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Introduction

This set of notes offers an introduction to the Cartier-Dieudonné theory on commutative
smooth formal groups. The Cartier theory provides a dictionary, translating most questions
about commutative smooth formal groups into questions in linear algebra. The main theorem
3.3 says that the category of smooth commutative formal groups over a commutative ring
k is equivalent to a suitable full subcategory of the category of left modules over a certain
non-commutative ring Cart(k). The equivalence above is a sort of Morita equivalence. When
the ring k is a Z(p)-algebra, where p is a prime number, there is a “local version” of the main
theorem, with the ring Cart(k) replaced by a subring Cartp(k) of Cart(k) defined by an
idempotent in Cart(k).

A key role is played by a smooth commutative formal group Λ, which is a “restricted
version” of the formal completion of the group scheme of universal Witt vectors; see 1.6 for
its definition. This smooth formal group Λ is in some sense a free generator of the additive
category of smooth commutative formal groups. The ring Cart(k) is the opposite ring of
Endk(Λ); it is in natural bijection with the set of all formal curves in Λ.

An excellent presentation of Cartier theory can be found in the booklet [Z] by T. Zink,
where the approach in $2 of [R] is fully developed. We have followed [Z] closely, and we make
no claim whatsoever to the originality of the exposition here. Exercises appear throughout;
they form an integral part of the notes. The readers are advised to try as many of them as
possible. Besides [Z], there are two other standard references for Cartier theory. Lazard’s
monograph [L] is the first complete documentation of Cartier’s theory. Hazewinkel’s treat-
ment [H] employs the technology of the “functional equation lemma”, it is a useful reference,
with 573+ix pages and a good indexing system.

Although the main results of Cartier theory does not depend on the Witt vectors, in
applications the Witt vectors are indispensable. The basic properties of both the ring of
universal Witt vectors and the ring of p-adic Witt vectors can be found in Appendix A; the
exposition there is self-contained. The Witt vectors can also be viewed as being a part of
the Cartier theory, for they are the Cartier module attached to the formal completion Ĝm

of Gm in the two versions of Cartier theory. The group of universal Witt vectors consists of
all formal curves in Ĝm, and the group of p-adic Witt vectors consists of all p-typical formal
curves in Ĝm.

§1. Formal groups
In this section k denotes a commutative ring with 1. The notion of formal groups adopted
here differs slightly from the standard definition, because we consider them as functors on
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the category of nilpotent algebras.

(1.1) Definition Let Nilpk be the category of all nilpotent k-algebras, consisting of all
commutative k-algebras N without unit such that Nn = 0 for some positive integer n.

(1.1.1) Remark Clearly Nilpk is isomorphic to the category of all augmented k-algebras
k → R

ε−→ k such that the augmentation ideal I = Ker(ε) is nilpotent; the isomorphisms are
given by N 7→ k ⊕N and (R, ε) 7→ Ker(ε).

(1.1.2) Definition Let ProNilpk be the category of all filtered projective limits of nilpotent
k-algebras. Every functor G : Nilpk → Sets can be uniquely extended to a functor from
ProNilp to Sets which commutes with filtered projective limits; this extension is also denoted
by G. The analogous statement holds for functors from Nilpk to Ab.

Remark As an example, let k[[X1, . . . , Xn]] be the power series ring over k in n variables.
Denote by k[[X1, . . . , Xn]]+ the subset of k[[X1, . . . , Xn]] consisting of all power series whose
constant term is 0. Then k[[X1, . . . , Xn]]+ is an object in ProNilpk, and

G(k[[X1, . . . , Xn]]+) = lim←−
i≥1

G
(
k[[X1, . . . , Xn]]+

/
((X1, . . . , Xn)k[[X1, . . . , Xn]])i

)
.

(1.2) Definition Let G : Nilpk → Ab be a functor from Nilpk to the category of all abelian
groups.

(1) The functor G is left exact if it commutes with finite inverse limits and G(0) = (0).
(Actually the latter condition is a special case of the first one: take the inverse limit
over the empty indexing set.)

(2) The functor G is formally smooth if every surjection N1 → N2 in Nilpk induces a
surjection G(N1)→ G(N2).

(3) The functor G is right exact if it commutes with finite direct product, and every exact
sequence N3 → N2 → N1 → 0 in Nilpk induces an exact sequence G(N3)→ G(N2)→
G(N1)→ 0 in Ab.

(4) The functor G is weakly left exact if G commutes with finite direct product, and if for
every exact sequence

0→ N1 → N2
π−→ N3 → 0

in Nilpk such that N2
3 = (0) and N3 is a free k-module, the induced sequence

0→ G(N1)→ G(N2)→ G(N3)

is exact.
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(5) The functor G is half exact if G commutes with finite direct product, and if for every
exact sequence 0 → N1 → N

π−→ N2 → 0 in Nilpk such that N1 · N = (0), the
group G(N1) operates simply transitively on G(π)−1(ξ) for every ξ ∈ G(N2) such that
G(π)−1(ξ) 6= ∅.

Remark Left exactness implies weak left exactness and half exactness.

(1.2.1) Definition Let k be a commutative ring with 1 and let Modk be the category of
k-modules. There is a natural embedding of Modk into Nilpk, endowing each k-module M
the trivial multiplication structure, i.e. M ·M = (0). Let G be a functor from Nilpk to Ab

which commutes with finite direct sums. The tangent functor tG : Modk → Modk of G is
defined by restricting G to Modk and endowing G(M) the natural k-module structure for
any k-module M . The Lie algebra Lie(G) of G is defined to be G(k), where k is regarded as
an object in (Mod)k.

(1.3) Definition A functor G : Nilpk → Ab from Nilpk to the category of abelian groups
is a commutative smooth formal group if G is left exact, formally smooth, and commutes with
arbitrary direct sums.

(1.3.1) Definition Let k be a commutative ring with 1 and let I be an indexing set.

(i) Let X = (Xi)i∈I be a set of variables indexed by the set I. Denote by k[[X]] = k[[Xi]]i∈I
the inverse limit of all formal power series rings k[[Xj]]j∈J where J runs through all
finite subsets of I. In other words, k[[X]] = k[[XI ]] consists of all formal power series∑

α

aαX
α , aα ∈ k , Xα :=

∏
i∈I

Xαi
i

where α runs through all functions α : I → N vanishing outside some finite subset of
I. Elements of k[[X]] = k[[XI ]] are in bijection with k-valued functions on the set of
all monomials in the variables X.

(ii) Denote by k[[X]]+ the augmentation ideal of k[[X]], consisting of all power series
without the constant term. For each n ≥ 1, the quotient k[[X]]+/ (k[[X]]+)

n
is a

nilpotent k-algebra, and k[[X]]+ is the filtered inverse limit of the k[[X]]+/ (k[[X]]+)
n
’s.

(iii) Denote by Â(I) the functor from Nilpk to Sets such that

Â
(I)(N) =

⊕
i∈I

N ,

the set underlying the direct sum of I copies of N . Clearly elements of k[[X(I)]] gives
rise to formal functions on Â(I), i.e. maps from Â

(I) to Â1.
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(1.3.2) Definition Let k be a commutative ring with 1 and let I be a set. A commutative
formal group law on Â(I) is morphism µ : Â(I) × Â(I) → Â

(I) which provides a commutative
group law on Â(I). Equivalently, a commutative formal group law is a homomorphism µ∗ :
k[[X(I)]] → k[[X(I), Y (I)]] which is coassociative, cocommutative, and admits a coinverse.
Often we identify µ∗ with the its restriction to the free topological generators X.

It is easy to see that every commutative formal group law on Â(I) defines a commutative
smooth formal group.

(1.4) Some Examples.

(1.4.1) The formal group Ĝa attached to the additive group:

Ĝa(N) := N,

the additive group underlying the nilpotent k-algebra N .

(1.4.2) The formal group Ĝm attached to the multiplicative group:

Ĝm(N) := 1 +N ⊂ (k ⊕N)× ∀ N ∈ Nilpk .

Here (k ⊕N)× denotes the group of units of the augmented k-algebra k ⊕N , so the group
law is (1 + u) · (1 + v) = 1 + u+ v + uv for u, v ∈ N .

(1.5) The Lubin-Tate formal group.

(1.5.1) Let O be a complete discrete valuation ring whose residue field κ is a finite field
with q = pa elements, where p is a prime number. Let π be a uniformizing element of O.
Recall that a Lubin-Tate formal group law over O is a one-dimensional smooth formal group
G = Spf(O[[X]]) over O with an endomorphism φ : G→ G such that

φ(X) := φ∗(X) ≡ πX +Xq (mod (π,X2)) .

It is well-known that every polynomial φ(X) ∈ O[[X]] satisfying the above property uniquely

determines a formal group law Φφ(X, Y ) on Â1 = Spf(O[[X]]) such that φ(X) defines an
endomorphism of Φφ(X, Y ). In fact there is a ring homomorphism α : O → End(Φφ) such
that α(π) = φ(X), and φ(a) induces “multiplication by a” on the Lie algebra, ∀ a ∈ O.
Moreover for any two Lubin-Tate formal groups Φφ1 ,Φφ2 over O, there exists a unique O-
equivariant isomorphism ψ : Φφ1

∼−→ Φφ2 such that ψ(X) ≡ X (mod X2).
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(1.5.2) Let O, π be as above, q = Card(O/πO). Let K be the fraction field of O. Let

fπ(X) =
∑
n≥0

Xqn

πn
= X +

Xq

π
+
Xq2

π2
+ · · · ∈ K[[X]] .

Let Φπ(X, Y ) = f−1
π (fπ(X) + fπ(Y )). A priori Φπ(X,Y ) has coefficients in K, but in fact

Φπ(X, Y ) ∈ O[[X, Y ]]. This can be proved directly, or one can use the “functional equation
lemma” on p.9 of [H], since fπ(X) satisfies the functional equation

fπ(X) = X +
1

π
fπ(Xq) .

It follows that Φπ(X, Y ) is a one-dimensional formal group law, and fπ(X) is the logarithm
of Φπ(X, Y ). Moreover one checks that the polynomial

φπ(X) := f−1
π (π fπ(X))

has coefficients in O and satisfies

φπ(X) ≡ πX +Xq (mod π x2 O[[X]]) .

Hence Φπ(X,Y ) is a Lubin-Tate formal group law for (O, π).

(1.6) Definition We define a “restricted version” of the smooth formal group attached to
the universal Witt vector group, denoted by Λ:

Λ(N) = 1 + t k[t]⊗k N ⊂ ((k ⊕N)[t])× ∀ N ∈ Nilpk .

In other words, the elements of Λ(N) consists of all polynomials of the form 1+u1 t+u2 t
2 +

· · · + ur t
r for some r ≥ 0, where ui ∈ N for i = 1, . . . , r. The group law of Λ(N) comes

from multiplication in the polynomial ring (k⊕N)[t] in one variable t. The formal group Λ
will play the role of a free generator in the category of (smooth) formal groups. When we
want to emphasize that the polynomial 1 +

∑
i≥1 ui t

i is regarded as an element of Λ(N), we
denote it by λ(1 +

∑
i≥1 ui t

i).

(1.6.1) Remark (i) It is easy to see that Λ(k[[X]]+) consists of all formal power series
in k[[X, t]] of the form

1 +
∑
m,n≥1

bm,nX
mtn , bm,n ∈ k

such that for every m, there exists an integer C(m) such that bm,n = 0 for all n ≥ C(m).

(ii) The formal completion W̃∧ of the universal Witt vector group W̃ , defined in §A, is
given by

W̃∧(N) = 1 + tN [[t]] ⊂ ((k ⊕N)[[t]])× ∀ N ∈ Nilpk .

In particular W̃ (k[[X]]+) consists of all power series 1 +
∑

m,n≥1 bm,nX
mtn , bm,n ∈ k

in k[[X, t]]. However, this functor W̃∧ does not commute with infinite direct sums in
Nilpk, so it is not a commutative smooth formal group according to Def. 1.3.
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(1.6.2) Exercise Prove that for every nilpotent k-algebra N , every element of Λ(N) can
be uniquely expressed as a finite product

(1− a1 t) (1− a2 t
2) · · · (1− am tm)

with a1, . . . , am ∈ N . Deduce that

Λ(k[[X]]+) =

{ ∏
m,n≥1

(1− amnXm tn)

∣∣∣∣∣ am,n ∈ k, ∀m ∃Cm > 0 s.t. amn = 0 if n ≥ Cm

}

§2. The Cartier ring
(2.1) Definition Let k be a commutative ring with 1. Let H : Nilpk → Ab be a functor
from the category of commutative nilpotent k-algebras to the category of abelian groups,
extended to the category of topologically nilpotent k-algebras by filtered inverse limit as in
1.1.2. We say that H is weakly symmetric, or equivalently that H satisfies the weak symmetry
condition, if for every n ≥ 1, the natural map

H((k[[T1, . . . , Tn]]+)Sn)→ H(k[[T1, . . . , Tn]]+)Sn

induced by the inclusion k[[T1, . . . , Tn]]Sn ↪→ k[[T1, . . . , Tn]] is an isomorphism. Here Sn is
the symmetric group in n letters operating naturally on the power series ring k[[T1, . . . , Tn]].
Note that k[[T1, . . . , Tn]]Sn is the power series ring generated by the elementary symmetric
polynomials in the variables T1, . . . , Tn.

