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Abstract

We introduce a notion of derived completion applicable to arbitrary homomorphisms of commutative S-algebras, and work
out some of its properties, including invariance results, a spectral sequence proceeding from purely algebraic information to the
geometric results, and analysis of relationships with earlier constructions. We also provide some examples. The construction has
applications in algebraic K -theory.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It has long been recognized that the development of a theory of ring and module spectra, which bears the same
relationship to the category of spectra as the ordinary theory of rings and modules has to the category of abelian
groups, is a very desirable thing. A number of such theories exist. The different approaches [10,12] solve the problem
in a satisfactory way, and more recently (see [14]) versions using orthogonal spectra and I'-spaces are also available.
The goal of transporting constructions which are available for ordinary rings and modules to this new category of ring
spectra is also a very worthwhile one. Some of these constructions have already been made by the authors of [10,
12]. In this paper, we will use the notion of an S-algebra (as in [10]) as the spectrum version of a ring. Given an
S-algebra A and module spectra M and N, one can construct spectra M /2 N and Homy (M, N), analogous to the

constructions M ® N and Homa (M, N) for rings A and modules M and N. From the point of view of topologists,
A

the most important constructions to transport to the category of spectra are those which are homotopy invariant,
i.e. those for which module or ring homomorphisms which induce weak equivalences on underlying spectra induce
equivalences on the constructions. For this reason, one considers only derived constructions, i.e. constructions which
on the algebraic side would always replace a module by a projective resolution for it, and would replace a ring by a
levelwise free simplicial ring. In the context of these categories of modules, this means that one replaces rings and
modules by cofibrant and/or fibrant objects in the categories of S-algebras and module spectra. Our goal in this paper
is to introduce and study the derived version of the completion construction for modules over a commutative ring.
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We describe the main results. Let f : A — B be a homomorphism of commutative S-algebras, and let M be an
A-module spectrum. Then we define a cosimplicial A-module spectrum 7, (M; B), and the derived completion of
M along the homomorphism f, denoted by My, as the total spectrum of 7, (M; B). Here are the properties of this
construction that we will prove in this paper.

e The construction M — M is functorial for homomorphism of module spectra over A.

e The construction is functorial in B in the sense that if B — C is a homomorphism of commutative A-algebras, we
obtain an induced homomorphism My — MJ.

e The construction is functorial in A in the following sense. Let A — B — C be a diagram of commutative
S-algebras, and let M be a B-module. Let p4(M) denote the spectrum regarded as an A-module spectrum by
restriction of scalars along the ring homomorphism A — B. Then there is an induced map p4 (M)p — M.

e For any commutative ring A, A may be regarded as a commutative S-algebra via the Eilenberg—MacLane spectrum
H(A), and an A-module M can be regarded as a module spectrum H(M). Thus, for a homomorphism of
commutative rings f : A — B, it is possible to construct the derived completion H(M)ﬁ( B)" For general A, B
and M, it is possible that although H(A), H(B), and H(M) have no higher homotopy, the derived completion will.
However, if A is Noetherian, M is finitely generated, and f is surjective, the derived completion of H(M) coincides
with the Eilenberg-MacLane construction H(M7'), where M" is the usual algebraic completion construction at the
ideal I = Ker(f).

e One can show that in a sense, the completion “depends only on 7o(B) for (—1)-connected S-algebras”. The
precise statement, which is our Theorem 6.1, is that if we are given a diagram f : A — B — C of (—1)-
connected commutative S-algebras with moB — moC an isomorphism, and an A-module spectrum M, then the
map My — M/ is a weak equivalence of spectra.

e For any homomorphism f : A — B of (—1)-connected commutative S-algebras, and any connective A-module
spectrum M (i.e. ;M = O for s sufficiently small), there is a spectral sequence whose E>-term depends only on
the structure of w, M as a module over mpA and of myB as an algebra over mpA, and which converges to . M 1/3\.
This is our Theorem 7.1.

By far the most important use of the notion of completion in homotopy has been in p-adically or profinitely
completing spaces. These constructions are in a sense “tame”, in that for spectra with finitely generated homotopy
groups, the homotopy groups of the completion can be obtained by algebraically completing the homotopy groups at
primes or profinitely, and in general are viewed as a simplification of the homotopy type. When the homotopy groups
are not finitely generated, one has situations where there is a single derived functor of completion which contributes
to the homotopy groups of the completion. However, when applied to more complicated rings, our construction
can construct interesting homotopy types from discrete rings, even for finitely generated modules over the ring.
For example, let A be the group ring of the discrete group Z/p*Z = |, Z/p"Z, and F), as an A-algebra via
augmentation followed by reduction mod p. If we form the derived completion of A itself as an A-module (using the
Eilenberg—MacLane construction as above), we obtain the p-adically completed group ring on the singular chains on
the circle group, regarded as a simplicial ring. What has in effect happened is that the derived completion construction
on a discrete ring has created an S-algebra (which is much like a topological ring), which coincides with our geometric
notion of “filling in the gaps” in the group Z/p®>°Z, viewed as embedded in the circle group. So in this case, the
completion produces interesting homotopy types related to embeddings of the ring within topological rings. This
phenomenon has some similarity with the behavior of Quillen’s plus construction, which replaces the classifying space
of a discrete group with a homologically equivalent space. In [13], Lawson has studied the completion process in the
context of the pro-p completion of a finitely generated nilpotent group /', and has shown that the homotopy groups
of the completion are strongly related with the homology groups of stable (with respect to dimension) representation
varieties for ['.

We are developing this material for use in applications in algebraic K-theory, specifically in order to understand
the descent problem for the K -theory of fields (see [6]). The goal is to obtain a homotopy theoretic model for the K -
theory spectrum of a field F which depends only on the absolute Galois group G ¢ of the F. It turns out that a model
which is often correct can be constructed out of the S-algebra associated with the symmetric monoidal category of
finite dimensional complex representations of G ¢ precisely by performing the derived completion described in this
paper. Although this is our main application, we hope and expect that our constructions will find use in other contexts.
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At least three other notions of derived completion have appeared in the literature, in [11,8,3]. The goal of this paper
is to record a precise version of the construction which we can use in future work, but we do make some comments
on the relationship of the present construction with those in [11,8].

The outline of the paper is as follows. Section 2 develops the preliminary technical material we will require,
including material on the theory of S-algebras and module spectra, as well as the theory of Barr and Beck on simplicial
and cosimplicial approximations of spectra using “triple” or “monads”. Section 3 then defines our derived completion,
and develops its elementary properties. In Section 4, we study the behavior of this construction on discrete rings, and
show that it coincides with ordinary completion for finitely generated modules over a Noetherian ring. In Section 5,
we compare our construction with two other completions, those constructed in [11,8]. Section 6 proves our invariance
result for S-algebra homomorphisms inducing an isomorphism on 7, and Section 7 constructs the spectral sequence
discussed above. Finally, in Section 8, we develop some interesting examples.

2. Preliminaries
2.1. S-algebras and module spectra

As mentioned in the introduction, there are a number of constructions of categories of spectra which admit a
coherently associative and commutative smash product. One consequence of these constructions is that one can
develop a theory of “ring spectra” as the category of monoid objects in a category of spectra relative to the smash
product. As mentioned in the introduction, we elect to work with S-algebras as our notion of ring spectrum. In a
similar way, one can define module spectra M over an S-algebra R as spectra equipped withamap R A M — M so
that the standard algebraic diagrams commute. One can also define the notion of a commutative S-algebra, in terms
of the commutativity of an obvious diagram. The commutative S-algebras form a category in their own right, we
will denote it by Algg. More generally, if A is a commutative S-algebra, we can also construct the category Alg, of
commutative A-algebra spectra. Given any commutative S-algebra A, one can also define a category Mod4 of module
spectra over A. Note that because A is commutative, we do not have to specify whether the module is a right or left
module. For any commutative S-algebra there exist relative notions of smash products (analogous to tensor products
over a ring) and Hom-spectra (analogous to Hom-modules in algebra). See [10] or [12] for the particulars of these
theories. We will henceforth work with the S-algebra version of this theory as constructed in [10]. The following

proposition summarizes the properties of the categories Alg, and Mods which we will need. The results can all be
found in [10], pp. 140-148.

Proposition 2.1. For any commutative S-algebra A, the categories Alg, and Moda can both be equipped with the
structure of a Quillen model category (see [7]) with the following properties.

1. A morphism in Alg, or Mod 4 is a weak equivalence if and only if its underlying map of spectra is one.

2. All objects in Alg, or Mody are fibrant.

3. In each category, there is a functorial way to replace each morphism f with a decomposition f = p oi with p
being a fibration and i, a cofibration which is also a weak equivalence. Similarly for p, a fibration and a weak
equivalence and i, a cofibration. In particular, there exist functorial cofibrant and fibrant replacements in Mod 4
and Alg,.

4. For any homomorphism A — B of commutative S-algebras, the functor M — B Q M is a triple in the sense

of [2]. See Section 2.3 below.
5. There exists a triple Sym 4 on the category Mod 4 so that a commutative A-algebra spectrum is precisely the same
thing as an algebra over the triple Sym, in the sense of [2].

In particular, the category of spectra is equivalent to the category Mods, where S is the sphere spectrum, and so
the results apply to the category of spectra.

The smash products and Hom constructions are homotopy invariant when the argument modules are cofibrant and/
or fibrant, in the sense made precise in the following proposition.

Proposition 2.2. Let A be a commutative S-algebra. Let f : M — M’ be a weak equivalence of cofibrant A-module
spectra, and let N be any fibrant A-module spectrum. Then the induced maps
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fﬁ\\idN : MQN—> M’QN
and
Homy (f, N) : Homy (M', N) — Homu (M, N)
are both equivalences. Also, if M is cofibrant, and g : N — N’ is a weak equivalence, then the natural map
Homy (M, g) : Homa (M, N) — Homu (M, N')
is a weak equivalence.

The smash product and Hom constructions also behave well on cofibrations of module spectra, in the following sense.

Proposition 2.3. Let A be a commutative S-algebra, and let f : M — M’ be a cofibration of A-module spectra,
and let N be an A-module spectrum. The induced maps f Q Idy and Homy (f, N) are cofibrations and fibrations,

respectively.

These results allow one to develop spectral sequences as computational tools.

Proposition 2.4. Suppose A is a commutative S-algebra, M is a cofibrant A-module spectrum, and N is an A-module

spectrum. Then there is a spectral sequence with Eé’ 7= TorZ’,}(A) (s (M), 4 (N)), converging to 7wpq(M {4\ N). The

superscript p refers to homological degree, and q refers to internal degree.

