Homology of the double loop space of the homogeneous space $\mathrm{SU}(n) / \mathrm{SO}(n)$

By
Young Gi Choi

Abstract

We study the mod 2 homology of the double loop space of $\mathrm{SU}(n) / \mathrm{SO}(n)$ using the Serre spectral sequence along with the Eilenberg-Moore spectral sequence. Then we also get the homology of the double loop space of the set of all Lagrangian subspaces of the symplectic vector space $R^{2 n}$.

1. Introduction. Let $\mathrm{SU}(n)$ be the group of $n \times n$ unitary matrices of determinant 1 and $\mathrm{SO}(n)$ the group of $n \times n$ orthogonal matrices of determinant 1 . In this paper we study the homology of the double loop space of the homogeneous space $\mathrm{SU}(n) / \mathrm{SO}(n)$. For an odd prime p, we have the Harris splitting [8]

$$
\mathrm{SU}(2 n+1) \simeq_{(p)}(\mathrm{SU}(2 n+1) / \mathrm{SO}(2 n+1)) \times \mathrm{SO}(2 n+1)
$$

where $\simeq_{(p)}$ means homotopy equivalence localized at p. So the $\bmod p$ homology of iterated loop spaces of $\operatorname{SU}(n)$ contains the information about that of $\operatorname{SU}(n) / \mathrm{SO}(n)$. Since the $\bmod p$ homology of the double loop space of $\operatorname{SU}(n)$ is known in [12] and [15], the computation with Z_{p} coefficients is not interesting. Here Z_{p} is the group of integers modulo p. In this paper we concentrate on Z_{2} coefficients and every homology is considered as the homology with Z_{2} coefficients unless mentioned otherwise. The case of $\mathrm{SO}(n)$ is covered in [5].

We study the cohomology of the loop space of $\mathrm{SU}(n) / \mathrm{SO}(n)$ through the combined use of the Serre spectral sequence and the Eilenberg-Moore spectral sequence. In order to determine the algebra structure, we make use of the Steenrod operations in the Eilenberg-Moore spectral sequence. With this result, we compute the homology of the double loop space of $\mathrm{SU}(n) / \mathrm{SO}(n)$. Since $\mathrm{SU}(n) / \mathrm{SO}(n)$ is closely related with the set of all Lagrangian subspaces of the symplectic vector space $R^{2 n}$, we also get the cohomology of the loop space and the homology of the double loop space of the set of these Lagrangian subspaces.
2. Single loop space of $\mathbf{S U}(n) / \mathbf{S O}(n)$. Let $E(x)$ be the exterior algebra on x and $\Gamma(x)$ the divided power algebra on x which is free over $\gamma_{i}(x)$ as a Z_{2}-module with product $\gamma_{i}(x) \gamma_{j}(x)=$ $\binom{i+j}{j} \gamma_{i+j}(x)$. In this paper the subscript of an element means the degree of the element, that

[^0]is, $\operatorname{deg}\left(x_{i}\right)=i$. We recall the following fact in [4], [11].
\[

$$
\begin{array}{ll}
H^{*}(\mathrm{BSO}(n))=Z_{2}\left[w_{i}: 2 \leqq i \leqq n\right], & n \leqq 2 \\
S q^{j}\left(w_{i}\right)=\sum_{k=0}^{j}\binom{i-k-1}{j-k} w_{i+j-k} w_{k}, & 0 \leqq j \leqq i
\end{array}
$$
\]

For $x_{i}=\sigma\left(w_{i+1}\right)$ in $H^{i}(\mathrm{SO}(n))$, we have that

$$
\begin{aligned}
H^{*}(\mathrm{SO}(n)) & =V\left(x_{i}: 1 \leqq i \leqq n-1\right), \\
S q^{j}\left(x_{i}\right) & =\binom{i}{j} x_{i+j}, \quad 0 \leqq j \leqq i .
\end{aligned}
$$

Here $V\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{t}}\right)$ is the commutative associative algebra over Z_{2} satisfying the following conditions,

1. $\left.\left\{\left(x_{i_{1}}\right)^{\epsilon_{1}}, \ldots,\left(x_{i_{t}}\right)^{\epsilon_{t}}\right) \mid \epsilon_{i}=0,1\right\}$ is a basis.
2. $\left(x_{i_{q}}\right)^{2}=x_{2 i_{q}}$ if $2 i_{q}=i_{s}$ for some $1 \leqq s \leqq t$ and $x_{i_{q}}^{2}=0$ otherwise.

We also recall the following.

$$
H^{*}(\mathrm{SU}(n))=E\left(x_{2 i+1}: 1 \leqq i \leqq n-1\right), \quad n \geqq 2
$$

We can compute $H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))$ from the Serre spectral sequence converging to $H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))$ with $E_{2}=H^{*}(\mathrm{BSO}(n)) \otimes H^{*}(\mathrm{SU}(n))$. Then we have

$$
\begin{aligned}
& H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))=E\left(e_{i}: 2 \leqq i \leqq n\right), \quad n \leqq 2 \\
& S q^{j}\left(e_{i}\right)=\sum_{k=0}^{j}\binom{i-k-1}{j-k} e_{i+j-k} e_{k}, \quad 0 \leqq j \leqq i
\end{aligned}
$$

where $e_{i}=i^{*}\left(w_{i}\right)$ for the inclusion $i: \mathrm{SU}(n) / \mathrm{SO}(n) \rightarrow \mathrm{BSO}(n)$. We refer Theorem 6.7 of Chapter 3 in [11] for more detail explanation.

Let $\Omega^{k} M$ be the k-fold loop space of a space M, that is, the space of all base point preserving continuous maps from S^{k} to M. Now we calculate the cohomology of $\Omega \mathrm{SU}(n) / \mathrm{SO}(n)$.