(2.1.1) Lemma Let k be a commutative ring with 1. Let H : Nilpk → Ab be a functor.
Suppose that H is left exact, that is H commutes with finite inverse limits. Then H is weakly
symmetric. In particular this is the case if H is a smooth commutative formal group over k.

Proof. The ring (k[[T1, . . . , Tn]]+)Sn is the fiber product of two ring homomorphisms from
k[[T1, . . . , Tn]]+ to

∏
σ∈Sn k[[T1, . . . , Tn]]+; one is the diagonal embedding, the other sends

f(T ) to (f(T σ))σ∈Sn . Applying the half-exactness of H to this fiber product, one deduces
(i). The stronger statement (ii) follows from the same argument.

(2.1.2) Exercise Prove the following stronger version of 2.1.1: If H : Nilpk → Ab is
weakly left exact, then H is weakly symmetric. (Hint: Consider the homomorphism α :
k[[T1, . . . , Tn]]+ × k[[T1, . . . , Tn]]+ →

∏
σ∈Sn k[[T1, . . . , Tn]]+ used in the proof of 2.1.1. Let

α′ be the homomorphism of induced by α between the graded k-modules associated to the
source and the target of α. First show that each graded piece of Coker(α′) is a free k-module.)

(2.2) Theorem Notation as in 2.1, and assume that H : Nilpk → Ab satisfies the weak
symmetry condition. Let Λ = Λk be the functor defined in 1.6. Then the map

YH : Hom(Λk, H)→ H(k[[X]]+)
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which sends each homomorphism α : Λ → H of group-valued functors to the element
α
k[[X]]+

(1−Xt) ∈ H(k[[X]]+) is a bijection.

Remark (i) Thm. 2.2 can be regarded as a sort of Yoneda isomorphism. The inverse of
YH is given in the proof.

(ii) The formal group Λ is in some sense a free generator of the additive category of
commutative smooth formal groups, a phenomenon reflected in Thm. 2.2.

Proof. Suppose that α ∈ Hom(Λ, H). Given any nilpotent k-algebra N and any element
f(t) = 1 + u1 t + u2 t

2 + · · · + un t
n ∈ Λ(N), we explain why the element αN(f) ∈ H(N) is

determined by the element hα := α
k[[X]]+

(1−Xt) ∈ H(k[[X]]+).

Let U1, . . . , Un be variables. Let β = βf,n : k[[U1, . . . , Un]]+ → N be the continuous
k-linear homomorphism such that β(Ui) = (−1)iui. Let

δ = δn : k[[U1, . . . , Un]]+ → k[[X1, . . . , Xn]]+

be the continuous homomorphism sending each Ui to the i-th elementary polynomial in the
variables X1, . . . , Xn. Clearly

αN(f) = H(β)α
k[[U1,...,Un]]+

(1− U1 t+ · · ·+ (−1)nUn t
n) .

Moreover we have

α
k[[U1,...,Un]]+

(1− U1 t+ · · ·+ (−1)nUn t
n) =

n∑
i=1

α
k[[X1,...,Xn]]+

(1−Xi t) =
n∑
i=1

H(ιi)(hα)

in H(k[[X1, . . . , Xn]]+)Sn = H(k[[U1, . . . , Un]]+) ⊂ H(k[[X1, . . . , Xn]]+), where ιi : k[[X]]+ →
k[[X1, . . . , Xn]]+ is the continuous k-algebra homomorphism sending X to Xi. The two
displayed formulas shows how to compute α

N
(f) for any element f(t) ∈ H(N) in terms of

α
k[[X]]

(1−Xt). The injectivity of YH follows.

Conversely, given an element h ∈ H(k[[X]]+), we have to construct a homomorphism
of functors α ∈ Hom(Λ, H) such that α

k[[X]]
(1 − Xt) = h. The argument above provides a

procedure to get an element αN(f) ∈ H(N) for any element f(t) ∈ Λ(N) for a nilpotent
k-algebra N . Explicitly, for f = 1 + u1 t+ u2 t

2 + · · ·+ un t
n ∈ Λ(N),

• let βf,n : k[[U1, . . . , Un]]+ → N be the continuous k-linear homomorphism such that
βf,n(Ui) = (−1)iui for each i,

• let jn : k[[U1, . . . , Un]]+ ↪→ k[[X1, . . . , Xn]]+ be the continuous k-linear injection such
that j(Ui) is equal to the i-th elementary symmetric polynomial in X1, . . . , Xn,

• let ιi : k[[X]]+ → k[[X1, . . . , Xn]]+ be the continuous k-linear homomorphism such that
ιi(X) = Xi, i = 1, . . . , n, and
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• let h̃n = h̃f,n ∈ H(k[[U1, . . . , Un]]+) be the element of H(k[[U1, . . . , Un]]+) such that
H(jn)(h̃n) =

∑n
i=1 H(ιi)(h).

Define αN(f) by

αN(f) = H (βf,n)
(
h̃f,n

)
It is not hard to check that the element αN(f) ∈ H(N) is independent of the choice of the
integer n, so that αN(f) is well-defined. This is left as an exercise, as well as the fact that
the collection of maps αN defines a functor from Nilpk to Ab.

Lastly, we verify that α(f1 + f2) = α(f1) + α(f2) for any f1(t), f2(t) ∈ H(k[[X]]+). It
suffices to check this in the universal case. In other words, it suffices to verify the equality
α(f1 + f2) = α(f1) + α(f2) in H(k[[U1, . . . , Un, V1, . . . , Vm]]+), where f1(t) = 1− U1 t+ · · ·+
(−1)nUn t

n and f2(t) = 1−V1 t+ · · ·+(−1)mVn t
m. As above we may assume that U1, . . . , Un

are the elementary symmetric polynomials in the variables X1, . . . , Xn and V1, . . . , Vm are
the elementary symmetric polynomials in the variables Y1, . . . , Ym. Let ιi (resp. ι′j) be the
continuous homomorphism from k[[X]] to k[[X1, . . . , Xn, Y1, . . . , Ym]] such that ιi(X) = Xi

(resp. ι′j(X) = Yj.) Then we have

α(f1) =
∑n

i=1 H(ιi)(h) ∈ H((k[[X]]+)Sn) = H((k[[X]]+)Sn) = H(k[[U ]]+) ⊂ H(k[[U, V ]]+)
α(f2) =

∑m
j=1 H(ι′j)(h)∈ H((k[[Y ]]+)Sm) = H((k[[Y ]]+)Sm) = H(k[[V ]]+) ⊂ H(k[[U, V ]]+)

and

α(f1 + f2) =
n∑
i=1

H(ιi)(h) +
m∑
j=1

H(ι′j)(h) ∈ H(k[[X1, . . . , Xn, Y1, . . . , Ym]]+)Sn+m

= H((k[[X1, . . . , Xn, Y1, . . . , Ym]]+)Sn+m) ⊂ H((k[[X, Y ]]+)Sn×Sm) = H(k[[U, V ]]+) .

We conclude that α(f1 + f2) = α(f1) + α(f2).

(2.2.1) Corollary Let h = h(X, t) be an element of Λ(k[[X]]+), and let Φ = Φh be the
endomorphism of Λk such that Φk[[X]](1 − Xt) = h(X, t). For each n ∈ N, define power
series nAh,1(U1, . . . , Un), . . . , nAh,n(U1, . . . , Un) ∈ k[[U1, . . . , Un]]+ by

n∏
i=1

h(Xi, t) = 1 + nAh,1(σ1(X), . . . , σn(X)) t+ . . .+ nAh,n(σ1(X), . . . , σn(X)) tn ,

where σi(X) denotes the i-th elementary symmetric polynomial in X1, . . . , Xn.

(i) Let N be a nilpotent k-algebra, and let f(t) = 1 +a1 t+a2 t
2 + · · ·+an t

n be an element
of Λk(N). Then ΦN(f) = Φh,N(f) is given by

ΦN(f) = 1 + nAh,1(−u1, u2, . . . , (−1)nun) t+ · · ·+ nAh,n(−u1, u2, . . . , (−1)nun) tn .
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(ii) We have n+1Ah,n+1(U1, . . . , Un, 0) = 0, and

n+1Ah,i(U1, . . . , Un, 0) = nAh,i(U1, . . . , Un)

for each i = 1, 2, · · · , n.

(iii) Suppose that h(X, t) ≡ 1 mod (Xm), and let s = dm
n
e. Then

nAh,i(U1, . . . , Un) ≡ 0 mod (U1, . . . , Un)s

for i = 1, . . . , n.

(iv) In the situation of (i) above, suppose that N r = (0), then Φh,N(f) = 0 if h(X, t) ≡ 1
mod (X(r−1)n+1).

Proof. The statements (i), (ii) are special cases of Thm. 2.2. The statements (iii), (iv) are
easy and left as exercises.

(2.3) Definition Define Cart(k) to be (End(Λk))
op, the opposite ring of the endomorphism

ring of the smooth formal group Λk. According to Thm. 2.2, for every weakly symmetric
functor H : Nilpk → Ab, the abelian group H(k[[X]]+) = Hom(Λk, H) is a left module over
Cart(k).

(2.3.1) Definition We define some special elements of the Cartier ring Cart(k), naturally
identified with Λ(k[[X]]) via the bijection Y = YΛ : End(Λ)

∼−→ Λ(k[[X]]+) in Thm. 2.2.

(i) Vn := Y −1(1−Xn t) , n ≥ 1,

(ii) Fn := Y −1(1−X tn) , n ≥ 1,

(iii) [c] := Y −1(1− cX t) , c ∈ k.

(2.3.2) Lemma For every positive integer n, denote by φn : k[[X]] → k[[X]] the k-algebra
homomorphism which sends X to Xn. For every c ∈ k, denote by ψc : k[[X]] → k[[X]] the
k-algebra homomorphism which sends X to cX. Then for every weakly symmetric functor
H : Nilp→ Ab, we have

Vn γ = H(φn)(γ) , [c] γ = H(ψc)γ

for every γ ∈ H(k[[X]]+) and every c ∈ k. Applying the above to Λ, we get

Vn [c]Fm = Y −1(1− cXn tm)

in Cart(k).

Proof. Exercise.
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(2.3.3) Remark Let W̃ be the ring scheme of universal Witt vectors defined in §A. For each

positive integer n we have endomorphisms Vn, Fn of W̃ . Consider the element ω(1−X T ) ∈
W̃ (Z[[X]]). Then Vn(ω(1−X T )) = ω(1−X T n), and Fn(ω(1−X T )) = ω(1−Xn T ). This
contrasts with the notation used in the Cartier ring: Vn = Y −1(1−Xn t), Fn = Y −1(1−X T n),
see also Exer. 2.4.2. This kind of ”flipping” is inevitable, since Cart(Z) operates on the right

of W̃ , and we want the same commutation relation of Vn, Fn with the endomorphisms [c] in
2.4 to hold in all situations.

Remark Often H(φn)(γ) is abbreviated as γ(Xn), and H(ψc)(γ) is shortened to γ(cX).
This is compatible with the standard notation when H is representable as a formal scheme
SpfR, where R is an augmented k-algebra complete with respect to the augmentation ideal.
The elements of H(k[[X]]) are identified with continuous homomorphisms R → k[[X]],
thought of as “formal curves” in Spf R.

(2.3.4) Corollary For every commutative ring with 1 we have

Cart(k) =

{ ∑
m,n≥1

Vm [cmn]Fn

∣∣∣∣ cmn ∈ k, ∀m ∃Cm > 0 s.t. cmn = 0 if n ≥ Cm

}

Proof. This is a direct translation of Exer. 1.6.2.

(2.3.5) Exercise Let k be a commutative ring with 1 and let n be an integer. Prove that
n is invertible in Cart(k) if and only if n is invertible in k.

(2.3.6) Lemma Suppose that H : Nilpk → Ab is weakly symmetric. Let n ≥ 1 be a positive
integer. Denote by k[ζn] the k-algebra k[T ]/(T n − 1), and let ζ = ζn be the image of T in
k[T ]/(T n−1). Denote by k[ζ][[X

1
n ]]+ the k[ζ]-algebra k[ζ][[X,U ]]+/(Un−X)k[ζ][[X,U ]], and

let X
1
n be the image of U in k[ζ][[X,U ]]+/(Un −X)k[ζ][[X,U ]]. For each i = 0, . . . , n − 1,

let φn,i : k[[X]]+ → k[ζ][[X
1
n ]]+ be the homomorphism of k-algebras which maps X to ζ iX

1
n .

