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The algebraic K-theory of Lawvere theories provides a context for the systematic study of the stable
homology of the automorphism groups of algebraic structures, such as the symmetric groups, the
general linear groups, the automorphism groups of free groups, and many, many more. We develop
this theory and present a wealth of old and new examples to compare our non-linear setting to the
theories of modules over rings via assembly maps. For instance, a new computation included here
is that of the algebraic K-theory of the Lawvere theory of Boolean algebras and all theories Morita
equivalent to it, in terms of the stable homotopy groups of spheres. We give a comprehensive
discussion of Morita invariance: The higher algebraic K-theory of Lawvere theories is invariant
under passage to matrix theories, but, in general, not under idempotent modifications. We also
prove that algebraic K-theory is a monoidal functor on the category of Lawvere theories with the
Kronecker product as its monoidal product. This result enables us to embed the classical assembly
maps in algebraic K-theory into our framework and discuss many other examples and extensions.

Algebraic K-theory and Lawvere theories. Quillen originally devised his higher algebraic K-
theory for rings in terms of the general linear groups arising as the automorphism groups of the
free modules. Shortly after, in particular through the work of Segal and Thomason, it was realized
that infinite loop spaces can be constructed from general symmetric monoidal categories, not just
categories of modules with respect to direct sum. The price we usually pay for gained generality
is the increased difficulty, if not impossibility, of proving interesting results. In this paper, we
propose Lawvere theories as a happy medium between the linear case of modules over rings, on
the one hand, and, on the other hand, symmetric monoidal categories in general. These algebraic
theories lie at the base of a categorical approach to universal algebra, and they encompass the
standard algebraic theories of groups, rings, and modules, but also more exotic algebraic structures
that are of interest because of their symmetries. One of several equivalent constructions of the
algebraic K-theory space Ω∞K(T ) of a Lawvere theory T , the Quillen plus construction, makes it
immediately clear that the homology of this space determines the stable homology of the diagram
of automorphism groups of the free T –models Tr on r generators. The following summarizes
Theorems 2.6 and 2.7 from the main text.
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Theorem A. For every Lawvere theory T , there is an equivalence

Ω
∞K(T )' K0(T )×Bcolimr Aut(Tr)

+

of spaces, and there is an isomorphism

colimr H∗(Aut(Tr))∼= H∗(Ω∞
0 K(T ))

between the stable homology of the automorphism groups of finitely generated free models Tr
of the theory T and the homology of the zeroth component Ω∞

0 K(T ) of the algebraic K-theory
space Ω∞K(T ).

Stable homology computations. Several recent stable homology computations, such as the
ones for the automorphism groups of free groups [Gal11] and for the Higman–Thompson
groups [SW19], can be cast into our extended context: the algebraic K-theory of the Lawvere
theory of groups is the sphere spectrum (Example 3.4), and the algebraic K-theory of the Lawvere
theory of Cantor algebras is a Moore spectrum, depending on the arity (Example 3.7). We will use
the following new computations to illustrate various aspects of the general theory.

Theorem B. For the algebraic K-theory of the Lawvere theory Boole of Boolean algebras, we
have

K∗(Boole)∼= π∗(S)/2–power torsion,

where the π∗(S) are the stable homotopy groups of spheres.

Note that there is a canonical homomorphism K∗(Sets)→ K∗(Boole). In view of the isomor-
phism K∗(Sets)∼= π∗(S) one might be tempted to expect this homomorphism to be surjective, but
this is not the case (see Proposition 4.3). We obtain Theorem B as Corollary 4.2 to a more general
result. Our Theorem 4.1 shows that there is a family of Lawvere theories Postv, for integers v > 2,
which specializes to the theory of Boolean algebras for v = 2 and for which Theorem B holds
with 2 replaced by v.

Theorem C. For every integer v > 2 we have K∗(Postv)∼= π∗(S)/v–power torsion.

Morita equivalence. Two rings are called Morita equivalent if they have equivalent categories
of modules. Morita equivalent rings must have isomorphic higher algebraic K-groups. More
generally, two Lawvere theories are called Morita equivalent if their categories of models are
equivalent. This is the case if and only one of them is an idempotent modification of a matrix
theory of the other. We prove:

Theorem D. The higher algebraic K-theory of Lawvere theories is invariant under passage to
matrix theories.

Because we define the algebraic K-theory of Lawvere theories in terms of free models, there is
no hope of extending this result to K0: there are even Morita equivalent rings, such as the Leavitt
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algebras of Theorem 7.5 and their matrix algebras, that have non-isomorphic K0’s when those K-
groups are defined using free modules only. The reason is, of course, the presence of projectives
that are not free. Arguably, the ability to detect those non-free projectives is one desirable feature
of lower K-theory. For rings, we could have built that feature into our theory by completing
idempotents. In an additive category, all retracts have complements, and this completion would not
change the higher K-theory, only K0. However, for general Lawvere theories, this fix for K0 is not
possible without changing the higher K-theory: completing at idempotents can change higher K-
groups. Since the Lawvere theories Postv are all Morita equivalent, our computations in Theorem C
show that the higher algebraic K-theory of Lawvere theories is not Morita invariant.

Multiplicative properties. Later constructions of algebraic K-theory, such as Quillen’s categori-
fication of the Grothendieck construction, allow us to manipulate the resulting spectra more eas-
ily. In particular, Elmendorf and Mandell [EM06, EM09] (see also [BO20]), have extended the
functoriality to an extent that enables us to prove that algebraic K-theory has good multiplicative
properties.

Theorem E. For any pair of Lawvere theories S and T , there is a natural morphism

K(S)∧K(T )−→ K(S⊗T )

of K-theory spectra, where S⊗T is the Kronecker product of theories. These morphisms give K-
theory the structure of a lax symmetric monoidal functor.

Assembly. The models for the Kronecker product S⊗T are the S–models in the category of T –
models. For instance, if S = Z is the theory of abelian groups, this means that the models
of Z⊗ T are the abelian group objects in the category of T –models. These models of Z⊗ T
can always be described as the modules over a ring, which we also denote by Z⊗ T . The
arrow K(Z)∧K(T )→ K(Z⊗T ) from Theorem E is not an equivalence, in general; for instance,
this fails for T = Z (see Theorem 7.8 for a more general statement). Regardless, the left hand side
is often the best approximation we have to the right hand side. In fact, Theorem E allows us to give
a new description of the assembly maps

K(Z)∧Σ
∞
+(BG)−→ K(ZG)

for the classical algebraic K-theory of group rings, as first defined by Loday [Lod76] in his thesis,
and since then developed by many others [Wal78, Qui82, FJ93, WW95, DL98]; we refer to [HP04,
Spe11] for a comparison, and to [Lüc19] for a recent survey. Our present paper produces the three
constituent spectra K(Z), Σ∞

+(BG), and K(ZG) from the same framework: as algebraic K-theory
spectra K(T ) of suitable Lawvere theories T . The suspension spectrum Σ∞

+(BG) of the classifying
space BG of a discrete group G arises as the algebraic K-theory of the Lawvere theory of G–
sets (see Example 3.3). We use our more general framework to give examples and non-examples
of the assembly map being an equivalence, or at least rationally being an injection. One can think of
this as the algebraic K-theory Novikov conjecture for Lawvere theories [BHM89, BHM93]. In the
case of the theories of nilpotent groups of a given class c, as studied previously in [Szy14, Szy19],
this leads us to various new interpolation schemes for the assembly map as c→ ∞.
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Homological stability. The theory developed in this text is rooted in stable homology com-
putations. The related issue of homological stability is not our concern here. We refer to the
paper [R-WW17] by Randal-Williams and Wahl, which discusses the homological stability prob-
lem in a more general framework than ours. Still, one might at least wonder if the setting of
Lawvere theories could lead to new results in that direction, too.