Theorem 2.1.

$$
H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))=\bigotimes_{0 \leqq 2 i \leqq n-2} \bigotimes_{k \leqq 0} Z_{2}\left[\gamma_{2^{k}}\left(z_{2 i+1}\right)\right] /\left(\gamma_{2^{k}}\left(z_{2 i+1}\right)^{2^{\sigma(n, i)}}\right)
$$

where $\sigma(n, i)$ is the positive integer satisfying the relation

$$
(2 i+1) 2^{\sigma(n, i)-1} \leqq n-1<(2 i+1) 2^{\sigma(n, i)}
$$

Proof. Consider the Eilenberg-Moore spectral sequence [7], [13] converging to $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ with

$$
\begin{aligned}
E_{2} & =\operatorname{Tor}_{H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))}\left(Z_{2}, Z_{2}\right) \\
& \left.=\operatorname{Tor}_{E\left(e_{2}, \ldots, e_{n}\right.}\right)\left(Z_{2}, Z_{2}\right) \\
& =\otimes_{i=2}^{n} \operatorname{Tor}_{E\left(e_{i}\right)}\left(Z_{2}, Z_{2}\right) \\
& =\Gamma\left(z_{1}, \ldots, z_{n-1}\right)
\end{aligned}
$$

where $z_{i-1}=\sigma\left(e_{i}\right)$. We claim that this spectral sequence collapses at the E_{2}-term. We have the map of fibrations

where each row is a fibration. In the Eilenberg-Moore spectral sequence converging to $H^{*}(\Omega \mathrm{SU}(n))$ with

$$
\begin{aligned}
E_{2} & =\operatorname{Tor}_{H^{*}(\operatorname{SU}(n))}\left(Z_{2}, Z_{2}\right) \\
& =\operatorname{Tor}_{E\left(x_{3}, \ldots, x_{2 n-1}\right)}\left(Z_{2}, Z_{2}\right) \\
& =\Gamma\left(y_{2}, \ldots, y_{2 n-2}\right),
\end{aligned}
$$

the spectral sequence collapses at the E_{2}-term because E_{2} vanishes in all odd total degrees. And so does the Eilenberg-Moore spectral sequence converging to $H^{*}(\Omega \mathrm{SU})$ with $E_{2}=$ $\operatorname{Tor}_{H^{*}(\mathrm{SU})}\left(Z_{2}, Z_{2}\right)$. Hence $(\Omega \iota)^{*}$ is surjective.

We consider the Serre spectral sequence for the bottom row with $E_{2}=H^{*}(\mathrm{SO}) \otimes H^{*}(\Omega \mathrm{SU})$. Then we can easily check that as a graded vector space this E_{2}-term has the same size in every total degree as $H^{*}(\Omega(\mathrm{SU} / \mathrm{SO}))$ where $H^{*}(\Omega(\mathrm{SU} / \mathrm{SO}))=H^{*}(\mathrm{BO})=Z_{2}\left[w_{1}, w_{2}, \ldots\right]$. Note that there is a homotopy equivalence between $\Omega(\mathrm{SU} / \mathrm{SO})$ and BO [3], [4]. So the spectral sequence collapses at the E_{2}-term. That means that there are no nontrivial differentials. Now we consider the Serre spectral sequence for the top row in the diagram (1) with $E_{2}=$ $H^{*}(\mathrm{SO}(n)) \otimes H^{*}(\Omega \mathrm{SU}(n))$. Since the Serre spectral sequence for the bottom row collapses at the E_{2}-term, we have $d_{r}=0$ for $r=2,3 \ldots$. Since $(\Omega \iota)^{*}$ is surjective, by naturality we also have $d_{r}=0$ for $r=2,3 \ldots$ for the top row. This implies that the Serre spectral sequence for the top row also collapses at the E_{2}-term.

We have studied two spectral sequences going to the same destination space $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$. One is the Eilenberg-Moore spectral sequence with $E_{2}=$ $\operatorname{Tor}_{H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))}\left(Z_{2}, Z_{2}\right)$ and the other is the Serre spectral sequence with $E_{2}=$ $H^{*}(\mathrm{SO}(n)) \otimes H^{*}(\Omega \mathrm{SU}(n))$. But as a graded vector space, the E_{2}-term of the EilenbergMoore spectral sequence has the same size in every total degree as the E_{∞}-term of the Serre spectral sequence. Hence the Eilenberg-Moore spectral sequence collapses at the E_{2}-term and $E_{\infty}=\Gamma\left(z_{1}, \ldots, z_{n-1}\right)$ where $z_{i-1}=\sigma\left(e_{i}\right)$.

Now we determine the multiplicative structure of cohomology. Since $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ is a connected, associative and commutative Hopf algebra over Z_{2}, by the Hopf-Borel theorem $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ is the tensor product of monogenic Hopf algebras which are of the form $Z_{2}[x]$ or $Z_{2}[x] /\left(x^{2^{k}}\right)$ as an algebra. Since $S q^{j}\left(e_{i}\right)=\sum_{k=0}^{j}\binom{i-k-1}{j-k} e_{i+j-k} e_{k}$ for $0 \leqq j \leqq i$ in $H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))$,

$$
\begin{aligned}
S q^{j} z_{i} & =S q^{j}\left(\sigma\left(e_{i+1}\right)\right)=\sigma\left(\binom{i}{j} e_{i+j+1}+\binom{i-1}{j-1} e_{i+j} e_{1}+\cdots\right) \\
& =\binom{i}{j} \sigma\left(e_{i+j+1}\right)=\binom{i}{j} z_{i+j} .
\end{aligned}
$$

Hence $z_{i}^{2}=S q^{i}\left(z_{i}\right)=z_{2 i}$ for $1 \leqq i \leqq(n-1) / 2$. In the bar construction, each z_{i} is represented by $\left[e_{i+1}\right]$ and $\gamma_{2^{k}}\left(z_{i}\right)$ is represented by $\left[e_{i+1}|\cdots| e_{i+1}\right]$ (2 2^{k} factors). Since $S q^{j} e_{i+1}=0$ for
$j \geqq i+1$, by the Cartan formula,

$$
\begin{aligned}
\left(\gamma_{2^{k}}\left(z_{i}\right)\right)^{2} & =S q^{k^{k}}\left(\gamma_{2^{k}}\left(z_{i}\right)\right)=S q^{k^{k}}\left(\left[e_{i+1}|\cdots| e_{i+1}\right]\right) \\
& =\left[S q^{i} e_{i+1}|\cdots| S q^{i} e_{i+1}\right] \\
& =\left[e_{2 i+1}+\operatorname{decomposables}|\cdots| e_{2 i+1}+\text { decomposables }\right] \\
& =\left[e_{2 i+1}|\cdots| e_{2 i+1}\right]+\sum_{r}\left[s_{r_{1}}|\cdots| s_{r_{2^{k}}}\right]
\end{aligned}
$$