Corollary 2.5. Suppose A is a (—1)-connected commutative S-algebra, M is an s-connected cofibrant A-module
spectrum, and N is a t-connected A-module spectrum. Then M Q N is (s +t + 1)-connected.

2.2. Cosimplicial S-algebras and module spectra

Let A be a commutative S-algebra, and let Mod4 denote the category of module spectra over A. Since Mod, is a
Quillen model category the usual notions of homotopy colimits, homotopy limits, the total A-module spectrum of a
cosimplicial object in Mody as well as its finite stage approximations Tot, and fibrancy of a cosimplicial A-module
spectrum all make sense, and they share the properties of the corresponding notions in the category of simplicial sets
and the category of spectra. Every cosimplicial object in Mod 4 is functorially equivalent to a fibrant one, and we write
(—)gb for this functor. We recall some of the important properties.

Proposition 2.6. Let F : A — Mody denote a fibrant cosimplicial object in Mod s. Then there is a canonical natural
equivalence

Tot(F) — holim F.
A

Moreover; if we let A" denote the full subcategory on the objects of cardinality less than or equal to n + 1, then there
is a natural equivalence

Tot" (F) — holim F.
e

Proposition 2.7. Let F : C x D — Mody be a functor, where C and D are small categories. Then for any object
c € C, we may construct the homotopy inverse limit object F. = holim F | ¢ x D. The construction c — F¢, is
<«
cxD
functorial in ¢, and we obtain a natural equivalence
holim F = holim F,.

<« <«
CxD C

Proposition 2.8. Suppose we have a sequence X' — Y — Z° of fibrant cosimplicial objects in Mod s, which is
levelwise a cofibration sequence. Then the sequences
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Tot" X — Tot" Y — Tot" Z°

and
Tot X" — TotY — TotZ’

are cofibration sequences up to homotopy in Mody4.

Proposition 2.9. Let X' be a fibrant cosimplicial object in Mod 4, and let M denote an object in Mod 4. Then we may
form the new cosimplicial object M /2 X', and there is a natural equivalence in Mod 4

M/A>T0t" X = Tot"(M A X)fib)-

Proof. Follows easily from (see [10] or [12]) the fact that forming smash products over A with a fixed module
commutes with homotopy pullbacks of diagrams of the form X — Y <« Z. We omit the details. [

It will also be useful to use the idea of an augmented cosimplicial object in a category. Let A,y denote the category
obtained by adjoining to A the single object —1, which represents the empty set, regarded as a totally ordered set.
This description also makes it clear how to define the morphisms in A,ue. By an augmented cosimplicial object in a
category C, we mean a covariant functor from Ay with values in C. If we have any abelian group-valued functor
A on C, we obtain from any cosimplicial object in C an augmented cosimplicial abelian group. As with cosimplicial
abelian groups, we may then associate a cochain complex (starting in codimension -1) to this cosimplicial abelian
group. We summarize the properties of augmented cosimplicial spectra.

Proposition 2.10. Suppose we are given an augmented cosimplicial object X' in a category C, and let p X' denote
the cosimplicial object obtained by restriction to A C Ayyg. Suppose also that C is complete, hence admits a notion
of “total object” Tot pX". Then the coface map §° : X~' — X induces a morphism 6 : X1 — Tot(pX").

The following result gives a criterion which guarantees that the map n is a weak equivalence, when the underlying
category C is the category Mod 4.

Proposition 2.11. Suppose X is an augmented cosimplicial object in the model category Mods and that the
cosimplicial object pX' is a fibrant cosimplicial object in Mod 4. For each t, we obtain an augmented cosimplicial
abelian group m;(X"), to which we associate a cochain complex C*(t) as above. If each of the cochain complexes
C*(t) has trivial cohomology, then the map 6 : X~' — Tot(pX") is a weak equivalence in Mod 4.

Proof. Straightforward verification using the homotopy spectral sequence of a cosimplicial space, see [5], Chapter X.
O

Finally, we will require a comparison theorem for bicosimplicial A-modules.

Proposition 2.12. Suppose that we have a map of bicosimplicial A-modules f~ : X* — Y. Suppose that for each
p > 0, the map Tot(th')) — Tot(Yfﬁ)') is a weak equivalence. Then the natural map Tot(A(X ")gp) — Tot(AY " )fb)
is a weak equivalence, where A denotes the diagonal cosimplicial space. Similarly if we study the levelwise simplicial
objects obtained by holding q fixed.

Proof. Straightforward, and we omitit. [
2.3. The theory of Barr and Beck

Our theory of completion will make use of the theory of the cosimplicial object of a triple, a notion discussed by
Barr and Beck [2]. We will need to use some of the comparison theorems from that paper, so we review that theory
here. For the definition of a triple and algebras over a triple, see [19].

Suppose a category C is equipped with a triple 7, and ¢ € C. Then we may define the cosimplicial resolution
of ¢ relative to T to be the cosimplicial object 7 (c) defined by 7° k(¢) = T¥+L(c), and where the cofaces and
codegeneracies are defined by

s5 - Tk+1(C) — Tk+2(C) _ TS(H(T/(+1—S(C)))
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and
o' T (e) > T*(e) = T (T (0))).

Note that 7 (c) extends canonically to an augmented cosimplicial object 7;'ug(c) by setting ’Z;;gl = ¢, and letting
80 ’Z;;gl — T,d%g be the canonical inclusion 5 : ¢ — T'(c). This means that we have a natural map 0 : ¢ — Tot(7 (c)).

Suppose now that the category C is Mod . For any A-module spectrum M, will denote by 7, (M) the functorial
fibrant replacement for 7" (M). We will need criteria which guarantee that the map 6gp (M) : M — Tot(7Z;, (M)) is a

weak equivalence in Mod 4, where 65, (M) is the composite M &N Tot(7"(M)) — Tot(7g,(M)). Barr and Beck now
prove the following result.

Theorem 2.13. Suppose that M is equipped with a T -algebra structure. Then 0gp(M) is a weak equivalence.

We will derive a useful corollary of this result, using the following lemma.

Lemma 2.14. Let S and T be two triples on the model category Mody, and suppose we are given a natural
transformation v : S — T of triples. We may construct the bicosimplicial A-module C given by CP1 = ’Z}li(Sgb(M ).
We may also regard the cosimplicial spectrum T, as a bicosimplicial spectrum, constant in the q-direction, and denote
it by 1. Then the evident bisimplicial map o7 - 1, — C" induces an equivalence on total A-modules.

Proof. By applying Proposition 2.12, it will suffice to prove that each of the natural maps
T?(M) — Tot(T?S?(M)fp)
q

is a weak equivalence of A-module spectra. By 2.11, we need only verify that the cohomology of the cochain complex
A* attached to the augmented cosimplicial group 7; (T'” (S, (M )aug))) is trivial. However, for each ¢ > 0, we have
the map h9 : TP (S9(M)) — TP (S9! (M)) given by the composite

TP (v(ST=1(M)) TPt (s971(M))

TP (S%(M)) = TP(TST7H (M) TP (771 (M).
As in the proof in [2] of Theorem 2.13, the operators 71 (k?) yield a contracting homotopy for the cochain complex
A*, which gives the result.

We also obtain the following.
Proposition 2.15. Let S and T be two triples on the model category Mody, and suppose we are given a natural
transformations v : S — T and u : T — S of triples. Then the natural map
Tot Sg;, (M) — Tot 75, (M)
is an equivalence, where S and T denote the cosimplicial resolutions of M associated with S and T, respectively.

Proof. This follows directly from Theorem 5.3 in [16]. It is also a straightforward consequence of the work in [2]
or[4]. O

We will also find it useful to discuss the simplicial resolution of a T-algebra X, for any triple T .

Definition 2.16. Let T be a triple on a category C, and let X be any T -algebra, with structure morphismoa : TX — X.
The simplicial resolution of X relative to T is the simplicial object 7.(X), defined on objects by

To(X)=ToTo---0T(X) fork>0
k+1 factors
and on morphisms by
di = T'(TF71(X)) for0<i<k—1
dy = T* (@)
si =TT (X)) for0<i<k.

The structure map o gives amap &(X) : |T.(X)| — X, where X denotes the constant simplicial object with value X.
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Proposition 2.17. Let T denote a triple on the category of spectra. Then for any T-algebra spectrum X, the map
&(X) induces an isomorphism on homotopy groups.

Proof. The structure map o : TX — X provides an extension of the functor 7. to the larger category Agﬁ’g, which
we will denote by T, We will refer to a functor from Ag{,’g to a category C as an augmented simplicial object
in C. For any augmented simplicial abelian group A., we may construct the associated chain complex C.(A.), with
the alternating sum of face maps as boundary operator. For any augmented spectrum X., we denote by p(X.) its
restriction to the subcategory A% C Aggg, so p(X.) is a simplicial spectrum. The augmented spectrum gives rise
to a map v(X.) : p(X.) — X_;. by analogy with the cosimplicial case, it is now easy to verify that given any
augmented simplicial spectrum X, if it is the case that for each i, the chain complex C,ms(X.) has trivial homology,
then the map v(X.) is a weak equivalence. For any triple 7 on the category of spectra, and every integer ¢, the complex
Cy(m; T8 (X)) has trivial homology, since the operators

o (T(X)) : m T (X) > m TS (X)

provide a contracting homotopy for it. Note that the operator even makes sense for k = —1, with 7°(X) = X. This
gives the result.  [J

3. Definitions

Let A denote a commutative S-algebra and B a commutative A-algebra spectrum. The construction in [10,12] of
smash products over A make the functor T4(—; B) = B Q — into a triple on the category Mod,4. Consequently, we

may construct the cosimplicial resolution of T4 (—; B) as a functor on the category of A-module spectra to the category
of cosimplicial A-module spectra. We will write 7, (—; B) for the functorial fibrant replacement of this cosimplicial
object in Mody.

We recall from [18] that for any commutative S-algebra A, there is a closed model structure on the category of
A-algebras. Moreover, one may functorially replace any A-algebra by a weakly equivalent A-algebra which is
cofibrant.

Definition 3.1. Let A denote a commutative S-algebra, B a commutative A-algebra, and M an A-module. V~Ve define
the derived completion of M at the A-algebra B to be the total spectrum of the cosimplicial spectrum 7, (M; B), where

B is the cofibrant replacement for B in the category of commutative A-algebras. We write M g for Tot(TA (M; B)).