Outline. In Section 1, we start with a review of the relevant universal algebra of Lawvere theories.
We include, in particular, Kronecker products, which we need for our discussion of assembly, and
Morita invariance, which is generated by passage to matrix theories and impotent modifications.
In Section 2, we define and compare models for the algebraic K-theory of Lawvere theories and
show that the higher algebraic K-theory is invariant under passage to matrix theories. We pause
the development of the theory in Section 3, where we collect examples of algebraic K-theory
computations that were known, more often implicitly than explicitly, before this work. In Section 4,
we compute the algebraic K-theory of the Lawvere theory of Boolean algebras and of the Morita
equivalent theories of Post algebras, leading to a counterexample for Morita invariance in general.
We then, in Section 5, turn to multiplicative matters and show that algebraic K-theory is a monoidal
functor. Those results allow us to quickly give some first applications in Section 6, and then, in
the final Section 7, to embed the classical Loday assembly map into our framework and to discuss
many other new examples.

1 Lawvere theories

We need to review the basic notions and set up our notation for Lawvere theories [Law63]. In
particular, we briefly discuss Kronecker products and Morita theory. Some textbook references
are [Par69, Sch70, Bor94, ARV11].

Choose a skeleton E of the category of finite sets and (all) maps between them. For each inte-
ger r > 0 such a category has a unique object with precisely r elements, and there are no other
objects. For the sake of explicitness, let us choose the model r = {a ∈ Z |1 6 a 6 r} for such a set.
A set with r+ s elements is the (categorical) sum (or co-product) of a set with r elements and a set
with s elements.

Definition 1.1. A Lawvere theory T = (FT ,FT ) is a pair consisting of a small category FT together
with a functor

FT : E−→ FT

that is bijective on sets of objects and that preserves sums. This means that the canonical
map FT (r)+FT (s)→ FT (r+ s) induced by the canonical injections is an isomorphism for all sets r
and s in E.

The image of the set r with r elements under the functor FT : E→ FT will be written Tr, so that
the object Tr is the sum in the category FT of r copies of the object T1.
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1.1 First examples

We recall two of the most important classes of examples of Lawvere theories.

Example 1.2. Let A be a ring. Let FA be the full subcategory of the category ModA of A–modules
spanned by the modules A⊕r for r > 0. This category is a skeleton of the category of finitely
generated, free A–modules. Then the functor

FA : E→ FA,

that sends the set with r elements to the free module A⊕r with r generators is a Lawvere theory,
called the theory of A–modules. Note that A⊕0 = 0 is the 0 module. In particular, for the initial
ring A = Z, we have the Lawvere theory of abelian groups.

Rings can be very complicated, and this is even more true for Lawvere theories, which are signifi-
cantly more general.

Example 1.3. Let G be a group. Let FG be (a skeleton of) the full subcategory of the category
of G–sets on the free G–sets with finitely many orbits: those of the form ∏

r G. Then the functor

FG : E→ FG

sending r to ∏
r G is a Lawvere theory, called the theory of G–sets. In particular, for the trivial

group G = {e}, we have the Lawvere theory E of sets.

Remark 1.4. Some authors prefer to work with the opposite category Fop
T , so that the object Tr

is the product (rather than the co-product) of r copies of the object T1. For example, this was
Lawvere’s convention when he introduced this notion in [Law63]. Our convention reflects the point
of view that the object Tr should be thought of as the free T –model (or algebra) on r generators,
covariantly in r (or rather in E). To make this precise, recall the definition of a model (or algebra)
for a theory T .

1.2 Models

Definition 1.5. Given a Lawvere theory T , a T –model (or T –algebra) is a presheaf X (of sets)
on the category FT that sends (categorical) sums in FT to (categorical, i.e. Cartesian) products of
sets. (This means that the canonical map X(Tr +Ts)→ X(Tr)×X(Ts) induced by the injections
is a bijection for all sets r and s in E.) We write MT for the category of T –models, and we
write MT (X ,Y ) to denote the set of morphisms X → Y between T –algebras. Such a morphism is
defined to be a map of presheaves, i.e., a natural transformation, so that MT is a full subcategory
of the category of presheaves on FT .

The values of a T –model are determined up to isomorphism by the value at T1, and we often use
the same notation for a model and its value at T1.
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Example 1.6. The categories of models for the Lawvere theories of Examples 1.2 and 1.3 are the
categories of A–modules and G–sets, respectively. For example, the action of G on itself from the
right gives for each g ∈ G a G–map g : ∏

1 G→∏
1 G in the category FG of Example 1.3. Given a

model X : Fop
G → Sets, the set maps X(g) : X(

∏
1 G)→ X(

∏
1 G) combine to produce the action of

the group G on the set X(
∏

1 G).

Example 1.7. The co-variant Yoneda embedding FT → Pre(FT ) sends the object Tr of FT to the
presheaf Ts 7→ FT (Ts,Tr) represented by it. Such a presheaf is readily checked to be a T –model.
We refer to a T –model of this form as free. The definitions unravel to give natural bijections

MT (Tr,X)∼= X r

for T –models X , so that Tr is indeed a free T –model on r generators.

We can summarize the situation as follows. The Yoneda embedding of FT into presheaves on FT
factors through the category MT of T –models:

FT //

##

MT

��
Pre(FT )

Both functors are fully faithful, and the free T –models are those in the (essential) image of the top
functor.

Definition 1.8. A morphism S→ T between Lawvere theories is a functor L : FS→ FT that pre-
serves sums and free models. This is equivalent to the condition that FT ∼= L ◦FS, i.e., that L is a
map under E.

Often, a morphism S→ T between Lawvere theories is described by giving a functor R : MT →MS
that is compatible with the forgetful functors to the category ME of sets. Then L is induced by the
left adjoint to R, which exists for abstract reasons, namely by Freyd’s adjoint functor theorem.

For any Lawvere theory T , the category MT of T –models is complete and cocomplete. Limits
are constructed levelwise, and the existence of colimits follows from the adjoint functor theorem.
The category MT becomes symmetric monoidal with respect to the (categorical) sum, and the unit
object T0 for this structure is also an initial object in the category MT .

In a slight generalization of Definition 1.5, we can define T –models in categories with (categorical)
products. In particular, we may then consider T –models in other categories of models; this is what
we are going to do now.

1.3 Kronecker products

Given Lawvere theories S and T , their Kronecker product S⊗ T is a Lawvere theory that rep-
resents T –models in the category of S–models or, equivalently, S–models in the category of T –

6



models. These theories are described by Freyd [Fre66], and in Lawvere’s thesis [Law68]. It
follows from this description that there are morphisms

S−→ S⊗T ←− T

of Lawvere theories.

Example 1.9. If S and T are the theories of modules over rings A and B, respectively, as in Exam-
ple 1.2, then S⊗T is the theory of (A⊗B)–modules [Bor94, 3.11.7b].

Example 1.10. If S and T are the theories of G–sets and H–sets for groups G and H, respectively,
as in Example 1.3, then S⊗T is the theory of (G×H)–sets: sets with commuting actions by G
and H.

We can pair S = Z, the Lawvere theory of abelian groups, with any Lawvere theory T to obtain
a new Lawvere theory Z⊗T whose models are the abelian group objects in the category of T –
models. This theory Z⊗T comes with a morphism

T −→ Z⊗T, (1.1)

the linearization. Via the discussion following Definition 1.8, we can view the linearization mor-
phism as induced by the left adjoint to the forgetful functor that takes an abelian group object
in T –models to its underlying T –model. The models over Z⊗T are essentially the modules over
the endomorphism ring of the linearization of T1.

The description of the Kronecker product S⊗T in terms of its models is not the most convenient
for our purpose. We shall give another description of it following Hyland and Power [HP07].
Since the category of natural numbers (i.e. our skeleton E of the category of finite sets) has finite
products as well as sums, for r,s ∈ E, we have the product r× s. Since E is skeletal, this product
is the set rs; we will consider rs as the r–fold sum of s with itself. Under this identification a
morphism of sets f : s→ s′ in E induces a morphism r× f : r× s→ r× s′.

