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HOMOTOPICAL LOCALIZATIONS OF MODULE SPECTRA

CARLES CASACUBERTA AND JAVIER J. GUTIÉRREZ

Abstract. We prove that stable f -localizations (where f is any map of spec-
tra) preserve ring spectrum structures and module spectrum structures, under
suitable hypotheses, and we use this fact to describe all possible localizations
of the integral Eilenberg–MacLane spectrum HZ. As a consequence of this
study, we infer that localizations of stable GEMs are stable GEMs, and it also
follows that there is a proper class of nonequivalent stable localizations.

1. Introduction

A spectrum is called a stable GEM if it is homotopy equivalent to a wedge∨
k∈Z

ΣkHAk,

where each Ak is an abelian group and HAk denotes an Eilenberg–MacLane spec-
trum with π0(HAk) ∼= Ak and πi(HAk) = 0 if i �= 0. A spectrum is a stable GEM
if and only if it admits an HZ-module structure, where HZ is viewed as a ring
spectrum in the usual way. Equivalently, X is a stable GEM if and only if X is a
homotopy retract of HZ∧X ; more details about these claims are given in Section 5.
Note the analogy with unstable homotopy, where a space X is a GEM (i.e., a weak
product of abelian Eilenberg–MacLane spaces) if and only if it is a homotopy re-
tract of the infinite symmetric product SP∞X , a space whose homotopy groups are
the integral homology groups of X .

Dror Farjoun [Dro96], and later Badzioch [Bad01], with different methods, proved
that unstable f -localizations send GEMs to GEMs. In this article we prove that
the same result is true in stable homotopy, by developing further certain ideas used
by Bousfield in [Bou96] and [Bou99].

For this, one can choose to work in any suitable simplicial model category S

whose homotopy category is equivalent to the homotopy category of CW-spectra.
In order to ensure the existence of f -localizations, we ask that S be left proper,
cofibrantly generated, and locally presentable. The Bousfield–Friedlander model
category [BF78] or the model category of symmetric spectra built from simplicial
sets [HSS00] satisfy these conditions. However, most of our arguments are homo-
topic in nature and make no use of any specific models for spectra.
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Homotopical localization with respect to a map f : A → B of cofibrant spectra
(f -localization, for short) is a functor Lf from S to itself, which sends weak equiv-
alences to weak equivalences, is idempotent in the homotopy category and takes
values in the subcategory of fibrant spectra X such that the map of simplicial sets

Map(f, X) : Map(B, X) −→ Map(A, X)

is a weak equivalence. All known forms of localizations in stable homotopy are
f -localizations for suitable choices of the map f . Among these, homological lo-
calizations commute with the suspension operator. It is crucial to emphasize that
not all f -localizations commute with suspension; we give necessary and sufficient
conditions in Section 2.

We prove that if f is any map of spectra and E is a ring spectrum (i.e., a monoid
in the homotopy category), then LfE is also a ring spectrum and the localization
map E → LfE is a ring map, if we assume either that both E and LfE are
connective or that Lf commutes with suspension. If E is commutative, then LfE
is also commutative. Similarly, if M is an E-module spectrum, then so is LfM ,
and the localization map M → LfM is an E-module map, provided that E is
connective or Lf commutes with suspension. (A spectrum E is connective if its
homotopy groups πi(E) vanish for i < 0.)

It will be shown elsewhere that a stronger result holds, namely that, if the
model category S is closed symmetric monoidal and E is a monoid in S, then LfE
is homotopy equivalent to a monoid in S, if we assume either that both E and
LfE are connective or that Lf commutes with suspension. The same is true for
commutative monoids. This is proved in the special case of homological localizations
in Chapter VIII of [EKMM97].

It follows that f -localizations send HZ-modules to HZ-modules; that is, the
class of stable GEMs is preserved by f -localizations. We show that, in fact, for
every abelian group G,

LfHG � HA ∨ ΣHB

for certain abelian groups A and B. When G = Z, we show that B = 0 and the
group A is a commutative ring with 1 such that Hom(A, A) ∼= A via ϕ �→ ϕ(1).
Rings A with this property were called rigid in [CRT00]. It was shown in [DMV87]
that there is a proper class of nonisomorphic rigid rings, and it is easy to see that for
every rigid ring A there is a map f such that LfHZ � HA. Remarkably, this shows
that there is a proper class of nonequivalent f -localizations in the stable homotopy
category. In contrast, recall from [DP01] that there is only a set of nonequivalent
homological localizations. We do not know whether there is a proper class or a set of
nonequivalent f -localizations in the stable homotopy category that commute with
suspension. This question seems to be closely related to other unanswered questions
about Bousfield classes, cohomological localizations, and localizing subcategories,
some of which appear in the work of Hovey, Palmieri and Strickland, e.g. [Hov95],
[HPS97], [Str04].

A more conceptual explanation of the fact that, for every abelian group G, the
spectrum LfHG has at most two nonzero homotopy groups is that the homotopy
category of HR-modules is equivalent to the homotopy category of (Z-graded) chain
complexes of R-modules, where R is any ring; see [EKMM97, IV.2]. However, this
holds for strict HR-modules; that is, modules over HR in a closed symmetric
monoidal category of spectra. For certain rings, including R = Z, the distinction
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between strict HR-modules and homotopy HR-modules (i.e., HR-module spectra
in the homotopy category) is unessential, but for other rings it is crucial. This
phenomenon is discussed in [Gut03].

As an application of our results, we show that if E = K (complex K-theory) or
E = E(n) (the Johnson–Wilson spectrum) for some n, then the E-localization of
the sphere spectrum S has the following homology groups:

H0(LES) ∼= Q, Hi(LES) = 0 for i �= 0.