where for each r, some $s_{r_{-}}$is a decomposable element. Here $\sum_{r}\left[s_{r_{1}}|\cdots| s_{r_{2} k}\right]$ represents zero in $\operatorname{Tor}_{H^{*}(\operatorname{SU}(n) / \mathrm{SO}(n))}\left(Z_{2}, Z_{2}\right)$ because of the following reason [1, p. 424-425]. The product in $\Gamma\left(\sigma\left(e_{2}\right), \cdots, \sigma\left(e_{n}\right)\right)=\operatorname{Tor}_{H^{*}(\mathrm{SU}(n) / \mathrm{SO}(n))}\left(Z_{2}, Z_{2}\right)$ is induced by the shuffle product in the bar construction $[9, \S 10.12],[10, \S 7.2]$. The form of the shuffle product implies that every element of $\Gamma\left(\sigma\left(e_{2}\right), \cdots, \sigma\left(e_{n}\right)\right)$ have a representative $\sum_{t}\left[u_{t_{1}}|\cdots| u_{t_{2} s}\right]$ where no $u_{t_{-}}$is decomposable. And from the definition of differential of bar construction, $\sum_{r}\left[s_{r_{1}}|\cdots| s_{r_{2} k}\right]+$ $\sum_{t}\left[u_{t_{1}}|\cdots| u_{t_{2 s}}\right]$ can not be target of the differential. Therefore $\sum_{r}\left[s_{r_{1}}|\cdots| s_{r_{2 k}}\right]$ represents zero in $\operatorname{Tor}_{H^{*}(\operatorname{SU}(n) / \operatorname{SO}(n))}\left(Z_{2}, Z_{2}\right)$. So we have that $\left(\gamma_{2^{k}}\left(z_{i}\right)\right)^{2}=\left[e_{2 i+1}|\cdots| e_{2 i+1}\right]=\gamma_{2^{k}}\left(z_{2 i}\right)$ for $1 \leqq i \leqq \frac{n-1}{2}$ and $k \geqq 0$.
$\Gamma(z)=E\left(\gamma_{2^{k}}(z): k \geqq 0\right)$ as an algebra. Let $\sigma(n, i)$ be the positive integer such that $(2 i+1) 2^{\sigma(n, i)-1} \leqq n-1<(2 i+1) 2^{\sigma(n, i)}$. Since $z_{(2 i+1) 2^{m-1}}^{2^{\sigma(n, i)}}=z_{(2 i+1) 2^{m}}^{2^{\sigma(n, i)}}$ for $1 \leqq m \leqq \sigma(n, i)-1$, we have

$$
z_{2 i+1}^{2^{\sigma(n, i)-1}}=z_{(2 i+1) 2^{\sigma(n, i)-1}}, \quad z_{2 i+1}^{\sigma^{\sigma(n, i)}}=z_{(2 i+1))^{\sigma(n, i)-1}}^{2}=0, \quad 0 \leqq 2 i \leqq n-2
$$

In the same way, for $0 \leqq 2 i \leqq n-2$

$$
\gamma_{2^{k}}\left(z_{2 i+1}\right)^{2^{\sigma(n, i)-1}}=\gamma_{2^{k}}\left(z_{(2 i+1) 2^{\sigma(n, i)-1}}\right), \quad \gamma_{2^{k}}\left(z_{2 i+1}\right)^{2^{\sigma(n, i)}}=0
$$

Hence it follows from these relations that for $0 \leqq 2 i \leqq n-2$ and $k \geqq 0$,

$$
E\left(\gamma_{2^{k}}\left(z_{2 i+1}\right)\right) \otimes \ldots \otimes E\left(\gamma_{2^{k}}\left(z_{(2 i+1) 2^{\sigma(n, i)-1}}\right)\right)
$$

in the E_{∞}-term produces $Z_{2}\left[\gamma_{2^{k}}\left(z_{2 i+1}\right)\right] /\left(\gamma_{2^{k}}\left(z_{2 i+1}\right)^{2^{\sigma(n, i)}}\right)$. We claim that there is no relation among $\gamma_{2^{k}}\left(z_{2 i+1}\right)$ for $0 \leqq 2 i \leqq n-2, k \geqq 0$. Consider the Eilenberg-Moore spectral sequence [6] converging to $H_{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ with

$$
\begin{aligned}
E_{2} & =\operatorname{Cotor}^{H_{*}(\operatorname{SU}(n) / \operatorname{SO}(n))}\left(Z_{2}, Z_{2}\right) \\
& =\operatorname{Ext}_{H^{*}(\operatorname{SU}(n) / \operatorname{SO}(n))}\left(Z_{2}, Z_{2}\right) \\
& \left.=\operatorname{Ext}_{E\left(e_{2}, \ldots, e_{n}\right.}\right)\left(Z_{2}, Z_{2}\right)=Z_{2}\left[c_{1}, \ldots, c_{n-1}\right] .
\end{aligned}
$$

Then it also collapses at the E_{2}-term by duality. So $H_{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))=Z_{2}\left[c_{1}, \ldots, c_{n-1}\right]$ and

$$
(\Omega i)_{*}: H_{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))) \rightarrow H_{*}(\Omega(\mathrm{SU} / \mathrm{SO}))
$$

is injective where $H_{*}(\Omega(\mathrm{SU} / \mathrm{SO}))=Z_{2}\left[c_{i}: i \geqq 1\right]$. Here $H^{*}(\Omega(\mathrm{SU} / \mathrm{SO}))=H^{*}(\mathrm{BO})$ is a polynomial algebra with one generator in each degree, so that its dual $H_{*}(\Omega(\mathrm{SU} / \mathrm{SO}))$ has one primitives in each degree $i \geqq 1$. Since 2^{k} power of a primitive is also primitive, $H_{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ has primitives of degrees $(2 i+1) 2^{k}$ for $0 \leqq 2 i \leqq n-2, k \geqq 0$. Hence from duality, $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ has generators of degrees $(2 i+1) 2^{k}$ for $0 \leqq 2 i \leqq n-2, k \geqq 0$. So there is no relation among $\gamma_{2^{k}}\left(z_{2 i+1}\right)$ for $0 \leqq 2 i \leqq n-2, k \geqq 0$. Hence we get the conclusion.