For any Lawvere theory S, we can extend this construction to the category FS. Given r ∈ Z
and Ss ∈ FS, we define

r×Ss = Ss + · · ·+Ss︸ ︷︷ ︸
r

to be the r–fold sum in FS of Ss with itself. The skeletalness of the category FS means this sum must
be the object Sr×s, but this identification provides a corresponding construction on morphisms.
If f : Ss→ Ss′ is a morphism in FS, the functoriality of sums produces a morphism

r× f : r×Ss→ r×Ss′.

Conjugating by the symmetry r × s → s × r we similarly can construct Ss × r and a mor-
phism f × r : Ss× r→ Ss′× r. As an object in FS, we have Ss× r = Sr×s = r×Ss.

Remark 1.11. For fixed r, the construction Ss 7→ r× Ss yields a functor FS → FS that is strong
monoidal, as does the construction Ss 7→ Ss× r.
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Definition 1.12. Given two Lawvere theories S and T , the Kronecker (or tensor) product Lawvere
theory S⊗T is defined by the universal property of admitting maps of Lawvere theories S→ S⊗T
and T → S⊗T so that the operations of S commute with the operations of T in the sense that for
all f : Sr→ Ss in FS and f ′ : Tr′ → Ts′ in FT , the diagram

(S⊗T )r×r′
r× f ′ //

f×r′
��

(S⊗T )r×s′

f×s′
��

(S⊗T )s×r′ s× f ′
// (S⊗T )s×s′

commutes (in the category FS⊗T ). The vertical maps here should be interpreted as the image of the
maps f × r′ : Sr×r′ → Ss×r′ in FS under the map of Lawvere theories S→ S⊗T , and similarly for
the horizontal maps, mutatis mutandis.

Remark 1.13. Hyland and Power [HP07, Proposition 3.3] remark that the Kronecker product
extends to a symmetric monoidal structure on the category of Lawvere theories with the theory E
of sets as the unit theory. The construction of S⊗ T can be done by hand, or it can be viewed
as a special case of their work on pseudo-commutativity and, in particular, on the pseudo-closed
structure of the 2–category of symmetric monoidal categories [HP02]. Much becomes easier in
the present case because by definition, a map of Lawvere theories is a map under E, i.e., a strictly
commuting diagram of the following form:

FS

L
��

E
77

''
FT

Thus, a natural transformation between such L must restrict to the identity natural transformation
on E. Since all objects in FS are in the image of E, this forces all natural transformations to be the
identity. In other words, Lawvere theories naturally form a 1–category rather than a 2–category, so
there is no room for the psubtlety of pseudoness.

1.4 Matrix theories

Given a Lawvere theory T and an integer n > 1, the matrix theory Mn(T ) is the Lawvere theory
such that the free Mn(T )–model on a set X is the free T –model on the set n×X (see [Wra71,
Sec. 4]). In other words, the category FMn(T ) is the full subcategory of the category FT consisting
of the objects Tnr for r > 0.

More diagrammatically, if n×− is the strong monoidal functor of Remark 1.11, then the under-
lying category of the Lawvere theory Mn(T ) is the image of n×− and the structure functor that
defines Mn(T ) as a Lawvere theory is the composite

E−−−→ FT
n×−−−−→ FT .
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It is easy to describe all Mn(T )–models up to isomorphism: given a T –model X , we can construct
an Mn(T )–model on the n–th cartesian power Xn of X ; the r–ary Mn(T )–operations (Xn)r→ Xn

are the maps such that all components (Xn)r→ X are nr–ary T –operations on X . In particular, we
get a unary operation Xn→ Xn for each self-map of the set n, and so the monoid End(n) acts on the
model Xn. Every model arises this way, up to isomorphism. Every Mn(T )–model of the form Xn

has an underlying T –model consisting of the operations that are themselves n–th powers, which
gives a forgetful functor MMn(T )→MT . Equivalently, there is a morphism

T −→Mn(T ) (1.2)

of Lawvere theories. From the diagrammatic perspective, this morphism is simply the above func-
tor n×− : FT → FMn(T ) ⊂ FT , which by construction is a functor under E and hence a map of
Lawvere theories. We readily observe that M1(T )∼= T and Mm(Mn(T ))∼= Mmn(T ).

Using the initial Lawvere theory E of sets, we can write Mn(T )∼= T ⊗Mn(E), since an Mn(T )–
model is visibly a T –model in Mn(E)–models (i.e. sets that are n–fold products). More generally,
we have an isomorphism Mn(S⊗T )∼= S⊗Mn(T ) of theories.

Example 1.14. If T is the theory of modules over a ring A as in Example 1.2, then Mn(T ) is the
theory of modules over the matrix ring Mn(A).

Example 1.15. The Lawvere theory Mn(E) is the theory of End(n)–sets.

1.5 Morita equivalence

We need to explain one more construction before we can come to Morita equivalence: idempotent
modifications.

Let T be a Lawvere theory with an idempotent endomorphism u : T1→ T1 of the free T –model T1
on one generator. We write un : Tn→ Tn for the n–fold sum, so that u1 = u.

Lemma 1.16. Consider the following properties for a morphism f : Tr→ Ts in FT with respect to
a fixed idempotent u.
(1) f = usgur for some g : Tr→ Ts
(2) us f = f = f ur
(3) us f = f ur
Then (1)⇔ (2)⇒ (3). We have (2)⇐ (3) if and only if u = id.

We define Fu
T 6 FT to be the subcategory (!) consisting of the morphisms that satisfy condition (3)

in Lemma 1.16 above. Note that (1) and (2) do not define a subcategory in general, because the
identities satisfy (3), but not necessarily (1) or (2). However, we can define a new category structure
on the subsets of FT (Tr,Ts) of morphisms satisfying conditions (1) and (2): these subsets are closed
under composition, and the ur’s act as new identities. This gives another category FuTu and another
Lawvere theory, the idempotent modification uTu of T with respect to the idempotent u. There is
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a functor Fu
T → FuTu defined by f 7→ u f = u f u = f u, and we can, in principle, compare the new

Lawvere theory uTu to T using the zigzag

FuTu←− Fu
T −→ FT

of functors defined above, all of which are the identities on objects.

Definition 1.17. Two Lawvere theories S and T are called Morita equivalent if their categories MS
and MT of models are equivalent.

An idempotent u is pseudo-invertible if there are morphisms T1→ Tk and Tk→ T1 such that their
composition around uk : Tk→ Tk is the identity on T1.

Proposition 1.18 ([Duk88], [McK96]). A Lawvere theory is Morita equivalent to a given Lawvere
theory T if and only if it is an idempotent modification of a matrix theory of T for some pseudo-
invertible idempotent of the matrix theory.

We refer to the textbook treatment in [ARV11, Ch. 6, 8, 15] for proofs of this and the following
fact.

Proposition 1.19. Two Lawvere theories are Morita equivalent if and only if their categories FS
and FT of free models have equivalent idempotent completions.

2 Algebraic K-theory

In this section, we define the algebraic K-theory spectrum K(T ) of a Lawvere theory T , show
how it encodes the stable homology of the automorphism groups of free T –models, and prove our
positive results on Morita invariance.

2.1 The algebraic K-theory of Lawvere theories

We first specify the constructions of K-theory we use in this paper. Our primary approach is to
view Lawvere theories as a special case of symmetric monoidal categories and apply the classic
constructions of K-theory for the latter. There are several ways of approaching these constructions;
we begin with a brief overview.