A similar result (with possibly other subrings of the rationals) holds for every
smashing localization, in the sense of [Rav84]. It follows as an easy consequence
that, if L is a smashing localization such that H0(LS) ∼= Q, then either L is ordinary
HQ-localization, or LS is unbounded.

2. Localization of spectra with respect to a map

The notion of f -localization can be formulated in any category S with a simpli-
cial model structure; see [GJ99] or [Hir03] for further details about methods and
terminology. Given a map f : A → B between cofibrant objects in such a category,
an object X is called f -local if it is fibrant and the induced map of simplicial sets

Map(f, X) : Map(B, X) −→ Map(A, X)

is a weak equivalence. We label the following standard properties for later use.

Lemma 2.1. If X is f -local and Y → X is a map with a left homotopy inverse,
then Y is f -local.

Proof. Factor Y → X into a cofibration Y → Z followed by a trivial fibration
Z → X . Then Z is f -local and Y is a retract of Z. It follows, as in [Hir03, 1.2.5],
that Map(f, Y ) : Map(B, Y ) → Map(A, Y ) is a retract of Map(f, Z), and hence it
is a weak equivalence. �

Lemma 2.2. Every homotopy limit of f -local objects is f -local.

Proof. If I is a small category and D : I → S is a diagram in S taking values in the
subcategory of f -local objects, then

Map(B, holimI D) ∼= holimI Map(B, D)

� holimI Map(A, D) ∼= Map(A, holimI D),

where Map(B, D) and Map(A, D) denote the corresponding diagrams of simplicial
sets indexed by I. �

A map g : X → Y is an f -equivalence if there is a cofibrant approximation
g̃ : X̃ → Ỹ such that

Map(g̃, E) : Map(Ỹ , E) −→ Map(X̃, E)

is a weak equivalence for every f -local object E. Similarly as in Lemmas 2.1 and 2.2,
every homotopy retract of an f -equivalence is an f -equivalence, and every homotopy
colimit of f -equivalences is an f -equivalence. In particular, every coproduct of f -
equivalences is an f -equivalence.

An f -localization of an object X is an f -equivalence l : X → LfX , where LfX is
f -local. Such a map l is initial in the homotopy category HoS among maps from X
to f -local objects, and it is terminal in HoS among f -equivalences with domain X .
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Each of these two universal properties ensures that, if an f -localization of X exists,
then it is unique up to homotopy.

The existence of f -localization for every map f and all objects X is guaranteed
if the simplicial model category S satisfies certain assumptions. Specifically, the
following result is proved as indicated in [Bou77] or in [Hir03]. The notion of a
locally presentable category was defined in [GU71]. The definitions of the terms
cofibrantly generated and left proper can be found in [Hir03].

Theorem 2.3. Let S be any locally presentable, cofibrantly generated, left proper,
simplicial model category. Then for every map f there exists a functor Lf on S with
a natural transformation Id → Lf yielding an f -localization for all objects. �

(Such a functor need not be unique on S, but it is unique up to homotopy, and
a standard construction provides canonical models.) The Bousfield–Friedlander
category of spectra [BF78] or the category of symmetric spectra built from simplicial
sets [HSS00] satisfies the assumptions stated in Theorem 2.3. Moreover, for X
cofibrant and Y fibrant, the simplicial set Map(X, Y ) is an infinite loop space and,
for any choice of basepoint, its homotopy groups satisfy

πk(Map(X, Y ), ∗) ∼= [ΣkX, Y ] ∼= πk(F (X, Y )) for k > 0,

where F (X, Y ) denotes the function spectrum from X to Y . Thus, the homotopy
groups of the simplicial set Map(X, Y ) are isomorphic to those of the connective
cover F c(X, Y ) of the function spectrum from X to Y .

From now on, we will work with (derived) function spectra in the homotopy
category, and omit any further reference to the chosen model category. Thus, for a
map f : A → B in HoS, a spectrum E is f -local if and only if the induced map of
connective covers of function spectra

F c(B, E) −→ F c(A, E)

is an equivalence, i.e., induces isomorphisms of all homotopy groups. Likewise, a
map g : X → Y in HoS is an f -equivalence if and only if the induced map

F c(Y, E) −→ F c(X, E)

is an equivalence for every f -local spectrum E. These are indeed the definitions
adopted in [Bou96] and [Bou99].

Proposition 2.4. Let f be any map.
(a) If E is f -local, then Σ−kE is also f -local for k ≥ 0.
(b) If g : X → Y is an f -equivalence, then Σkg is also an f -equivalence for

k ≥ 0.

Proof. Part (a) is a special case of Lemma 2.2. A more direct argument can however
be given as follows. If E is f -local, then f induces an equivalence

F c(B, Σ−kE) � F c(A, Σ−kE) for k ≥ 0,

since πi(F c(B, Σ−kE)) ∼= πi+k(F c(B, E)) if i ≥ 0 and k ≥ 0. The proof of part (b)
is similar. �

Since F c(B, E) � F c(ΣkB, ΣkE) for all B, E and k ∈ Z, we may also infer that if
E is f -local then ΣkE is Σkf -local for every k ∈ Z, and similarly for f -equivalences.
From this fact we deduce the following result.
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Proposition 2.5. For every map f and every spectrum X there is an equivalence

LfΣ−kX � Σ−kLΣkfX for all k ∈ Z.

Proof. Since l : X → LΣkfX is a Σkf -equivalence, Σ−kl is an f -equivalence. More-
over, Σ−kLΣkfX is f -local since LΣkfX is Σkf -local, so our claim follows. �

This is to be compared with the expression LfΩkX � ΩkLΣkfX for spaces,
which was proved in [Dro96].

Proposition 2.6. Let X → Y → Z be a cofibre sequence of spectra and let f be
any map. If LfX is contractible, then the map Y → Z is an f -equivalence.

