2 and ~r is 
a cohomology suspension and p is a transpotence. 

Next we will determine some of  the Steenrod actions for H,(g22Spin(n); Z/(2))  
as follows. 
L e m m a  3.9 

sqaium 
S _ 2 ( 4 i + I ) ^ . .  . 

t./. W2m+l  
2i Sq, °dJ2m+ 1 

1 Sq, "t/J8m +7 

[m - -4 i+2\  
= ~ 4i )Um--4i 

/m--4 i+ l '~  P. 
----" ~ 4i+I  ) ~ l u m - 4 i - I  

/rn - i+2", 
= ~ i ) ~132rn+l-2i 

= "08m+6 . 

, i = 0 , 2 , 3  (mod4)  

Proof  First, Steenrod actions for the stable element u,, is come from Steenrod 
actions for H,(~2ZSpin;Z/(2))  = H , ( U / S p ;  Z/(2)).  The relation between v and w 
come from the following argument. As we mentioned in last part of  the proof for 
Theorem 3.1, we can observe that O2(v8i+6 ) = (w8i+7) 2. By the Nishida relation, 

2 8i+6 ' 
= (2_2j)Q2jSqJ.~38i+6 Sq,Q2v8i+6 ~ j  

= (v8i+6) 2 + a2Sq2v8i+6. 

But 1 Q2Sq, '08i+6 = 0. For if it were not zero, by the dimension reason the only 
possible case would be that Sql,~)8i+6 = ~/38i+5 and a2Sql.~)8i+6 = (~381+6) 2 .  By 
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the Nishida relation Sq2Q2wsi+5 1 = Q2Sq.wsi+5 = 0, since there is no (8i + 4) 
dimensional primitive in each case. On the other hands Sq, vsi+62 2 = (Sq.v8i+6)t 2 = 

(w8i+5) 2. This is a contradiction. Now Sq2(zv8i+7) 2 = Sq2Q2(Td8i+6) = (z~8i+6) 2. 

Since 1 z 2 2 ( S q .  ws i+7)  = S q .  (z08i+7) , Sql .  z08i+7 =/)8i+6. 

Now turn to other relations. The Lemma 2.2 and Theorem 3.1 say that if we 
use the Eilenberg-Moore spectral sequence twice with E2 = Tor H*(Spin(n):Z/(2)) 
(Z / (2) ,Z / (2) )  for H*(~2Spin(n);Z/(2)) and with Ez = Tor t4*(s~spi,(,):z/(z)) 
(Z/(2),  Z/(2))  for H*(OZSpin(n); Z/(2)), both the Eilenberg-Moore spectral se- 
quences collapse from E2-terms. Moreover the Eilenberg-Moore spectral se- 
quence is the spectral sequence of  Steenrod modules. So we can prove the 
other relations from the Steenrod actions for H* (Spin (n); Z/(2)) and the Nishida 
relations. Here we assume that above relations of  the Steenrod actions hold 
for H.(j'22Spin(k);Z/(2)) for k < 8n and will prove the Steenrod actions for 
H.(g2ZSpin(8n + 1); Z/(2)). The other inductive steps are almost same. We will 
determine the Steenrod actions for l/)16n_ 3 using the naturality of  the Steenrod 
operations for the following fibration 

f22Spin(4n + I) , g22Spin(8n + 1) f ' ~22Spin(8n + 1)/Spin(4n + 1). 

By the same computation as Theorem 3.1 we have choices of  the generators 

H.(122Spin(8n + 1)/Spin(4n + 1); Z/(2))  

=P(Q~z4n-l+i : a  ~ 0 ,0  < i < 4n - 1). 

From the Steenrod actions for H*(SO(n); Z/(2))  we can get Steenrod actions for 
n.(g22Spin(8n + 1)/Spin(4n + 1); Z/(2))  = H.(~2SO(8n + 1)/SO(4n + 1); Z/(2)):  

SqJ, Z4n - 1 +i [ 4n + I +i - j  ~__ "= I j )Z.4n--l+i--j 0 < i < 4n -- 1 ,especially (3.10) 

Sqlz4n+2k = Zan+2k_l,O < k < 2n -- 1. 