The following propositions summarize the most important properties of this construction.

Proposition 3.2. Let A — B — C be a diagram of commutative S-algebras. Then the following statements all hold.

1. The construction M — My, is functorial for homomorphisms of A-modules. The map on B-completions induced
by a homomorphism f : M — N of A-modules will be denoted by fp.

2. Let f : M — N be a homomorphism of A-modules, where A is a commutative S-algebra, and let B denote
a commutative A-algebra. Suppose that idp ﬁ‘\ f is a weak equivalence of B-module spectra. Then the map on

completions f}, is also a weak equivalence of spectra.

3. Let M — N — P be a cofibration sequence of A-module spectra,where A is a commutative S-algebra. Let B
be a commutative A-algebra spectrum. Then the sequence My —> Np — P} is a cofibration sequence up to
homotopy.

4. Let A - B — C be a diagram of commutative S-algebras, and let M denote a B-module spectrum. M may be
regarded as an A-module spectrum M*. Suppose that the natural map C Q MA - C g M is a weak equivalence

of spectra. Then the natural map (M A)é - M é is also an equivalence of spectra.

5. There is a natural transformation n : M — Mp,.

6. Suppose A — B is a homomorphism of commutative S-algebras. Suppose M is an A-module spectrum, for which
the A-module structure admits a B-module structure extending the given A-module structure. Then the natural
map 1 : M — My, is an equivalence of spectra.
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Proof. (1) is immediate from the constructions. (2) is an immediate consequence of the standard fact that a levelwise
equivalence of fibrant spectra induces a weak equivalence of Total spectra. (3) and (4) follow from the fact that smash
products with a fixed module preserve homotopy cofibration sequences, and that the total spectrum carries levelwise
homotopy cofibration sequences to homotopy cofibration sequences. (5) follows from 2.13. (6) is a general property
of the cosimplicial resolution of a triple. [

Remark 3.1. We note that although we define the derived completion of an A-module spectrum M at a
homomorphism f : A — B of commutative S-algebras to be the total spectrum of 7, (M; B), it is useful to recall
that it is therefore the total space of the tower of fibrations

-+ = Tot"(T;(M; B)) — Tot""(T;(M; B)) — --- — Tot' (T,(M; B)) — Tot’(T,(M; B))

and that the tower of fibrations is actually functorial as well. This tower of fibrations gives filtrations on the homotopy
groups and other invariants, and will likely be interesting in future K-theoretic applications of these ideas.

4. The case of rings

For any ring A, we may construct the Eilenberg—MacLane spectrum H(A). It is direct from the constructions
of [10,12] that H(A) is in a canonical way a S-algebras, and that if the ring is commutative, H(A) is a commutative
S-algebra. Left and right modules over the ring A yield, via the H construction, left and right module spectra over the
S-algebra A. The goal of this section is to analyze how the derived completion construction given in the preceding
section applies to S-algebras obtained via this construction. Specifically, we will show that it coincides with ordinary
completion for finitely generated modules over commutative Noetherian rings, in the sense, H(M )f{( A/l = H(Mp)

for any finitely generated A-module M and any ideal / < A, and where M denotes the usual algebraic completion
operation at the ideal /. Note that for a commutative ring A, any left A-module can be canonically regarded as a right
A-module as well, so we will simply refer to A-modules without specifying right or left modules.

Proposition 4.1. Let A be a ring, M and N be A-modules. Let H(M) denote a cofibrant replacement of the H(A)-
module spectrum H(M). Then

7. (H(M) A H(N)) = Tord(M, N)
H(A)
as graded groups. M Q N denotes the spectrum level construction of “smash product over A”, and Tor denotes the
usual algebraic derived functors.

Proof. This results follows from the Kiinneth spectral sequence whose E;-term is Tor2 (M, N), and which collapses
for dimensional reasons. [J

This means that for any family of k left A-modules M1, M3, ..., My, we may define groups
MultiTor{ (M1, Ma, ..., My)
as the ith homology of the complex R(M1)® R(M2)®---&® R(My), where R(M;) denotes an A-projective
A A A

resolution of M.

Proposition 4.2. Let A be a commutative S-algebra, and let M1, M, ..., My denote a family of left A-modules. The
Kiinneth spectral sequence generalizes to a spectral sequence with E>-term

MultiTor? (M1, Ma, ..., My)
ing t My ANMyA - AN My).
converging to wy (M AMo Ao A [3)
Proposition 4.3. Let A be a commutative ring, and let B = A/I, where I is an ideal in A. Suppose further that M

is a B-module, which we regard as an A-module by restriction of scalars. Then the natural map M — My is an
equivalence.
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Proof. This is immediate from Proposition 3.2, (6). [

What we have now shown is that for any B-module M, the derived completion M} is equivalent to M itself,
regarded as a module spectrum over A. We wish to extend this to a result valid for all finitely generated A-modules
over a Noetherian ring. We recall first that the definition of the /-adic completion of an A-module M is

limM/I1*M.
%

We may also consider the homotopy inverse limit of the pro-A-module {M/I* M }k>0. Recall from [5] that for any
inverse system of spectra { Xy }x>0, there is a short exact sequence

1
0 — lim{m;—1 Xi }k>0 — m; holim X} — limm; X} — 0.
P <«
k k

In our case, the inverse system {r;_1 X }x>0 consists entirely of surjective maps, it is a standard result that its lim!-
term vanishes, leaving us with the isomorphism

7 (holim M/I*M) Z limM/I*M fori =0
<« <«
k k

and 77; (holim M /I* M) = 0 for i # 0. In other words
P
k

holim M/I*M = H(M}").
<«

k

We now wish to show that M = holim M/I kM. Consider the inverse system of cosimplicial A-module spectra
k
{T,(M/I*M; B)}i=0. We have the natural map
0 : Ty(M: B) — (T (M/I"M: B)}i=o

where 7,(M; B) is considered as a constant pro-cosimplicial A-module spectrum. By taking total spectra
and homotopy inverse limits (in the k-direction), we obtain a map of an A-module spectra Mp —
holimTot’TA(M/IkM; B). By 4.3, we have that Tot’Z;(M/I"M; B) = M/I"M, so we obtain a natural map
<
k

AiMp — holim M /I*M = H(M7"). Our result is now
P
k

Theorem 4.4. For a Noetherian commutative ring A, and a finitely generated A-module M, the map % : Mp —
H(M}) described above is an equivalence.

Proof. It is standard that homotopy inverse limits of cosimplicial spectra commute with taking total spectra, so it is
enough to verify that the maps

Ti(M; B) — holim Ti(M/I*M; B)
k

are equivalences for each i. In order to prove this, it will suffice to show that the pro-A-module {Tfi (M/I*M:; B)}i>0
is isomorphic, as pro-abelian groups, to the constant pro-abelian group with value TX(M ; B). By 4.2, this means that
it will suffice to show that the pro-abelian group

{MultiTor (B, B, ..., B, M/I*M)};>0
_\/_/
s factors

is isomorphic to the constant pro-abelian group with value MultiTorf(B, B, ..., B, M). For any A-module M, we
_\/_/

s factors

let IM denote the pro-A-module {/ kym }e>0. Recall (see [1]) that the category of pro-A-modules is itself an abelian
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category, and so the notion of exact sequence has meaning. The construction M — IM gives a functor from the
category of finitely generated A-modules to the category of pro-A-modules, which is exact in the sense that it carries
exact sequences to exact sequences. The exactness follows from the usual proof of exactness of completion for finitely
generated modules over a Noetherian ring (see [9]). This same exactness also shows that for complexes of finitely
generated A-modules, homology commutes with the functor 7, so that we have

MultiTor?(B, B, ..., B, IM) = IMultiTor?(B, B, ..., B, M).

s factors s factors

It is now clear that MultiTorf (B, B, ..., B, M) is a B-module, and therefore [ acts trivially on it, which means that
—_——

s factors
the pro-abelian group I MultiTorf(B, B, ..., B, M) is pro-isomorphic to the zero group. We have an exact sequence
——

s factors
of pro-abelian groups

IM —> M — M/IM

so we may conclude that the map M — M /IM induces an isomorphism on homology as pro-groups. This is the
required result. [

5. Comparison with other constructions

In this section we will prove some results comparing the present construction with those of Greenlees and May [11]
and Dwyer, Greenlees and Iyengar [8].

5.1. The Greenlees—May completion

This completion construction considers the situation of a commutative ring A and a finitely generated ideal /.
It begins with a purely algebraic construction of derived functors of completion, and then produces a spectrum
level construction. We will compare the derived functors defined in [11] with the homotopy groups of our derived
completion, and proved that they agree. It appears likely that the methods of Section 7 would allow a comparison for
the spectrum level construction, but we do not carry out that here. We will write B = A/I, and let S denote any finite
generating set for /. In [11], the authors construct a chain complex Cf , essentially a colimit of Koszul complexes
based on §, and define their derived completion of an A-module M, which we will denote by M gm by

Mﬁm = HomA(Cf, M).

The construction depends on S, but there are canonical isomorphisms between the homology groups constructed using
different finite generating sets S. These are the derived functors of completion at I applied to the module M. There is
a natural chain map Cf RS Ay, where A, denotes the chain complex, concentrated in degree 0, with zeroth module
equal to A. The map y now induces a natural map

E:M— M{"

where M denotes the module M regarded as a chain complex concentrated in degree zero. We now have the following.

Lemma 5.1. Let M be any B-module, regarded as an A-module by restriction of scalars. Then the natural map
EM—->M §m is a quasi-isomorphism of chain complexes

Proof. Immediate consequence of Lemma 1.3 of [11]. O
It is also immediate from the definitions that the construction M — M §m extends to chain complexes of A-

modules. The following is now easy to prove.

Lemma 5.2. The construction C, — (C*)§'" preserves quasi-isomorphisms. Given a chain complex C, which is
bounded below, and so that the A-module structure on H;(C,) extends to a B-module structure for all i, then the
natural map & : Cy, — (C*)ﬁm is a quasi-isomorphism.
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Proof. The first statement is straightforward from the definitions. The second one follows from the existence of a
“Postnikov tower” for any bounded below chain complex, where the relative terms are resolutions of the A-modules
H;(C,). The first statement implies that if R,(M) is a resolution of an A-module M, then the map R, (M) — M
induces an equivalence (R.(M ))é’s'm — Mﬁm. The result now follows from Lemma 5.1 above, together with the
evident fact that the construction carries exact sequences of chain complexes to exact sequences.