Proof. Consider the long exact sequence of abelian groups

· · · → [ΣX, E] → [Z, E] → [Y, E] → [X, E] → · · ·
for a spectrum E. If E is f -local, then [ΣkX, E] = 0 for k ≥ 0, by part (b)
of Proposition 2.4. Therefore, [Z, E] ∼= [Y, E] for all f -local spectra E, and this
implies that the map Y → Z is an f -equivalence. �

For arbitrary spectra X and Y and any map f , there is a natural equivalence

LfX ∨ LfY � Lf (X ∨ Y ),

since the coproduct X ∨ Y → LfX ∨LfY is an f -equivalence and LfX ∨LfY is a
product of f -local spectra, hence f -local (the same argument is valid for any finite
wedge). Thus, Lf is an additive functor on HoS.

Localization with respect to a map of the form f : A → 0 is called A-nullifica-
tion, and it is denoted by PA instead of Lf . The corresponding local spectra are
called A-null. Thus, a spectrum X is A-null if and only if F c(A, X) � 0. For every
map f there is a natural transformation PC → Lf , where C is the cofibre of f .
This follows from the fact that every f -local spectrum is C-null.

As a consequence of Proposition 2.4, for every X there is a natural map

(2.1) ΣLfX −→ LfΣX.

We say that Lf commutes with suspension if this natural map is an equivalence
for all X . Thus, Lf commutes with suspension if and only if ΣLfX � LfΣX , since
the latter implies that ΣLfX is f -local, and the map (2.1) is then an f -equivalence
between f -local spectra, hence an equivalence.

As we next show in detail, Lf commutes with suspension if and only if it is an
exact functor on the stable homotopy category, or a triangulated functor in the
sense of Neeman [Nee01].

Theorem 2.7. Let f : A → B be a map of spectra. Then the following statements
are equivalent:

(i) ΣLfX � LfΣX for every spectrum X.
(ii) ΣkLfX � LfΣkX for every spectrum X and every k ∈ Z.
(iii) If E is any f -local spectrum, then ΣkE is f -local for all k ∈ Z.
(iv) If g is any f -equivalence, then Σkg is an f -equivalence for all k ∈ Z.
(v) LfX � LΣkfX for every spectrum X and every k ∈ Z.
(vi) The map F (B, E) → F (A, E) induced by f is an equivalence for every

f -local spectrum E.
(vii) If E is f -local and X is any spectrum, then F (X, E) is f -local.
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(viii) If g : X → Y and h : M → N are f -equivalences, then g∧h : X∧M → Y ∧N
is also an f -equivalence.

(ix) If X → Y → Z is any cofibre sequence of spectra, then LfX → LfY → LfZ
is also a cofibre sequence.

Proof. Clearly (i) and (ii) are equivalent, and (ii) implies (iii). Note that (iii) implies
that ΣLfX is f -local for all X , and hence (i) holds because (2.1) is an f -equivalence.
It is straightforward that (iii) and (iv) are equivalent. From (iv) it follows that,
given any k ∈ Z, the map Σkf is an f -equivalence, and f is also a Σkf -equivalence.
This implies that the classes of f -local spectra and Σkf -local spectra coincide, thus
yielding (v). Now (v) together with Proposition 2.5 implies (ii).

Statement (vi) is equivalent to the fact that f induces equivalences

F c(B, ΣkE) � F c(A, ΣkE)

for all k ∈ Z, and hence it follows from (iii). To prove (vii), we have to verify that

F c(B, F (X, E)) � F c(A, F (X, E)),

which is equivalent to F c(X, F (B, E)) � F c(X, F (A, E)), and this follows from (vi).
Statement (viii) is proved from (vii) by taking any f -local spectrum E and observing
that

F c(Y ∧ N, E) � F c(Y, F (N, E)) � F c(X, F (N, E))

� F c(N, F (X, E)) � F c(M, F (X, E)) � F c(X ∧ M, E).

Now (iv) follows from (viii) by smashing g with the identity of ΣkS, for k ∈ Z.
Hence, statements (i) to (viii) are equivalent.

We next deduce (ix) from (i). Given a cofibre sequence X → Y → Z, consider
the ladder

Σ−1Z ��

��

X ��

��

Y ��

��

Z ��

��

ΣX

��

LfΣ−1Z �� LfX �� C �� ΣLfΣ−1Z �� ΣLfX,

where C is the cofibre of the map LfΣ−1Z → LfX . It follows from (i) that
ΣLfΣ−1Z � LfZ, and ΣLfX � LfΣX . Thus, all vertical maps except perhaps
Y → C are f -equivalences. The five-lemma implies then that Y → C is also an
f -equivalence and that C is f -local. Therefore C � LfY . Finally, in order to prove
that (ix) implies (i), use the cofibre sequence X → 0 → ΣX , for any X . �

Statement (vi) tells us that f -localization commutes with suspension if and only if
the class of f -local spectra is characterized by means of the full function spectrum F ,
instead of its connective cover F c. We also remark that, by the following fact, every
f -localization that commutes with suspension is a nullification.

Corollary 2.8. If a localization functor Lf commutes with suspension, then the
natural transformation PC → Lf , where C is the cofibre of f , is an equivalence.

Proof. There are natural transformations LΣf → PC → Lf , which correspond to
inclusions of the respective classes of local spectra. Since the composite LΣf → Lf

is an equivalence by part (v) of Theorem 2.7, the arrow PC → Lf is also an
equivalence. �
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For a given map f , if we consider the wedge g =
∨

k∈Z
Σkf , then there is a

natural transformation Lf → Lg, and Lg commutes with suspension, by part (v) of
Theorem 2.7, since Σg � g. This natural transformation Lf → Lg is an equivalence
if and only if Lf commutes with suspension, since a spectrum is then g-local if and
only if it is f -local. The same holds if we replace g by any map of the form∨

k<N Σkf , where N is any integer.