From above fact and the knowledge of  H. (D2Spin (4n + 1); Z/(2)) and H. (J'22Spin 
(8n + 1); Z/(2))  we have the following differentials 

2)4n_ 2 , n:even 
~-(z4,-1) = u~,_ t , n:odd 

= ~ W4n-1 , n:even 
T(Z~.n ) 

t Q~uz~-I , n:odd 
~-(z~,l) = 0 

7"(Z4n+2) ----" //34n+l 

f la+lz4  T h e n  Z4n2 _1+4i,  a ~ + l z 4 n - l + 4 i ,  Q~+lz4n+4i ,  Q~z4n+l+4i and ~j n+2+4i survive 
aqj) a and become vs.+si-2, Ql s.+8i-I , Qfwsn+si+l, Q~u4n+4i+l and Ql w8.+8i+5, for 

a > 0, 0 < i < n - 1 in H.(OZSpin(8n + 1);Z/(2)).  First we claim that 
Sqlwl6n_3 = 0. If  it is not zero, the only possibility is Sq, Wl6n-31 = V2n_2. 
Then S q ~ f , ( l l J l 6 n - 3 )  = f.(q32n_2), SO Sq1.Qlz8,,-2 = (Z4n-1) 4. But by the Nishida 
relation, in H.(O2Spin(8n + 1)/Spin(4n + 1); Z/(2))  
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1 Sq. Q1ZSn--2 [8n--2~ z-~ S i 
"= 1 1 _ 2 j } ~ 2  j q'* Z8n --2 

= (8n -- 2)Z2n_2 
= 0. 

Hence 1 S q ,  ll)16n_ 3 = 0.  S o  '~ 2i+1. 2i 1 2i = Sq, 2/A 16n-- 3 o q ,  tU l6n -  3 = S q ,  S q ,  w l 6 n - 3  O. F o r  

we consider 

S ~'2ir~ Z t4, ~ 1  8 n - 2  -- ( 2,-2  
j 8n - 1--2i 

= Q~Sq~.z8._2 
[8n--i~t.~ Z = ~, i )~gl 8 , - i - 2  by (3.10). 

Hence by the naturality of the Steenrod operation 

I [8n-- i~w 3 
2i ~ i ] 16n--2i--. 

Sq. '/U16n-- 3 = [8n--i~,,q U 
i )~Zi 8 n - i - 2  

i ~ 0 , 2 , 3 m o d 4  

i --= 1 mod 4. 

[] 

Coro l l a ry  3.11 The 2-torsions of  H . (  y22 Spin(8n +i ) ;  Z)  are of  order 2 i f  i ¢ 2, 6 
and H . (  y22Spin(8n + i ) ; Z )  has the 2-torsions o f  order 2 and order 22 i f  i = 2, 6. 

Proof  We will prove this by the Bockstein spectral sequence converging to 
H.(y22Spin(8n);Z) with El = H.(y22Spin(8n); Z/(2)) .  By the Nishida relation 

s ~ l  z~a+l .  q,$dl U4n+4k+l = QoQ~u4n+4k+l , a >_ 0 ,0  < k < n - 1 
s _ l  z-la+l~ a w _ q , ~ l  uJ8,-3+zk = QoQl 8,-3+2k , a  > 0 , 0 < k  < 4 n - 2 a n d k ~ 3 m o d 4 .  

And by Lemma 3.9 

I Sq*w8n+8k-1 = V8n+8k-2 tO < k < n - 1. 

Hence 

E2 = E(u4k+l : 0 < k < n - 1) ® E(U4n+4k+l : 0 < k < n - 1) 

@E(~O8n_3+4k : 0 < k < 2n - 1). 

For H,  U22Spin(8n + 2) ;Z) ,  El = H,(O2Spin(8n + 2); Z/(2)) .  

Like above case we get 

E2 = E(u4k+l : 0 < k < n - 1) ® E(U4n+4k+l : 0 < k < n - 1)® 
E(ws,,+l+4k : 0 < k < 2n - 1)@ 

E(Q~w8n-1 ® P(Q~Vl6n-2 : a >_ 0).  