In order to compare M §m with Mp, we will need to reinterpret My as a chain complex. We first begin by
constructing a cofibrant version B, of B. This can be done, for example, by using the free commutative A-algebra
functor on sets. This is a triple on the category of sets, and for any A-algebra yields a simplicial resolution of B, which
is levelwise free as an A-module. It is also a simplicial commutative ring. The cosimplicial spectrum 74 (M; ,) which
constructs M7 is now a cosimplicial simplicial abelian group, and its total space is a simplicial abelian group. As such,
it corresponds to a chain complex. On the other hand, one can define the notion of the chain complex associated with
a spectrum. One begins with the associated chain complex functor C, for the notion of spaces one is dealing with,
the singular complex in the case of topological spaces, and the simplicial chains for simplicial sets. For any spectrum

X = {X;}i>0, with structure maps o; : X'X; — X;11, one defines ch(X) to be the colimit of the system
o DTIC(X) = 2TV C (X)) » 2T C(Xiy) - -

Now, the cosimplicial spectrum corresponds to a cosimplicial chain complex, by applying ch levelwise. We write
E(k, M), for the chain complex in codimension k. It is defined by

E(k, M) = ch (/\B/\ M) :
k
For any cosimplicial chain complex C(—),, we define a chain complex DC (—) by

DC() =[] 27w,
k

on the level of graded groups (X7 just denotes a shift of degrees by 1), and the boundary map comes from the bicomplex
structure on this graded group, with one boundary being the one existing on each of the complexes X ~¥C (k) and
the other being the alternating sum of the coface maps.

Proposition 5.3. Ler k — A(k). denote any cosimplicial simplicial abelian group. Then there are canonical
isomorphisms

s (Toty A(k).) = Hy(Dch(A(-).))
forall s.
Proof. This is standard. See for example [5]. [

We now write £,(M) for the chain complex DE(—, M),. The construction &, is clearly functorial in M, and
H,(E:(M)) is canonically isomorphic to 7, (Mp). We note that & is a chain complex of A-modules, and that the
standard map from the constant cosimplicial A-module with value M to 74 (M; B,) induces a natural transformation
0 : M, — E.(M), where M, denotes M regarded as a chain complex concentrated in degree zero.

We wish to compare the groups H,(M §m) and H,(E.(M)). The idea will be to compare each of the complexes in
question with the complex £,(M )‘gm. The natural transformation 6 produces a natural map © : M ng — E(ME",
and the transformation & above yields a natural map = : E,(M) — E,(M )§m. ‘We now have the following result.

Proposition 5.4. The natural maps © and = are quasi-isomorphisms. Therefore the groups H*(M§m) and
H,(E.(M)) are canonically isomorphic.

Proof. We begin with =. We note first that £,(M) is itself obtained as the total complex of a bicomplex, and
can be filtered by the codimension k. Note that this is a decreasing filtration. The subquotients are the complexes
ch(/\; B A M). We obtain a filtration on &, (M )§m which is compatible with the filtration on £, (M) under the natural
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map =. Both complexes are obtained as inverse limits of the quotients by the terms in the filtrations, so in order to
prove the result it will suffice to show that the natural map

ch (/k\B/\M> — <ch </](\B/\M))im

is a quasi-isomorphism for all k. The reduction uses the lim' sequences for the homology of inverse limits of
chain complexes. But now, in view of Lemma 5.2 above, it will suffice to show that the A-module structure on
H;(ch(/\; B A M)) extends to a B-module structure. But this is clear, since the homology of these complexes are
the MulitTor groups of M with coefficients in B, and the elements of B act on B by multiplication. This shows that
Z is a quasi-isomorphism. For ©, we note that the Greenlees—May complex C3 is a colimit of subcomplexes C? (k),
which are quasi-isomorphic to the Koszul complexes K (k) based on the set {sK}ses. It follows that M §m is expressed
as the inverse limit of complexes M fm (k), which are quasi-isomorphic to Homy4 (XC(k), M), and similarly for chain
complexes. Therefore, there is also a description of &£, (M )‘§m as an inverse limit of quotient complexes &, (M )%m k),
which is compatible (under the map ©) with the inverse limit description of M §m. It therefore suffices to show that
the natural map

Hom 4 (K (k), M) — Hom (K(k), Ex(M))

is a quasi-isomorphism. To see this, we note that there is a canonical isomorphism of complexes
Homy (IC(k), Ex(M)) — Ex(Homy (K(k), M)). We also note that the complex Homy (/C(k), M) admits a finite
Postnikov tower, with the relative quotients being quasi-isomorphic to resolutions of the various A-modules
H; (Homy (KC(k), M)). This therefore induces a similar tower on &, (Homu (C(k), M)), and it therefore suffices to
show that the natural map R, (H;) — £.(R.(H;)) is a quasi-isomorphism for all i, where

Hi = H,-(HomA(IC(k), M))

Since a resolution of an A-module is quasi-isomorphic to that module regarded as a constant chain complex, we have
reduced the problem to verifying that H; — £,(H;) is a quasi-isomorphism for all i, or equivalently that H; — (H;)
is an equivalence. The action of any element s* on KC(k) is easily seen to be chain null homotopic, and the similar
result follows for P = Homy (C(k), M). Each H; therefore has the property that every element of the form sk, for
s € S, acts by zero on H;. It follows that there exists an integer  so that the ideal I’ acts trivially on H;. Now consider
the filtration {/° H;} on H;. It is a finite filtration, and the subquotients /° H; /I st1H. are A-modules so that I acts
trivially. Using the exactness property of our derived completion construction, it suffices to prove that the natural maps

IH; /T H, — (I°H; /P Hy)
are equivalences. But this is Proposition 4.3.  [J
The following corollary is now immediate.
Corollary 5.5. Let A be any commutative ring, 1 any finitely generated ideal, with finite generating set S.
Let M be any A-module. Then the Greenlees—May completion M§m and the derived completion MQ/I are

canonically equivalent in the homotopy category of A-module spectra, where A is regarded as an S-algebra via
the Eilenberg—MacLane construction.

5.2. The Dwyer—Greenlees—Iyengar completion

In [8], the authors construct a version of completion which is inspired by Morita theory. The idea is as follows. Let
A and B be commutative S-algebras, and let f : A — B be a homomorphism of commutative S-algebras. One can
then construct an S-algebra & = £4(B) = Homy (B, B) = End4 (B), where the Hom constructions are in the category
of A-modules. B now becomes a left £-module. Further, for any A-module M, we may form B 2\ M, and it becomes

a left £&-module as well. One now constructs Homg (B, B A M), and note that there is a natural homomorphism
A

M — Homg (B, B Q\ M), whose adjoint is the map

B/\M—)B{A\M
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of left £-modules, where the action on B A M is on the first factor. We will call the spectrum Homg (B, B /2 M), the

DGI completion of A at the homomorphism f. The main subject of [8] is duality theory in module spectra, and this
notion of completion is best understood in the context where B satisfies certain finiteness conditions, which is where
the duality theory of [8] takes place. We will see that in our situation, there is a related (more restrictive) finiteness
condition, under which we will prove that the DGI completion agrees with our derived completion.

Given A, B, M, f, and & as above, we construct the cosimplicial A-module spectrum 7, (B; M) as in Section 3.
We can now construct the cosimplicial B-module spectrum B QTA(B; M), to obtain a cosimplicial £-module M,

and construct the cosimplicial £-module spectrum

Homg (B, M").
Of course, there is the canonical map M — 7, (B; M), consequently the induced map B /2 M — M, and therefore
a natural map

o : Homg (B, B/XM) — Homg (B, M)
where the left hand side is the DGI completion of M.

Proposition 5.6. The map Tot(w) of total spectra induced by « is an equivalence of spectra.
Proof. One readily checks that there is an equivalence

Homg (B, Tot M*) — Tot(Homg (B, M’))
and reduces to proving that the natural map B Q M — Tot(M’) is an equivalence. This follows readily from
Theorem 2.13. [J

Since we have a natural map from an A-module M to its DGI completion, we obtain a natural map

p:T,(M; B) - Homg (B, M)

and the corresponding map of total spectra from Mp to Tot(Homg (B, M)), which in the homotopy category can be

interpreted as a map from M} to the DGI completion of M, according to Proposition 5.6.

Lemma 5.7. Suppose that B is finitely built from A in the sense of [8], and that the A-module M is also finitely built
Jfrom A. Then the map p defined above is an equivalence. In other words, when B is finitely built from A, our derived
completion agrees with the DGI completion.

Proof. We sketch a proof. One can write Homg (B, Tot M") as the total spectrum of the cosimplicial spectrum

k — Homg (B, B QT/{‘(M; B))

and in order to prove the result it will clearly suffice to prove that the natural maps

T;(M; B) > Homg (B, B AT{(M; B))
are equivalences. From the definition of 7, it will now suffice to show that for any module N which is finitely built
from A, the natural map

BAN — Homg(B, BABAN)
A A A

is an equivalence. This follows from the three facts given below, which are easily obtained using the results of [§].

e The correspondence D defined by D(N) = Homyu (N, A) is a contravariant equivalence of categories from the
category of modules which are finitely built over A to itself. There is a canonical equivalence N = D?(N).
e Given any A-module N which is finitely built from A, there is a canonical equivalence

Homg (B, B Q D(N)) — Homg (B Q\ N, B).
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e For any A-module N which is finitely built from A, there is an equivalence of left £-modules
BAD(BAN)=ZEAD(N)
A A A

where the £-action on the left hand factor is on the left hand factor B, and on the right hand side by left
multiplication on the £-factor. [

We now extend this lemma into the main result of this section. We recall the notion of proxy finiteness from [8].
Let A be a commutative S-algebra. The A-module B is said to be proxy finite if there is an A-module K so that X is
finitely built from A, and so that K is built from B. The DGI completion uses arbitrary A-modules as input, while our
construction requires a commutative A-algebra. Consequently, this notion as it stands is not useful for us. We define
the following replacement notion which is needed in our context.

Definition 5.8. Let A be a commutative S-algebra, and let B be a commutative A-algebra, with structure
homomorphism f : A — B. We say B is algebra proxy finite over A if there is a commutative diagram

A——B

BN

B
of commutative S-algebras, where the A-module B is finitely built from A, and built from B.

The following lemma makes this notion useful.

Lemma 5.9. Let

A—— B

AN

B

be a commutative diagram of commutative S-algebras as above, and suppose B is built from B. Then for any
A-module M, the natural map

Mz — Mp

is an equivalence of A-module spectra.