3. Examples of f-localizations

We briefly discuss three well-known examples of localizations in the stable ho-
motopy category, namely Postnikov sections, homological localizations and local-
izations at sets of primes, and display them as f -localizations for certain maps f .

3.1. Postnikov sections. The localization of a spectrum E with respect to the
map f : Σk+1S → 0, where S is the sphere spectrum and k ∈ Z, is equivalent to the
k-th Postnikov section E(k) of E. Recall that πi(E(k)) = 0 for i > k, and that there
is a map E → E(k) inducing isomorphisms of homotopy groups in dimensions less
than or equal to k. Postnikov sections do not commute with suspension. Indeed, if
πk(E) �= 0, then (ΣE)(k) �� ΣE(k).

3.2. Homological localizations. Homological localizations in stable homotopy
were first constructed in [Bou79]. Let E be any spectrum. Then a spectrum X
is called E-acyclic if Ek(X) = 0 for all k ∈ Z or, equivalently, if E ∧ X � 0. A
map of spectra g : X → Y is an E-equivalence if the map g∗ : Ek(X) → Ek(Y ) is
an isomorphism for all k ∈ Z, that is, if g induces an equivalence E ∧ X � E ∧ Y .
Thus, g is an E-equivalence if and only if its cofibre is E-acyclic. A spectrum Z is
E-local if each E-equivalence f : X → Y induces an equivalence F (Y, Z) � F (X, Z)
or, equivalently, if F (A, Z) � 0 for each E-acyclic spectrum A.

An E-localization of a spectrum X is an E-equivalence X → LEX from X to an
E-local spectrum. E-localization is a nullification, as shown in [Bou79]. We label
this fact for further reference:

Theorem 3.1. Let E be any spectrum. Then there are an E-acyclic spectrum A
and a natural equivalence PAX � LEX for every spectrum X. �

Homological localizations clearly commute with suspension.

3.3. Localization at sets of primes. Let G be any abelian group and let MG
denote its Moore spectrum. Thus, (HZ)0(MG) ∼= π0(MG) ∼= G, πi(MG) = 0 if
i < 0, and (HZ)i(MG) = 0 if i �= 0. Here HZ denotes the integral Eilenberg–
MacLane spectrum.

Lemma 3.2. There is a natural exact sequence

0 −→ Ext(G, πk+1(X)) −→ [ΣkMG, X ] −→ Hom(G, πk(X)) −→ 0

for each spectrum X, each abelian group G, and all k, where MG is the Moore
spectrum associated with G.

Proof. Pick a free presentation of the group G and use the corresponding cofibre
sequence of Moore spectra; cf. [Bou79, (2.2)]. �
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Let ZP denote the integers localized at a set of primes P (possibly empty). For
every spectrum X , the P -localization of X is the natural map

1 ∧ η : X −→ X ∧ MZP

where η : S → MZP corresponds to the unit in ZP = π0(MZP ). A spectrum X is
P -local if this map is an equivalence. We shall write XP for X ∧ MZP .

It follows from the definition that P -localization is a homological localization,
namely MZP -localization. Hence, P -localization commutes with suspension. We
also remark that

XP � X ∧ SP ,

for all X ; that is, P -localization is smashing (see the end of Section 5).
For each k ∈ Z we have

(3.1) πk(XP ) ∼= πk(X) ⊗ π0(MZP ) ∼= πk(X) ⊗ ZP ,

and from this fact it follows that, if E is any spectrum, then

Ek(XP ) ∼= πk(E ∧ X ∧ MZP ) ∼= Ek(X) ⊗ ZP

for all X . Hence, P -localization of spectra induces P -localization of their homotopy
and homology groups. If we consider cohomology, then Lemma 3.2 yields

Ek(XP ) ∼= [X ∧ MZP , ΣkE] ∼= [MZP , F (X, ΣkE)]
∼= Hom(ZP , Ek(X)) ⊕ Ext(ZP , Ek−1(X)).

An explicit map f such that LfX � XP for all X can be displayed as follows.

Proposition 3.3. Let P be a set of primes and let g :
∨

q �∈P S → ∨
q �∈P S be a

wedge of maps inducing multiplication by q in π0(S) for each prime q not in P , and
let f =

∨
n<0 Σng. Then LfX � X ∧ MZP for all X.

Proof. The map f has been chosen so that f -local spectra are precisely those spectra
whose homotopy groups are ZP -modules. For a spectrum X , the P -localization map
X → XP is an equivalence if and only if the homotopy groups of X are ZP -modules,
by (3.1). Thus we conclude the proof by recalling that two localization functors
with the same class of local spectra are necessarily equivalent. �

Note that P -localization is also equivalent to nullification with respect to the
cofibre of f , which is a wedge of Moore spectra, namely∨

q �∈P, n<0

ΣnMZ/q.

One could also consider the effect of nullification with respect to M =
∨

q �∈P MZ/q

(without the desuspensions). The resulting functor does not commute with suspen-
sion and does not change the homotopy groups of spectra in negative dimensions,
since M is connective (see Remark 4.6). From Lemma 3.2 it follows that the M -null
spectra are the spectra X such that πn(X) is a ZP -module for n > 0 and π0(X) is
P ′-torsion free, where P ′ denotes the complement of P . Hence, nullification with
respect to M kills the P ′-torsion on π0 and P -localizes the homotopy groups in
positive dimensions. In fact there is a sequence of localization functors,

· · · → LΣg → PM → Lg → PΣ−1M → LΣ−1g → PΣ−2M → · · · ,

converging to the identity in one direction and to P -localization in the other direc-
tion, similarly as in [CR97].
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4. Localizations of ring spectra and module spectra

We recall the definition of ring spectra and module spectra in the homotopy
category, as in [Ada74]. A spectrum E is called a ring spectrum if it is equipped
with two maps µ : E ∧ E → E and η : S → E such that the following diagrams
commute up to homotopy:

E ∧ E ∧ E
µ∧1

��

1∧µ

��

E ∧ E

µ

��

E ∧ E µ
�� E

S ∧ E
η∧1

��

������
�����

� E ∧ E

µ

��

E ∧ S
1∧η

��

��������
����

E.