Then

Fn · γ =
n∑
i=0

H(φn,i)(γ)

for every γ ∈ H(k[[X]]+); the equality holds in H(k[ζ][[X
1
n ]]+). Formally one can write the

above formula as Fn · γ =
∑n−1

i=0 γ(ζ iX
1
n ).

Proof. Use Cor. 2.2.1 and the equality
∏n

i=1 (1− ζ inX
1
n tn).

(2.4) Proposition The following identities hold in Cart(k).

(1) V1 = F1 = 1, Fn Vn = n.

(2) [a] [b] = [ab] for all a, b ∈ k

10



(3) [c]Vn = Vn [cn], Fn [c] = [cn]Fn for all c ∈ k, all n ≥ 1.

(4) Vm Vn = Vn Vm = Vmn, Fm Fn = Fn Fm = Fmn for all m,n ≥ 1.

(5) Fn Vm = Vm Fn if (m,n) = 1.

(6) (Vn[a]Fn) · (Vm[b]Fm) = r Vmn
r

[
a
m
r b

n
r

]
Fmn

r
, r = (m,n), for all a, b ∈ k, m,n ≥ 1.

Proof. We have seen that Cart(k) operates on the left of the set H(k[[X]]+) of all formal
curves in H for every weakly symmetric functor H : Nilpk → Ab. For each of the above
identities for elements in Cart(k), it suffices to check that the effect of both sides of the
equality on the element 1 − Xt ∈ Λ(k[[X]]+), by Thm. (2.2. The checking for (1)–(5) is
straightforward using 2.3.2 and 2.3.6; it is left to the reader. The statement (6) follows from
(1)–(5).

(2.4.1) Exercise Let k be a commutative ring with 1 and let W̃∧ be the formal completion

of the universal Witt vectors, so that W̃∧(N) = 1 +N [[T ]] ⊂ (k ⊕N)[[T ]]×.

(i) Prove that the map which sends every element Φ ∈ Endk(W̃
∧) to Φk[[X]](1 − XT )

establishes a bijection between Endk(W̃
∧) with the set of all power series in k[[X,T ]]

of the form 1 +
∑

m,n≥1 bmnX
m T n, bmn ∈ k.

(ii) Show that Endk(W̃
∧)op can be identified with the set of all expressions∑

m,n≥1

Vm [amn]Fn , amn ∈ k ,

such that the endomorphism represented by such a sum sends the element 1−XT ∈
W̃∧(k[[X]]+) to

∏
m,n≥1 (1 − amnXm T n). All identities in Prop. 2.4 hold in the ring

Endk(W̃
∧)op.

(2.4.2) Exercise Let k be a commutative ring with 1. The Cartier ring Cart(k) operates
naturally on the right of the formal group functor Λk. Let N be a nilpotent k-algebra. For
every element a ∈ N , every element c ∈ k and integers m, n ≥ 1, prove that

(i) (1− a tm) · Vn = (1− anr tmr )r, where r = (m,n).

(ii) (1− a tm) · Fn = (1− a tmn).

(iii) (1− a tm) · [c] = (1− acm tm).

(iv) Use (i)–(iii) to prove 2.4.

(2.5) Proposition Let k be a commutative ring with 1. )

11



(i) The subset S of Cart(k) consisting of all elements of the form∑
n≥1

Vn[an]Fn , an ∈ k ∀n ≥ 1

form a subring of Cart(k).

(ii) The injective map

W̃ (k) ↪→ Cart(k), ω(a) 7→
∑
n≥1

Vn [an]Fn

is a homomorphism of rings.

Proof. Let S ′ the subset of the power series ring k[[X, t]] consisting of all elements of the
form 1 +

∑
m≥1 amX

mtm such that am ∈ k for all m ≥ 1. Clearly S ′ is a subgroup of
the unit group k[[X, t]]× of k[[X, t]]. By definition Cart(k) = Λ(k[[X]]+) is a subgroup of
k[[X, t]]×, and S = S ′ ∩ Cart(k). If follows that S is a subgroup of the additive group
underlying Cart(k). The formula 2.4 (6) implies that the subset S ⊂ Cart(k) is stable under
multiplication, hence it is a subring. The definition of multiplication for the universal Witt
vectors in A.1.1 tells us that the bijection in (ii) is an isomorphism of rings.

Corollary Let An(U, V ) ∈ k[U, V ] be polynomials defined by

(1− U T ) · (1− V T ) = (1− (U + V )T ) ·
∏
n≥1

(1− An(U, V )T n)

Then for all c1, c2 ∈ k we have

[c1] + [c2] = [c1 + c2] +
∑
≥1

Vn[An(c1, c2)]Fn .

(2.6) Definition The ring Cart(k) has a natural filtration Fil•Cart(k) by right ideals

FiljCart(k) =

{∑
m≥j

∑
n≥1

Vm[amn]Fn | amn ∈ k, ∀m ≥ j, ∃Cm > 0 s.t. amn = 0 if n ≥ Cm

}

for j ≥ 1. The Cartier ring Cart(k) is complete with respect to the topology given by the
above filtration. Moreover each right ideal FiljCart(k) is open and closed in Cart(k).

12



(2.7) Exercises.

(2.7.1) Exercise Prove the following statements.

(i) [c] · FiljCart(k) ⊆ FiljCart(k) for all c ∈ k, all j ≥ 1.

(ii) Vm · FiljCart(k) ⊆ FilmjCart(k) for all m, j ≥ 1.

(iii) Fn · FiljCart(k) ⊆ Fild
j
n
eCart(k) for all n, j ≥ 1.

(iv) The right ideal of Cart(k), generated by all elements Vn with n ≥ j, is dense in
FiljCart(k).

(v) The quotient Cart(k)/Fil2Cart(k) is canonically isomorphic to k.

(vi) Left multiplication by Vj induces a bijection

Vj : Cart(k)/Fil2Cart(k)
∼−→ FiljCart(k)/Filj+1Cart(k) .

(2.7.2) Exercise (i) Show that Cart(k) is a topological ring, i.e. the multiplication is
a continuous map for the topology given by the decreasing filtration Fil•Cart(k) on
Cart(k). (Hint: The point is to show that for any x ∈ Cart(k), the map y 7→ x · y is
continuous.)

(ii) Show that for any n ≥ 1, there exists x ∈ Cart(k) and y ∈ FilnCart(k) such that
x · y /∈ Fil2Cart(k).

(2.7.3) Exercise Let k be a commutative ring with 1.

(i) Show that the right Cart(k)-module T := Cart(k)/Fil2Cart(k) is a free k module with
basis xi, i ≥ 1, where xi :=the image of Fi in T .

(ii) Show that the right Cart(k)-module T is naturally isomorphic to the Lie algebra Lie(Λ)
of the smooth formal group Λ over k.

(iii) The free right Cart(k)-module T in (i) above gives a ring homomorphism

ρ : Cart(k)→ M′∞(k) ,

where M′∞(k) denotes the set of all N≥1 × N≥1-matrices (cij)i,j≥1 such that each row
has at most a finite number of nonzero entries. The ring M′∞(k) operates on the
right of the k-module k⊕N≥1 , consisting of all row vectors indexed by N≥1 with at
most a finite number of non-zero entries, and the natural surjection Cart(k) � T
is equivariant with respect to ρ. Prove that for each element

∑
m,n≥1 Vm[amn]Fn ∈

Cart(k), ρ(
∑

m,n≥1 Vm[amn]Fn) is the matrix (cij)i,j≥1 with

cij =
∑
r | (i,j)

i

r

(
a i
r
, j
r

)r
∀ i, j ≥ 1.

13



(iv) Prove that ρ is an injection if and only if the natural map k → k⊗Z Q is an injection,
or equivalently k is p-torsion free for every prime number p.

(v) Prove that ρ is an isomorphism if and only if k is a Q-algebra, or equivalently every
nonzero integer is invertible in k.

(vi) Use (iii) and the properties of the ghost coordinates of the universal Witt vectors to
give another proof of 2.5 (ii). See A.2 for the definition of ghost coordinates.

(2.7.4) Exercise Let ρ : Cart(k)→ M′∞(k) be the homomorphism in 2.7.3 (iii).

(i) Show that an element u ∈ Cart(k) is in the subring W̃ (k) if and only if ρ(u) is a
diagonal matrix in M′∞(k).

(ii) Let u be an element of Cart(k). Prove that u induces an isomorphism of Λ if and only
if u induces an isomorphism on Lie(Λ).

(iii) Show that ρ−1(M′∞(k)×) = Cart(k)×.

(iv) Let w =
∑

n≥1 Vn[an]Fn be an element of W̃ (k) ⊂ Cart(k). Prove that w is a unit in
Cart(k) if and only if every sum of the form∑

ij=m, i,j∈N

i aji

is a unit in k, for every integer m ≥ 1.

(v) Show that W̃ (k) ∩ Cart(k)× = W̃ (k)×.

§3. The main theorem of Cartier theory
(3.1) Definition Let k be a commutative ring with 1. A V-reduced Cart(k)-module is a
left Cart(k)-module M together with a separated decreasing filtration of M

M = Fil1M ⊃ Fil2M ⊃ · · ·FilnM ⊃ Filn+1 ⊃ · · ·

such that each FilnM is an abelian subgroup of M and

(i) (M,Fil•M) is complete with respect to the topology given by the filtration Fil•M . In
other words, the natural map FilnM → lim←−

m≥n
(FilnM/FilmM) is a bijection for all n ≥ 1.

(ii) Vm · FilnM ⊂ FilmnM for all m,n ≥ 1.

(iii) The map Vn induces a bijection Vn : M/Fil2M
∼−→ FilnM/Filn+1M for every n ≥ 1.

(iv) [c] · FilnM ⊂ FilnM for all c ∈ k and all n ≥ 1.
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(v) For every m,n ≥ 1, there exists an r ≥ 1 such that Fm · FilrM ⊂ FilnM .

(3.1.1) Definition A V-reduced Cart(k)-module (M,Fil•M) is V-flat if M/Fil2M is a flat
k-module. The k-module M/Fil2M is called the tangent space of (M,Fil•M).

(3.1.2) As an example, the free Cart(k)-module Cart(k) has a filtration with

FilnCart(k) =
∑
m≥n

VmCart(k) ,

making it a V-flat V-reduced Cart(k)-module. Its tangent space is naturally isomorphic to
k[t]. See 2.7.1.

(3.1.3) Exercise Let (M,Fil•M) be a V -reduced Cart(k)-module and let n be a positive
integer.

(i) For each n ≥ 1, the subgroup of M generated by all Vm ·M , m ≥ n is dense in FilnM .
This follows from 3.1 (i)–(iii).

(ii) If M is a finitely generated left Cart(k)-module, then FilnM = FilnCart(k) ·M .

(iii) Prove that M is finitely generated as a left Cart(k)-module if and only if M/Fil2M is
a finitely generated k-module.

(iv) Use 2.7.1 to show that properties (iv), (v) in Def. 3.1 follow from 3.1 (i)–(iii).

(vi) Prove the following strengthened form of 3.1 (v):

Fm · FilnM ⊆ Fild
n
m
eM ∀m,n ≥ 1 .

(3.1.4) Definition Let H : Nilpk → Ab be a formal group functor as in 2.1. The abelian
group M(H) := H(k[[X]]+) has a natural structure as a left Cart(k)-module according to
Thm. 2.2 The Cart(k)-module M(H) has a natural filtration, with

FilnM(H) := Ker(H(k[[X]]+)→ H(k[[X]]+/Xnk[[X]])) .

We call the pair (M(H),Fil•M(H)) the Cartier module attached to H.

(3.1.5) Lemma Let H : Nilpk → Ab be a functor which is weakly left exact and right exact
in the sense of 1.2. Then (M(H),Fil•M(H)) is a V-reduced Cart(k)-module. In particular,
this is the case if H is a commutative smooth formal group.
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Proof. Since the functor H is right exact, we have

M(H)/Filn+1M(H)
∼−→ H(k[[X]]+/Xn+1k[[X]]) ,

and FilnM(H) is equal to the image of H(Xnk[[X]]) in H(k[[X]]+) under the map induced
by the inclusion Xnk[[X]] ↪→ k[[X]]+. By definition,

M(H) = H(k[[X]]+) = lim←−
n

H(k[[X]]+/Xnk[[x]]) = lim←−
n

FilnM(H) .

Condition (i) follows.