Let S denote a symmetric monoidal groupoid. For the following to make sense, it needs to sat-
isfy an additional assumption, but we show in Proposition 2.4 that this is always the case for
the categories we are interested in. We can then pass to Quillen’s categorification S−1S of the
Grothendieck construction. The canonical morphism BS→ BS−1S between the classifying spaces
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is a group completion, and the target is an infinite loop space. We refer to [Gra76] and Thoma-
son’s particularly brief and enlightening discussion [Tho80] for detail. To build a K-theory spec-
trum K(S) with underlying infinite loop space Ω∞K(S)' BS−1S, we can use Segal’s definition of
the algebraic K-theory of a symmetric monoidal category in terms of Γ–spaces. The equivalence
comes from [Seg74, §4], where he shows that Ω∞K(S) is also a group completion of BS. Finally,
for the multiplicativity properties we need later in Section 5, we in fact wish to use a variant of
Segal’s construction given by Elmendorf–Mandell [EM06] (see also [BO20]) which takes values
in the category of symmetric spectra and builds the spaces of the K-theory spectrum “all at once”
instead of iteratively.

Definition 2.1. Let T be a Lawvere theory. The algebraic K-theory of T is the spectrum

K(T ) = K(F×T ), (2.1)

that is, the spectrum corresponding to the symmetric monoidal groupoid F×T of isomorphisms in
the symmetric monoidal category FT of finitely generated free T –models, where the monoidal
structure is given by the categorical sum.

Since the category FT can be identified with the symmetric monoidal category of finitely generated
free T –models, Definition 2.1 concerns the algebraic K-theory of finitely generated free T –models.
In particular, the group K0(T ) = π0K(T ) is the Grothendieck group of isomorphism classes of
finitely generated free T –models. This group is always cyclic, generated by the isomorphism
class [T1 ] of the free T –model on one generator. However, the group K0(T ) does not have to be
infinite cyclic, as the Examples 2.10 and 3.7 show.

Remark 2.2. A morphism S → T of Lawvere theories (as in Definition 1.8) induces, via the
left-adjoint functor FS → FT , a morphism K(S)→ K(T ) of algebraic K-theory spectra. The left
adjoint FS→ FT sends the free S–model S1 on one generator to the free T –model T1 on one genera-
tor. It follows that the induced homomorphism K0(S)→K0(T ) between cyclic groups is surjective,
being the identity on representatives.

2.2 Stable homology and the plus construction

One reason for interest in the algebraic K-theory of Lawvere theories is the relation to the stable
homology of the sequence of automorphism groups attached to a Lawvere theory. We now make
this relation made precise.

Let T be a Lawvere theory. The automorphism groups of the free algebras Tr often turn out to
be very interesting (see the Examples in Section 3 below). We use the notation Aut(Tr) for these
groups.

Given integers r,s > 0, there is a stabilization homomorphism

Aut(Tr)−→ Aut(Tr+s) (2.2)
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that ‘adds’ the identity of the object Ts in the sense of the categorical sum +, and we use additive
notation for this operation. More precisely, stabilization sends an automorphism u of Tr to the
automorphism of Tr+s that makes the diagram

Tr+s // Tr+s

Tr +Ts

∼=
OO

u+Ts
∼=

// Tr +Ts

∼=
OO

commute. By abuse of notation, this automorphism of the object Tr+s will sometimes also be
denoted by u+Ts.

Remark 2.3. The alert reader will have noticed that we have not specified our choice of isomor-
phism Tr +Ts ∼= Tr+s in the preceding diagram, and we do not need to: all such choices obviously
differ by some conjugation, so that they induce the same map in homology, which is all that matters
for the purposes of this section.

Proposition 2.4. For every Lawvere theory T , the stabilization maps

Aut(Tr)−→ Aut(Tr+1)

are injective.

Proof. It is enough to show that the kernels are trivial. This is clear for r = 0, since T0 is initial,
so that Aut(T0) is the trivial group. For positive r we can choose a retraction ρ of the canonical
embedding σ : Tr→ Tr+1. If u is in the kernel of the stabilization map, then we have the following
commutative diagram.

Tr

σ

��

u // Tr

σ

��
Tr+1 id

// Tr+1 ρ
// Tr

It implies u = id.

Stabilization leads to a diagram

Aut(T0)−→ Aut(T1)−→ Aut(T2)−→ Aut(T3)−→ ·· · (2.3)

of groups for every Lawvere theory T . We write colimr Aut(Tr) for the colimit of the diagram (2.3)
with respect to the stabilization maps. This is the stable automorphism group for the Lawvere
theory T .

Let us record the following group theoretical property of the stable automorphism groups. This is
presumably well-known already in more or less generality. We nevertheless include an argument
here for completeness’ sake.

12



Proposition 2.5. For every Lawvere theory T , the commutator subgroup of the stable automor-
phism group colimr Aut(Tr) is perfect.

Proof. Given a commutator in the group colimr Aut(Tr), we can represent it as [u,v] for a
pair u,v of automorphisms in the group Aut(Tr) for some r. Allowing us thrice the space, in
the group Aut(T3r) we have the identity

[u,v]+ id(T2r) = [u+u−1 + id(Tr),v+ id(Tr)+ v−1].

It therefore suffices to prove that each element of the form w+w−1 is a commutator. This is a
version of Whitehead’s lemma that holds in every symmetric monoidal category: whenever there
are automorphisms w1, . . . ,wn of an object such that their composition w1 · · ·wn is the identity,
then w1 + · · ·+wn is a commutator. We apply this to the category FT with respect to the monoidal
product given by categorical sum +.

After these preliminaries, we now move on to give another model for the algebraic K-theory space
of a Lawvere theory T , one that uses the Quillen plus construction. This construction led to
Quillen’s historically first definition of the algebraic K-theory of a ring [Qui71] (see also [Wag72]
and [Lod76]).

The plus construction can be applied to connected spaces X for which the fundamental groups
have perfect commutator subgroups. It produces a map X → X+ into another connected space X+

with the same integral homology, and such that the induced maps on fundamental groups are the
abelianization. In fact, these two properties characterize the plus construction. By Proposition 2.5,
the commutator subgroup of colimr Aut(Tr) is perfect. Therefore, the plus construction can be
applied the classifying space Bcolimr Aut(Tr) in order to produce another space Bcolimr Aut(Tr)

+.

Theorem 2.6. For every Lawvere theory T , there is an equivalence

Ω
∞K(T )' K0(T )×Bcolimr Aut(Tr)

+ (2.4)

of spaces.

Proof. Quillen, in the his proof that the plus construction of K-theory agrees with the one obtained
from the Q-construction, takes an intermediate step (see [Gra76, p. 224]): he shows that the plus
construction, together with K0, gives a space that is equivalent to the classifying space of his cate-
gorification S−1S of the Grothendieck construction of a suitable symmetric monoidal category S.
This part of his argument applies here to show that there is an equivalence

K0(T )×Bcolimr Aut(Tr)
+ ' B((F×T )

−1F×T )

of spaces for every Lawvere theory T . The claim follows because we already know that the right
hand side has the homotopy type of Ω∞K(T ).

13



In general, there seems to be no reason to believe that such an artificial product as in (2.4) would
form a meaningful whole. The present case is special because K0(T ) is generated by the isomor-
phism class of the free T –algebra T1 of rank 1. Other constructions of the same homotopy type
do not separate the group K0(T ) of components from the rest of the space. One way or another,
note that all components of the algebraic K-theory space K(T ) are equivalent; the group K0(T ) of
components acts transitively on the infinite loop space Ω∞K(T ) up to homotopy.

Since the plus construction does not change homology, the definition of the algebraic K-theory
space immediately gives the following result.

Theorem 2.7. For every Lawvere theory T , there is an isomorphism

colimr H∗(Aut(Tr))∼= H∗(Ω∞
0 K(T ))

between the stable homology of the automorphism groups of finitely generated free objects
of the theory T and the homology of the zero component Ω∞

0 K(T ) of the algebraic K-theory
space Ω∞K(T ).

Ideally, the algebraic K-theory spectrum K(T ) is more accessible and easier to understand and
describe than the stable automorphism group colimr Aut(Tr). This is not at all plausible from the
definition; only the now-classical methods of algebraic K-theory that have been developed over
half a century that allow us to take this stance. From this perspective, Theorem 2.7 should be
thought of as a computation of the group homology, once the spectrum K(T ) is identified. The
examples in Sections 3 and 4 give a taste of the flavor of some non-trivial (and non-linear) cases.