Consider the following fibration 

g22Spin(Sn + 1) , O2Spin(8n + 2) ~ g22S 8"+1 

Therefore E2 = E ~ .  So the 2-torsions of  H.(y22Spin(8n);Z)  are of order 2. We 
can prove the other H.(g22Spin(8n + i); Z)  for i = 1,3, 4, 5, 7 in the same ways. 
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The behaviors of the Serre spectral sequence for the above fibration are exactly 
same as the Case 3 of the proof for Theorem 3.1, i .e.,  we have 

7- (b8n_ l )  ---- Y8n_ 2 

7-(Q~+lL8._l) = (Q~w8n_l) z ,a >_ O. 

Note that Q2(vsn-2) = ( W 8 n - 1 )  2 in H.(y22Spin(8n + 1); Z/(2)). Here (Q~rsn_l) 2, 
a > 0, survives and become Q~Vl6n-2, a _> 0, in H.(Y22Spin(8n + 2); Z/(2)). 
Since S-l '~a+lw = (Q~ws._l)  z in H.(g22Spin(8n + 1);Z/(2)) and q* ~'~1 8n--1 
S_l~a+l.  = (Q~t~8n_l) 2 in H.(J22sSn+I;z/(2)),  by the Bockstein Lemma q* ~ 1  ~8n-- 1 

we get 
/3.2((Q~+lw8.-l)) = (Q~v16.-2) a_>0 .  (3.12) 

Therefore 

E3 = g(U4k+l : 0 < k < n - 1) ® E(U4n+4k+I : 0 ~ k < n - 1)® 
E(W8n+l+4k : 0 < k < 2n - 1) ® E(w8n-~). 

So E3 = Eo~. That means that H.(O2Spin(8n +2) ;Z)  has the 2-torsions of order 
2 and order 2 z. We can also prove this for H.(S-22Spin(Sn + 6);Z) by the same 
method. [] 
The proof of the above Corollary implies the following well-known fact. 

Corollary 3.13 

SO(2n + 1) ' ~ a  S 3 × 5 7 x . . .  x S a n - 1  

S 0 ( 2 n + 2 )  ~--Q S 3 × S 7 X . . .  × S an-1 x S 2n+1. 

4 The homology of f2~Spin (n) 

In this section we will compute H . ( ~ S p i n ( n ) ;  Z/(2)) by studying the Serre 
spectral sequence for the fibration 

3Q3Spin(m) ---* g23Spin(m + 1) ' f f 23S  m . 

Recall that H.(~23oS3;Z/(2)) = P(Q~Qb[1] * [ - 2  a+b] : a , b  > 0), where 
y23S 3 is the zero component in g23S 3 and [1] is the image of the generator in 
/-)0(S°;Z/(2)) for the map: S o ~ g23S 3 and * is the loop sum pontryagin 
product. Let H.(y23S";Z/ (2) )  = P(Q~Qb2c._3 : a , b  >_ 0), n > 3. 

Theorem 4.1 There are choices o f  the generators xi, Yi, zi such that as an alge- 

bra 
H.(Y23oSpin8n; Z/(2)) ,  n > O, is isomorphic to 

P(x4k :1 < k  < n -  l)®P(Q~ysn+8k-3 :a  > O , O < k  < n - 1 ) ( ~  
a b P(Q1QEX4n+ak : a , b  >_ 0,0 < k < n - 1) (~  

P(Q~Qbzs,,_4+2k : a , b  > 0,0 < k < 4n - 2 and k ~  3 rood4) 
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H.(123Spin(8n + 1); Z/(2)) ,  n > O, is isomorphic to 

P(x4k " 1 < k  < n  - 1)®P(Q~y8.+sk-3 :a  _ 0 , 0  < k < n  - 1 ) ~ )  
P l "q a "q b x 1 ) ~ )  ~ 1  ~'~2 4n+4k " a , b  >__ 0 ,0  < k < n - 

p a b (QI Q2zsn-2+2k : a , b  >_ 0 , 0  < k < 4n - 1 and k ~  2 m o d 4 )  