In fact, when n goes to infinity, each $\gamma_{2^{k}}\left(z_{2 i+1}\right)$ gets to have infinite height, so that each $\gamma_{2^{k}}\left(z_{2 i+1}\right)$ becomes a generator in $H^{*}(\Omega(\mathrm{SU} / \mathrm{SO}))=H^{*}(\mathrm{BO})$. Note that numbers $(2 i+1) 2^{k}$ for $i, k \geqq 0$ cover whole natural numbers.

Consider the fibration $\mathrm{SU}(n) / \mathrm{SO}(n) \rightarrow U(n) / O(n) \xrightarrow{f} K(Z, 1)$ where $[f]$ is a generator of $H^{1}(U(n) / O(n) ; Z)=Z$. By looping one more time, we get

$$
\Omega(U(n) / O(n)) \cong \Omega(\mathrm{SU}(n) / \mathrm{SO}(n)) \times Z
$$

So we get $\Omega_{0}(U(n) / O(n)) \cong \Omega(\mathrm{SU}(n) / \mathrm{SO}(n))$ where $\Omega_{0}(U(n) / O(n))$ is the zero component of $\Omega(U(n) / O(n))$. On the other hand, it is well-known [14] that $U(n) / O(n)$ is diffeomorphic to $\mathscr{L}\left(R^{2 n}\right)$, the set of all Lagrangian subspaces of the symplectic vector space $R^{2 n}$ with the symplectic form $\omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$. So we obtain the cohomology of $\Omega_{0} \mathscr{L}\left(R^{2 n}\right)$.

Corollary 2.2. The space $\Omega_{0} \mathscr{L}\left(R^{2 n}\right)$ has the same cohomology algebra as $\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))$, which is explicitly given in Theorem 2.1.

Since $H^{*}(\Omega(\operatorname{SU}(n) / \mathrm{SO}(n)))$ has the same size as $\Gamma\left(z_{1}, \ldots, z_{n-1}\right)$ in every total degree as a graded vector space, the Poincaré series of the space $\Omega_{0} \mathscr{L}\left(R^{2 n}\right)$ is given by

$$
\begin{aligned}
P_{t}\left(\Omega_{0} \mathscr{L}\left(R^{2 n}\right)\right) & =\sum_{i \geqq 0} \operatorname{dim}_{Z_{2}} H^{i}\left(\Omega_{0} \mathscr{L}\left(R^{2 n}\right)\right) t^{i} \\
& =\left(1+t^{1}+t^{2}+\cdots\right) \cdots\left(1+t^{n-1}+t^{2 n-2}+\cdots\right) \\
& =\prod_{i=1}^{n-1} \frac{1}{\left(1-t^{i}\right)} .
\end{aligned}
$$

For $n \geqq 3$, the i-th Betti number grows at least linearly as i increases. So does the i-th Betti number with coefficients in Z.
3. Homology of the double loop space of $\mathbf{S U}(n) / \mathbf{S O}(n)$. We will compute $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$ using the Serre spectral sequence for the fibration

$$
\Omega^{2} \mathrm{SU}(n) \longrightarrow \Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n)) \longrightarrow \Omega_{0} \mathrm{SO}(n) .
$$

Hence we need to know $H_{*}\left(\Omega^{2} \mathrm{SU}(n)\right)$ and $H_{*}\left(\Omega_{0} \mathrm{SO}(n)\right)$. Recall the following fact in [12].

Theorem 3.1.

$$
\begin{aligned}
H_{*}\left(\Omega^{2} \mathrm{SU}(n)\right) & =E\left(u_{2^{k+1} l_{l-1}}: 0<l \leqq \frac{n-1}{2}, k \geqq 0, \text { lodd }\right) \\
& \otimes Z_{2}\left[v_{2^{k+2} l-2}: 0<l \leqq \frac{n-1}{2}, 2^{k+1} l \geqq n-1, \text { lodd }\right] \\
& \otimes Z_{2}\left[u_{2^{k+1} l-1}: \frac{n-1}{2} \leqq l \leqq n-1, k \geqq 0, \text { lodd }\right] .
\end{aligned}
$$

Since $\operatorname{Spin}(n)$ is a double covering space of $\mathrm{SO}(n), \Omega_{0} \mathrm{SO}(n)$ is homeomorphic to $\Omega \operatorname{Spin}(n)$. It is known [11, Chapter 4, Theorem 2.19] that

$$
\begin{aligned}
H^{*}(\operatorname{Spin}(n)) & =V\left(x_{i} \mid 3 \leqq i \leqq n-1 \text { and } i \neq 2^{j}\right) \otimes E\left(z_{2^{s+1}-1}\right) \\
S q^{r}\left(x_{i}\right) & =\binom{i}{r} x_{i+r}, r \leqq i, \quad i+r \leqq n-1
\end{aligned}
$$

where s is the number satisfying $2^{s}<n \leqq 2^{s+1}$. The following lemma comes from the computation of the Eilenberg-Moore spectral sequence converging to $H_{*}\left(\Omega_{0} \mathrm{SO}(n)\right)=H_{*}(\Omega \operatorname{Spin}(n))$ with

$$
E^{2}=\operatorname{Cotor}^{H_{*}(\operatorname{Spin}(n))}\left(Z_{2}, Z_{2}\right)=\operatorname{Ext}_{H^{*}(\operatorname{Sin}(n))}\left(Z_{2}, Z_{2}\right)
$$

Lemma 3.2.

$$
\begin{aligned}
H_{*}\left(\Omega_{0} \mathrm{SO}(n)\right) & =E\left(a_{2 i}: 1 \leqq i \leqq \frac{n-3}{4}\right) \\
& \otimes Z_{2}\left[a_{2 i}: \frac{n-2}{4} \leqq i \leqq \frac{n-2}{2}\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: \frac{n-4}{4} \leqq i \leqq \frac{n-3}{2}\right]
\end{aligned}
$$

Proof. We consider n modulo 4. Once we find $H_{*}\left(\Omega_{0} \mathrm{SO}(4 n)\right)$, the other cases can be obtained by a similar way. Here we compute $H_{*}(\Omega \operatorname{Spin}(4 n))$ instead.