2.3 Morita invariance

We close this section by showing that the higher K-theory of a Lawvere theory T is invariant
under passage to matrix theories Mn(T ) discussed in Section 1.4. On the other hand, we shall see
later that K-theory is not invariant under passage to idempotent completions. Therefore, the K-
theory K(T ) cannot be computed from the category of T –models alone.

Theorem 2.8. For every Lawvere theory T , there is an equivalence

Ω
∞
0 K(Mn(T ))'Ω

∞
0 K(T )

of infinite loop spaces.

Proof. We may use that the existence of isomorphisms Mn(T )r ∼= Tn×r of models implies that we
have isomorphisms

Aut(Mn(T )r)∼= Aut(Tn×r)

between the automorphism groups. Therefore, when we compare the diagrams (2.3), the one with
the groups Aut(Mn(T )r) for Mn(T ) naturally embeds as a cofinal subdiagram of the digram with
the groups Aut(Tr) for T . We only see every n–th term, but the colimits can be identified, of course,
and this proves the statement.
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Remark 2.9. The equivalence in Theorem 2.8 is not induced by the morphism K(T )→ K(MnT )
of spectra that comes from the canonical morphism (1.2) of theories. It does come from a mor-
phism K(MnT )→ K(T ) of spectra in the other direction, but this morphism is not induced from
a morphism of theories; it comes from the symmetric monoidal functor FMn(T ) → FT given by
the inclusion of FMn(T ) into FT as the image of the functor n×−. This functor is defined
by Mn(T )r ∼= Tn×r 7→ Tn×r and so while it is essentially the identity on morphisms, it is not neces-
sarily surjective on objects. In particular, it need not be surjective on the level of components, as
is required for a map of Lawvere theories according to Remark 2.2.

In fact, as tempting as it might be to hope for an equivalence K(MnT )'K(T ) of K-theory spectra,
we cannot have that, in general, because of the difference in the groups K0 of components:

Example 2.10. As explained in [SW19, Rem. 5.3] and Example 3.7 of the following section, the
Cantor theories Cantora of arity a > 2 have K0(Cantora) = Z/(a−1) finite. But by construction,
the matrix theory Mn(Cantora) only involves the elements represented by multiples of n in the
group Z/(a− 1). Therefore, if n is not coprime to a− 1, then K0(MnCantora) will be strictly
smaller than K0(Cantora). In particular, the morphisms between K(Cantora) and K(MnCantora)
described in Remarks 2.2 and 2.9 are not equivalences in this case.

In Theorem 4.1, we provide examples of Lawvere theories that are Morita equivalent but have
different higher K-theory. Specifically, there is a family of Lawvere theories that are all Morita
equivalent to the theory of Boolean algebras. When we compute their algebraic K-theories, we
find that they are all different.

3 Non-linear examples

The goal of this section is to demonstrate the interest in the algebraic K-theory K(T ) of Lawvere
theories T beyond what are arguably the most fundamental examples, the theories of modules over
rings:

Example 3.1. Consider the theory of modules over a ring A, as in Example 1.2. The automorphism
group of the free A–module Ar of rank r is the general linear group Aut(Ar) = GLr(A). The
algebraic K-theory spectrum K(A) is Quillen’s algebraic K-theory (actually, the ‘free’ version). In
particular K(Z) is the K-theory spectrum of the Lawvere theory of abelian groups (in the guise
of Z–modules).

We can now move on to discuss non-linear examples: theories that are not given as modules over
a ring.
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3.1 Sets and variants

Example 3.2. Consider the initial theory E of sets. The automorphisms are just the permutations,
and the automorphism group Aut{1, . . . ,r}= Σ(r) is the symmetric group on r symbols. The
algebraic K-theory is the sphere spectrum: K(E) ' S. This is one version of the Barratt–Priddy
theorem [Pri71, BP72]. We provide details so that we can use the same notation later as well:
Let Q ' Ω∞S denote the infinite loop space of stable self-maps of the spheres. The path compo-
nents of the space Q are indexed by the degree of the stable maps, as a reflection of π0(S) = Z, and
we will write Q(r) for the component of maps of degree r. There are maps BΣ(r)→ Q(r) which
are homology isomorphisms in a range that increases with r by Nakaoka stability [Nak60]. These
maps fit together to induce a homology isomorphism

BΣ(∞)→ Q(∞) (3.1)

between the colimits. The stabilization Q(r)→ Q(r+ 1) is always an equivalence, so that all the
maps Q(r)→ Q(∞) to the colimit are equivalences as well. Passing to group completions, we get
from the map (3.1) an equivalence

Ω
∞
0 K(E)'Ω

∞
0 S

of infinite loop spaces, so that K(E) ' S as spectra. We refer to Morava’s notes [Mor] for more
background and relations to the algebraic K-theory of the finite fields Fq when the number q of
elements goes to 1.

Example 3.3. More generally, for any discrete group G, we can consider the Lawvere theory
of G–sets. The algebraic K-theory of the theory of free G–sets is

K(G–Sets)' Σ
∞
+(BG),

the suspension spectrum of the classifying space BG (with a disjoint base point +). This observa-
tion is attributed to Segal. In particular, for the Lawvere theory Z–sets, this gives

K(Z–Sets)' Σ
∞
+(BZ)' Σ

∞
+(S

1)' S∨ΣS.

The theory Z–sets is the theory of permutations: a model is a set together with a permutation of
that set.

3.2 Groups and variants

Example 3.4. Consider the theory Groups of (all) groups. In this case, the automorphism
groups Aut(Fr) are the automorphism groups of the free groups Fr on r generators. The alge-
braic K-theory space has been shown to be the infinite loop space underlying the sphere spectrum
by Galatius [Gal11]: the unit S→ K(Groups) is an equivalence.

The theory of abelian groups has been dealt with in Example 3.1.
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Example 3.5. There is an interpolation between the theory of all groups and the theory of all
abelian groups by the theories Nilc of nilpotent groups of a certain class c, with 1 6 c 6 ∞. There
is a corresponding diagram

...

��
K(Nil3)

��
K(Nil2)

��
S K(Groups) //

88

@@

K(Abel) K(Z)

of algebraic K-theory spectra. This tower has been studied from the point of view of homological
stability and stable homology in [Szy14] and [Szy19], respectively.

Example 3.6. In contrast to groups, the algebraic K-theory of the Lawvere theory Monoids
of (associative) monoids (with unit) is easy to compute: the free monoid on a set X is modeled on
the set of words with letters from that set, and it has a unique basis: the subset of words of length
one, which can be identified with X . This implies that the automorphism group of the free monoid
on r generators is isomorphic to the symmetric group Σ(r), so that the map K(E)→ K(Monoids)
from the algebraic K-theory of the initial theory E of sets is an equivalence. By Example 3.2, we
get an equivalence

K(Monoids)' S

of spectra. It follows, again from Galatius’s theorem (see Example 3.4), that the canonical mor-
phism K(Monoids)→ K(Groups) is an equivalence. It would be interesting to see a proof of this
fact that does not depend on his result.

3.3 More exotic theories

Example 3.7. Let a > 2 be an integer. A Cantor algebra of arity a is a set X together with a
bijection Xa → X . The Cantor algebras of arity a are the models for a Lawvere theory Cantora,
and its algebraic K-theory has been computed in [SW19]:

K(Cantora)' S/(a−1), (3.2)

the Moore spectrum mod a−1. In particular, the spectrum K(Cantor2) is contractible. Note that
the definition makes sense for a = 1 as well. In that case, we have an isomorphism between Cantor1
and the Lawvere theory Z–Sets of permutations, and the equivalence (3.2) is still true by Exam-
ple 3.3.
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Example 3.8. Lawvere theories can be presented by generators and relations. The ‘generators’
of a theory are specified in terms of a graded set P = (Pa |a > 0), where Pa is a set of operations
of arity a. There is a free Lawvere theory functor P 7→ TP that is left adjoint to the functor that
assigns to a theory the graded set of operations. For instance, let [a] be the graded set that only has
one element, and where the degree of that element is a. Then T[a] is the free theory generated by
one operation of arity a. For instance, the Lawvere theory T[0] is the theory of pointed sets. The
Lawvere theory T[1] is the theory of self-maps (or N–sets): sets together with a self-map, and T[2]
is the theory of magmas: sets equipped with a multiplication that does not have to satisfy any
axioms. The free T[a]–model on a set X is given by the set of all trees of arity a with leaves colored
in X . This model has a unique basis: the trees of height 1, and we can argue as in Example 3.6
that K(T[a])' S.