The conditions (ii), (iv) of Definition 3.1 are easy to check; it is also easy to verify
condition (v) of 3.1 holds with r = mn. These are left to the reader as exercises. Here we
check that Vn induces an isomorphism from gr1M(H) to grnM(H) for every n ≥ 1.

Since H is weakly left exact as well, we have a functorial isomorphism

FilnM(H)/Filn+1M(H)
∼−→ H(Xnk[[X]]/Xn+1k[[X]])

for each n ≥ 1. The isomorphism

k[[X]]+/X2k[[X]]
∼−→ Xnk[[X]]/Xn+1k[[X]]

in Nilpk which sends X to Xn induces an isomorphism gr1M(H)
∼−→ grnM(H). This isomor-

phism is equal to the map induced by Vn, so (M(H),Fil•M(H)) is V-reduced.

(3.1.6) Lemma Let H : Nilpk → Ab be a group-valued functor. If H is exact, i.e. it is
left exact and right exact, then (M(H),Fil•M(H)) is a V-reduced V-flat Cart(k)-module. In
particular, this is the case if H is a commutative smooth formal group.

Proof. The tangent functor tH : Modk →Modk of H, being the restriction to the category
Modk of an exact functor, is exact. The map N 7→ Lie(G) ⊗k N is a right exact functor
from Modk to Modk. These two functors are both right exact, commute with finite direct
sums, and take the same value on the free k-module k, hence these two functors coincide on
the category fpModk of all finitely presented k-modules. So the functor N 7→ Lie(G) ⊗k N
from fpModk to Modk is exact, because the tangent functor is. It is well-known that the
last property of Lie(G) ∼= MH/Fil2M(H) implies that MH/Fil2M(H) if a flat k-module.

(3.1.7) Exercise Let k be a commutative ring with 1. Let W̃ (k) be the group of universal
Witt vectors with entries in k, endowed with the filtration defined in A.1.3 and the action of
Cart(k) defined in A.3. Prove that (W̃ (k),Fil|•W̃ (k)) is a V -flat V -reduced Cart(k)-module.
(In fact it is the Cartier module attached to Ĝm.)

(3.1.8) Exercise Let k be a commutative ring with 1. Let M = k[[X]]+, filtered by
FilnM = Xnk[[X]], n ≥ 1. Define operators Fn, Vn, [c] on M , n ∈ N≥1, c ∈ k as follows:
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• Vn(
∑

m≥1 amX
m) =

∑
m≥1 amX

mn,

• Fn(
∑

m≥1 amX
m) =

∑
m≥1 namnX

m,

• [c](
∑

m≥1 amX
m) =

∑
m≥1 am c

mXm.

Prove that M is a V -reduced V -flat Cart(k)-module. (In fact it is the Cartier module
attached to Ĝa.)

(3.1.9) Lemma Let k → R be a homomorphism between commutative rings with 1. Let
(M,Fil•M) be a V-reduced Cart(k)-module. Denote by Fil•

(
Cart(R)⊗Cart(k)M

)
the tensor

product filtration on Cart(R)⊗Cart(k)M , such that

Filn
(
Cart(R)⊗Cart(k)M

)
=

∑
i,j≥1, i+j≥n

Image
(
FiliCart(R)⊗FiljM → Cart(R)⊗Cart(k)M

)
for every n ≥ 1. Let MR be the completion of the Cart(R) ⊗Cart(k)M with respect to the
topology defined by the filtration Fil•

(
Cart(R)⊗Cart(k)M

)
, and let Fil•MR be the induced

filtration on MR.

(i) The pair (MR,Fil•MR) is a V-reduced Cart(R)-module.

(ii) If (M,Fil•M) is V-flat, then (MR,Fil•MR) is V-flat.

(iii) MR/Fil2MR
∼= R⊗k (M/Fil2M).

Proof. Exercise.

(3.1.10) Exercise Let (M,Fil•M) be a V-reduced Cart(k)-module. Let R = k[ε]/(ε2). The
projection R → k defines a surjective ring homomorphism Cart(R) → Cart(k), so we can
regard M as a left module over Cart(R). Show that (M,Fil•M) is a V-reduced Cart(R)-
module which is not V-flat.

(3.2) Definition Let M be a V-reduced Cart(k)-module and let Q be a right Cart(k)-
module.

(i) For every integer m ≥ 1, let Qm := AnnQ(FilmCart(k)) be the subgroup of Q consisting
of all elements x ∈ Q such that x · FilmCart(k) = (0). Clearly we have Q1 ⊆ Q2 ⊆
Q3 ⊆ · · ·.

(ii) For each m, r ≥ 1, define Qm�M r to be the image of Qm⊗FilrM in Q⊗Cart(k) M . If
r ≥ m and s ≥ m, then Qm�M r = Qm�M s; see 3.2.1. Hence Qm�Mm ⊆ Qn�Mn

if m ≤ n.
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(iii) Define the reduced tensor product Q⊗Cart(k)M by

Q⊗Cart(k)M = Q⊗Cart(k) M

/(⋃
m

(Qm �Mm)
)
.

iv We say that Q is a torsion right Cart(k)-module if Q =
⋃
m AnnQ(FilmCart(k)).

(3.2.1) Exercise Notation as in 3.2.

(i) For every x ∈ Qm and every y ∈ FilnM with n ≥ m, let y1 ∈ M and y2 ∈ Filn+1M be
such that y = V ny1 + y2. Then x⊗ y = x⊗ y2 in Q⊗Cart(k) M .

(ii) Show that Qm �M r = Qm �M s if r, s ≥ m.

(3.2.2) Exercise Let (M,Fil•M) be a V -reduced Cart(k)-module.

(i) Let N be a nilpotent k-algebra such that N2 = (0). Prove that

Λ(N)⊗Cart(k)M ∼= N ⊗k (M/Fil2M) .

(ii) Prove that Λ(k[[X]]+/Xnk[[X]])⊗Cart(k)M ∼= M/FilnM .

(3.2.3) Lemma Let 0 → Q′ → Q → Q′′ → 0 be a short exact sequence of torsion right
Cart(k)-modules. Let M be a V-reduced left Cart(k)-module.

(i) The map Q�M → Q′′ �M is surjective.

(ii) The sequence Q′⊗Cart(k)M → Q⊗Cart(k)M → Q′′ → ⊗Cart(k)M → 0 is exact.

Proof. The statement (ii) follows from (i) and the general fact that

Q′⊗Cart(k) → Q⊗Cart(k) → Q′′⊗Cart(k) → 0

is exact. It remains to prove (i).

Suppose that x′′ is an element of AnnQ′′(FilmCart(k)), and y is an element of FilmM .
We must show that x′′ ⊗ y belongs to the image of Q �M in Q′′ ⊗Cart(k) M . Pick x ∈ Q
which maps to x′′ ∈ Q′′. Because Q is torsion, there exists an integer n ≥ m such that
x ·FilnCart(k) = 0. Write y as y = y1 +y2, with y1 ∈ FilmCart(k) ·M and y2 ∈ FilnM . Then
x′′ ⊗ y = x′′ ⊗ y2 in Q′′ ⊗Cart(k) M . So the element x⊗ y2 in Q�M maps to x′′ ⊗ y2.
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(3.3) Theorem Let k be a commutative ring with 1. Then there is a canonical equivalence
of categories, between the category of smooth commutative formal groups over k as defined
in 1.3 and the category of V-flat V-reduced Cart(k)-modules, defined as follows.

{smooth formal groups over k} ∼ // {V-flat V-reduced Cart(k)-mod}

G
� // M(G) = Hom(Λ, G)

Λ⊗Cart(k)M M
�oo

Recall that M(G) = Hom(Λ, G) is canonically isomorphic to G(X k[[X]]), the group of all
formal curves in the smooth formal group G. The reduced tensor product Λ⊗Cart(k)M is the
functor whose value at any nilpotent k-algebra N is Λ(N)⊗Cart(k)M .

(3.4) Proof of Thm. 3.3.

The key steps of the proof of are Prop. 3.4.3 and Thm. 3.4.5 below.

(3.4.1) Lemma Let α : (L,Fil•L) → (M,Fil•M) be a homomorphism between V -reduced
Cart(k)-modules, i.e. α(FiliL) ⊆ FiliM for all i ≥ 1. Then the following are equivalent.

(i) α(FiliL) = FiliM for all i ≥ 1.

(ii) α(L) = M .

(iii) α : L/Fil2L→M/Fil2M is surjective.

(3.4.2) Exercise Let k be a commutative ring with 1. Let I be any set. Denote by
Cart(k)(I) the free Cart(k)-module with basis I. Define a filtration on Cart(k)(I) by

FiliCart(k)(I) =
(
FiliCart(k)

)(I)
.

(i) Show that (Cart(k)(I),Fil•Cart(k)(I)) is a V -reduced Cart(k)-module if and only if I
is finite.

(ii) Let ̂Cart(k)(I) be the completion of the filtered module. (Cart(k)(I),Fil•Cart(k)(I)),

with the induced filtration. Prove that ̂Cart(k)(I) is a V-reduced Cart(k)-module. We

call ̂Cart(k)(I) the free V -reduced Cart(k)-module with basis I. Formulate a universal
property which justifies this terminology.

(iii) Let Q be a torsion right Cart(k)-module, i.e. Q =
⋃
n AnnQ(FilnCart(k)). Prove that

Q⊗Cart(k)
̂Cart(k)(I) is naturally isomorphic to Q(I).

(3.4.3) Proposition Let α : (L,Fil•L) → (M,Fil•M) be a surjective homomorphism be-
tween V -reduced Cart(k)-modules as in Lemma 3.4.1. Let K be the kernel of α, with the
induced filtration FiliK = K ∩ FiliL for all i ≥ 1. Then (K,Fil•K) is a V-reduced Cart(k)-
module.
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Proof. Consider the commutative diagram

0 // K/Fil2K //

Vn
��

L/Fil2L
α //

Vn∼=
��

M/Fil2M //

Vn∼=
��

0

0 // FilnK/Filn+1K // FilnL/Filn+1L α
// FilnM/Filn+1M // 0

The top row is exact, because Fil2 → Fil2M is surjective. The bottom row is also exact, by a
similar argument. From the five-lemma we see that Vn induces a bijection Vn : K/Fil2K

∼−→
FiliK/Filn+1K for all n ≥ 1. The rest of the conditions for (K,Fil•K) to be V-reduced is
easy.

(3.4.4) Definition By Prop. 3.4.3, for every V-reduced Cart(k)-module (M,Fil•M), there
exists a free resolution

· · · → Li
∂i−→ Li−1

∂i−1−−→ · · · ∂2−→ L1
∂1−→ L0

∂0−→M → 0

of M , where each Li is a free V-reduced Cart(k)-modules in the sense of 3.4.2 (ii), each ∂i is
compatible with the filtrations, and Ker(∂i) = Image(∂i+1) for all i ≥ 0, and ∂0 is surjective.

Define reduced torsion functors Tor
Cart(k)

i (?,M) by

Tor
Cart(k)

i (Q,M) = Hi

(
Q⊗Cart(k)(· · · → Li

∂i−→ Li−1
∂i−1−−→ · · · ∂2−→ L1

∂1−→ L0)
)

for any torsion right Cart(k)-module Q.

Exercise (i) Prove that the functor Tor
Cart(k)

i is well-defined.

(ii) Show that every short exact sequence of torsion right Cart(k)-modules gives rise to a

long exact sequence for the functor Tor
Cart(k)

.

(iii) Formulate and prove a similar statement for the second entry of the reduced torsion
functor.

(3.4.5) Theorem let k be a commutative ring with 1. Let (M,Fil•M) be a V-reduced
Cart(k)-module. Let N be a nilpotent k-algebra.

(i) Suppose that (M,Fil•M) is V-flat, i.e. M/Fil2M is a flat k-module. Then

Tor
Cart(k)

i (Λ(N),M) = (0)

for all i ≥ 1.
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(ii) Suppose that N has a finite decreasing filtration

N = Fil1N ⊇ Fil2N ⊇ · · · ⊇ FilsN = (0)

such that each FiljN is an ideal of N , (FiljN)2 ⊆ Fili+1N and FiljN/Filj+1N is a flat

k-module for j = 1, . . . , s− 1. Then Tor
Cart(k)

i (Λ(N),M) = 0 for all i ≥ 1.