Proof. We consider the bicosimplicial spectrum B defined by
(k.1) > T{(T;(M: B): B).

It is equipped with a natural map
n: TA(M;E) — B

when T, (M B) is regarded as a cosimplicial spectrum constant in the k-direction. We first observe that 1 induces an
equivalence on total spectra. To verify this only required to show that for any B-module N, the natural map N — N A
is an equivalence. This follows from the fact that the total spectrum construction respects cofibration sequences,
together with Proposition 3.2, part 5. There is also a natural map v : 7,(M; B) — B, where 7, is regarded as a
bicosimplicial spectrum constant in the /-direction. It too induces an equivalence on total spectra. It is easy to see that
to verify this only required to show that for any A-module N, the natural map

B A N — Tot(B A T,(N; B))

is an equivalence of spectra. But, there is an evident equivalence of cosimplicial spectra

BQTA(N;E) ~ TA(BQN;F)
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and we are reduced to showing that the map

:BAN > TotT,(BAN; B) =X (BAN)2
n:BA ot 7, ( A ) =( / )5

is an equivalence. But, since B is an B-algebra spectrum, it follows directly that B Q N admits a B-module structure
extending the A-module structure, and the result now follows directly from Proposition 3.2, part 5. It is finally not
difficult to check that we have a commutative diagram in the homotopy category

A
MEHMQ

N

Tot B~
where the horizontal map is the usual map arising from the functoriality of the completion construction. This gives

the result. O

We now draw our main conclusion.

Theorem 5.10. Let f : A — B be a homomorphism of commutative S-algebras, and suppose that B is algebra
proxy finite. Then for any A-module M which is finitely built from A, the map p defined above from My to the DGI
completion of M is an equivalence.

Proof. Follows directly from Lemma 5.9 above, together with Theorem 4.10 of [8], from which it follows that the
DGI completion has an invariance property similar to that proved in Lemma 5.9 above. [

6. Main isomorphism theorem
In this section we will prove the following theorem about derived completions.

Theorem 6.1. Suppose that we have a diagram A — B —f> C of commutative S-algebras. Suppose further that
A, B, and C are all (—1)-connected, and that the homomorphism wo(f) is an isomorphism. Suppose further that
the natural homomorphisms wy(A) — mwo(B) and mwo(A) — mo(C) are surjections. Then for any connective left
A-module spectrum M, the natural homomorphism Mg — M is an equivalence of A-module spectra.

The proof of this theorem requires some preliminary technical work on cosimplicial spaces and spectra. Let X~
denote any fibrant cosimplicial space (or, more generally, a fibrant cosimplicial spectrum or A-module, where A is
a commutative S-algebra), i.e. a space-valued functor from the category A whose objects are the totally ordered sets

k ={0,1,...,k} and whose morphisms are the order-preserving maps of sets. From Proposition 2.6, we have that
Tot(X") is weakly equivalent to holim X, and similarly that Tot" (X*) = holim X", where for any non-negative integer,
<« <«
A Aln)

A™ denotes the full subcategory on the subsets of cardinality < n. Also, let D, denote the partially ordered set of
non-empty subsets of the set n, regarded as a category with a unique morphism from S to 7 whenever S C 7', and so
that Homp, (S, T) = ¥ whenever S & T'. For any subset S C n of cardinality s + 1, let 7,(S) = s. Since S inherits
a total ordering from that of n, there is a unique order-preserving bijective map &g : S — m,(S). For any inclusion
S C T in Dy, we let m, (S € T) denote the unique morphism in A™ which makes the diagram

£
S — > u(S)
SCT 7, (SCT)
Er

T —— ma(T)
commute. The two definitions make 7, into a functor from D, to A®™. Our next goal is now to prove that the natural
pullback map

7, holim X~ — holim X~ o 7,

< <
Aln) Dn
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is an equivalence. In order to do this, we recall that by [5], Theorem 9.2, it will suffice to show that for any object
k € A™ the category 7, | k has a contractible nerve. Recall that 7, | k denotes the category whose objects are
pairs (S, ), where S € D, and 6 : 7,(S) — k is a morphism in A, and where a morphism from (S, 6) to (5, 6")
in 7, | k is a morphism ¢ from S to S in D, making the diagram

n(8) 00 (8

k
commute. We will construct a category equivalent to 7, | k which is readily analyzed. For any finite totally ordered
set S, and any positive integer j, a j-fold interval decomposition of S is a partition

s=So[[si[[-LIs

of S, so that whenever 0 < i < i’ < j, thenforany x € S; and y € S;s, x < y. Note that some of the sets S; may be
empty. We let P,f be the partially ordered set whose objects are pairs (S, {S;}o<j<«), where S is a non-empty subset
of n, {Sj}o<j<k is a k-fold interval decomposition of S, and where (S, {S;}o<j<k) < (T, {Tj}o<j<k) if and only if
Sj - Tj forall0 < j <k.

Proposition 6.2. There is a natural equivalence of categories from the category attached to the poset P,/f to the
category 1y, | k. Consequently, in order to verify that w, | k has contractible nerve, it suffices to show that P,]l‘ does.

Proof. Define « : P,’f — 1, | k by setting a (S, {S;}o<j<k) equal to the pair (S, #), where 6 : S — k is the unique
order-preserving map described by 6(x) = j if and only if x € §;. Itis easy to check that 7, | k is a partially ordered
set in the sense that for any pair of objects x and y, Homy, | (x, y) is either empty or consists of a single element. One
easily sees that the construction « respects the partial orderings, and hence creates a functor. This process is clearly
completely reversible (in fact, it is an isomorphism of categories), and the result follows. [

Proposition 6.3. N.PF is contractible whenever k < n.

Proof. We proceed by induction on k. Of course, if k = 0, we have that Pr? = Dy, and the latter poset has a maximal
element, whence its nerve is contractible. Now, suppose we know the result to be true for all & < K, and we wish
to prove it for K. Let n > K. The poset PnK contains K + 1 minimal elements {xo, x1, ..., xgx}, where x; denotes
the element whose underlying set is {n}, and whose partition places n in the jth interval. Let I~’nK C PnK denote the
partially ordered subset PnK — {xo0, x1, ..., xx}. We also have the obvious embedding i : P,,K, | < f’nK . We claim that
this inclusion induces a homotopy equivalence on nerves. To see this, it suffices to construct an order- preserving map
[ ﬁnK — PnK_l sothat f oi =id,andsothati o f(x) < x forall x € ﬁ,f. But now we note that the map given by
(S, {8;) — (S — {n}, {S; — {n}}) provides the required map of partially ordered sets. For each 0 < j < K, we let
Q;Cc f’nK denote the subset {y € f’nK | y = x;}. As in [15], one now verifies that we have a decomposition

N.PX=NPKUCN.QyUCNQ U---UCN.Qk.

We next observe that the inclusion Q¢ <~ [’nK induces an equivalence on nerves. To see this, we observe that the
restriction of the poset map f constructed above to Q¢ is an isomorphism of partially ordered sets. It follows that the
simplicial set N.PX U CN.Qy is contractible. Now, N. PX is obtained from N.PX U CN.Qq by adjoining cones to
the subspaces N.Q1, N.Qa, ..., N.Q,. This means that in order to prove the contractibility of N. PnK , it will suffice
to prove the contractibility of the sets N.Q;, for j = 1,2,...,n. We claim that the partially ordered set Q; is
isomorphic to PnK__ll . Since we have K — j < n — 1 whenever j > 1, we have that N. PnK__lj is contractible by
the inductive hypothesis, and the result would follow. To establish the isomorphism Q; = PHK_ 1» we first note that
(S, {Si}o<i<k) € Qjifand only if n € Sk _;. Therefore, for (S, {S;}o<i<kx) € Q; we have that §; = ¥ for/ > K — j.
The isomorphism of partially ordered sets is now given by (S, {S;}o<i<k) — (S — {n}, {S; — {(n}o<i<x—;). U
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Consider any spectrum-valued functor F on D,,, and for any spectrum X, we let Fx denote the constant functor on
D, with value X. Suppose that we are given a natural transformation Fx — F. We are interested in constructing a
useful model for the homotopy fiber of the natural map

holim Fx — holim F.
P
Dn Dn

We let I denote the partially ordered set of non-empty subsets of 1, i.e. the category pictured by the diagram

{0} — {0,1} — {1}
and let J denote the full subcategory on the two objects {0} and {0, 1}. Consider the category 1!, and its full
subcategory J"*!. For any object o = (So, S1, ..., Sp) of J"T! we let ¥/ (¢) C n denote the subset {j € n | S; =
{0, 1}}. We now define a spectrum-valued functor F on I"*! by the formulas

F(0,0,...,00 =X
F(o) = F(W (o)) foranyo € J"T1 —(0,0,...,0)
F()=x foranyg e ["T! — jntl,

The behavior on morphisms is evident, when we recall that we are given a natural transformation from the constant
functor Fy to F'.

Proposition 6.4. There is a natural equivalence (in the homotopy category) e, from the homotopy fiber 9 of the
natural map holim Fy — holim F o holim F.
<« «—

<«
Dn Dn n+l

Proof. & can clearly be interpreted as the homotopy inverse limit over the category D,, x I of the functor G defined

by
G(S,{0) =X
G(S,{0,1}) = F(S)
G(S,{1}) = .

Define &, to be the partially ordered set obtained from the product poset D,, x I by identifying the subset {0} x D,
to a single point €. This means that the object set of &, is {¢} U D, x {0, 1} U D, x {1}, that e < (S, {0, 1}) for all
S € D,, that € is incomparable with any element of the form (S, {1}), and that the ordering relationships between
any elements of D, x {{0, 1}, {1}} are identical to those in the original set D, x I. There is a natural projection
7w :D, x I — &,.Itis clear from the definition that the functor G factors over 7, i.e. that there is a spectrum-valued
functor G on &, so that G = G o 7. On the other hand, we may also define a functor p : I"*! — &, as follows. For
any element v = {So, S1, ..., Sy} of I"T1 — J"+1 we define 6(v) € D, to be the subset {j € n | S; = {1} or {0, 1}}.
The functor p is now defined by

p({0}, {0}, ..., {0}) =€
(S0, S1,...80) = ¥(So, S1,...,8,) x {0,1} forany (So, Si,...,S,) € J"H' —@,0,...,0)
(S0, S1, ..., 8) =60(S0, S1,...,8) x {1} forany (So, Sy, ...,S,) € ["F — g+l

Behavior on morphisms is determined since all categories in question are partially ordered sets, and one readily checks
that the ordering is respected. One now checks directly that G o p is identical to the functor F defined above. It is also
direct to check that for any object x € &,, the categories 7 | x and p | x have contractible nerves. The result now
follows from [5], Theorem 9.2. [

Now let A be a commutative S-algebra, B a commutative A-algebra spectrum, and let ¥ denote the /-diagram
A— B «— %
of A-module spectra, i.e {0} — A, {0, 1} — B, and {1} — *. Then we can define an I”H-diagram U by

P (S0, Sty -y S) = T (So) A W(S1) /e A W(Sn).
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This is a diagram of A-bimodule spectra. We record the following lemma concerning homotopy inverse limits of these
I-diagrams.