It is said that E is commutative if µ ◦ τ � µ, where τ : E ∧E → E ∧ E is the twist
map. A spectrum M is called a module spectrum over a ring spectrum E, or an
E-module, if it is equipped with a map m : E ∧ M → M such that the following
diagrams commute up to homotopy:

E ∧ E ∧ M
µ∧1

��

1∧m

��

E ∧ M

m

��

E ∧ M m
�� M

S ∧ M
η∧1

��

����
���

��
��

E ∧ M

m
�����

��
��

��

M.

Every ring spectrum E is an E-module spectrum with m = µ.
A ring map between ring spectra (E, µ, η) and (E′, µ′, η′) is a map f : E → E′

such that f ◦µ � µ′ ◦ (f ∧ f) and f ◦ η � η′. An E-module map is defined similarly.
If R is a ring with unit and M is a left R-module, then the Eilenberg–MacLane

spectrum HR is a ring spectrum, and HM is a module spectrum over HR. The
structure maps on HR and HM come from the product R ⊗ R → R and the unit
Z → R in the ring R, and from the structure homomorphism R ⊗ M → M of M
as an R-module. In particular, HR is an HZ-module for every ring R. Moreover,
every HR-module is an HZ-module via the map HZ → HR corresponding to the
unit Z → R.

Remark 4.1. If M is an E-module spectrum, then, for every spectrum X , the graded
abelian group [Σ∗X, M ] is a π∗(E)-module, as follows. For every map α : ΣiS → E
and every map f : ΣjX → M we obtain another map Σi+jX → M by smashing α
with f and composing with the E-module structure map:

Σi+jX � ΣiS ∧ ΣjX
α∧f−−−→ E ∧ M

m−→ M.

In particular, if M is an HR-module spectrum, then πn(M) is an R-module for
every n.

As we next prove, in the case of f -localization functors that commute with sus-
pension, the f -localizations of ring spectra or module spectra acquire a compatible
ring structure or module structure. In the rest of this section, we assume that f is
a fixed map of spectra, and write L instead of Lf .

Theorem 4.2. If the localization functor L commutes with suspension, then the
following hold:

(i) If E is a ring spectrum, then the spectrum LE has a unique ring spectrum
structure such that the localization map lE : E → LE is a ring map. If E
is commutative, then LE is also commutative.
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(ii) If M is an E-module, then the spectrum LM has a unique E-module struc-
ture such that the localization map lM : M → LM is an E-module map.
Moreover, LM admits a unique LE-module structure extending the E-
module structure.

Proof. For the first part we need to construct a product µ and a unit η on LE.
Let µ and η be the product and the unit of the ring spectrum E, respectively. We
have an equivalence F (E, LE) � F (LE, LE) because LE is local and the functor
L commutes with suspension by assumption. Then,

[E ∧ E, LE] ∼= [E, F (E, LE)] ∼= [E, F (LE, LE)] ∼= [E ∧ LE, LE]
∼= [LE, F (E, LE)] ∼= [LE, F (LE, LE)] ∼= [LE ∧ LE, LE].

Hence, the product µ : E ∧ E → E extends to a unique map µ : LE ∧ LE → LE
rendering homotopy commutative the diagram

E ∧ E
µ

��

lE∧lE

��

E

lE

��

LE ∧ LE
µ

�� LE.

We define the unit η as the composition lE ◦ η. The commutativity of the diagrams
for µ and η follows from the commutativity of the diagrams for µ and η and the
universal property of L (using part (viii) of Theorem 2.7).

The commutativity of LE when E is commutative and all the statements in
part (ii) are proved in the same way. �

As we next show, localization functors not commuting with suspension need not
preserve ring structures nor module structures in general. The following lemma is
useful to prove that certain spectra fail to be ring spectra or module spectra.

Lemma 4.3. Let E and F be ring spectra, and let M be an E-module spectrum.
If F0(E) = 0, then Fi(M) = 0 for all i ∈ Z.

Proof. Since E and F are ring spectra, E∧F is also a ring spectrum. The assump-
tion F0(E) = 0 says that the unit map S → E ∧ F is null, and this implies that
E ∧ F � 0. If M is an E-module, then the composite

S ∧ M −→ E ∧ M −→ M,

where the first arrow comes from the unit of E and the second arrow is the structure
map of M as an E-module, is an equivalence. By smashing this sequence with F ,
we find that F ∧ M � 0, as claimed. �
Example 4.4. Given a natural number n and a fixed prime p, let K(n) denote the
ring spectrum corresponding to nth Morava K-theory. If we consider its 0th Post-
nikov section K(n)(0), then, as observed in p. 95 of [Rud98], (HZ/p)0

(
K(n)(0)

)
= 0

and (HZ/p)i

(
K(n)(0)

) �= 0 for some i > 0. This implies that K(n)(0) cannot be
a ring spectrum, by Lemma 4.3. We give another approach with further details to
this example, in view of its relevance. There is a cofibre sequence

Σdk(n) −→ K(n) −→ K(n)(0),

where d = 2(pn − 1) and k(n) denotes as usual the connective cover of K(n).
Suppose that K(n)(0) were a ring spectrum. Then K(n)(0) ∧ HZ/p would also be
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a ring spectrum. Since K(n) ∧ HZ/p � 0, it follows that (HZ/p)0
(
K(n)(0)

)
= 0.