Proof of (i). Choose an s ∈ N such that N s = 0. Then we have a decreasing filtration

Λ(N) ⊇ Λ(N2) ⊇ · · · ⊇ Λ(N s−1) ⊇ Λ(N s) = (0)

of Λ(N). For each j = 1, 2, . . . , s − 1 we have Λ(N j)/Λ(N j+1) ∼= Λ(N j/N j+1) as right

Cart(k)-modules, hence it suffices to show that Tor
Cart(k)

i (Λ(N j/N j+1),M) = 0 for each
j = 1, 2, . . . , s− 1. Let L�M be a surjection from a free reduced Cart(k)-module L to M ,
and let K be the kernel. Then K is also a V-flat V-reduced Cart(k)-module. Recall from
Exer. 3.2.2 (i) that Λ(N j/N j+1)⊗Cart(k)M ∼= (N j/N j+1)⊗k (M/Fil2M) for each j = 1. The
long exact sequence attached to the short exact sequence 0 → K → L → M → 0 yields
isomorphisms

Tor
Cart(k)

i+1 (Λ(N j/N j+1),M)
∼−→ Tor

Cart(k)

i (Λ(N j/N j+1), K) , i ≥ 1

and an exact sequence

(N j/N j+1)⊗k (K/Fil2K) α−→ (N j/N j+1)⊗k (L/Fil2L)→ (N j/N j+1)⊗k (M/Fil2M)→ 0

such that the kernel of α is isomorphic to Tor
Cart(k)

1 (Λ(N j/N j+1),M). Since M/Fil2M is a

flat k-module, we see that Tor
Cart(k)

1 (Λ(N j/N j+1),M) = 0 for every V-flat V-reduced Cart(k)-

module M . Since K is also V-flat, Tor
Cart(k)

2 (Λ(N j/N j+1),M) = 0 as well. An induction

shows that Tor
Cart(k)

i (Λ(N j/N j+1),M) = 0 for all i ≥ 1 and all j = 1, 2, . . . , s − 1. The
statement (i) follows.

Proof of (ii) In the proof of (i) above, replace the ideals N j by FiljN . The sequence

(FiljN/Filj+1N)⊗k (K/Fil2K) α−→ (FiljN/Filj+1N)⊗k (L/Fil2L)

→ (FiljN/Filj+1N)⊗k (M/Fil2M)→ 0

is exact because FiljN/Filj+1N is a flat k-module. The rest of the proof of (ii) is the same
as the proof of (i).

Proof of Thm. 3.3. Suppose that (M,Fil•M) is a V-flat V-reduced Cart(k)-module.
It follows immediately from Thm. 3.4.5 that G := Λ⊗Cart(k)M is a smooth formal group.
Conversely given any smooth formal group G, M(G) is V-reduced and V-flat according to
Lemma 3.1.6. By Exer. 3.2.2 (ii), we have a functorial isomorphism(

Λ⊗Cart(k)M
)

(k[[X]]+) = lim←−
n

Λ(k[[X]]+/Xnk[[X]])⊗Cart(k)M
∼←−M

for each V-flat V-reduced Cart(k)-module M .
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To finish the proof, it remains to produce a functorial isomorphism

βG : Λ⊗Cart(k)M(G)
∼−→ G

for each commutative smooth formal group G. For each nilpotent k-algebra N , we have a
natural map βG,N : Λ⊗Cart(k)M(G)→ G such that βG,N :

∑
i fi⊗hi 7→

∑
i Φhi,N(fi) ∈ G(N)

in the notation of Cor. 2.2.1, where fi ∈ Λ(N) and hi ∈ M(G) for each i. The map
βG,N factors through the quotient Λ(N)⊗Cart(k)M(G) of Λ(N) ⊗Cart(k) M(G) by 2.2.1 (iv),
and gives the desired map αG,N : Λ(N)⊗Cart(k)M(G) → G(N). Since both the source and
the target of βG are exact and commute with arbitrary direct sums, to show that βG is
an isomorphism for every nilpotent k-algebra N it suffices to verify this statement when
N2 = (0) and N is isomorphic to k as a k-module. In that case βG,N is the canonical
isomorphism M(G)/Fil2M(G)

∼−→ tG.

(3.4.6) Exercise (i) Prove that the equivalence of categories in Thm. 3.3 extends to an
equivalence of categories between the category of V-reduced Cart(k)-modules and the cate-
gory of functors G : Nilpk → Ab which are right exact, weakly left exact, and commute with
arbitrary direct sums.

(ii) Let G : Nilpk → Ab be a functor which satisfies the conditions in (i) above. Let 0→
N1 → N2 → N3 → 0 be a short exact sequence of nilpotent k-algebras such that N3 satisfies
the condition in 3.4.5 (ii). Prove that the sequence 0 → G(N1) → G(N2) → G(N3) → 0 is
short exact.

(3.4.7) Exercise Let M be a V-reduced V-flat Cart(k)-module. Let k′ be a commuta-
tive k algebra with 1. Let M ′ = Cart(k′)⊗̂Cart(k)M , defined as the completion of the left
Cart(k)-module Cart(k′) ⊗Cart(k) M with respect to the filtration given by the image of
Fil•Cart(k′)⊗Cart(k) M in Cart(k′)⊗Cart(k) M , endowed with the induced filtration.

(i) The pair (M ′,Fil•M) is V-reduced, and k′⊗k (M/Fil2M)
∼−→M ′/Fil2M ′ as k′-modules.

(ii) Prove that there is a canonical isomorphism of functors

Λk′⊗Cart(k)M
∼−→ ⊗Cart(k′)M

′Λk .

In other words, we have a functorial isomorphism

βN : Λ(N)⊗Cart(k)M
∼−→ Λ(N)⊗Cart(k′)M

′ .

for every nilpotent k′-algebra N , compatible with arrows induced by morphisms in
Nilpk.
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§4. Localized Cartier theory
In this section we fix a prime number p. Let k be a commutative ring with 1 over Z(p).

(4.1) Definition Recall from 2.3.5 that every prime number ` 6= p is invertible in Cart(k).
Define elements εp and εp,n of the Cartier ring Cart(k) for n ∈ N, (n, p) = 1 by

εp = εp,1 =
∑

(n,p)=1
n≥1

µ(n)

n
VnFn =

∏
` 6=p

` prime

(
1− 1

`
V`F`

)

εp,n =
1

n
VnεpFn

In the above µ is the Möbius function on N≥1, characterized by the following properties:
µ(mn) = µ(m)µ(n) if (m,n) = 1, and for every prime number ` we have µ(`) = −1,
µ(`i) = 0 if i ≥ 2.

(4.1.1) Proposition The following properties hold.

(i) εp
2 = εp.

(ii)
∑

(n,p)=1
n≥1

εp,n = 1.

(iii) εpVn = 0, Fnεp = 0 for all n with (n, p) = 1.

(iv) εp,n
2 = εp,n for all n ≥ 1 with (n, p) = 1.

(v) εp,n εp,m = 0 for all m 6= n with (mn, p) = 1.

(vi) [c] εp = εp [c] and [c] εp,n = εp,n [c] for all c ∈ k and all n with (n, p) = 1.

(vii) Fpεp,n = εp,nFp, Vpεp,n = εp,nVp for all n with (n, p) = 1.

Proof. From 2.4 (1)–(5), one easily deduces that for every prime number ` 6= p we have

(1− 1

`
V`F`)V` = 0 , F`(1−

1

`
V`F`) = 0 , and(1− 1

`
V`F`)

2 = (1− 1

`
V`F`) .

The statements (i) and (iii) follows. Statement (v) is an easy consequence of (iii). The proof
of statement (iv) is an easy computation:

(
1

n
VnεpFn)2 =

1

n2
VnεpFnVnεpFn =

1

n
VnεpFn .

By 2.4 (4) and (5), the statement (ii) is a consequence of the following telescoping identity:∑
m≥0

1

`m
V`m(1− 1

`
V`F`)F`m = 1

for any prime number ` 6= p.
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To prove (vi), observe first that [c]εp = εp[c] by 2.4 (3); this in turn gives

[c]εp,n =
1

n
Vn[cn]εpFn =

1

n
Vnεp[c

n]Fn = εp[c] .

Statement (vii) is a consequence of the fact that both Vp and Fp commute with all Vn, Fn
with (n, p) = 1.

(4.1.2) Definition (i) Denote by Cartp(k) the subring εpCart(k)εp of Cart(k). Note that
εp is the unit element of Cartp(k).

(ii) Define elements F, V ∈ Cartp(k) by

F = εpFp = Fpεp = εpFpεp , V = εpVp = Vpεp = εpVpεp .

(iii) For every element c ∈ k, denote by 〈c〉 the element εp[c]εp = εp[c] = [c]εp ∈ Cartp(k).

(4.1.3) Exercise Let E(T ) ∈ Q[[T ]] be the power series

E(T ) =
∏
n∈N

(n,p)=1

(1− T n)
µ(n)
n = exp

(
−
∑
m≥0

T p
m

pm

)
.

(i) Verify the second equality in the displayed formula above for E(T ), and prove that all
coefficients of E(T ) lie in Z(p).

(ii) Recall that the additive group underlying Cart(k) is a subgroup of k[[X, t]]× by defini-
tion. Show that for any element x =

∑
m,n≥1 V

m[amn]F n in Cart(k) with amn ∈ k for
all m,n ≥ 1, the element εpxεp is represented by the element∏

m,n≥1

E(amnX
pmtp

n

) .

(4.1.4) Exercise Notation as above. Prove that for any left Cart(k)-module M , the sub-
group εp(M) consists of all elements x ∈M such that Fn x = 0 for all n > 1 with (n, p) = 1.
Elements of M with the above property will be called p-typical elements.

(4.1.5) Exercise Prove the following identities in Cartp(k).

(1) F 〈a〉 = 〈ap〉F for all a ∈ k.

(2) 〈a〉V = V 〈ap〉 for all a ∈ k.

(3) 〈a〉 〈b〉 = 〈ab〉 for all a, b ∈ k.

(4) FV = p.
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(5) V F = p if and only if p = 0 in k.

(6) Every prime number ` 6= p is invertible in Cartp(k). The prime number p is invertible
in Cartp(k) if and only if p is invertible in k.

(7) V m〈a〉Fm V n〈b〉F n = pr V m+n−r〈apn−rbpm−r〉Fm+n−r for all a, b ∈ k and all m,n ∈ N,
where r = min{m,n}.

(4.2) Definition Let k be a commutative Z(p)-algebra with 1. Denote by Λp the image of
εp in Λ. In other words, Λp is the functor from Nilpk to Ab such that

Λp(N) = Λ(N) · εp

for any nilpotent k-algebra N .

(4.2.1) Exercise Let E(T ) ∈ Z(p)[[T ]] be the inverse of the Artin-Hasse exponential as in
4.1.2.

(i) Prove that for any nilpotent k-algebra N , every element of Λp(N) has a unique expres-
sion as a finite product

m∏
i=0

E(ui t
pi)

for some m ∈ N, and ui ∈ N for i = 0, 1, . . . ,m.

(ii) Prove that Λp is a smooth commutative formal group over k.

(4.2.2) Proposition (i) The local Cartier ring Cartp(k) is complete with respect to the
decreasing sequence of right ideals V iCartp(k).

(ii) Every element of Cartp(k) can be expressed as a convergent sum in the form∑
m,n≥0

V m〈amn〉F n , amn ∈ k , ∀m ∃Cm > 0 s.t. amn = 0 if n ≥ Cm

in a unique way.

(iii) The set of all elements of Cartp(k) which can be represented as a convergent sum of
the form ∑

m≥0

V m〈am〉Fm , am ∈ k

is a subring of Cartp(k). The map

wp(a) 7→
∑
m≥0

V m〈am〉Fm a = (a0, a1, a2, . . .), ai ∈ k ∀ i ≥ 0

establishes an isomorphism from the ring of p-adic Witt vectors Wp(k) to the above
subring of Cartp(k).
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Proof. Statement (i) and the existence part of statement (ii) are easy and left as an ex-
ercises. To prove the uniqueness part of (ii), according to 4.1.3 it suffices to check that if
(amn)m,n∈N is a family of elements in k such that the infinite product∏

m,n≥1

E(amnX
pmtp

n

)

is equal to 1 in k[[X, t]], then amn = 0 for all m,n ≥ 1. This follows from the fact that

E(X) ≡ 1 +X (mod (Xp)) .

The statement (iii) follows from 4.1.5 (7) and the properties of multiplication in the ring
of p-adic Witt vectors.

(4.2.3) Exercise Let jp : Λp → Λ be the homomorphism of smooth commutative formal
groups over k induced by the inclusion map, and let πp : Λ → Λp be the homomorphism
induced by εp. Let G : Nilpk → Ab be a functor. The abelian group Hom(Λ, G) has a
natural structure as a left module over Cart(k) = End(Λ/k)

op.

(i) Prove that for every homomorphism h ∈ Hom(Λp, G), the composition h ◦ πp ∈
Hom(Λ, G) is a p-typical element of Hom(Λ, G).

(ii) Prove that the map h 7→ h ◦ πp above establishes a bijection from Hom(Λp, G) to the
set of all p-typical elements in Hom(Λ, G), whose inverse is given by h′ 7→ h′ ◦ jp.