3.4 Inconsistent theories

Finally, we mention the two trivial (or inconsistent, in Lawvere’s terminology) examples of theories
where the free model functor is not faithful (see Lawvere’s thesis [Law04, II.1, Prop. 3]).

Example 3.9. There is a theory such that all models are either empty or singletons. It has no
operations in addition to the projections Xn→ X , and the relations are that all these projections are
equal, so that x1 = x2 for all elements x j in a set X that is a model.

Example 3.10. There is a theory such that all models are singletons. It has a 0–ary operation (con-
stant) e, and the relation x = e has to be satisfied for all x in a model X . Another way of describing
the same Lawvere theory: this is the theory of modules over the trivial ring, where 0 = 1. From
this perspective, the theory is not so exotic after all!

For both of these examples, the algebraic K-theory spectra are obviously contractible.

4 Boolean algebras and Morita equivalent theories

In this section, we present new computations: we determine the algebraic K-theory of the Lawvere
theory of Boolean algebras. Our methods allow us to deal more generally with the Lawvere theories
of v–valued Post algebras. Boolean algebras form the case v = 2. The Lawvere theories of v–
valued Post algebras are all Morita equivalent to each other. In fact, these form the set of all the
Lawvere theories that are equivalent to the theory of Boolean algebras. As a consequence of our
computations, we show that algebraic K-theory is not Morita invariant in general.

Boolean algebras and their relationship to set theory and logic are fundamental for mathematics and
well-known. Post algebras were introduced by Rosenbloom [Ros42]. They are named after Post’s
work [Pos21] on non-classical logics with v truth values. Later references are Wade [Wad45],
Epstein [Eps60], as well as the surveys by Serfati [Ser73] and Dwinger [Dwi77], to which we refer
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for defining equations and explicit models of the free algebras. In the following, we will only recall
their definition as a Lawvere theory and what is necessary for our purposes.

We write Map(R,S) for the set of all maps from a set R to a set S. As before, we build on the
specific finite sets r = {a ∈ Z |1 6 a 6 r}. For a fixed integer v > 2, we now consider the category
of finite sets of the form Map(r,v), where r ranges over all integers r > 0, and all maps between
these sets. By construction, this category has finite products, and every object Map(r,v) is the r–th
power of the object Map(1,v) = v. Therefore, the opposite category has finite co-products, and
every object is a multiple of one object, the one corresponding to the set Map(1,v). This opposite
category defines the Lawvere theory Postv of v–valued Post algebras.

For v = 2, Post’s v–valued logic specializes to the 2–valued Boolean logic, and we have

Post2 = Boole, (4.1)

the Lawvere theory of Boolean algebras. From our description above, this is a well-known conse-
quence of Stone duality: the set of subsets of Map(r,2) is a free Boolean algebra on r generators,
with 22r

elements in total.

Dukarm [Duk88, Sec. 3] notes that the Lawvere theories Postv are all Morita equivalent to each
other. After all, for any given integer v > 2, any finite set is a retract of a set of the form Map(r,v)
for r > 0 large enough. There is no need for us to choose such a retraction. (The situation is
comparable to the abstract existence of isomorphisms Qp

∼= C of fields between the algebraic clo-
sure Qp of the field Qp of p–adic numbers and the field C of complex numbers, showing that the
isomorphism type of Qp is independent of p.) In any event, it follows from the existence of such
retractions that the idempotent completions of the categories of free v–valued Post algebras are
equivalent to the category of non-empty finite sets, regardless of v. Since these idempotent com-
pletions are independent of the integer v, so is the Morita equivalence class of Postv, by the results
recalled in Section 2.3. The following theorem shows that, in contrast, higher algebraic K-theory
detects the number v of truth values, and K-theory is therefore not fully Morita invariant.

Theorem 4.1. For every integer v > 2 we have

K∗(Postv)∼= π∗(S)/v–power torsion,

where the π∗(S) are the stable homotopy groups of spheres.

We single out the case v = 2 for emphasis:

Corollary 4.2. We have
K∗(Boole)∼= π∗(S)/2–power torsion

for the algebraic K-theory of the Lawvere theory of Boolean algebras.

While Boolean algebras form a comparatively well-known algebraic structure, the v–valued Post
algebras are certainly non-standard, and it might come as a surprise that we can prove such results
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without even revealing their defining operations, let alone the axioms that these operations are
required to satisfy. However, as we hope the following proof makes clear, the ability to do so is
precisely one of the benefits of our categorical methods.

Proof of Theorem 4.1. By definition, the category of free v–valued Post algebras is equivalent
to the opposite of the full subcategory of the category of sets spanned by those sets of the
form Map(r,v). Since these have different cardinalities for different values of r, the isomorphism
type of the free v–valued Post algebra of rank r determines the rank r. Passing to group completion,
we get K0(Postv)∼= Z∼= π0(S), as claimed.

For the higher K-theory, we turn toward the automorphism groups. If X is an object in a category C,
we have

AutCop(X)∼= AutC(X)op ∼= AutC(X).

Applied to our situation, this shows that the automorphism group of the free v–valued Post algebra
of rank r is isomorphic to the group of permutations of the set Map(r,v) of cardinality vr, and
therefore to the symmetric group Σ(vr) acting on a set of vr elements.

Stabilization leads us to the colimit of the diagram

Σ(1)−→ Σ(v)−→ Σ(v2)−→ ·· · −→ Σ(vr)−→ ·· · ,

where the morphisms are given by multiplication with v: a permutation σ of vr is sent to the
permutation σ × idv of vr× v = vr+1, which looks just like v copies of the permutation σ acting
on v disjoint copies of vr. In other words, σ × idv is a block sum of v copies of σ .

Picking up our notation from Example 3.2, we have maps BΣ(d)→ Q(d) that fit together to form
a commutative diagram as follows.

BΣ(1) ×v //

��

BΣ(v) ×v //

��

BΣ(v2)
×v //

��

· · ·

Q(1) ×v
// Q(v) ×v

// Q(v2) ×v
// · · ·

This diagram can be used to compute the group completion of the upper colimit, which is the
infinite loop space Ω∞

0 K(Postv) by Theorem 2.6. This time, in contrast to Example 3.2, the maps
in the lower row are not equivalences, but multiplication by v in the infinite loop space structure
on the Q(vr) ' Q(∞) ' Q(0). In other words, there is a homology isomorphism from the col-
imit BΣ(v∞) to the localization Q(0)[1/v] away from v. This homology isomorphism gives, after
group completion, an equivalence

Ω
∞
0 K(Postv)'Ω

∞
0 S[1/v]

of infinite loop spaces. Noting that the higher stable homotopy groups of the sphere are finite,
and A[1/v] = A/(v–power torsion) for finite abelian groups A, we obtain the result of the theorem.
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We end this section with an observation which indicates that the relationship between the K-
theories of the Lawvere theory E of sets and of Boolean algebras, or more generally v–valued
Post algebras, is not as simple as Theorem 4.1 might suggest.

Proposition 4.3. For each prime p, the homomorphism

πn(S)∼= Kn(E)−→ Kn(Postp)∼= πn(S)/p–power torsion,

induced by the universal arrow E → Postv of Lawvere theories, is not surjective. In particular, it
is not the canonical surjection.