Therefore the unit S → K(n)(0) ∧ HZ/p would be null, and this would imply that
K(n)(0) ∧ HZ/p � 0. But this is false, since the mod p cohomology of k(n) is a
nonzero quotient of the Steenrod algebra; see, e.g., p. 545 of [Rud98].

A similar argument, now considering K(n) as a K(n)-module, and using that
(HZ/p)0(K(n)) = 0 and Lemma 4.3, shows that K(n)(0) is not a K(n)-module.

This difficulty can be repaired by imposing suitable connectivity conditions. The
following result extends an observation made by Bousfield in [Bou99].

Theorem 4.5. Let L be any localization. Then the following hold:
(i) If E is a connective ring spectrum and LE is connective, then the spectrum

LE has a unique ring structure such that the localization map lE : E → LE
is a ring map. If E is commutative, then LE is also commutative.

(ii) If M is an E-module, where E is a connective ring spectrum, then LM has
a unique E-module structure such that the localization map lM : M → LM
is an E-module map. Moreover, if LE is connective, then LM also admits
a unique LE-module structure extending the E-module structure.

Proof. Using that E is a connective spectrum, we have equivalences

F c(E, F c(X, Y )) � F c(E, F (X, Y )) � F c(E ∧ X, Y )

that give a bijection [E, F c(X, Y )] ∼= [E ∧X, Y ]. Then one proceeds as in the proof
of Theorem 4.2. �
Remark 4.6. The assumption that LE is connective in part (i) of Theorem 4.5 is
automatically fulfilled if E, A and B are connective, by the following argument:
A spectrum X is connective if and only if PSX � 0, where S is the sphere spectrum.
Therefore, if A and B are connective, then f : A → B is a PS-equivalence. This
implies that every f -equivalence is also a PS-equivalence, and in particular the
localization map E → LE is a PS-equivalence, from which it follows that L does
not change the homotopy groups in negative dimensions.

5. Localization of stable GEMs

Using results due to Bousfield [Bou99] and Rudyak [Rud98], we next show that
the stable GEMs are precisely the HZ-modules. Thus, the results in the previous
section imply that every f -localization sends stable GEMs to stable GEMs. In
addition, we will describe all the localizations of the ring spectrum HZ.

Definition 5.1. Let R be an arbitrary ring with unit. A spectrum E is called a
stable R-GEM if it is equivalent to a wedge of suspensions of Eilenberg–MacLane
spectra, E � ∨

k∈Z
ΣkHAk, where each Ak is an R-module (hence, each HAk is

an HR-module spectrum). If R = Z, then stable Z-GEMs are called stable GEMs.

Note that, if E is a ring spectrum, then for every spectrum X , the smash product
E ∧ X has an E-module structure given by µ ∧ 1: E ∧ E ∧ X → E ∧ X .

For any ring spectrum (E, µ, η), the triple (E ∧−, η∧ 1, µ∧ 1) is a monad on the
stable homotopy category HoS. The algebras over this monad are pairs (M, m),
where M is a spectrum and m : E∧M → M is a map that renders certain diagrams
commutative; see [Bor94]. These diagrams endow M precisely with the structure of
an E-module spectrum. Thus, the category of algebras (also called the Eilenberg–
Moore category) associated with the monad (E ∧ −, η ∧ 1, µ ∧ 1) is the category
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whose objects are the E-module spectra and whose morphisms are the E-module
maps in HoS. We denote this category by HoSE-mod and denote by [M, N ]E-mod

the corresponding group of E-module maps from M to N .
Every monad factors as a pair of adjoint functors through its Eilenberg–Moore

category; see [Bor94]. In our case, this gives the following result. We are indebted
to Gustavo Granja for pointing out this result to us, and to the referee for observing
that it comes from the fact that HoSE-mod is an Eilenberg–Moore category, so we
may omit the proof.

Lemma 5.2. Let E be any ring spectrum. Then the functor HoS → HoSE-mod

assigning to each spectrum X the spectrum E ∧ X is left adjoint to the forgetful
functor HoSE-mod → HoS. That is, for every spectrum X and every E-module M ,
there is a natural isomorphism

[X, M ] ∼= [E ∧ X, M ]E-mod

induced by the unit of E. �
Proposition 5.3. For every HZ-module M , there is a map of HZ-modules

HZ ∧
(∨

k∈Z

ΣkMGk

)
α̃−−−→ M

which is an equivalence, where Gk = πk(M).

Proof. An argument was sketched in [Ada74, p. 307]. For each k ∈ Z, take one map
αk ∈ [ΣkMGk, M ] mapping to the identity in Hom(Gk, Gk). Let α =

∨
k∈Z

αk

be the wedge of all αk constructed in this way. This yields, by Lemma 5.2, an
HZ-module map

α̃ : HZ ∧
(∨

k∈Z

ΣkMGk

)
−→ M,

namely α̃ = m ◦ (1 ∧ α). Now the map α̃ induces an isomorphism on πk for all
k ∈ Z, because η∧ 1 and 1∧α are isomorphisms on πk. So α̃ is an equivalence. �

Proposition 5.3 tells us that HZ-module spectra and stable GEMs are the same
thing, because HZ ∧ MG � HG for any abelian group G, and therefore, if M
is an HZ-module, then M � ∨

k∈Z
ΣkHπk(M). Similarly, the HR-modules are

precisely the stable R-GEMs, because each HR-module spectrum is an HZ-module
spectrum, and the homotopy groups of HR-module spectra are R-modules (see
Remark 4.1).

Corollary 5.4. Let A and B be abelian groups. Then

[HA, HB]HZ-mod
∼= Hom(A, B),

[HA, ΣHB]HZ-mod
∼= Ext(A, B),

[HA, ΣkHB]HZ-mod = 0 if k �= 0, 1.