Lemma 6.5. Let M denote any A-module. Then

I

holim(¥(—) A M) = (holim ¥) A M.
— A — A

Proof. We note that by the definitions of homotopy inverse limits, we find that holim ¥ is the homotopy fiber of the
I

spectrum map A — B. Consequently, the result reduces to the fact that given any map f : P — Q of A-module
spectra, and any A-module spectrum M, we have an equivalence Fib( f) Q\ M = Fib(f /2 idyr). But this is clear from

the results of [10,12]. O
The following result will be the key in proving our main theorem.

Proposition 6.6. Let A and ¥ be as above, and let M be an A-module spectrum.. Then we have a natural equivalence

holim M A ¥" = M Aholim ¥ A --- Aholim ¥ .
— A A A A <

n+1 I

n+1 factors

Proof. By induction on n. The result is trivially true for n = 0. Suppose that it holds for » = N, and we wish to prove
it forn = N 4 1. We have the string of equivalences

holim (M A UN*2(So, ..., Sny+1))
< A
(Sg.--Sy el NF2
= holim holim M @(So)i‘\ TN, L Syg)
Soel (S50 SN+1)EIN+1

1

= holim M A ¥(Sp) A | holim & A --- Aholim ¥
— A A - A A «—

Soel I

N+1 factors

12
<
>

holim ¥ | A | holim ¥ A --- Aholim ¥
— Al A A —

I

N+1 factors

EMA [ holim ¥ A --- Aholim ¥
A <« A A <
I 1
L N+2 factors

The first equivalence is a “Fubini” type theorem for homotopy inverse limits, the second is an application of the
inductive hypothesis, and the third is an application of 6.5. [

Corollary 6.7. Let f : A — B be a homomorphism of commutative S-algebras, and let M be a A-module spectrum.
Let 7 denote the homotopy fiber of the homomorphism f. 1 is an A-module spectrum. Then there is a homotopy
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fibration sequence of A-module spectra

IQ(kH)

AM — M — Tot* T;(M; B).
A
Moreover, these sequences fit together in homotopy commutative diagrams

A(k+2) .
Za ANM ——— M — Tot“ (T (M; B)

6.1
idy (6.1)
k+1
A A M - M ~ Tot" (T, (M; B)
where the right ﬁand vertical map is the usual projection, and the left hand vertical map is the composite
k+2 k1) 4414 k+1 k+1
At );zg\ﬁ( RN AQIQ( Vo gpHD 6.2)

Jj : Z — A being the evident inclusion.

This result implies the following technical corollary.

Corollary 6.8. Suppose that we have a homomorphism f : A — B of (—1)-connected commutative S-algebras,
and that wo(f) is surjective. Suppose that M is a k-connected A-module spectrum. Then each of the spectra
Tot" (7, (M; B)) is k-connected, and Mp = Tot(T,(M; B)) is at least k — 1-connected.

Proof. We prove the first part by induction on n. The result holds for n = 0 since TotO(TA (M; B)) =B ﬁ\\ M. The
Kiinneth spectral sequences for smash products show that the connectivity B /2 M is at least k. For higher values of

n, we suppose the result known for the value n — 1. By the commutative diagram (6.1) in Corollary 6.7 above, we

have an identification of the homotopy fiber of the map Tot" (7, (M; B)) — Tot"~! (7,(M; B)) with the homotopy

A(n+1) AR, i 5 A(n+1) AR .
cofiber of the map 74 — I4 in diagram (6.2) above. Since both 74 and /4 are (—1)-connected, so is

the homotopy fiber of the map Tot"(7,(M; B)) — Tot"~ (T, A (M; B)). It now readily follows that Tot" (7, (M; B))
is (—1)-connected. The result for Tot(7, (M; B)) now follows from the lim'-exact sequence for homotopy fibrations
(see [5], Ch X, Section 3). [

We will also need the following technical lemma.

Lemma 6.9. et A — B —f> C be a diagram of commutative S-algebras, and let M denote an A-module spectrum.
Suppose further that there is a homomorphism of commutative A-algebra spectra s : C — B such that s o f = idp.
Then the natural map My — M. is an equivalence of spectra.

Proof. Follows directly from Proposition 2.15, applied to the triples S = B Q\ —and C {4\ - O

Proof of Theorem 6.1. We consider first the case when the diagram of S-algebra homomorphismsis A - A — C,
ie. A = B, and where the homotopy fiber Z of the map f : A = B — C is O-connected, i.e. when mo(f) is an
isomorphism and 1 (f) is surjective. It follows from Propositions 6.4 and 6.6 that the homotopy fiber F of the map
M — hc()l_im T,(M; B) = Tot" T,(M; B) is equivalent to 7 Q e QI . Since Z is O-connected, it follows by an easy
An [ ——
n+1 factors
application of Corollary 2.5 that F is n-connected. This gives the result in this case, since when one passes to the

homotopy limit over n the connectivity of the map goes to infinity, and since M} = M.
We next consider the case where A is not necessarily equal to B, but where we have that the homotopy fiber Z of
the map f : B — C is O-connected. We construct the bicosimplicial spectrum C™ given by C?4 = 7T f (TX (M; B); C),
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with the obvious coface and codegeneracy maps. Lemma 2.14 asserts that the natural map
T,(M;C)—C

(induced by n : M — 7T,(M; B)) induces an equivalence on total spectra, where 7,(M; C) is regarded as a
bicosimplicial spectrum constant in the g-direction. We also have the natural map 7 : T (M; B) — C obtained
by regarding 7, (M; B) as a bicosimplicial spectrum constant in the p-direction. Since Tot(C ) = M{, and this
equivalence is compatible with the standard map My — M, it suffices to show that 7 induces a weak equivalence
on total spectra. For this it suffices to show that each of the maps

T (M; B) — To(T,(T,/(M; B)); C)
is a weak equivalence of spectra. Since each of the A-module spectra

TI{(M;B)=BA---ABAM
A A A
%/_J
q+1 factors
is equipped with a B-module structure restricting to its given A-module structure, it will now suffice to prove that
the natural map My — MJ is an equivalence for any B-module spectrum M. For a B-module spectrum M, we
may construct the cosimplicial spectrum 7 (M; C). From the hypothesis on f, and by the previous case, we find that
the connectivity of the natural maps M — Tot" (75 (M; C)) goes to infinity with n. We will now apply the functors
T,(—; B) and T, (—; C) levelwise to the cosimplicial spectrum 7, (M; C) to obtain bicosimplicial spectra, with a
natural bicosimplicial map from the first to the second induced by the A-algebra spectrum map B — C. We obtain a
commutative diagram

Mp = Tot TF(M; B) M} = Tot TV (M; C)
peA peA

(6.3)

Tot Tot T, (T (M;C); By __, Tot Tot T/(TJ(M; C); C).
ped geA pelA geA

We wish to prove that the upper horizontal arrow is an equivalence of spectra. We will do this by showing that the
two vertical arrows and the lower horizontal arrow are equivalences of spectra. We first note that by the increasing
connectivity (with n) of the maps M — TOAt n ’Tg (M; C) and Corollary 6.8, we find that the natural maps

qe

Tot 77 (M: B) — holim Tot 77 (Tot" T (M: C); B
- 4 ( ) am oA A(qu 5 ( ); B)

and

Tot T} (M; C) — holim Tot T”( Tot T1(M; C); C).

(— [7€
are equivalences of spectra. By Proposition 2.9, we have that
77 (Tot" T (M; C); B) = Tot" T (T (M; C); B)
geA geA
and
T (Tot"T] (M; C); C) = Tot" T, (T4 (M; C); C).
qel qgeA

Therefore, the maps

Tot T (M; B) — holim Tot Tot TV (TJ(M; C); B) = Tot Tot TY(T](M; C); B)

(‘ pe
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and

Tot 77 (M; C) — holim Tot Tot" T (T (M; C); C) = Tot Tot T} (T, (M; C); C
peA A( ) <~ pedgeA A( B( ) 0) peA geA A( B( ) 0)

are also weak equivalences of spectra. These are the vertical arrows in Diagram (6.3). We must also check that the

lower horizontal arrow in Diagram (6.3) is an equivalence of spectra. This arrow is of course induced by a map of

bicosimplicial spaces, so we may verify it by proving that it is a levelwise equivalence. Specifically, if we can show

that for each ¢, the map

Tot 77 (T4 (M; C); B) — Tot T/ (T (M; C); C)
peA peA

is an equivalence of spectra, then the lower horizontal map in Diagram (6.3) will be an equivalence. But, 7, 1;1 (M; C)
admits a C-module structure (and therefore also a B-module structure), so by Proposition 3.2,(6), we have

Tot T/ (TZ(M; C); B) = Tot T/ (T2 (M C); C)
peA peA

which gives the result, i.e. that the statement of the theorem holds in the case when Z is 0-connected.

The general case, i.e. without the assumption that 71 B — 71 C is surjective, can now be handled as follows. Let
{fa}aca be a generating set for m1C. Let Z = \/ 4 S; denote the suspension spectrum of a bouquet of circles
parametrized by A, andlet 6 : Z — C denote the map whose restriction to Solt is the map f,. Let B(Z) denote the free
B-module on the spectrum Z. Then we obtain a map of commutative A-algebra spectra g : Symg(B(Z)) — C. One
readily checks that 77((g) is an isomorphism and that 71 (g) is surjective, so we may conclude that Msym ,((z)) — Mc
is an equivalence of spectra. On the other hand, the inclusion B — Sympg(B(Z)) admits a section, and so the natural
map Mp — Msym,(B(z)) is also an equivalence by 6.9. This concludes the proof of Theorem 6.1. [

We have been discussing the invariance of completion along an S-algebra homomorphism f : A — B under
changes in the target S-algebra B. We will also need a similar result which will demonstrate invariance under
changes in A under suitable circumstances. For a homomorphism of commutative S-algebras f : A — B, and a
B-module spectrum M, we will denote by p4 M the result of regarding M as an A-module spectrum via the S-algebra
homomorphism f.