H.([23Spin(8n + 2); Z/(2)) ,  n > O, is isomorphic to 

P(x4k : 1 < k  < n -  1)®P(Q~Y8n+8k+5 :a  _> 0 , 0  < k < n  - 2)t~) 
a b 1 ) t ~ )  P(Q1 Q2 xan+4k : a , b  >_ 0 , 0  < k < n - 

a b P(QIQ2z8n+2k : a , b  > 0 , 0  < k < 4n - 2 a n d  k ~  1 rood4) 
®P(Q~zs,,-e : a > O)® P(Q~Q~y16.-3 : a, b > O) 

H.(f23Spin(8n + 3); Z / (2 ) )  is isomorphic to 

P(X4k : 1 < k < n - 1)® P(Qfys.+8~+5 : a >_ 0 , 0  < k  < n -  1 ) @  
P(Q~Qbx4n+4k : a , b  >_ 0 ,0  < k < n - 1)(~) 

a b P(Q1Q2zs~+2k : a , b  > 0 ,0  < k < 4n and k ~  1 m o d 4 )  

H.((23Spin(8n + 4); Z / (2 ) )  is isomorphic to 

P(x4k " 1 < k < n - 1)®P(Q~Y8.+8k+5 : a _> 0 , 0  < k < n  - 1 ) @  
a b . P(Q1 02 x4n+41¢ " a , b  > 0 ,0  < k < n ) ( ~  

a b P(QI Q2zs.+2k : a , b  >_ 0 ,0  < k < 4n and k ~  1 m o d 4 )  

H . (  ~23Spin(8n + 5); Z / (2 ) )  is isomorphic to 

P(X4k : 1 < k < n - 1)®P(Q~y8.+8k+5 : a > 0 , 0  < k < n - 1 ) ( ~  
P t ~ a ' q b x  I'~"~l ~"~2 4 n + 4 k  " a ,b  > 0 ,0  < k < n ) ~  

a b P(Q1 Q2 zSn+4+2k " a , b  >> 0 ,0  < k < 4n and k ~  3 rood4) 

H . (  F23oSpin(8n + 6); Z / (2 ) )  is isomorphic to 

P(X4k : 1 < k < n ) ®  P(Q~y8.+sk+5 : a _> O,O < k < n - 1 ) ~ )  
a b P(Ql  Q2 x4n+ak+4 : a , b  >_ 0 , 0  < k < n - 1)(~) 

a b P(Q1Q2z8n+4+2k : a ,b  > 0 , 0  < k < 4n and k ~  3 rood4) 
®P(Q~+Ix4 n : a > O) ® a b 

- -  P(Q1 Q3 Y16n+5 : a,  b > O) 

H.(~23Spin(8n + 7); Z / (2 ) )  is isomorphic to 

P(X4k : 1 < k < n) ® P(Q~Ysn+8k+5 : a > O, 0 < k < n) 
a b P(QI Q2 x4n+4k+4 : a , b  >_ 0 , 0  < k < n - 1)(~) 

a b P(QI Q2 Z8n+4+Zg : a ,  b _> O, 0 < k < 4n + 2 and k ~  3 rood 4) 

When n = O, 
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P(Q~Q~xo : a,b >__ O) = P(Q~Qb[I] * [-2  a + b ] : a , b  >_0) 
a b P(QIQ2zo :a ,b  >-O) = P(Q~Q~[I]*[-2 a + b ] : a , b  >_0) 

P(Q~+lx O : a >0)  = P(Q~(Qz[1] * [-2]) : a > 0 )  

In fact, if we use the Eilenberg-Moore spectral sequence with 
E2 = Cotor H.(gZ2Spin(n);Z/(Z))(Z/(2), Z/(2)), the above results say that spectral 
sequence collapses from the Ez-term. So we can choose the generator xi, Yi, zi 
such that 
i f (X/)  ---- Ui+l, o ' (y i )  ----" 'Ui+I, O'(Zi) = LOi+I. 