$$
\begin{aligned}
H^{*}(\operatorname{Spin}(4 n)) & =V\left(x_{i} \mid 3 \leqq i \leqq 4 n-1 \text { and } i \neq 2^{j}\right) \otimes E\left(z_{2^{s+1}-1}\right) \\
S^{r}\left(x_{i}\right) & =\binom{i}{r} x_{i+r}, r \leqq i, \quad i+r \leqq 4 n-1
\end{aligned}
$$

where $2^{s}<4 n \leqq 2^{s+1}$. As in Theorem 2.1, $\sigma(n, i)$ is the number satisfying the relation, $(2 i+1) 2^{\sigma(4 n, i)-1} \leqq 4 n-1<(2 i+1) 2^{\sigma(4 n, i)}$. From the Steenrod actions on x_{i}, we have $x_{2 i}=$ $S q^{i}\left(x_{i}\right)=x_{i}^{2}$ for $1 \leqq i \leqq 2 n-1$. By applying the method in the proof of Theorem 2.1, we get $x_{2 i+1}^{2^{\sigma(4 n, i)-1}}=x_{(2 i+1) 2^{\sigma(4 n, i)-1}}$ and $x_{2 i+1}^{2^{\sigma(4 n, i)}}=\left(x_{(2 i+1) 2^{\sigma(4 n, i)-1}}\right)^{2}=0$ for $1 \leqq i \leqq 2 n-1$. So we get

$$
\begin{aligned}
H^{*}(\operatorname{Spin}(4 n)) & =\left\{\bigotimes_{1 \leqq i \leqq n-1} Z_{2}\left[x_{2 i+1}\right] /\left(\left(x_{2 i+1}\right)^{2^{\sigma(4 n, i)}}\right)\right\} \\
& \otimes\left\{\bigotimes_{n \leqq i \leqq 2 n-1} E\left(x_{2 i+1}\right)\right\} \otimes E\left(z_{2^{s+1}-1}\right)
\end{aligned}
$$

Consider the Eilenberg-Moore spectral sequence converging to $H_{*}(\Omega \operatorname{Spin}(4 n))$ with

$$
\begin{aligned}
E^{2} & =\operatorname{Ext}_{H^{*}(\operatorname{Spin}(4 n))}\left(Z_{2}, Z_{2}\right) \\
& =E\left(a_{2 i}: 1 \leqq i \leqq n-1\right) \otimes Z_{2}\left[b_{(2 i+1) 2^{\sigma(4 n, i)}-2}: 1 \leqq i \leqq n-1\right] \\
& \otimes Z_{2}\left[a_{2 i}: n \leqq i \leqq 2 n-1\right] \otimes Z_{2}\left[b_{2^{s+1}-2}\right] .
\end{aligned}
$$

Since $\left\{(2 i+1) 2^{\sigma(4 n, i)-1}: 1 \leqq i \leqq n-1\right\} \cup\left\{2^{s}\right\}=\{2 i: 2 n \leqq 2 i \leqq 4 n-1\},\left\{(2 i+1) 2^{\sigma(4 n, i)}-2\right.$: $1 \leqq i \leqq n-1\} \cup\left\{2^{s+1}-2\right\}=\{4 i-2: n \leqq i \leqq 2 n-1\}$. Hence we get

$$
\begin{aligned}
E^{2}= & E\left(a_{2 i}: 1 \leqq i \leqq n-1\right) \otimes Z_{2}\left[a_{2 i}: n \leqq i \leqq 2 n-1\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: n-1 \leqq i \leqq 2 n-2\right] .
\end{aligned}
$$

Since E^{2} vanishes in all odd degrees, the spectral sequence collapses at the E^{2}-term. Hence $E^{2}=E^{\infty}$.

We claim that there are no multiplicative extension problems here. First we recall the following in [2]. The generating variety for the homology of $\Omega \operatorname{Spin}(4 n)$ is $V_{4 n-2}=\mathrm{SO}(4 n) /(\mathrm{SO}(2) \times$ $\mathrm{SO}(4 n-2)$) and $\lim _{n \rightarrow \infty} V_{4 n-2}=C P^{\infty}$ is the generating variety for the homology of $\Omega \mathrm{Spin}$, that is, we have a map from $V_{4 n-2}$ to $\Omega \operatorname{Spin}(4 n)$ such that the image of $H_{*}\left(V_{4 n-2}\right)$ under the induced map generates $H_{*}(\Omega \operatorname{Spin}(4 n))$ as an algebra. Here $H^{*}\left(V_{4 n-2}\right)=Z_{2}\left[u_{2}\right] /\left(u_{2}^{2 n}\right) \otimes$ $E\left(v_{4 n-2}\right)$ and $H_{*}\left(V_{4 n-2}\right)$ is free on $\left\{1, \alpha_{2}, \alpha_{4}, \cdots, \alpha_{4 n-2}\right\} \cup\left\{\beta_{4 n-2}, \beta_{4 n}, \cdots, \beta_{8 n-4}\right\}$. By the HopfBorel theorem, $H^{*}(\Omega \operatorname{Spin}(4 n))$ is the tensor product of monogenic Hopf algebras which are of the form $Z_{2}[x]$ or $Z_{2}[x] /\left(x^{2^{k}}\right)$ as an algebra. If there were any extension, the only possible extension would occur in $E\left(a_{2 i}: 1 \leqq i \leqq n-1\right)$ to make the square of $a_{2 i}$ equal $a_{4 i}$ by the degree reason.