(4.2.4) Exercise Prove that Cartp(k) is naturally isomorphic to End(Λp)
op, the opposite

ring of the endomorphism ring of End(Λp).

(4.2.5) Exercise Let k be a commutative algebra over Z(p). Let T be the right Cartp(k)-
module Cartp(k)/V Cartp(k).

(i) Show that there is a natural isomorphism from T the Lie algebra of the smooth com-
mutative formal group Λp : Nilpk → Ab.

(ii) Show that the element xi := the image of F i in T , i = 0, 1, 2, . . ., form a k-basis of T .

(iii) The basis xi, i ∈ N of the right Cartp(k)-module T defines a ring homomorphism
ρp : Cartp(k) → M′

N
(k), where M′

N
(k) consists of all N × N-matrices (cij)i,j≥0 with

at most finitely many non-zero entries in each row, and cij ∈ k for all i, j ≥ 0. Let
x =

∑
m,n≥0 V

m〈amn〉F n be an element of Cartp(k), amn ∈ k for all m,n ≥ 0. The
entries ρp(u)ij of ρp(u) for an element u ∈ Cartp(k) is defined by

xi · u =
∑
j∈N

ρp(u)ij xj ∀i ∈ N .
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Prove that ρp(x) is the matrix (cij) whose (i, j)-th entry is given by

cij =
∑

r≤min{i,j}

pi−r (ai−r, j−r)
pr

for all i, j ≥ 0.

(iii) Use the formula in (ii) above to give another proof of 4.2.2 (iii).

(4.3) Definition Let k be a commutative Z(p)-algebra.

(i) A V-reduced Cartp(k)-module M is a left Cartp(k)-module such that the map V : M →
M is injective and the canonical map M → lim←−

n

(M/V nM) is an isomorphism.

(ii) A V-reduced Cartp(k)-module M is V-flat if M/VM is a flat k-module.

(4.3.1) Definition Let I be a set. Denote by Cartp(k)(I) the direct sum of copies of
Cartp(k) indexed by I. The completion of the free Cartp(k)-module Cartp(k)(I) with respect
to the filtered family of subgroups V iCartp(k)(I) is a V -reduced Cartp(k)-module, denoted

by ̂Cartp(k)(I); we called it the free V -reduced Cartp(k)-module with basis indexed by I.

(4.3.2) Lemma Every element of the subset Cart(k)εp of Cart(k) can be expressed as a
convergent sum ∑

(n,p)=1

Vnxn , xn ∈ Cartp(k) ∀n with (n, p) = 1

for uniquely determined elements xn ∈ Cartp(k), (n, p) = 1. Conversely every sequence of
elements (xn)(n,p)=1 in Cartp(k) defines an element of Cart(k)εp:

Cart(k)εp =
⊕̂

(n,p)=1
Vn · Cartp(k) .

Proof. For x ∈ Cart(k)εp, we have

x =
∑

(n,p)=1

εp,n · x =
∑

(n,p)=1

Vn(
1

n
εpFnxεp) .

On the other hand, suppose that we have
∑

(n,p)=1 Vnxn = 0 and xn ∈ Cartp(k) for all n ≥ 1
with (n, p) = 1. For any m ≥ 1 with (m, p) = 1, we have

0 = εp,m ·
∑

(n,p)=1

Vnxn = Vmxm

because εpVr = 0 and Frxn = 0 for all r > 1 with (r, p) = 1 and all n ≥ 1 with (n, p) = 1.
Hence xm = 0 since left multiplication by Vm on Cart(k) is injective.
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(4.3.3) Lemma Let Mp be a V -reduced Cartp(k)-module. Let Cart(k)εp⊗̂Cartp(k)Mp be the
V -adic completion of the tensor product Cart(k)εp⊗Cartp(k)Mp, defined as the completion of
Cart(k)εp⊗Cartp(k)Mp with respect to the decreasing family of the subgroups

Image
(
FiliCart(k)εp⊗Cartp(k)Mp → Cart(k)εp⊗Cartp(k)Mp

)
of Cart(k)εp⊗Cartp(k)Mp.

(i) The completed tensor product Cart(k)εp⊗̂Cartp(k)Mp is the topological direct sum⊕̂
(n,p)=1

Vn ⊗Mp

of its subgroups Vn ⊗ Mp, (n, p) = 1, so that we have a natural bijection between
Cart(k)εp⊗̂Cartp(k)Mp and the set of sequences (xn)(n,p)=1 of elements in Mp indexed by
positive integers prime to p.

(ii) Define a decreasing filtration on the completed tensor product by

Film
(
Cart(k)εp⊗̂Cartp(k)Mp

)
= Image

(
FilmCart(k)εp ⊗Mp → Cart(k)εp⊗̂Cartp(k)Mp

)
,

the closure of the image of FilmCart(k)εp ⊗Mp, m ≥ 1. Then the completed tensor
product Cart(k)εp⊗̂Cartp(k)Mp is a V -reduced Cart(k)-module.

(iii) The inclusion map Mp ↪→ Cart(k)εp⊗̂Cartp(k)Mp induces an isomorphism

Mp/VMp
∼−→
(
Cart(k)εp⊗̂Cartp(k)Mp

)
/Fil2

(
Cart(k)εp⊗̂Cartp(k)Mp

)
.

(iv) There is a canonical isomorphism

εp · Cart(k)εp⊗̂Cartp(k)Mp
∼−→Mp .

from the set of all p-typical elements in Cart(k)εp⊗̂Cartp(k)Mp to Mp.

Proof. This Lemma is a corollary of 4.3.2. The isomorphism in (iv) is

εp · (
∑

(n,p)=1

Vn ⊗ xn) 7→ x1 ,

whose inverse is induced by the inclusion.

(4.3.4) Lemma Let M be a V-reduced Cart(k) module and let Mp = εpM be the set of all
p-typical elements in M .
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(i) The canonical map ⊕̂
(n,p)=1
n≥1

Mp −→ M (1)

(xn)(n,p)=1 7→
∑

(n,p)=1

Vnxn (2)

is an isomorphism.

(ii) The canonical map Cart(k)εp⊗̂Cartp(k)Mp →M is an isomorphism.

Proof. The argument of 4.3.2 proves (i). The statement (ii) follows from (i) and 4.3.3.

Combining 4.3.2, 4.3.3 and 4.3.4, we obtain the following theorem.

(4.4) Theorem Let k be a commutative Z(p)-algebra with 1.

(i) There is an equivalence of categories between the category of V-reduced Cart(k)-modules
and the category of V-reduced Cartp(k)-modules, defined as follows.

{ V-reduced Cart(k)-mod} ∼ // { V-reduced Cartp(k)-mod}

M
� // εpM

Cart(k)εp⊗̂Cartp(k)Mp Mp
�oo

(ii) Let M be a V-reduced Cart(k)-module M , and let Mp be the V-reduced Cartp(k)-module
Mp attached to M as in (i) above. Then there is a canonical isomorphism M/Fil2M ∼=
Mp/VMp. In particular M is V-flat if and only if Mp is V-flat. Similarly M is a finitely
generated Cart(k)-module if and only if Mp is a finitely generated Cartp(k)-module.

The next theorem is the local version of the main theorem of Cartier theory. The main
ingredients of the proof occupies 4.5.1–4.5.6, and the end of the proof is in 4.5.7.

(4.5) Theorem Let k be a commutative Z(p)-algebra with 1. Then there is a canonical
equivalence of categories, between the category of smooth commutative formal groups over k
as defined in 1.3 and the category of V-flat V-reduced Cartp(k)-modules, defined as follows.

{smooth formal groups over k} ∼ // {V-flat V-reduced Cartp(k)-mod}

G
� // Mp(G) = εp Hom(Λ, G)

Λp⊗Cartp(k)M M
�oo

(4.5.1) Lemma Let k be a commutative Z(p)-algebra with 1. Let βp : Lp → Mp be a
surjective homomorphism V -reduced Cart(k)-module. Let Kp be the kernel of βp. Let K be
the kernel of

id⊗ βp : Cart(k)εp⊗̂Cartp(k)Lp → Cart(k)εp⊗̂Cartp(k)Mp

with the induced filtration.
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(i) The Cartp(k)-module Kp is V-reduced.

(ii) The pair (K,Fil•K) is the V-reduced Cart(k)-module which corresponds to Kp under
Thm. 4.4.

(iii) The sequence 0→ V iK/V i+1M → V iL/V i+1L→ V iM/V i+1M → 0 is short exact for
every i ≥ 0.

Proof. The argument of 3.4.3 works here as well.

(4.5.2) Corollary Let Mp be a V-reduced Cart(k)-module. Then there exists an exact se-
quence

· · · ∂i+1−−→ Li
∂i−→ Li−1

∂i−1−−→ · · · ∂1−→ L0
∂0−→Mp → 0

of Cartp(k) modules such that Li is a free V -reduced Cartp(k)-module, and induces an exact
sequence on each V -adically graded piece.

(4.5.3) Definition (1) A torsion right Cartp(k)-module Q is a right Cartp(k)-module
such that for every x ∈ Q, there exists a natural number n ≥ 0 such that x · V n = 0.

(2) Let Q be a torsion right Cart(k)-module. Let M be a V -reduced Cartp(k)-module
Let L• be a resolution of M by free V -reduced Cartp(k)-modules as in 4.5.2. Define

Tor
Cartp(k)

i (Q,M), i ≥ 0, by

Tor
Cartp(k)

i (Q,M) = Hi(Q⊗Cartp(k) L•) .

Exercise (i) Show that the continuous torsion functors Tor
Cart(k)

• (Q,M) are well-defined.

(ii) Let Q be a torsion right Cartp(k)-module and let ̂Cartp(k)(I) be a free V -reduced

Cartp(k)-module with basis indexed by a set I. Prove that Q ⊗Cartp(k)
̂Cartp(k)(I) is

naturally isomorphic to Q(I), the direct sum of copies of the abelian group Q indexed
by I.

(iii) Show that for any V -reduced Cartp(k)-module M and any short exact sequence

0→ Q1 → Q2 → Q3 → 0

of torsion right Cartp(k)-modules, one has a long exact sequence consisting of the

abelian groups Tor
Cartp(k)

i (Qj,M).

(iv) Show that for any torsion right Cartp(k)-module Q and any short exact sequence
0 → M1 → M2 → M3 → 0 of V -reduced Cartp(k)-modules, one has a long exact

sequence consisting of the abelian groups Tor
Cartp(k)

i (Q,Mj).
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(v) Show that for any torsion right Cartp(k)-module Q and any V-reduced Cartp(k)-module

M , the continuous tensor product Q⊗Cartp(k)M := Tor
Cartp(k)

0 (Q,M) is naturally iso-
morphic to Q⊗Cartp(k)M .

(4.5.4) Remark Let Q be a torsion right Cart(k)-module.

(i) The canonical maps

Q⊗Cart(k) (Cart(k)εp)→ Q⊗Cart(k)(Cart(k)εp)→ Qεp

are isomorphisms of torsion right Cartp(k)-modules; denote these canonically isomor-
phic right Cartp(k)-modules by Qp.

(ii) The subset Qεp of Q, the image of right multiplication by εp on Q, consists of all
elements x ∈ Q such that x · Vn = 0 for all n ≥ 2 with (n, p) = 1.

(4.5.5) Proposition Let Q be a torsion right Cart(k)-module, and let M be a V-reduced
Cart(k)-module. Let Qp = Q⊗Cart(k)Cart(k)εp. Let Mp = εpM be the V -reduced Cartp(k)-
module consisting of all p-typical elements in M .

(i) The canonical map

Qp ⊗Cartp(k) Mp =
(
Q⊗Cart(k)Cart(k)εp

)
⊗Cartp(k) Mp −→ Q⊗Cart(k)M

is an isomorphism.

(ii) For all i ≥ 0 the canonical map

Tor
Cartp(k)

i (Qp,Mp) −→ Tor
Cart(k)

i (Q,M)

is an isomorphism.

Proof. Since Q is a torsion right Cart(k)-module, the canonical map

Q⊗Cart(k)

(
Cart(k)εp ⊗Cartp(k) εpM

)
−→ Q⊗Cart(k)

(
Cart(k)εp⊗̂Cartp(k)εpM

)
is an isomorphism, and (i) follows from the associativity of tensor product. To prove (ii), let
L• →M be a resolution of M by free V-reduced Cart(k)-modules. Then εpL• → εpM = Mp

is a resolution of Mp by free V-reduced Cartp(k)-modules. By (i) the natural map

Qp ⊗Cartp(k) εpL•
∼−→ Q⊗Cart(k)M

is an isomorphism of chain complexes, and the statement (ii) follows.