Proof. Every Boolean algebra has a natural structure of an F2–vector space. The addition is given
by the symmetric difference

x+ y = (x∨ y)∧¬(x∧ y) = (x∧¬y)∨ (¬x∧ y).

In fact, the category of Boolean algebras is isomorphic to the category of Boolean rings, which are
commutative rings where every element is idempotent. If 2 is idempotent, we have 4 = 22 = 2, so
that 2 = 0, and the underlying abelian group is 2–torsion.

More generally, if p is a prime number, every p–Post algebra admits a natural structure of an Fp–
algebra in which every element x satisfies xp = x (see [Wad45] or [Ser73]).

It follows that the canonical morphism S'K(E)→K(Postp) of algebraic K-theory spectra factors
through the algebraic K-theory K(Fp) of the field Fp.

S' K(E)−→ K(Fp)−→ K(Postp)

On the level of automorphism groups, these morphisms correspond to embeddings

Σ(r)−→ GLr(Fp)−→ Σ(pr)

of groups with images given by the subgroups of Fp–linear bijections and the subgroup of that
given by the permutation matrices.

Quillen [Qui72, Thm. 8(i)] has shown that K2 j−1(Fq)∼= Z/(q j−1) for all j > 1 and for all prime
powers q. It follows that the p–torsion of the higher K-groups Kn(Fp) of Fp is trivial. On the
other hand, his computations [Qui76] showed that most of the stable homotopy of the spheres is
contained in the kernel of the canonical morphisms S→K(Z)→K(Fp) of spectra: what is detected
in the algebraic K-theory of finite fields is essentially the image of Whitehead’s J-homomorphism.
In particular, the kernel contains much more than just the p–power torsion.

Remark 4.4. Morava, in his 2008 Vanderbilt talk [Mor], highlighted “the apparent fact that the
spectrum S× defined by the symmetric monoidal category of finite pointed sets under Cartesian
product has not been systematically studied.” The spectrum which he denoted by S× can be mod-
eled as the algebraic K-theory of a many-sorted Lawvere theory, where the sorts correspond to the
prime numbers. It is not worth the effort to develop our theory in more generality just to cover that
one example. Instead, we have contented ourselves with demonstrating how the theory we have
developed so far suffices for us to deal with the local factors corresponding to each prime.
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5 Multiplicative structure

Several modern constructions of algebraic K-theory machines have good multiplicative properties.
In particular, we make use of Elmendorf and Mandell’s version [EM06] of Segal’s device, which
builds a multiplicative form of K-theory from strict symmetric monoidal categories. The precise
statement of their result is a little more involved than one might like because of the pseudoness
discussed by Hyland and Power [HP02]. That is, since symmetric monoidal categories only form
a “pseudo-monoidal category,” we cannot formulate multiplicativity by saying something like “K-
theory is a lax monoidal functor from symmetric monoidal categories to spectra,” at least not
without moving to a higher-categorical world. One of the points of working with Lawvere theo-
ries is that they are simultaneously comprehensive, flexible enough, and strictly lower-categorical.
When restricted to Lawvere theories, K-theory is a lax monoidal functor in the usual, strict sense:
this is what we show in Corollary 5.11.

Since one of our main goals is to use multiplicativity to understand assembly maps, we first iso-
late the part of Elmendorf–Mandell’s general multiplicativity statement that we use to produce
assembly-type maps, in Section 5.1. The presentation elides a number of the category-theoretical
considerations but tells us precisely what kind of functors we’ll need to produce assembly maps.
In Section 5.2, we give a more categorically sophisticated and higher level discussion of multi-
plicativity, which in particular shows that K-theory is lax monoidal on Lawvere theories, as in
Corollary 5.11. Because the proofs in these sections are somewhat technical, we have largely
postponed them to Section 5.3.

Remark 5.1. We use the language of multicategories to describe the constructions in this section.
All the multicategories we use are implicitly symmetric. Multicategories may be more familiar
to some readers under the term (colored) operad, implied to have several objects. Our choice of
terminology reflects that of the primary references [EM06, EM09] for this work. The terminolog-
ical distinction is partly philosophical. In this work, the multicategories appear as generalizations
of categories instead of as parameter spaces of operations. Of course, these roles are intimately
linked, and we invite the reader to use their preferred term.

In this section, boldface uppercase letters A,B,C, . . . will be symmetric monoidal categories. Our
default notation for the monoidal product is ⊕ and 0 typically denotes the monoidal unit, with
indices as in ⊕ = ⊕A and 0 = 0A if needed. By convention, we use “symmetric monoidal cate-
gory” in this section for symmetric monoidal categories with strict unit, as our primarily references
are written for this case. All symmetric monoidal categories can be strictified, so this does not rep-
resent a loss of generality.
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5.1 A first phrasing of multiplicativity

One way to formulate multiplicativity is in terms of “bilinear functors.” This formulation is anal-
ogous to thinking about bilinear maps between vector spaces, rather than the tensor product of
vector spaces.

Definition 5.2. A bilinear functor of symmetric monoidal categories is a functor P : A×B→ C
together with natural distributivity isomorphisms

δl : P(a,b)⊕P(a′,b)→ P(a⊕a′,b) and δr : P(a,b)⊕P(a,b′)→ P(a,b⊕b′)

satisfying some unitality and compatibility conditions which are spelled out in [BO20, Def. 7.1].

Observe that the distributivity transformations mean in particular that P is strong monoidal “in
each variable separately” in the sense that if we fix a ∈ A, the functor P(a,−) is strong monoidal
and if we fix b ∈ B, the functor P(−,b) is strong monoidal.

Example 5.3. For any symmetric monoidal category C, there is a “left unit” bilinear functor

u : E××C→ C

given on objects by u(n,c) = c⊕n. The components of the distributivity natural transformation δl
are the identity maps

c⊕n⊕ c⊕n′ = c⊕n+n′

and the components of the distributivity natural transformation δr are the reordering isomorphisms

c⊕n⊕ c′⊕n→ (c⊕ c′)⊕n.

One can similarly define a “right unit” bilinear functor C×E×→ C; here the left distributivity is
given by reordering.

Remark 5.4. For a Lawvere theory S, the strong monoidal functor r×− : FS→FS of Remark 1.11,
taking Ss 7→ r×Ss, is u(r,−).

Example 5.5. A ring category structure on a (strict) symmetric monoidal category A = (A,⊕,0)
consists of a bilinear functor ⊗ : A×A→ A and an object 1 ∈ A such that 1⊗a = a = a⊗1, and
satisfying appropriate conditions (see [EM06, Def. 3.3]). This is also a rig category as defined by
Baas, Dundas, Richter, and Rognes [BDRR13, §2.2].

Theorem 5.6 ([BO20, Thm. 7.4], cf. [EM06, Thm. 6.1]). Let A, B and C be symmetric monoidal
categories (with strict units). A bilinear functor A×B→ C of symmetric monoidal categories
induces a morphism

K(A)∧K(B)→ K(C)

of spectra. This structure is associative and unital.
In the case where the bilinear functor A×A→ A is the multiplication of a ring category as in
Example 5.5, the induced map

K(A)∧K(A)→ K(A)

23



is the multiplication of a ring structure on K(A).
In the case where the bilinear functor E××C→C is the left unit bilinear functor of Example 5.3,
the induced map

S∧K(C)' K(E×)∧K(C)→ K(C)

is the left unit map for the smash product ∧ of spectra.

This theorem is really just one consequence of the fact that Elmendorf–Mandell’s K-theory is an
enriched multifunctor from permutative categories to spectra. The slight extension to symmetric
monoidal categories is in [BO20]. Since our Lawvere theories F×T form permutative categories,
this extension is not necessary for our work.