Now we consider the following diagram

where i and ι are inclusion maps. Then for $1 \leqq i \leqq 2 n-1$, the image of each $\alpha_{2 i}$ under the generating map is $a_{2 i}$ modulo decomposables in $H_{*}(\Omega \operatorname{Spin}(4 n))$. From the diagram we can find that each $a_{2 i}$ under $(\Omega \iota)_{*}$ corresponds a generator in $H_{*}(\Omega$ Spin $)$ which is the exterior algebra on generators of every even degree [4], [11]. In fact, there are choices of generators such that $H_{*}(\Omega \mathrm{Spin})$ is $E\left(a_{2}, a_{4}, a_{6}, \ldots\right)$. Note that $\Omega \iota$ is an H-map. So if $a_{2 i}^{2}=a_{4 i}$,

$$
0 \neq(\Omega \iota)_{*}\left(a_{4 i}\right)=(\Omega \iota)_{*}\left(a_{2 i}^{2}\right)=(\Omega \iota)_{*}\left(a_{2 i}\right)(\Omega \iota)_{*}\left(a_{2 i}\right)=0
$$

This is a contradiction. So there is no extension. In fact, we can also derive the same result from [2]. Now we get

$$
\begin{aligned}
H_{*}(\Omega \operatorname{Spin}(4 n)) & =E\left(a_{2 i}: 1 \leqq i \leqq n-1\right) \otimes Z_{2}\left[a_{2 i}: n \leqq i \leqq 2 n-1\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: n-1 \leqq i \leqq 2 n-2\right]
\end{aligned}
$$

In a similar way, we also get

$$
\begin{aligned}
H_{*}(\Omega \operatorname{Spin}(4 n+1)) & =E\left(a_{2 i}: 1 \leqq i \leqq n-1\right) \otimes Z_{2}\left[a_{2 i}: n \leqq i \leqq 2 n-1\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: n \leqq i \leqq 2 n-1\right], \\
H_{*}(\Omega \operatorname{Spin}(4 n+2)) & =E\left(a_{2 i}: 1 \leqq i \leqq n-1\right) \otimes Z_{2}\left[a_{2 i}: n \leqq i \leqq 2 n\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: n \leqq i \leqq 2 n-1\right], \\
H_{*}(\Omega \operatorname{Spin}(4 n+3)) & =E\left(a_{2 i}: 1 \leqq i \leqq n\right) \otimes Z_{2}\left[a_{2 i}: n+1 \leqq i \leqq 2 n\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: n \leqq i \leqq 2 n\right] .
\end{aligned}
$$

We can rewrite the above as follows.

$$
\begin{aligned}
H_{*}(\Omega \operatorname{Spin}(n)) & =E\left(a_{2 i}: 1 \leqq i \leqq \frac{n-3}{4}\right) \\
& \otimes Z_{2}\left[a_{2 i}: \frac{n-2}{4} \leqq i \leqq \frac{n-2}{2}\right] \\
& \otimes Z_{2}\left[b_{4 i+2}: \frac{n-4}{4} \leqq i \leqq \frac{n-3}{2}\right]
\end{aligned}
$$

From the homotopy exact sequence

$$
\cdots \rightarrow \pi_{2}(\mathrm{SU}(n)) \rightarrow \pi_{2}(\mathrm{SU}(n) / \mathrm{SO}(n)) \rightarrow \pi_{1}(\mathrm{SO}(n)) \rightarrow \pi_{1}(\mathrm{SU}(n)) \rightarrow \cdots,
$$

we get $\pi_{2}(\mathrm{SU}(2) / \mathrm{SO}(2))=Z$ and $\pi_{2}(\mathrm{SU}(n) / \mathrm{SO}(n))=Z_{2}$ for $n \geqq 3$. Since there is an Hopf fibration for $n=2, \mathrm{SO}(2) \rightarrow \mathrm{SU}(2) \rightarrow \mathrm{SU}(2) / \mathrm{SO}(2) \cong S^{2}$, we obtain that $\Omega^{2}(\mathrm{SU}(2) / \mathrm{SO}(2)) \cong$ $\Omega^{2} \mathrm{SU}(2) \times Z$. Hence by Theorem 3.1,

$$
H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(2) / \mathrm{SO}(2))\right)=H_{*}\left(\Omega^{2} \mathrm{SU}(2)\right)=Z_{2}\left[u_{2^{k+1}-1}: k \geqq 0\right] .
$$

Theorem 3.3. For $n \geqq 3, H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$ is

$$
\begin{aligned}
& E\left(x_{(2 i+1) 2^{k}-1}: 1 \leqq i \leqq \frac{n-3}{4}, k \geqq 0\right) \\
& \otimes Z_{2}\left[y_{(2 i+1)^{k} 2^{\sigma(n, i)}-2}: 1 \leqq i \leqq \frac{n-3}{4}, k \geqq 0\right] \\
& \otimes Z_{2}\left[x_{(2 i+1)^{k}-1}: \frac{n-3}{4}<i \leqq \frac{n-2}{2}, k \geqq 0\right] \otimes E\left(x_{2^{k+1}-1}: k \geqq 0\right) \\
& \otimes Z_{2}\left[y_{2^{k+1} 2^{\sigma(n, 0)}-2}: k \geqq 0\right] \otimes Z_{2}\left[y_{2^{\sigma(n, 0)}-2}\right]
\end{aligned}
$$

where $\sigma(n, i)$ is the integer defined in Theorem 2.1.
Proof. We have the morphism of fibrations

where i, j, and ι are inclusion maps. By Bott periodicity, we have the following [3], [4], [11].

$$
\begin{aligned}
H_{*}\left(\Omega^{2} \mathrm{SU}\right) & =E\left(u_{2 i+1}: i \geqq 0\right) \\
H_{*}\left(\Omega_{0}^{2}(\mathrm{SU} / \mathrm{SO})\right) & =E\left(x_{i}: i \geqq 1\right) \\
H_{*}\left(\Omega_{0} \mathrm{SO}\right) & =E\left(a_{2 i}: i \geqq 1\right)
\end{aligned}
$$

So the Serre spectral sequence converging to $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU} / \mathrm{SO})\right)$ for the bottom row collapses at the E^{2}-term because as a graded vector space the size of the E^{2}-term is the same as that of the total space. We know from [12, Theorem 1.11] that for all $u_{2 i+1}$ in $H_{*}\left(\Omega^{2} \mathrm{SU}(n)\right)$,

$$
\left(\Omega^{2} i\right)_{*}\left(u_{2 i+1}\right)=u_{2 i+1}
$$

Now consider the Serre spectral sequence converging to $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right.$) for the top row. We claim that it collapses at the E^{2}-term. Since it is a spectral sequence of an Hopf algebra, the first nontrivial differential which is from an indecomposable element to a primitive element acts in a transgressive manner. Assume that it does not collapse at the E^{2}-term. Then there exists a first nontrivial differential from $a_{2 i}$ or $b_{4 i+2}$ for some i. Since $u_{2 i-1}$ and $u_{4 i+1}$ are the only primitives of possible degree, we have

$$
d_{2 i}\left(a_{2 i}\right)=u_{2 i-1} \quad \text { or } \quad d_{4 i+2}\left(b_{4 i+2}\right)=u_{4 i+1}
$$