31



(4.5.6) Theorem Let k be a commutative Z(p)-algebra with 1. Let N be a nilpotent k-
algebra. Let Mp be a V-reduced Cartp(k)-module. Let M = Cart(k)εp⊗̂Mp.

(i) The canonical map

Λp(N)⊗Cartp(k) Mp −→ Λ(N)⊗Cart(k)M

is an isomorphism.

(ii) Assume either that Mp is V-flat, or that N has a finite decreasing filtration

N = Fil1N ⊇ Fil2N ⊇ · · · ⊇ FilsN = (0)

such that each FiljN is an ideal of N , (FiljN)2 ⊆ Filj+1N and FiljN/Filj+1N is a flat
k-module for j = 1, . . . , s− 1. Then

Tor
Cartp(k)

i (Qp,Mp) ∼= Tor
Cart(k)

i (Q,M) = (0) ∀ i ≥ 1 .

Proof. The statement (i) is a corollary of 4.5.5 (i). The statement (ii) follows from 4.5.5
(ii) and Thm. 3.4.5.

(4.5.7) Proof of Thm. 4.5. Theorem 4.5 follows from Thm. 4.5.6, Thm. 4.4 and Thm.
3.3.

(4.6) Theorem Let k be a commutative Z(p)-algebra with 1.

(i) Let M be a V -reduced Cartp(k)-module. Assume that there is a family {xi | i ∈ I}
of elements in M indexed by a set I such that M/VM is a free k-module with basis
{xi | i ∈ I}, where xi denotes the image of xi in M/VM . Then

M =


∑
m≥0
i∈I

V m 〈ami〉xi

∣∣∣∣∣∣∣∣
(i) ami ∈ k ∀m ≥ 0 ,∀ i ∈ I

(ii) ∀m ∃ a finite subset Jm ⊂ I
s.t. ami = 0 or if i /∈ Jm


In other words, every element of M can be written in the form

∑
m≥0
i∈I

V m 〈ami〉xi,
satisfying the conditions in the displayed formula above, in a unique way.

(ii) Notation and assumption as in (i) above. There exists uniquely determined elements
ami j ∈ k, with (m, i, j) ∈ N× I × I such that

F · xi =
∑
m∈N
j∈I

V m 〈ami j〉xj, ∀ i ∈ I ∀m ∈ N ,

and for each m ≥ 0 and each i ∈ I, ami j = 0 for all j outside a finite subset of I.
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(iii) Let αmi j ∈ Wp(k) be a family of elements in Wp(k) indexed by N× I × I such that for
each m ≥ 0 and each i ∈ I, there exists a finite subset Jmi ⊂ I such that αmi j = 0
for all j /∈ Jmi. Then the Cartp(k)-module N defined by the short exact sequence
Cartp(k)-modules

0 // L1 = ̂Cartp(k)(I)
ψ // L2 = ̂Cartp(k)(I) // N // 0

fi
� // F ei −

∑
m,j V

mαmi jej

ei � // yi

is V-reduced. Here {fi | i ∈ I}, {ei | i ∈ I} are the bases of the two free V-reduced
Cartp(k)-modules L1, L2 respectively. Moreover the image of the elements {yi | i ∈ I}
in N/V N form a k-basis of N/V N .

Proof. The statement (i) follows from the definition of V-reduced Cartp(k)-modules, and
(ii) follows from (i).

To prove (iii), it suffices to show that the sequence in the displayed formula induces an
exact sequence

0 −→ L1/V L1
ψ−→ L2/V L2 −→ N/V N −→ 0

of k-modules, and the elements (yi)i∈I form a k-basis of N/V N . Here we used the con-
vention that yi denotes the image of yi in N/V N ; the same convention will be used for
L1/V L1 and L2/V L2. Recall that a typical element ωp(c) ∈ Wp(k) is identified with the
element

∑
m≥0 V

m〈cm〉Fm of Cartp(k). For i, j ∈ I, let aij = w0(α0 i j) ∈ k, so that
α0 i j − ωp(aij, 0, 0, . . .) ∈ V (Wp(k)). We know that

L1/V L1 =
⊕

n∈N, i∈I

F nfi , L2/V L2 =
⊕

n∈N, i∈I

F nei

ψ
( ∑
n≥0, i∈I

bni F nfi
)

=
∑

n≥0, j∈I

(
bn−1,j −

∑
i∈I

bnia
pn

i,j

)
F nej .

The desired conclusion follows from an easy calculation.

(4.6.1) Remark In the situation of 4.6 (i), (ii), we have a short exact sequence of V -reduced
Cartp(k)-modules

0 // L1 = ̂Cartp(k)(I) // L2 = ̂Cartp(k)(I) // M // 0

fi
� // F ei −

∑
m,j V

m〈ami j〉ej
ei � // xi

The family of equations Fxi =
∑

m,j V
m〈ami j〉xj, i ∈ I, are called the structural equations

of M for the generators {xi | i ∈ I}.
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(4.7) Proposition Let Mp be a V-reduced V-flat Cartp(k)-module. Let k′ be a commu-
tative k algebra with 1. Let M ′

p be the V-adic completion of the left Cartp(k
′)-module

Cartp(k
′)⊗Cartp(k) Mp.

(i) The Cartp(k
′)-module M ′ is V-reduced, and k′⊗k (M/VM)

∼−→M ′/VM ′ as k′-modules.

(ii) For every nilpotent k′-algebra N , there is a canonical isomorphism

Λp(N)⊗Cartp(k)Mp
∼−→ Λp(N)⊗Cartp(k′)M

′
p .

(iii) Suppose that {xi | i ∈ I} is a family of elements in Mp such that {xi | i ∈ I} form a
k-basis of M/VM . Let Fxi =

∑
m≥0, j∈I V

m〈amij〉xj. i ∈ I be the structural equation
of M w.r.t. the generators {xi | i ∈ I}. Then these equations are also the structural
equations of M ′ for the generators {1⊗ xi | i ∈ I}.

Proof. Exercise.

(4.8) Exercises.

(4.8.1) Exercise Prove that the equivalence of categories in Thm. 4.5 extends to an equiv-
alence of categories between the category of V-reduced V-flat Cartp(k)-modules and the
category of functors G : Nilpk → Ab which are right exact, weakly left exact, and commute
with infinite direct sums.

(4.8.2) Exercise Prove that the left ideal Cart(k)εp of Cart(k) consists of all elements
x ∈ Cart(k) such that xVn = 0 for all n ≥ 2 with (n, p) = 1. (Hint: Prove that x · (1− εp) ∈
FilmCart(k) = 0 for all m ≥ 1. Or, use Exer. 2.7.2.)

(4.8.3) Exercise Let x be an element of Cart(k).

(i) Prove that x · εp = 0 if and only if x lies in the closure of the sum of left ideals∑
(n,p)=1 Cart(k)Fn. (Hint: Use 2.7.2.)

(ii) Prove that εp · x = 0 if and only if x lies in the convergent sum of right ideals∑
(n,p)=1 VnCart(k).

(4.8.4) Exercise Prove that

εpCart(k) =


∑
i,j≥0

(n,p)=1

V i〈ai,j,n〉F jFn

∣∣∣∣∣∣∣∣∣∣
(i) ai,j,n ∈ k ∀ i, j ≥ 0, ∀n ≥ 1 with (n, p) = 1,

(ii) ∀i ≥ 0, ∃Ci > 0 s.t. ai,j,n = 0 if j > Ci or
n > Ci.


In other words, εpCart(k) is the V -adic completion of the discrete direct sum of the free
Cartp(k)-modules Cartp(k) · Fn, where n ranges through all positive integers prime to p.
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(4.8.5) Exercise Show that the canonical maps

Cart(k)εp⊗̂Cartp(k)εpCart(k) −→ Cart(k)

εpCart(k)⊗Cartp(k) εpCart(k) −→ Cartp(k)

are isomorphisms.

(4.8.6) Exercise Let S be a subset of the set of all prime numbers, and let ZS = Z[1
`
]`/∈S

be the subring of Q generated by Z and all prime numbers ` /∈ S. Generalize the results in
this section to the case when the base ring k is a commutative algebra over ZS with 1.

(4.8.7) Exercise Assume that k is a field of characteristic p. Let M be a V-reduced
Cartp(k)-module such that dimk(M/VM) = 1. Let e ∈ M be an element of M such that
e /∈ VM , so that M = Cartp(k) · e. Suppose that Fe =

∑
m≥n V

m〈am〉e, with am ∈ k for all
m ≥ n, and an 6= 0.

(i) Suppose that there exists an element b ∈ k such that bp
n+1−1 = an. Prove that there

exists a generator x of M such that Fx − V nx ∈ V n+1M . (Hint: Use a generator of
the form 〈c〉e.)

(ii) Assume that k is perfect and there exists an element b ∈ k such that bp
n+1−1 = an.

Prove that there exists a generator y of M such that Fy = V ny.

(4.8.8) Exercise Let k be a field of characteristic p. For i = 1, 2, let

Mi = Cartp(k)/Cartp(k) · (F −
∑
m≥ni

V m〈aim〉) ,

where aim ∈ k for all m ≥ ni, and n1, n2 are natural numbers. If n1 6= n2, prove that M1

and M2 are not isomorphic.

(4.8.9) Exercise Let r ≥ 1 be a positive integer, and let q = pr. Define formal power series
f(X) ∈ Q[[X]] and g(X, Y ) ∈ Q[[X,Y ]] by

f(X) =
∑
n≥0

Xqn

pn

g(X, Y ) = f−1(f(X) + f(Y )) .

It is well-known that g(X,Y ) ∈ Z(p)[[X, Y ]] is a one-dimensional formal group law, a special
case of the Lubin-Tate formal group law. The formal group law g(X,Y ) defines a smooth
commutative formal group G : Nilp

Z(p)
→ Ab. By definition, the Cart(Z(p))-module M

attached to G is G(Z(p)[[X]]+) = Z(p)[[X]]+. Let γ be the element of M corresponding to
X ∈ Z(p)[[X]]+
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(i) Prove that γ is a p-typical element of M . (Hint: Change the base ring from Z(p) to Q.)

(ii) Prove that Mp := εpM is generated by γ.

(iii) Prove that F · γ = V r−1 · γ.

(iv) Prove that End(G) = Z(p).

(4.8.10) Exercise Let k be a perfect field of characteristic p. Let n be a natural number.
Prove that Cartp(k)/Cartp(k) · (F − V n) is a free Wp(k)-module of rank n+ 1.

(4.8.11) Exercise Let n ≥ 0 be a natural number. Let k be a field of characteristic p. Let
M = Cartp(k)/Cartp(k) · (F − V n).

(i) If n = 0, show that M is a free Wp(k)-module of rank one.

(ii) Suppose that n ≥ 1, c ∈ k. Prove that (V j〈c〉F j) ·M ⊆ pM if j ≥ 2.

(iii) Prove that M is not a free Wp(k)-module if n ≥ 1 and k is not perfect.

(4.8.12) Exercise Notation as in 4.8.11. Let k1 be the finite subfield of k consisting of all
elements x ∈ k such that xp

n+1
= x. Let Card(k1) = pr.

(i) Show that r|n+ 1.

(ii) Show that EndCart(k)(M) is a Wp(k1)-module of rank (n+ 1).

(iii) Let D = EndCart(k)(M)⊗Zp Qp. Prove that Dp is a division algebra.

(iv) Prove that the center of D is a totally ramified extension of degree e = n+1
r

, isomorphic
to Qp[T ]/(T e − p).

(v) Find the Brauer invariant of the division algebra D with center E.

§A. Appendix: Witt vectors

In this appendix we explain the basic properties of the ring W̃ of universal Witt vectors and
the ring Wp of p-adic Witt vectors. Both are ring schemes over Z, and Wp is a factor of W̃
over Zp.

(A.1) Definition The universal Witt vector group W̃ is defined as the functor from the
category of all commutative algebras with 1 to the category of abelian groups such that

W̃ (R) = 1 + T R[[T ]] ⊂ R[[T ]]×

for every commutative ring R with 1. It turns out that the W̃ has a natural structure as a
ring scheme. When we regard a formal power series 1+

∑
m≥1 um T

m in R[[T ]] as an element
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of W̃ (R), we use the notation ω(1 +
∑

m≥1 um T
m). It is easy to see that every element of

W̃ (R) has a unique expression as

ω

(∏
m≥1

(1− am Tm)

)
.

Hence W̃ is isomorphic to SpecZ[x1, x2, x3, . . .] as a scheme; the R-valued point such that
xi 7→ ai is denoted by ω(a), where a is short for (a1, a2, a3, . . .). In other words, ω(a) =
ω(
∏

m≥1 (1− am Tm))

(A.1.1) Definition The ring structure of W̃ is given by

ω(1− a Tm) · ω(1− b T n) = ω
((

1− a
n
r b

m
r T

mn
r

)r)
, where r = (m,n) .