Proof. As a special case of Proposition 5.3, HA � HZ ∧ MA as HZ-modules. By
Lemma 5.2, there is a natural bijection

[MA, ΣkHB] ∼= [HA, ΣkHB]HZ-mod,

and the result follows using Lemma 3.2. �
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In the rest of this section, L denotes f -localization with respect to a fixed but
arbitrary map f . Using the results on f -localizations of E-modules of Section 4,
we have the following.

Theorem 5.5. Let R be any ring with unit. If E is a stable R-GEM, then LE is
a stable R-GEM and the localization map lE : E → LE is an HR-module map.

Proof. A stable R-GEM is the same as an HR-module, and HR is a connective
spectrum. Hence we may apply Theorem 4.5. �

Next, we are going to study the case when the spectrum E is an iterated sus-
pension of a single Eilenberg–MacLane spectrum, i.e., E � ΣnHG, where G is an
R-module and n ∈ Z. By Theorem 5.5, we know that LΣnHG � ∨

k∈Z
ΣkHGk

with each Gk an R-module. In fact, most of the R-modules Gk are zero, as we
next explain. Consider the following sequence of HZ-module maps, where β is a
homotopy inverse of the map given by Proposition 5.3, and pi is the projection onto
the i-th factor:

ΣnHG
l−→ LΣnHG

β−→
∨
k∈Z

ΣkHGk
pi−→ ΣiHGi.

By Corollary 5.4,
[ΣnHG, ΣiHGi]HZ-mod = 0

unless i = n or i = n + 1. The universal property of localization and the fact that
ΣiHGi is f -local because it is a retract of

∨
k∈Z

ΣkHGk (see Lemma 2.1) tell us
that Gi = 0 if i �= n or i �= n + 1.

Therefore, the localization of any iterated suspension of an Eilenberg–MacLane
spectrum has at most two nonzero homotopy groups:

Theorem 5.6. Let G be any abelian group and n ∈ Z. Then

LΣnHG � ΣnHG1 ∨ Σn+1HG2

as HZ-modules, for some abelian groups G1, G2. If G is an R-module for some
ring R, then G1 and G2 are also R-modules. �

Corollary 5.7. If E � ∨i∈Z
ΣiHAi then LE � ∨i∈Z

LΣiHAi.

Proof. The spectrum
∨

i∈Z
LΣiHAi is f -local because it is equivalent to the prod-

uct
∏

i∈Z
LΣiHAi, by Proposition III.3.14 in [Ada74] (here we use Theorem 5.6 to

ensure that, for each value of i, only a finite number of homotopy groups—in fact,
at most two—are nonzero), and the map∨

i∈Z

ΣiHAi −→
∨
i∈Z

LΣiHAi

is an f -equivalence, because it is a wedge of f -equivalences. �

There are some special cases in which the localization of an Eilenberg–MacLane
spectrum is a single Eilenberg–MacLane spectrum.

Theorem 5.8. If G is free abelian and n is any integer, then LΣnHG � ΣnHA
for some abelian group A.
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Proof. From Theorem 5.6, we know that LΣnHG has at most two nonzero homo-
topy groups, say A and B. By Corollary 5.4,

[ΣnHG, Σn+1HB]HZ-mod
∼= Ext(G, B).

If G is free, then Ext(G, B) = 0, and this tells us that the projection ΣnHG →
Σn+1HB is nullhomotopic. Moreover, Σn+1HB is f -local, because it is a retract
of LΣnHG. Then the universal property of localization forces that B = 0. �

Theorem 5.9. If p is a prime, k is a positive integer and n is any integer, then
LΣnHZ/pk � ΣnHZ/pi with 0 ≤ i ≤ k.

Proof. We assume that n = 0 for simplicity, and start by considering the case k = 1.
By Theorem 5.6,

LHZ/p � HA1 ∨ ΣHA2,

where A1 and A2 are Z/p-modules. Since retracts and desuspensions of f -local
spectra are f -local, it follows that either A1 = 0 and A2 = 0, or HZ/p is f -local.
If A1 = 0 and A2 = 0, then LHZ/p is contractible and the cofibre sequences

HZ/p −→ HZ/pr −→ HZ/pr−1

imply inductively that LHZ/pr is contractible for all r, by Proposition 2.6.
Now let k be any positive integer. By the preceding discussion, we may assume

that HZ/p is f -local. Using Theorem 5.6 again, we may write

LHZ/pk � HB1 ∨ ΣHB2,

where B1 and B2 are Z/pk-modules (i.e., abelian groups with an exponent dividing
pk). Therefore, by [Kap69], B1 and B2 are direct sums of subgroups isomorphic to
Z/pj with j ≤ k. If B2 = 0, then Hom(B1, B1) ∼= Hom(Z/pk, B1), by the universal
property of L, and this forces B1 to consist of only one summand and Z/pk → B1

to be surjective (as in Theorem 3.4 in [Cas00]). Finally, we suppose that B2 is
nonzero and will arrive at a contradiction. Let m be the smallest integer such that
Z/pm is a direct summand of B2. Then ΣHZ/pm and HZ/pm are f -local. Now
the cofibre sequences

HZ/p(r+1)m −→ HZ/prm −→ ΣHZ/pm

imply inductively that HZ/prm is f -local for r ≥ 1, by Lemma 2.2. Choose r
such that rm > k and infer that HZ/pk is f -local, by using downwards the cofibre
sequences

HZ/pi−1 −→ HZ/pi −→ HZ/p.

This is indeed a contradiction. �

Corollary 5.10. If G is a finitely generated abelian group and n is any given
integer, then LΣnHG � ΣnHA for some abelian group A.