Since the spectral sequence for the bottom row of the diagram (2) collapses at E_{2}-term, by naturality

$$
\left(\Omega^{2} i\right)_{*}\left(d_{2 i}\left(a_{2 i}\right)\right)=d_{2 i}\left((\Omega \iota)_{*}\left(a_{2 i}\right)\right)=0
$$

If $d_{2 i}\left(a_{2 i}\right)=u_{2 i-1},\left(\Omega^{2} i\right)_{*}\left(d_{2 i}\left(a_{2 i}\right)\right)=\left(\Omega^{2} i\right)_{*}\left(u_{2 i-1}\right)=u_{2 i-1}$ which is a contradiction. So $d_{2 i}\left(a_{2 i}\right)$ $=0$. Similarly we can show that $d_{4 i+2}\left(b_{4 i+2}\right)=0$. Hence the spectral sequence collapses at the E^{2}-term and the E^{∞}-term is

$$
\begin{align*}
& E\left(u_{2^{k+1}{ }_{l-1}}: 0<l \leqq \frac{n-1}{2}, k \leqq 0, l \text { odd }\right) \\
& \otimes Z_{2}\left[v_{2^{k+2} l_{l-2}}: 0<l \leqq \frac{n-1}{2}, 2^{k+1} l \geqq n-1, l \text { odd }\right] \tag{3}\\
& \otimes Z_{2}\left[u_{2^{k+1} l_{l-1}}: \frac{n-1}{2} \leqq l \leqq n-1, k \leqq 0, l \text { odd }\right] \otimes E\left(a_{2 i}: 1 \leqq i \leqq \frac{n-3}{4}\right) \\
& \otimes Z_{2}\left[a_{2 i}: \frac{n-2}{4} \leqq i \leqq \frac{n-2}{2}\right] \otimes Z_{2}\left[b_{4 i+2}: \frac{n-4}{4} \leqq i \leqq \frac{n-3}{2}\right]
\end{align*}
$$

Since all u_{i}, v_{i}, a_{i} and b_{i} in E^{2} survive to $E^{\infty}=E^{0}\left(H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)\right)$, we consider them as elements in $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$. From the diagram (2), we know that $\left(\Omega^{2} j\right)_{*}\left(u_{i}\right)=x_{i}$ and $\left(\Omega^{2} j\right)_{*}\left(a_{2 i}\right)=x_{2 i}$ for all $u_{i}, a_{2 i}$ in $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$. We will show that there are no multiplicative extensions. Here $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$ is the tensor product of monogenic Hopf algebras which are of the form $Z_{2}[x]$ or $Z_{2}[x] /\left(x^{2^{k}}\right)$ as an algebra. If there were extensions, there would be two possibilities. One is $u_{i}^{2}=a_{2 i}$. Then these elements $u_{i}, a_{2 i}$ are mapping to $x_{i}, x_{2 i}$ by $\left(\Omega^{2} j\right)_{*}$, respectively in $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU} / \mathrm{SO})\right)$. Since $\Omega^{2} j$ is a H-map, in $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU} / \mathrm{SO})\right)$ we have

$$
x_{2 i}=\left(\Omega^{2} j\right)_{*}\left(a_{2 i}\right)=\left(\Omega^{2} j\right)_{*}\left(u_{i}^{2}\right)=\left(\Omega^{2} j\right)_{*}\left(u_{i}\right)\left(\Omega^{2} j\right)_{*}\left(u_{i}\right)=x_{i} x_{i}=0 .
$$

This is a contradiction. The other possibility is $u_{i}^{2}=b_{2 i}$. We show that it cannot occur. Consider the map $h: \Omega(\mathrm{SU}(n) / \mathrm{SO}(n)) \rightarrow K\left(Z_{2}, 1\right)$ such that $h^{*}\left(\omega_{1}\right)=z_{1}$ in $H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)))$ where $H^{*}\left(K\left(Z_{2}, 1\right)\right)=H^{*}\left(R P^{\infty}\right)=Z_{2}\left[\omega_{1}\right]$. Then we have the fibration

$$
\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))\langle 1\rangle \longrightarrow \Omega(\mathrm{SU}(n) / \mathrm{SO}(n)) \xrightarrow{h} K\left(Z_{2}, 1\right)
$$

where $\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))\langle 1\rangle$ is a 1 -connected cover of $\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))$. Since the lowest generator z_{1} has the height $2^{\sigma(n, 0)}$ by Theorem 2.1, $w_{1}^{2^{\sigma(n, 0)}}$ in $H^{*}\left(R P^{\infty}\right)$ should be the target of a differential in the Serre spectral sequence for above fibration. Since this is a spectral sequence of a Hopf algebra, there should be some generator of degree $\sigma(n, 0)-1$, let $c_{2^{\sigma(n, 0)}-1}$, such that

$$
\begin{aligned}
H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))\langle 1\rangle) & =\left\{\bigotimes_{2 \leqq 2 i \leq n-2}\left\{\bigotimes_{k \geqq 0} Z_{2}\left[\gamma_{2^{k}}\left(z_{2 i+1}\right)\right] /\left(\gamma_{2^{k}}\left(z_{2 i+1}\right)^{2^{\sigma(n, i)}}\right)\right\}\right\} \\
& \otimes\left\{\bigotimes_{k \geqq 0} Z_{2}\left[\gamma_{2^{k}}\left(z_{2}\right)\right] /\left(\gamma_{2^{k}}\left(z_{2}\right)^{2^{\sigma(n, 0)}}\right)\right\} \otimes E\left(c_{2^{\sigma(n, 0)}-1}\right)
\end{aligned}
$$