(A.1.2) Exercise (i) Prove that the recipe above for multiplication indeed defines a ring

structure on W̃ . In other words, prove that

(ω(1− a1 T
n1) · ω(1− a2 T

n2)) · ω(1− a3 T
n3) =

ω(1− a1 T
n1) · (ω(1− a2 T

n2) · ω(1− a3 T
n3))

for any elements a1, a2, a3 ∈ R and any n1, n2, n3 ≥ 1.

(ii) Show that ring structure on W̃ is uniquely determined by the requirement that

ω(1− a T ) · ω(1− b T ) = ω(1− ab T )

for every commutative ring R and all elements a, b ∈ R.

(A.1.3) The group scheme W̃ has a decreasing filtration
(

FilnW̃
)
n≥1

, where

FilnW̃ (R) = ω(1 + T nR[[T ]]) ⊂ W̃ (R) .

In terms of the coordinates in §A.1, FilnW̃ (R) consists of all R-valued points such that the

coordinates x1, . . . , xn−1 vanish. For every n, FilnW̃ (R) is an ideal of W̃ (R). This W (R) is
complete with respect to this filtration, and the addition, multiplication, and the operator
Fn, Vn defined in A.3 below are continuous with respect to this filtration; see (A.3.1) (9).

(A.2) Definition There is a homomorphism of ring schemes

ghost : W̃ −→
∞∏
m=1

A
1 = Spec k[w̃1, w̃2, w̃3, . . .] ,
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where the target has the standard ring scheme structure. The coordinates of the map “ghost”
are

w̃m(a) =
∑
d|m

d · am/dd .

Equivalently if we identify an R-valued point r of Spec k[w̃1, w̃2, w̃3, . . .] with the power series

1 +
∑∞

m=1 rm T
m ∈ R[[T ]] for a commutative ring R, then the map ghost on W̃ is induced

by the operator −t d
dt

log:

ghost(ω

(∏
m≥1

(1− am Tm)

)
) =

∑
m≥1

∑
d≥1

madm T
md =

∑
m≥1

w̃m(a)Tm .

(A.2.1) Exercise Prove that the map ghost is a homomorphism of ring schemes over Z,
and is an isomorphism over Q.

(A.3) Definition There are two families of endomorphisms of the group scheme W̃ : Vn
and Fn, n ∈ N≥1. Also for each commutative ring R with 1 and each element c ∈ R we have

an endomorphism [c] of W̃ ×SpecZ SpecR. They are defined as follows

Vn : ω(f(T )) 7→ ω(f(T n))

Fn : ω(f(T )) 7→
∑

ζ∈µn ω(f(ζ T
1
n )) ( formally )

[c] : ω(f(T )) 7→ ω(f(cT ))

The formula for Fn(ω(f(T ))) means that Fn(ω(f(T ))) is defined as the unique element such
that Vn(Fn(ω(f(T )))) =

∑
ζ∈µn ω(f(ζ T )) .

(A.3.1) Exercise Prove the following statements.

(1) Vn(ω(1 − a Tm)) = ω(1 − a Tmn), Fn(ω(1 − a Tm)) = ω
((

1− anr T m
r

)r)
, ∀ m,n ≥ 1,

where r = (m,n).

(2) Fn Fm = Fmn, Vm Vn = Vmn , ∀ m,n ≥ 1.

(3) Vn Fm = Fm Vn if (m,n) = 1.

(4) Fn Vn = n, i.e. Fn Vn ω(1− am Tm) = ω((1− am Tm)n) for all m,n ≥ 1.

(5) Let p be a prime number. Then Vp Fp = p on W̃ (R) if p = 0 in R. Conversely if
Vp(1) = Vp(Fp(1)) = p, then p = 0 in R. (Hint: For the “only if” part, show that
Vp Fp ω(1− T ) = ω(1− T p).)

(6) Fn is a ring homomorphism on W̃ for all n ≥ 1. (Hint: Either verify this statement
for the set of topological generators ω(1− am Tm), or use the ghost coordinates.)
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(7) x · (Vn y) = Vn(Fn(x) · y) for all x, y ∈ W̃ (R).

(8) If a positive integer N is invertible in R, then N is also invertible in W (R).

(9) Vn(FilmW̃ ) ⊆ FilmnW̃ , Fn(FilmW̃ ) ⊆ Fild
m
n
eW̃ , FilmW̃ · FilnW̃ ⊆ Filmax(m,n)W̃ .

(10) For all c ∈ R, all m,n ≥ 1 and all x ∈ W̃ (R), we have

w̃m([c](x)) = cm w̃m(x), w̃m(Fn(x)) = w̃mn(x), and w̃m(Vn(x)) =

{
n w̃m

n
if n|m

0 if n 6 |m

(A.3.2) Exercise Let R be a commutative ring with 1.

(i) Show that every endomorphism Φ of the group scheme W̃ over R is determined by the

element ΦR[X](1−XT ) ∈ W̃ (R[X]).

(ii) Prove that every element Φ ∈ EndR(W̃ ) can be expressed as an infinite series in the
form ∑

m,n≥1

Vm [amn]Fn

with amn ∈ R for all m,n ≥ 1, and for every m there exists Cm ≥ 0 such that amn = 0
if n ≥ Cm. The elements amn ∈ R are uniquely determined by the endomorphism
Φ, and every family of elements {amn} in R satisfying the above condition gives an

endomorphism of W̃ .

(A.4) Definition Over Z(p) we define a projector

εp :=
∑

(n,p)=1

µ(n)

n
Vn Fn =

∏
` 6=p

(
1− 1

`
V` F`

)
,

where ` runs through all prime numbers not equal to p. Note that the factors (1 − 1
`
V` F`)

commute.

(A.4.1) Exercise Prove that

(i) (1− 1
`
V` F`)V` = 0 = F`(1− 1

`
V` F`) for all prime number ` 6= p. (Use A.3.1 (4).)

(ii) (1− 1
`
V`F`)

2 = 1− 1
`
V`F`.

(iii) εp ◦ V` = 0 = F` ◦ εp ∀ ` 6= p.

(iv) ε2p = εp.
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(A.4.2) Definition Denote by Wp the image of εp, i.e. Wp(R) := εp(W̃ (R)) for every Z(p)-
algebra R. Equivalently, Wp(R) is the intersection of the kernels Ker(F`) of the operators

F` on W̃ (R), where ` runs through all prime numbers different from p. The functor Wp has

a natural structure as a ring-valued functor induced from that of W̃ ; see Exer. A.4.5 (3);
it is represented by the scheme SpecZ(p)[y0, y1, y2, . . . , yn, . . .] according to the computation
below.

(A.4.3) For every Z(p)-algebra R and every sequence of elements am ∈ R, we have

εp

(
ω

(∏
m≥1

(1− am Tm)

))
= εp

(
ω

(∏
n≥0

(1− apn T p
n

)

))
= ω

(∏
n≥0

E(apn T
pn)

)
,

where

E(X) =
∏

(n,p)=1

(1−Xn)
µ(n)
n = exp

(
−
∑
n≥0

Xpn

pn

)
∈ 1 +XZ(p)[[X]]

is the inverse of the classical Artin-Hasse exponential. It follows that the map

∞∏
0

R 3 (c0, c1, c2, . . .) 7→ ω

(
∞∏
n=0

E(cn T
pn)

)
∈ Wp(R) = εp(W̃ (R))

establishes a bijection between
∏∞

0 R and Wp(R). Denote the element ω(
∏∞

n=0 E(cn T
pn)) ∈

Wp(R) by ωp(c). We have shown that the functor R 7→ Wp(R) is represented by the scheme
Spec k[y0, y1, y2, . . .], such that the element ωp(c) has coordinates c = (c0, c1, c2, . . .).

(A.4.4) The ghost coordinates on W̃ simplifies greatly when restricted to Wp. Most of them
vanish: w̃m(ωp(c)) = 0 if m is not a power of p for all c. Let wn(c) = w̃pn(ωp(c)) for all n ≥ 0.
Then

wn(c) =
n∑
i=0

pn−i cp
i

n−i ,

and ghost(ωp(c)) =
∑∞

n=0 wn(c)T p
n
. For each n the map ωp(c) 7→ (wn(c))n is a homo-

morphism of ring schemes Wp −→
∏∞

0 A
1. The endomorphism Vp, Fp of the group scheme

W̃ induces endomorphisms V, F of the group scheme Wp. Clearly V (ωp(c0, c1, c2, . . .)) =
ωp(0, c1, c2, . . .) for all c.

(A.4.5) Exercise Verify the following statements.

(1) εp(1) · x = εp(x) for all x ∈ W̃ (R). (Hint: Use A.3.1 (7).)

(2) εp(1) = ω(E(T )), εp(1) · εp(1) = εp(1)
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(3) εp(x · y) = εp(x) · εp(y) for all x, y ∈ W̃ (R). Hence Wp(R) is a subring of W̃ (R) whose
unit element is εp(1).

(4) F V = p on Wp(R).

(5) V F = p on Wp(R) if p = 0 in R. Conversely if V (1) = V (F (1)) = p then p = 0 in R.
(Hint: For the “only if” part, show that V F (1) = ω(E(T p)), while p = ω(E(T )p).

(6) V (Fx · y) = x · V y for all x, y ∈ Wp(R).

(7) F (xy) = F (x) · F (y) for all x, y ∈ Wp(R).

(8) F (ωp(c0, c1, c2, . . .)) = ωp(c
p
0, c

p
1, c

p
2, . . .) if p = 0 in R and ci ∈ R for all R.

(9) For each a ∈ R, let 〈a〉 := ωp(a, 0, 0, 0, . . .) = ω(E(cT )). Then

〈a〉 · ωp(c) = ωp(ac0, a
pc1, a

p2

c2, . . .)

for all c.

(10) wn ◦ F = wn+1 for all n ≥ 0, and

wn ◦ V =

{
pwn−1 if n ≥ 1
0 if n = 0

(11) F 〈a〉 = 〈ap〉 for any a ∈ R.

(A.4.6) Exercise The group scheme W has a decreasing filtration FilnW , n ≥ 0 defined
by FilnW = V nW (R), that is FilnW (R) consists of all elements of the form ωp(c) such that
ci = 0 for all i < n. Verify the following properties of this filtration.

(i) For each commutative ring R over Z(p), the ring Wp(R) is complete with respect to the
filtration Fil•Wp(R).

(ii) For each n ≥ 0, FilnWp(R) is an ideal of Wp(R).

(iii) V (FilnWp(R)) ⊆ Filn+1Wp(R) for all n ≥ 0.

(iv) F (FilnWp(R)) ⊆ Filn−1Wp(R) for all n ≥ 0.

(A.4.7) Exercise Show that the universal polynomials defining the ring law for Wp all have
coefficients in Z, therefore the ring scheme Wp over Z(p) has a canonical extension to Z.

(A.4.8) Exercise Suppose that p = 0 in R. Prove that the ideal V Wp(R) is generated by
p if and only if R is perfect; i.e. the Frobenius map x 7→ xp for R is surjective.

(A.4.9) Exercise Suppose that k is a perfect field of characteristic p. Prove that W (k) is
a complete discrete valuation ring with maximal ideal V W (k) = pW (k) and residue field k.
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(A.5) Ramified Witt vectors
Let O is a complete discrete valuation ring such that the residue field is a finite field

with q elements. Let π be a uniformizing element of O. The ring scheme of ramified
Witt vectors Wπ is similar to the p-adic Witt vectors, but the formal completion of Gm

is replaced by the Lubin-Tate formal group. More precisely, the role of the logarithm of the

Artin-Hasse exponential is played by the power series fπ(X) :=
∑

n≥0
Xqn

πn
in (1.5.2). Let

Eπ(X) = f−1
π (X), the inverse of fπ(X); Eπ(X) has coefficients in O. One can show that

there exist polynomials gi(u, v), i = 0, 1, 2, . . ., where u = (u0, u1, u2, . . .), v = (v0, v1, v2, . . .),
such that ∑Φπ

m≥0

Eπ(um T
qm) +

∑Φπ

m≥0

Eπ(vm T
qm) =

∑Φπ

i≥0

Eπ(gi(u, v))T q
i

.

The above family of polynomials gi(u, v) defines a group law on A∞, denoted by Wπ, called
the ramified Witt vectors for (O, π). The phantom coordinates are

wπ,n(u) :=
n∑
i=0

πn−i uq
i

n−i, n ≥ 0 .

Each wπ,n defines a group homomorphism from Wπ to Ga. Moreover there is a canonical
ring scheme structure on Wπ such that each wπ,n is a ring homomorphism from Wπ to A1.
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