Proof. This follows from Theorem 5.8 and Theorem 5.9, since L commutes with
finite products. �

Bousfield has informed us that the conclusion that LΣnHG has at most one
nonzero homotopy group holds, more generally, if G is a reduced abelian group;
that is, if the only divisible subgroup of G is the trivial subgroup. The argument
will not be given in this article.
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If we now project LΣnHG onto the first summand

ΣnHG

p1◦l
���������������

l �� ΣnHA ∨ Σn+1HB

p1

��

ΣnHA

we can obtain information about the group A. The universal property of L yields
an isomorphism of abelian groups

[ΣnHA, ΣnHA] × [Σn+1HB, ΣnHA] ∼= [HG, HA],

where [Σn+1HB, ΣnHA] = 0 because

[ΣHB, HA] ∼= (HA)0(ΣHB) ∼= Hom(π0(ΣHB), A) = 0.

Hence we get

Hom(A, A) ∼= [ΣnHA, ΣnHA] ∼= [HG, HA] ∼= Hom(G, A).

In the case when G = Z, this says that Hom(A, A) ∼= A. Therefore, if A is
nonzero, then A admits a ring structure, with a multiplication coming from compo-
sition in Hom(A, A) and a unit coming from the identity homomorphism. Moreover,
the isomorphism Hom(A, A) ∼= A is given by evaluation at the unit.

Definition 5.11. A ring A with unit such that Hom(A, A) ∼= A via ϕ �→ ϕ(1) is
called rigid.

This terminology was first used in [CRT00]. However, rigid rings had previously
been studied in a different context, under the name of E-rings. The most obvious
examples of such rings are Z, Q, Z/p, or the p-adics Ẑp, for any p. There are many
other examples: for instance, each product

∏
p∈P Ẑp is rigid, for any set of (distinct)

primes P . In fact, as shown in [DMV87], there are rigid rings of arbitrarily large
cardinality. However, neither the group Z/p∞ of p-th roots of unity nor the p-adic
field Q̂p admits the structure of a rigid ring. Therefore, there is no localization L

whatsoever such that π0(LHZ) is isomorphic to Z/p∞ or Q̂p.
Rigid rings are commutative. Solid rings in the sense of [BK72b] are rigid (yet,

all solid rings are countable). Proofs of these claims and further details about rigid
rings can be found in [CRT00].

All rigid rings occur as homotopy groups of localizations of HZ, since, if A is
any rigid ring, then LfHZ � HA, where f is the map HZ → HA induced by the
unit homomorphism Z → A. Alternatively, if we choose g : S → MA, then the map
HZ → HA is a g-equivalence, and HA is g-local, so LgHZ � HA as well.

We can summarize the results obtained for f -localizations of HZ in the following
theorem.

Theorem 5.12. Let f be any map of spectra. Then the f -localization of HZ has
at most one nonzero homotopy group, i.e., LfHZ � HA. Moreover, the group A
has a rigid ring structure if A �= 0. All rigid rings appear this way. �

Corollary 5.13. There is a proper class of non-equivalent f -localizations.

Proof. According to results in [DMV87], there is a proper class of non-isomorphic
rigid rings. �
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We conclude with another application. We say that a localization L is smashing
if the natural map 1 ∧ lS : X → X ∧ LS is an L-localization for all spectra X ,
where lS : S → LS is the localization of the sphere spectrum. It follows from this
definition that every smashing localization is homological (namely, L � LE, where
E = LS) and hence it commutes with suspension. Moreover, LS is a commutative
ring spectrum, by Theorem 4.2 (this was already observed by Bousfield in [Bou79]),
and the multiplication map LS∧LS → LS is an equivalence, since it is a left inverse
of 1∧ lS : LS → LS∧LS. Conversely, if E is a ring spectrum and the multiplication
map E ∧ E → E is an equivalence, then LE is smashing, by [Rav84, 1.29].

As also shown in [Rav84, 1.27], a homological localization LE is smashing if
and only if it commutes with direct limits. This happens, for example, if E is
the spectrum K of (complex) K-theory or the Johnson–Wilson spectrum E(n) for
any n.

Theorem 5.14. If L is smashing, then Hn(LS) = 0 if n �= 0, and it is either zero
or a subring of the rationals if n = 0.

Proof. We have

Hn(LS) = πn(HZ ∧ LS) ∼= πn(LHZ) ∼= πn(HA)

for some rigid ring A, by Theorem 5.12. Hence, Hn(LS) = 0 if n �= 0. From the
fact that LS ∧ LS � LS and the Künneth theorem, we infer that

H0(LS) ⊗ H0(LS) ∼= H0(LS)

and
Tor(H0(LS), H0(LS)) = 0.

Hence, H0(LS) is a torsion-free solid ring. Thus, it is a subring of the rationals, by
the classification of solid rings; see [BK72a]. �
Corollary 5.15. If L is a smashing localization such that H0(LS) ∼= Q, then
either L is ordinary HQ-localization, or the homotopy groups πi(LS) are nonzero
for infinitely many negative values of i.

Proof. The assumption made implies that LS ∧ HQ is nonzero, and this implies
that HQ is L-local. Now the unit S → HQ factors through LS, yielding a map
LS → HQ which, according to Theorem 5.14, is an integral homology equivalence.
If LS is bounded below, then it follows that LS � HQ, from which we infer that
LX � X ∧ LS � X ∧ HQ for all X . �

The ring H0(LS) happens to be Q, for instance, if L is localization with respect
to E = K or E = E(n) for any n. In each of these cases, the spectrum HQ is
E-local, since it is a retract of E ∧ HQ (which is nonzero). Hence, it suffices to
show that the natural map HZ → HQ is an E-equivalence. For this, we may use
the fact that Ek(HZ) = limi Ek+i(K(Z, i)). For E = K, the result follows from
[AH68]. For E = E(n), it is a consequence of [Bou82, Example 7.5].

The above remarks yield an easy proof of the well-known fact that the spectra
LKS and LE(n)S are not bounded below.
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Added after posting

In the statement of Lemma 2.1, Y is meant to be fibrant.
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