Note that $Z_{2}\left[\gamma_{2^{k}}\left(z_{2 i+1}\right): \frac{n-3}{4}<i \leqq \frac{n-2}{2}, k \geqq 0\right] /\left(\gamma_{2^{k}}\left(z_{2 i+1}\right)^{\left.2^{\sigma(n, i)}\right)}\right.$ is $E\left(\gamma_{2^{k}}\left(z_{2 i+1}\right): \frac{n-3}{4}<i\right.$ $\leqq \frac{n-2}{2}, k \geqq 0$). Consider the Eilenberg-Moore spectral sequence converging to
$H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$ where E^{2}-term is

$$
\begin{aligned}
& \operatorname{Ext}_{H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n)\langle 1\rangle)}\left(Z_{2}, Z_{2}\right) \\
& =\left\{\bigotimes _ { k \geqq 0 } \left(E\left(x_{(2 i+1) 2^{k}-1}: 1 \leqq i \leqq \frac{n-3}{4}\right)\right.\right. \\
& \left.\left.\otimes Z_{2}\left[y_{(2 i+1) 2^{k_{2} \sigma(n, i)-2}}: 1 \leqq i \leqq \frac{n-3}{4}\right]\right)\right\} \\
& \otimes\left\{\bigotimes_{k \geqq 0} Z_{2}\left[x_{(2 i+1) 2^{k}-1}: \frac{n-3}{4}<i \leqq \frac{n-2}{2}\right]\right\} \\
& \otimes\left\{\bigotimes_{k \geqq 0}\left(E\left(x_{2^{k+1}-1}\right) \otimes Z_{2}\left[y_{2^{k+1} 2^{\sigma(n, 0)}-2}\right]\right)\right\} \otimes Z_{2}\left[y_{2^{\sigma(n, 0)}-2}\right] .
\end{aligned}
$$

Then by simple calculation, this E^{2}-term has the same size in every total degree as the E^{∞}-term (3) as a graded vector space. In fact, inspecting on degree of each generator, we can find that both are exactly same as an algebra. Hence the above Eilenberg-Moore spectral sequence collapses at the E^{2}-term and $E^{2}=E^{\infty}$.

Now we go back to the extension problem. If there were such an extension, $u_{i}^{2}=b_{2 i}$ in (3), then it would force an extension $x_{i}^{2}=y_{2 i}+$ some decomposables in above E^{∞}-term. This implies that $y_{2 i}$ becomes a decomposable element in $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$. Consider the Eilenberg-Moore spectral sequence converging to $H^{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$ with

$$
E_{2}=\operatorname{Tor}_{H^{*}(\Omega(\mathrm{SU}(n) / \mathrm{SO}(n))\langle 1))}\left(Z_{2}, Z_{2}\right)
$$

By duality, this Eilenberg-Moore spectral sequence also collapses at the E_{2}-term. Then it follows that $y_{2 i}$ is dual to a transpotence element which becomes a primitive element in $H^{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$. Hence $y_{2 i}$ becomes an indecomposable element, which gives a contradiction. So there is no extension and we get $H_{*}\left(\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))\right)$.

Since $\Omega(U(n) / O(n)) \cong \Omega(\mathrm{SU}(n) / \mathrm{SO}(n)) \times Z$, by looping one more time, we get $\Omega^{2}(U(n) / O(n)) \cong \Omega^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))$. With the same argument for Corollary 2.2, we also get the homology of the double loop space of $\mathscr{L}\left(R^{2 n}\right)$.

Corollary 3.4. The space $\Omega_{0}^{2} \mathscr{L}\left(R^{2 n}\right)$ has the same homology algebra as $\Omega_{0}^{2}(\mathrm{SU}(n) / \mathrm{SO}(n))$, which is $\underset{k \geqq 0}{\otimes} Z_{2}\left[u_{2^{k+1}-1}\right]$ for $n=2$ and is explicitly given in Theorem 3.3 for $n \geqq 3$.

References

[1] A. Bahri, Polynomial generators for $H_{*}\left(\mathrm{BSO} ; Z_{2}\right), H_{*}\left(\mathrm{BSpin} ; Z_{2}\right)$ and $H_{*}\left(\mathrm{BO}\langle 8\rangle ; Z_{2}\right)$ arising from the bar construction. In: Current Trends in Algebraic Topology, Canadian Math. Soc. Conference Proceedings 2, Part 1, 419-428 (1982).
[2] R. Bотт, The space of loops on a Lie group. Michigan Math. J. 5, 35-61 (1958).
[3] R. Вотт, The stable homotopy of the classical Lie groups. Ann. Math. 70, 313-337 (1959).
[4] H. Cartan, Démonstration homologique des théorèmes de périodicitè de Bott, I, II, III. In: Séminaire Cartan et Moore, Exposés 16, 17, 18, Ecole Norm. Sup. Paris 1959/1960.
[5] Y. Choi, Homology of the double and triple loop space of SO(n). Math. Z. 222, 59-80 (1996).
[6] S. Eilenberg and J. C. Moore, Homological algebra and fibrations. Colloque de Topologie, Bruxelles, 81-90 (1964).
[7] S. Eilenberg and J. C. Moore, Homology and fibrations I. Comm. Math. Helv. 40, 199-236 (1966).
[8] B. Harris, On the homotopy groups of the classical groups. Ann. Math. 74, 407-413 (1961).
[9] S. Maclane, Homology. Berlin 1975.
[10] J. MCCleary, User's guide to spectral sequences. 1985.
[11] M. Mimura and H. Toda, Topology of Lie groups, I and II. Transl. Math. Monographs 91, 1991.
[12] D. C. Ravenel, The homology and Morava K-theories of $\Omega^{2} \mathrm{SU}(n)$. Forum Math. 5, 1-21 (1993).
[13] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence. Trans. Amer. Math. Soc. 129, 58-93 (1967).
[14] I. VAISmAN, Symplectic geometry and secondary characteristic classes. Progr. Math. 72, 1987.
[15] D. F. WAGONNER, Loop spaces and the classical unitary groups. Ph.D. thesis, University of Kentucky, 1985.

Eingegangen am 02. 07. 1996^{*})
Anschrift des Autors:
Younggi Choi
Department of Mathematics Education
Seoul National University
Seoul 151-742
Korea
yochoi@plaza.snu.ac.kr

[^1]
[^0]: Mathematics Subject Classification (2000): 55P35, 55R20.
 Supported by Basic Science Research Institute Program, Ministry of Education, and by the Korea Science and Engineering Foundation through GARC at Seoul National University.

[^1]: *) Die endgültige Fassung ging am 07. 07. 2000 ein.