Proof We will prove this theorem by the induction on k, i.e., from H.(f23Spin 
(8n + k); Z/(2))  to H.(~23Spin(8n + k + 1); Z/(2)).  Like the double loop case 
we will prove four cases when k = 0, 1,2 and 3. The proofs of  the remain 4 
cases, when k = 4, 5, 6 and 8, are almost same as above k = 0, 1,2 and 3 cases. 
Consider the morphism of fibrations 

~24Spin/Spin(8n + k) f ,  g23oSpin(8n + k) , $23Spin 

~4Spin/Spin(Sn+k + l) > O3Spin(8n+k + l) , ~23oSpin 

ff23S 8n+k ~ ~ 3 s 8 n + k  ~ * 

By the connectivity of  H.(~24Spin/Spin(8n + k + 1)) we have the non-trivial 
differential from g8n-3+ k t o  a ( 8 n -  4+k)-dimensional  element, we call it c8~-4+k, 
in H.(~4Spin/Spin(8n + k); Z/(2)) for the Serre spectral sequence of  the first 
column fibration. Here we exclude the case from Spin3 to Spin4. In that case the 
result comes from the fact Spin4 ~- Spin3 × Spin3. Since there is no (8n - 3 + k )  
dimensional generator in H,(y23Spin) for k = 0, 1,2 J:.(C8n-4+k) ¢ 0 , k = 0, 1,2. 
So by the naturality of  the differential there is nonzero differential from c8,,+k-3 
to a (8n +k - 4 )  dimensional primitive element in H,(~23Spin(8n + k); Z/(2))  for 
k = 0, 1,2 for the following fibration 

t2~Spin(8n +k) s~3i~ 12~Spin(8n + 1 + k )  ~3~ g23S8,+k. 

(Case 1) k = 0. We have the nonzero differential from L8,-3 to a (8n - 4 )  dimen- 

sional primitive element in H,(g23Spin(8n); Z/(2)).  But we have two possible 
elements xsn-4, z8,-4 in H,(g23Spin(8n); Z/(2)). By the same method as Case 
2 in the proof  of  Theorem 3.1, we should choose z8,-4. Since H,(t23S 8n) = 

0 ~ @ p ~ a " ~ b + l t ~  P(Q~sn-3 : a >_ ) t~gl ~2 8n--3 : a ,b >_ 0), 

~-(Q~(~8~-3)) = Q~(z s , - 4 ) , a  >_ 0 (4.13) 
T(Q~(t.sn-3)) = Q~(zsn-4),a > O. 

For next we will prove that Q3(zsn-4) = 0. Assume that it is not zero. Since 
Q3z8n-4 is primitive, by the dimension reason the only possible case is that 

Q3(z8n-4) = Qlysn-3. By the Nishida relation, 
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1 8n  - - 2  " = (l_2j)Q2+2jS4,zsn-4 + ' Sq,  Q3zsn-4 ~ j  )k3(Sq, zsn-4, zsn-4) 

= (8n - 2)Q2zsn-4 = O. 

Note that Sq ,Z8n-4  = 0 because there is no (8n - 5) dimensional primitive 

element in H,(~2~Spin(8n); Z/(2)).  But 

/ 8 n - 3 ' , / ,  S i SqI, QIYsn-3 = ~ j  ~.l_2j)~2j q',Y8n-3 

= (8n -- 3)Qoy8n-3 = (YSn--3) 2 ¢ 0.  

This is a contradiction. So we get Q3(z8n-4) = 0. Hence Ker(123i), = Q1~ Q2bz8n-4, 
a b b a ,b  >_ 0 , and QIQ2(Q2 8n-3) are permanent cycles for a ,b  >_ O. Let 

Q2(LSn-3) = Z16n-4 .  

(Case 2) k = 1. Since Y8n--3 is the only 8n - -  3 dimensional primitive element in 

H,(f23oSpin(8n + 1); Z/(2)),  there is the nonzero differential from L8n-2 to Y8n-3. 

a a T(Q~(cs,-2) = Ql(Y8,-3) > 0. 

We claim that Q3y8n-3 ~ O. 

Sq2, Q3ysn-3 (8n --2] 
= ~ j  ~2_2jlQI+2jS~*ysn-3 

+ A3( Sql, Y8n -3, Sql, Y8n-3) 
[8n--2~.~ S 1 = (8n22)OlY8n-3+~ 0 )~3 q,Ysn--3 

= QlY8n-3 ~ O. 