Theorem 6.10. Ler A Eq B — C be a diagram of (—1)-connected commutative S-algebras, and let M be a
B-module spectrum. Suppose that the homomorphism wyf : moA — mwoB is an isomorphism. Then the natural
homomorphism (p M )¢ = M{ is a weak equivalence of spectra.

Proof. Let T4 and Tp denote the triples M +— C /2 Mand M — C @ M, respectively. We consider the bicosimplicial

A-module spectrum
(p.q) = Ty T{(M)

as usual, and we have by Lemma 2.14 that its total space is equivalent to M. In order to check the equivalence we
are interested in, it will be sufficient to prove that for each ¢, the total spectrum of the cosimplicial spectrum

p> TETH(M)

is weakly equivalent to TX (M) under the natural map np (TX (M)). As in the proof of Theorem 6.1, we let Z denote
the homotopy fiber of the homomorphism B — C. I is a B-module. Then Corollary 6.7 shows that it will suffice to
prove that the inverse system of spectra

k+1 k=1

A p N p A p
. —> 1B @TA(M)—>IB gTA(M)—>ZB /gTA(M)—»u

has contractible homotopy inverse limit. It is clear that to verify this, it will suffice to show that for any B-module
spectrum N, the inverse system of spectra

k k—1

/\k+l A
ACAN —->TI8 ACAN — ---
B A B A

cee—> T8 /\C/\N—>I/1;
B A
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has contractible homotopy inverse limit. In order to prove this, we observe that there is a standard equivalence

C {4\ N=C /L} B /2 B /g M
of B-module spectra. The idea will be to replace B Q B by its cosimplicial approximation 7, A (B g\ B; B), where
B is a commutative B ﬁ‘\ B-algebra via the multiplication map B Q B — B. Since we are assuming that 7 f is an
isomorphism, it follows that the map moB ix\ B — myB is an isomorphism, and therefore by Theorem 6.1 that the
natural map 7, gives an equivalence B {4\ B — (B ﬁ;\ B)g. Also, m1 B /2 B — m B is surjective since the multiplication

map has a section. It follows that the natural map B /,; B — Tot! (T, s (B /X B; B)) is at least (i — 1)-connected.

AB

A

Letting T! = Tot' (7, s (B g\ B; B)), it now follows from the Kiinneth spectral sequence that the natural map
A

C Q\ N—C g T! QN is (i — 1)-connected. Consequently, we have an equivalence
C AN ZTot(k = CATE, 3(BAB; B)AN).
A B 7 A B

Therefore, it will now suffice to prove that the homotopy inverse limit of the system
Ak-%—l /\k
o> I8 ACATy, y(BAB;BYAN — I8 ACATE, g(BAB;B)AN —
B B ") A B B B ") A B

/\k,l
— T8 ACATK .(BAB;B)AN — ---
B B BQB( A )B

is contractible. Now, ’Té‘ ~g(B Q B; B) is a (k + 1)-fold smash product over B Q\ B of copies of B. By including B
A

into the first tensor factor, we find that it can be viewed as a B-algebra, for which we write A. A can be viewed as a
B—B-bimodule, with both right and left actions coming from the (left) action of B on A. We can now resolve /A by
free B-modules (each of which is regarded as a bimodule via the left action, and which can be taken to be free on a
wedge of spheres of the same dimension), and it is now easy to see that it will suffice to show that the inverse system
/\k+l Ak /\kfl
-—12Z8 ACAFAN—>1I8 ACAFAN—-1I8 ACAFAN— .-
B B B B B B B B B

has contractible homotopy inverse limit, where F is any free B-module on a bouquet of spheres of a fixed dimension
k, regarded as a B—B-bimodule, with both actions agreeing with the left action on F'. But to check this, it will suffice
to show that the map

/\k Ak—l
I8 ACAFAN—-I8 ACAFAN
B B B B B B

is null homotopic as a map of spectra. But this question clearly can be reduced to the case where F = B, so we will
have to show that the map

Ak Ak—1
I8 ACAN —->1I8 ACAN
B B B B
is null homotopic. This can clearly be reduced to the case where kK = 1, so we need to check that the map
INCAN—- BACANZ=CAN
B B B B B
is null. But we have the cofiber sequence
INCAN—-CAN—-CACAN
B B B B B
and the second map is the inclusion of a wedge summand, since we have the retraction
unNidy :CANCAN—CAN
B B B B

where u : C g C — C is the multiplication map. This gives the result. [
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7. Algebraic to geometric spectral sequence

In this section, we will provide a computational device which will permit the computation of homotopy groups
of derived completions of module spectra over commutative S-algebras in terms of derived completions over actual
rings. Here is the statement of the main theorem of this section.

Theorem 7.1. Let A — B be a map of commutative (—1)-connected S-algebras, with oA — moB surjective, and
let M be a connective A-module spectrum. myA is a commutative ring, woB is a commutative mwoA-algebra, and for
each i, m; M is a moA-module. We may therefore construct the derived completion spectrum (7w; M)z, p for each i.
There is a second quadrant spectral sequence with Efq = nq+2p((n,pM);OB), converging to wp44(Mp).

We will require some preliminary technical work on Postnikov decompositions of S-algebras and module spectra
before we can present the proof of this result. We recall from [17] and [18] that the category Algg admits the
structure of a Quillen model category, in which the weak equivalences are the homomorphisms of S-algebras inducing
isomorphisms on homotopy groups. There is also a “free commutative S-algebra” on a spectrum X, which we denote
by Sym(X). This construction satisfies the adjointness relationship

Homajg, (Sym(X), A) = Hompod, (X, A).

Sym is a triple on the category of spectra, and commutative S-algebras are exactly the algebras over the triple Sym.
For any commutative S-algebra A, we may as in Definition 2.16 construct its simplicial resolution Sym_(A), relative to
the triple Sym. Moreover, Proposition 2.17 shows that the natural map Sym (A) — A is a weak equivalence. In [18],
it is shown that Sym (A) is a cofibrant object in the model structure on the category Algg.

Given two commutative S-algebras A and B, the set Homajg, (A, B) is equipped with the structure of a space, as
a subspace of the zeroth space of the spectrum Hommods (A, B). This construction is not homotopy invariant, but the
result of replacing A by any weakly equivalent cofibrant object does yield a homotopy invariant notion. Of course,
we may take the cofibrant replacement to be Sym (A). We now need a result about the space of S-algebra maps to
Eilenberg—MacLane spectra.

Proposition 7.2. Let A be a (—1)-connected commutative S-algebra. Let B denote any commutative ring, and H(B)
the corresponding Eilenberg—MacLane spectrum. The canonical map from the space Homajg, (Sym. (A), H(B)) —
Hom(mo(A), B) is an equivalence, i.e. Homaig (Sym.(A), H(B)) is a space whose components are in bijective
correspondence with the ring homomorphisms from wo(A) to B, and so that each component is contractible.

Proof. The adjunction Homajg, (Sym(X), A) = Hompodg (X, A) shows that the space
Homajg  (Sym.(A), H(B))

is equivalent to the total space of the cosimplicial space which in level k is the space of spectrum maps from Symk (A)
to H(B). Since the k + 1-skeleton Sk(k+1)Sym, (A) is obtained from the k-skeleton by attaching cells in dimensions
k + 1 and higher, it follows that the restriction map

Homajg, (Sym.(A), H(B)) — Homajg, (Sk'Sym.(A), H(B)) ‘L" T

is an equivalence. Now, T'! is clearly the homotopy equalizer of the two maps
@, ¥ : Hommods (A, H(B)) — Hompmodg (Sym(A), H(B))
defined by

@(f) = f oay where g : Sym(A) — A is the structure map for A
Y (f) = ap o Sym(f) where apyp)y : Sym(H(B)) — H(B) is the structure map for H(B).

The space Hompodg(A, H(B)) is clearly equivalent to the discrete space Homa,(7o(A), B). Similarly,
Homyogg (Sym(A), H(B)) is equivalent to the discrete space

Homy, (7m0 (Sym(A)), B) = Homy, (Sym(ro(A), B)).
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The homotopy equalizer is now equivalent to the equalizer of the pair of set maps
@, ¥ : Homgp (mo(A), B) = Homup(Sym(mg(A), B))
defined by

D(f) = f ooagya Where oz a : Sym(mgA) — moA is the structure map for the ring o A.
U(f) = ap o Sym(f) where ap : Sym(B) — B is the structure map for the ring B.

This set is the set of all abelian group homomorphisms f : m1gA — B making the diagram

S
Sym(mod) 2V} sym(B)

Ay A J

ToA B
commute. This is clearly the set of ring homomorphisms from 79A to B. [

ap

f

Corollary 7.3. There is a canonical homotopy equivalence class of homomorphisms of commutative S-algebras
w4 A — H(mwgA) which induces the identity on .

We also have the following results on A-module spectra. They follow immediately from Proposition 3.9 of [8].

Proposition 7.4. Let A be a (—1)-connected commutative S-algebra, and let M be a cofibrant (k — 1)-connected
A-module spectrum. Let N be any module over the ring moA, and H(N, k) the k-dimensional Eilenberg—MacLane
spectrum for N, regarded as an A-module spectrum via the homomorphism A — mgA. The zeroth space of the
Sfunction spectrum Homa (M, H(N, k)) is homotopy equivalent to the set Homyya (mx M, N) via the natural map
which assigns to any map its induced map on .

Corollary 7.5. Let A be a (—1)-connected commutative S-algebra. Let M be a module spectrum over A, and suppose
that the underlying spectrum of M is an Eilenberg—MacLane spectrum, say of dimension n. 7w, M is a module over the
ring moA. We let 11y denote the A-module spectrum obtained from w, M by pullback along the ring homomorphism
wa. Then, M is equivalent as an A-module spectrum to 1Iy;.

These results allow us to construct a Postnikov tower in the category of connective modules over A.

Corollary 7.6. Let A be a (—1)-connected commutative S-algebra, and let M be a k-connected A-module spectrum,
for some integer k. Then there is a tower of fibrations of A-module spectra

o M[s] = M[s] = -+ — M[k+1] = M[k]

together with A-module spectrum maps M ir) M{[s] making all the triangles

MLM[S]

Ss—1

M[s — 1]
commute, with the following properties.

fs induces an isomorphism on w; for i <s.

miM[s]=0fori > s.