1 Hence Q3(ysn-3) ¢ 0. Note that Sql, ysn_3 = 0. If it is not zero, Sq,ysn_3 = x8~-4 
by the dimension reasion. Then in H,(~22Spin(8n + 1);Z/(2))  1 Sq  , v8n - 2 = 

Sqlff(Y8n-3) = cr(Sql, Ysn-3) = o'(x8n-4) = USn--3, where cr is the homology 
suspension. However from Lemma 3.9 Sql, wsn_l = v8n-z. Since Sql, Sql, = 0, 
0 = 1 1 1 This is a contradiction. So Sq,Ysn-3 = O. Sq ,  S q ,  w8n-1 = S q ,  v8n-2  = U8n--3. 1 

By the dimension r e a s o n  Q 3 ( Y s n - 3 )  = Ql(ZSn-2).  

Next we claim that Q2(Ysn-3) = 0. By the Nishida relation, we have 

1 Sq , Q3 y8n- 3 (8, -J~ Q2+2j S~,ysn-3 --" E j  \ l - - 2 j  / 
1 

+ )x3(Sq,Y8n-3,  YSn-3) 

= (8n -- 1)Q2y8n-3 
= Q2ysn-3. 

On the other hand, 

1 Sq , Q3 Y8n- 3 1 
= S q ,  QlZ8n-2 

8n-2 S " = Ej (l_2j)e2j 4,z,.-2 
= (8n - 2)Q0z8n-2 
= 0 .  

For next we will prove that Q3(Q3ys,-3) ~ O. 
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Sq2Q3(Q3ysn-3) 16n--2 S /, = E j  (2-2j)Ql+2J ~ ( Q 3 y s . - 3 )  
l S 1 +A3(Sq. (Q3Y8n-3), q. (Q3ys.-3))  

/ 1 6 n - - 2 \ ~  ~ /16n--2"~,,~ s~l~,-~ 3: 3 
= ~ ,  Z ] ~ l ~ d 3 y 8 n - 3 + ~ ,  0 ) ~ 3  q , ~ , / 3 . 8 n -  

= Q1Q3Ysn-3 
= Q12(zs,_2) ¢ o .  

Hence a3(Q3y8n-3) ¢ O. Note that Sql,(Q3y8n_3) = 0. Then by the dimension 

reason Q3(Q3ysn-3) = Q1 (Q2z8n-2). 
Next  we claim that Qz(Q3y8n-3) = 0. By the Nishida relation, we have 

Sql, Q3(Q3y8n-3) 1 6 n - I  S " = ~-~j (,-2j)Qz+2j 4.(Q3y8.-3)  

+A3 (Sq,  1 (Q3ysn-3), Q3y8n -3)  

= (16n - 1)Q2(a3y8n-3) = Qe(Q3ysn-3), 

and 
SqlQ3(Q3ysn_3) = SqI, QI(Q2z8n_2) 

[ 16n -2"~ Q2j SqJ, (Q2z8n-2) = ~-~j \ l--2j] 
= (16n - 2)Qo(Q2zsn-2) 
= 0 .  

In the same method we can prove that 

t2 
Q~+l(Y8n_3) = alO2(z8n_2) ,a > 0 

Q2(Q~ysn-3) = O ,a >_0. 

So we have for a ,  b _ 0 

7"(Q~ab2(t8,,-2)) = Qf a~(y8~-3) 
-r(af+Iab(t8n_Z) ) = O. 

Hence KerS23i, contains P(QfQb3y8n_3 : a ,  b > 0), i.e. , P(Qfy8n-3 : a > O) 
and a+l b P ( Q t  a2z8n_2 : a ,b  > 0). Qfz8n-2 are permanent cycles for a _> 0. 
aa+l'qb t, 1 4 z  8~-2 are also permanent cycles  for a ,  b > 0. By the same method as 

above we can show that Q~+IQb~s._2 = Q~Q~Qlc8.-2. Let QlC8n-2 = Y16n-3 .  