The homotopy fiber of the map M[s] — M[s — 1] is an Eilenberg—MacLane spectrum in dimension s.
Using the maps { fs}s, h(()ﬂm M{s] is naturally equivalent to M

N

Moreover, the tower is natural in the homotopy category.

Proof. Immediate from Corollary 7.5 above. [J
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We will use the Postnikov tower to construct the spectral sequence. A preliminary observation is the following.

Proposition 7.7. Let
o> My — - — M| — M)
be any diagram of module spectra over a commutative S-algebra A, and let P denote any cofibrant A-module

spectrum. Suppose further that the connectivity of the My goes to infinity with s, and that P is connective, i.e. is
k-connected for some k. Then the natural map

P /X(holim Mg) —> holim(P Q\ M)

is an equivalence of spectra.

Proof. Follows directly from the fact that P 2\ preserves connectivity when P is cofibrant. [J

Corollary 7.8. Suppose that A is a (—1)-connected commutative S-algebra, and that we have a homomorphism
f A — B of commutative S-algebras. Suppose further that B is (—1)-connected and cofibrant. For any diagram

o> My — - —> M| — My
of connective A-module spectra, for which the connectivity of My goes to infinity with s, the natural map
(holim M) — holim(M,)p
< -

is a weak equivalence of spectra. In particular, if {M|[s]}s is the Postnikov tower for an A-module spectrum M, then
My = holim M([s]p. Further, the homotopy fiber of the map M[s]y — M[s — 1]} is equivalent to (Fy)’y, where F
<«

is the hombtopyﬁber of the map M[s] — M[s — 1].

The spectral sequence in question is simply the spectral sequence on homotopy groups attached to an inverse
system of spectra. This is a standard result which is discussed in [5], Chapter IX.

Proposition 7.9. Let --- Xy — X1 — -+ = X1 — Xq be an inverse system of connective spectra, and let Fj
denote the homotopy fiber of the map Xy — X_1. Suppose further that the connectivity of the spaces goes to infinity
with s. Then there exists a left half plane spectral sequence with E f’ 1 term p+q F—p, converging to w14 (holim Xj).
<~
Proof of Theorem 7.1. We apply Proposition 7.9 and Corollary 7.8 to the inverse system
s> Mlsly > M[s — 1] > -+ —> M[k + 113 —> M[k]p

where k is the connectivity of M. The homotopy fiber of the map M [s]g — Mls — l]g is (Fs)g, where as above
F; denotes the homotopy fiber of the map M[s] — M|[s — 1]. Since {M[s]}; is the Postnikov tower for M, F; is an
s-dimensional Eilenberg—MacLane spectrum with 7 (F) = m3(M). Consequently, by Corollary 7.5, it is equivalent
to a module over the ring m9(A), and by Theorem 6.10, it follows that the derived completion of F at the S-algebra
homomorphism A — B is equivalent to its derived completion at the ring homomorphism mgA — mB. The theorem
now follows. [

We can now use this spectral sequence to obtain two useful corollaries. We first have an extension of
Proposition 3.2, item 6.

Corollary 7.10. Let B — C be a homomorphism of (—1)-connected commutative S-algebras, and suppose moB —
woC is surjective. Let M be a B-module spectrum, and suppose that for each i, the woB-module structure on w1 M
extends to a woC-action. Then the natural map n : M — M} is an equivalence.

Proof. Follows directly from Proposition 3.2, item 6, and Theorem 7.1. O

We also have the following corollary, which will be useful in the K -theoretic applications.
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Corollary 7.11. Let
A— B—C

be a diagram of (—1)-connected commutative S-algebras, and suppose that m1oA — mwoB and mgB — moC are
surjective. For any B-module M, let ps(M) denote M regarded as an A-module by restriction of scalars. Then the
natural map (p (M))g — Mé is a weak equivalence.

Proof. It follows from Theorem 7.1 that it suffices to consider the case where A, B, and C are all obtained by applying
the Eilenberg—MacLane construction to diagram of actual commutative rings, and that M is obtained as an actual
module over the ring B. Exactly as in the proof of Theorem 6.10, it suffices to prove that the natural map

CAM — (CAM)p
A A

is an equivalence. Here the completion is taking place along the homomorphism B — C, and the B-module structure
on C 2\ M is obtained from the original B-action on M, not via restriction of scalars from the extended left C-action.

That is, we have b - (c A m) = ¢ A b - m. Now, the homotopy groups of C Q M are the groups Torf (M, C), via the

(collapsing) Kiinneth spectral sequence. We must only show that the B-action on these Tor-groups obtained from the
given B-action on M extends over C. But from the surjectivity of the homomorphism A — B, the B-action can be
computed as the action of A/J, where J is the kernel of the ring homomorphisms A — B, and hence is determined
by the A-action. It is clear from the definition that the A-action extends over C, and hence that it vanishes on the 7,
the kernel of the ring homomorphism A — C. But, A/I = B/I’, where I’ is the kernel of B — C, which gives the
result. [

8. Examples
In this section, we will discuss a number of examples of this construction.

Example 8.1. We consider the case where the S-algebras A and B are the Eilenberg—MacLane spectra for the rings Z
and IF,, and where the homomorphism f : A — B is induced by reduction mod p. For a finitely generated A-module
M, Theorem 4.4 tells us that the derived completion of M along f is simply the Eilenberg—MacLane spectrum for the
completed module M.

Example 8.2. Let A = S°, the sphere spectrum, and as in the previous example let B be the Eilenberg—-MacLane
spectrum for the ring IF,. Let f be the composition of the natural map the the Eilenberg-MacLane spectrum for
7 with mod-p reduction. Any spectrum is in a natural way a module over the commutative S-algebra S°, and its
completion along this map is the usual p-adic completion. The tower of fibrations mentioned in Remark 3.1 is in this
case identical to the tower in the Adams spectral sequence.

Example 8.3. Let A be the S-algebra ku, i.e. connective complex K-theory, and let B be the Eilenberg—MacLane
spectrum for the ring Z. We view ku as the spectrum associated with the topological symmetric monoidal category
of finite dimensional complex vector spaces, and we define f to be the homomorphism of S-algebras induced by the
functor which sends every complex vector space to its dimension. Since mq f is an isomorphism, Theorem 7.1 shows
that in this case, ku’y is equivalent to ku itself. The tower of fibrations mentioned in Remark 3.1 is in this case the
accelerated Postnikov tower for ku, with the ith spectrum in the tower of fibrations equivalent to the Postnikov cover
kul2i, ..., 400)

Example 8.4. Let A denote the Eilenberg—MacLane spectrum for the representation ring R[Z,], where Z, denotes
the group of p-adic integers. For a profinite group G, the representation ring R[G] is defined to be the direct limit of
R[G/N], where N ranges over all the finite index normal subgroups of the group G. As a ring, one readily sees that
R[Zp,] = Z[Z/ p*™Z], where Z[—] denotes integral group ring, and where Z/p>°Z denotes the union | J,, Z/p"Z. We
let C = F), and define f : A — C to be the composite R[Z,] — R[{e}] = Z — . We will let the module M
be the ring A itself. We let S! denote the simplicial group of singular chains on the circle group, with multiplication
and inverse induced by those on the topological group. There is of course a natural homomorphism of simplicial
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groups Z/p™7Z — S!, induced by the identification of Z/p>°Z with the group of p-power torsion points on S!, and
where Z/p>7 is regarded as a discrete simplicial group. We define B to be the simplicial group ring Z[S!], which
is a simplicial algebra Z[Z/p°°Z]. Such a simplicial algebra may be regarded as a commutative S-algebra, in fact a
commutative algebra spectrum over the S-algebra H(A). We let p(B) denote B regarded as an A-module spectrum
via restriction of scalars along the inclusion H(A) — B. We then have a composite

H(A)p — p(B)p — B (8.4)

Note that the right hand spectrum is obtained by completion over the ground S-algebra B, and the two leftmost
spectra are completions over the ground S-algebra H(A). The right hand map is induced by the natural morphism
of cosimplicial spectra TH( A)(,o(B); C) — T4z(B; (), so the composite is induced by the natural morphism
TH(A)(A; C) — T5(B; C). One can now check from the definitions that

7 (TX(A; €)) = MultiTor® (F ), F, ..., Fp) = Hy(BZ/p™Z x --- x BZ/p®Z,F )
k+1 factors k factors
and
(TR (B; C)) = Hy(BS' x --- x BS',F)).
k factors

It is easy to check that the induced homomorphism 7 (TX‘(A; C)) — ny(7, é‘(B; ()) is (under the isomorphisms
above) identified with Hg(Bi x --- x Bi,F,), where i : Z/p*°Z — S! is the inclusion. It is a well known fact that
this map is an isomorphism, which shows that the map in (8.4) above is an equivalence of spectra. In order to identify
H(A)é, then, it will suffice to identify Bé. To do this, we consider the homomorphism of commutative S-algebras
g: S0 - H(Z) — Z[S']. As before, let p(Z[S 17y denote Z[S!] regarded as an S% module via restriction of scalars
along g. Then we obtain a natural map p ((Z[S 1])1?}1(15‘,,)) — Z[S 1]HA-1I(IFP)' Again, the left hand completion is over the

commutative S-algebra S°, and the right one is over the S-algebra Z[S']. There is a homomorphism of algebraic
to geometric spectral sequences (7.1), which is an isomorphism since 79S? — mZ[S']. Consequently, the desired
completion is the p-adic completion of the spectrum Z[S']. The resulting homotopy groups are the groups H; (S', Z »)s
so we finally obtain the formula

I7; (AHA—H(IFP)) =7, fori=0,1
T (AJIAJI(]F,,)) =0 otherwise.

This result has been extended to a statement about finitely generated nilpotent groups by T. Lawson in [13].
A construction referred to as deformation K-theory can be made which incorporates the topology on spaces of
representations, and which applies to any discrete group. In the case of Z, it produces a spectrum with homotopy
groups given by Z[Sil] ® m.ku. What Lawson proves is that for a finitely generated nilpotent group I', the
derived completion of the representation ring of the pro-p completion of I" at the homomorphism given by mod
p augmentation is equivalent to the p-adic completion of the deformation k-theory of I'. This gives a link between
this completion process on representation rings of pro-p quotients of I" with the geometry of representation varieties
of I'.
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