In fact, by the Adem relation Q3Q1cs.-2 = Q|Q2t.8n-2 and Q2Qlt~8n_2 = 
Q3(Q3 QI t~8n-2) = Q3(Qt Q2~8n-2) = Q3 Q1 (Qzt~8n-2) = QI Q2(Qzc8n-2). Induc- 
tively we also get  ~a+l.-~b z"~az-~b,o b ~1 ~,e~ 2 ~sn-2 = ~ ~3 ~ 8,,-2. So we get the conclusion. 

(Case 3) k = 2. We have the differential from bSn- 1 to zsn-2. Then 

"r(Q~(t~8,-1) = Q~(z s , - z ) .  

We will show that QlZsn-2 = 0. Assume that Qlz8n-2 ~ O. By the dimension 

argument Qlzs,,-2 = Y16n--3. By the Nishida relation 

8 n - 1  S " Sql, Q2zsn-2 = )--~4 ('-zJ) Q'+zj ~z8n-2 
= a l z s n - 2  = y 1 6 n - 3  • 
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This would imply that in H,([2ZSpin(8n + 2); Z / (2 ) )  

Sq ~ QI wsn -1 = Sq l, cr(Q2zsn- 2) = f f (Sq 2 Qzzsn-2)  = ¢r(ysn-3) = Vl6n-2- 
But from (3.12), we know that /32Qlw8,_l  = V l 6 n _  2 .  Hence Q~z8,-2 = 0. Since 

Q3zsn-2 = 0 by the dimension reason, r ( Q 2 t 8 , - l )  = 0. Let Q2t8,-1 = zl6, and 
Q3yI6n-3 = Y32n--3. Thus we get that the E ~ - t e r m  for H,( f23Sp in(8n  + 3); Z / (2 ) )  
is 

P(x4k : 1 < k < n - 1) ® P(Q~y8n+8k+5 : a > 0, 0 < k < n - 1) ( ~  
P(Q~Qbxan+4k : a , b  > 0 , 0  < k < n - 1 ) ( ~  

pr'r~a "~b z ~'~'~t ~d~2 Sn+ak : a ,  b > 0, 0 < k < 4n - 2 and k ~  1 mod 4)® 
a b P (Q~ ( ( t8n_ l ) 2 : a >_ O) ® P (Q~ Qb y32,_ 3 : a , b >_ O) ® P (Q I Q2 z16. : a , b >_ 0) .  

(4.2) 

In other sides using the Ei lenberg-Moore  spectral sequence converging to 
H,(~23Spin(8n + 3); Z / (2) )  

E2 = 
CotorH*( S2Z(Spin(8n+ 3)<3> );z /(2))(Z / ( 2 ), Z/(2) )  
CotorE(u4k+~ : 1 < k  < n  -- 1)®P(vs .  +sk+6:0<k < n  -- 1 )® 

P(Q~ U4n+4k+l :a >O,O<k <_n-- 1)® 

P(Q~wsn+zk+t:a>_O,O<k<4n and k¢~ 1 mod 4)(Z/(2) ' Z / (2) )  

where Spin(8n  + 3) < 3 > is the 3-connected cover of  Spin(8n + 3). Hence we 

get E2-term is 

P(X4k : 1 < k < n - 1)®P(Q~Y8n+8k+5 : a  > 0 , 0  < k < n - 1 ) @  
b 1 )®  P(QI  Q2 X4n+4k : a , b  > 0 , 0  < k < n - 

p a b (QlQzZ8n+2k : a , b  > 0 , 0  < k < 4n and k ~  1 mod 4) .  

(4.3) 

This E2-term is the same size as the E ~ - t e r m  of  the previous spectral se- 
quence (4.2). This implies that the Ei lenberg-Moore  spectral sequence(4.3) col- 
lapses from the E2-term and we get the result as we want. In fact, there is a choice 

o f  generator z16n-2 such that P (Q~( t sn - l )2  . a > 0 ) ®  P(Q~ Qby3z n_3 : a ,  b >_ O) 

becomes P(Q~Qbz16 ,_2  : a ,  b _> 0) in H , ( Q ~ S p i n ( 8 n  + 3); Z/ (2) ) .  

(Case  4) k = 3. There is no 8n - 1 primitive element in 
H,([2~Spin(8n  + 3), Z/ (2)) .  Therefore the Serre spectral sequence collapses from 

E2-term. [] 
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