Remark 5.7. One way to think about Theorem 5.6 is that it tells us that K-theory is “morally
lax monoidal,” in the following sense. Symmetric monoidal categories do not form a symmet-
ric monoidal category because there is, in general, no representing “tensor product” symmetric
monoidal category “A⊗B” for bilinear functors [HP02]. If such a tensor product exists, then
there is a universal bilinear functor A×B→ A⊗B and Theorem 5.6 provides the type of map of
spectra K(A)∧K(B)→ K(A⊗B) needed to make the functor K lax monoidal. Since the tensor
product doesn’t always exist, Elmendorf and Mandell’s approach is to work with the multicategory
of permutative categories, in which n–ary maps are given by n–multilinear functors. They show
that K-theory is a multifunctor from this multicategory to the category of spectra. Theorem 5.6 is
an explicit statement of the fact that a map of multicategories takes binary maps to binary maps.

From Theorem 5.6, applied to the case of Lawvere theories, we can produce the following result.
We give a detailed proof of it in Section 5.3.

Theorem 5.8. For each pair of Lawvere theories S and T , there is a morphism

K(S)∧K(T )−→ K(S⊗T ) (5.1)

of spectra that is natural in S and T and that induces multiplication at the level of π0.

As a consequence of Theorem 5.8, a Lawvere theory T that has a multiplication T ⊗T → T pro-
duces a multiplication K(T )∧K(T )→ K(T ) in spectra. We discuss this rather restrictive situation
further in Section 6.1. Similarly, the left unit map E⊗T → T of a Lawvere theory T yields the left
unit map K(E)∧K(T )→ K(T ) in spectra.

The category of Lawvere theories does have a symmetric monoidal structure, with tensor product
given by the Kronecker product, and Theorem 5.8 is singling out the natural transformation that
makes K-theory into a lax monoidal functor from the symmetric monoidal category of Lawvere
theories to the category of spectra. We make this interpretation precise in the next subsection.

5.2 A second phrasing of multiplicativity

In the previous part of this section, we highlighted the key structure in a multiplicative formulation
of K-theory that we will ultimately use to produce our assembly maps. In this section, we prove
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that this piece of structure is part of a larger framework. For this, we use a second phrasing of
multiplicativity, which is also due to Elmendorf and Mandell [EM09]. In what follows, Mult∗
denotes the category of based multicategories, which are implicitly symmetric and small.

Theorem 5.9 ([EM09]). Based multicategories form a symmetric monoidal category Mult∗ and
the K-theory construction of [EM06] factors as the “underlying multicategory” functor U and a
lax monoidal functor from Mult∗ to spectra:

PermCat
U
��

K

&&
Mult∗ K

// Spectra

Note that the underlying multicategory UC of a permutative category C has a natural basepoint
given by the unit object for the monoidal product.

Lawvere theories are, in particular, permutative categories and our definition of the K-theory of a
Lawvere theory views the Lawvere theory as such. It thus suffices to prove that the composite of
the embedding of Lawvere theories into permutative categories and the underlying multicategory
functor is a lax symmetric monoidal functor from Lawvere theories to multicategories.

Theorem 5.10. Let ι : Lawvere→ PermCat denote the embedding of Lawvere theories into per-
mutative categories via T 7→ FT . Let ι× denote embedding Lawvere→ PermCat via T 7→ F×T ; we
can view ι× as the composite of ι and the functor taking a permutative category to its subcategory
of isomorphisms. Then the composite functors Uι and Uι× in the diagrams

Lawvere ι //

Uι ''

PermCat
U
��

Mult∗

Lawvere ι× //

Uι× ''

PermCat
U
��

Mult∗

are both lax symmetric monoidal.

We give a detailed proof of Theorem 5.10 in Section 5.3.

Corollary 5.11. The Elmendorf–Mandell construction of K-theory gives a lax monoidal functor

Lawvere→ Spectra.

Proof. The previous two theorems demonstrate that Elmendorf and Mandell’s K-theory con-
struction factors as the composite of the lax monoidal functor K: Mult∗ → Spectra preceded
by Uι× : Lawvere→Mult∗.
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5.3 Proofs

We end this section with the proofs of Theorems 5.8 and 5.10.

Proof of 5.8. In light of Theorem 5.6, it is sufficient to show that there is a bilinear func-
tor F×S ×F×T → F×S⊗T of symmetric monoidal categories. Essentially, this is the universal map
that comes from the definition of the Kronecker product. However, given that general symmetric
monoidal categories don’t have such a monoidal product, it seems worthwhile to be fairly explicit
about this.

Let S and T be Lawvere theories. We show that there is a bilinear functor

P : FS×FT → FS⊗T

of symmetric monoidal categories with strict unit. Observe that a bilinear functor A×B→ C
restricts to a bilinear functor A××B×→ C× on the subcategories of isomorphisms in A, B and C
because functors preserve isomorphisms and the natural distributivity maps are isomorphisms by
definition. Hence it suffices to produce the bilinear functor P.

The functor P is defined on objects by P(Sm,Tn) = (S⊗T )m×n. On morphisms, the arrow P( f ,g)
is defined as either of the composites in the commuting diagram in FS⊗T that we obtain from
Definition 1.12:

(S⊗T )m×n
m×g //

f×n
��

(S⊗T )m×n′

f×n′
��

(S⊗T )m′×n
m′×g // (S⊗T )m′×n′

The fact that these composites agree implies that this assignment is functorial.

The distributivity natural transformations are in fact given by the identity morphisms:

δl : P(Sm,Tn)⊕P(Sm′,Tn) = (S⊗T )(m′×n)+(m×n) = (S⊗T )(m+m′)×n

and similarly for δr. It is thus straightforward to check that the required unitality and compatibility
conditions hold.

By construction, the map on the monoid of connected components of objects in FS, FT and FS⊗T
is induced by the multiplication N×N→ N, and hence the map

π0K(S)∧π0K(T )→ π0K(S⊗T )

is also given by multiplication.

Proof of Theorem 5.10. A functor F : C→ D is lax monoidal if we have a map 0D→ F(0C) and
natural maps F(c1)⊕D F(c2)→ F(c1⊕C c2) that satisfy some standard axioms. We show that Uι

satisfies this definition.

26



Recall the definition of the functor U : PermCat→ Mult∗. For a permutative category C, the
underlying multicategory UC has the same objects as the category C and for any c1, . . . ,cn,d, the
set of n–ary morphisms UC(c1, . . . ,cn;d) is defined to be the morphism set C(c1⊕ ·· · ⊕ cn,d).
Composition is defined in the evident way.

First, we construct the map of unit objects. The unit object in Mult∗ is the multicategory 1∗ with
two objects 0 and 1. Here 0 is the basepoint and there is exactly one k–morphism (0, . . . ,0)→ 0
for each k. The only morphism of any arity involving 1 is the identity. The unit object in Lawvere
is the Lawvere theory E of sets. We thus require a functor (of small based multicategories)

1∗→Uι(E).

Since this functor is required to be based, it must send 0 ∈ 1∗ to the unit object 0 ∈ E, which
is the basepoint in U(E). Thus the data of this functor is equivalent to picking out a single
object (together with its identity morphism) of Uι(E); the obvious choice is 1 7→ 1.

Next, we need the maps Uι(S)⊗Uι(T )→Uι(S⊗T ), where we are overloading the symbol ⊗
to represent both tensor product of multicategories and tensor product of Lawvere theories. These
maps arise from the universal property of the tensor product of based multicategories. To be
more precise, Elmendorf and Mandell define the tensor product of based multicategories so that
a morphism of based multicategories M1 ⊗M2 → N is precisely the data of a based bilinear
map (M1,M2) → N. These bilinear maps are a multicategorical generalization of the bilinear
functors in Definition 5.2; see [EM09, Definition 2.3] for the precise definition.

Since U : PermCat→Mult∗ is a multifunctor and the binary morphisms in the category Mult∗
are defined to be the based bilinear maps, it suffices to show that there is a binary mor-
phism ϕ : (ιS, ιT )→ ι(S⊗T ) in the multicategory PermCat. In this case, Uϕ must be a bilinear
based map of multicategories (UιS,UιT )→Uι(S⊗T ), and thus Uϕ induces a morphism of based
multicategories (UιS)⊗ (UιT )→Uι(S⊗T ), as required.

For Lawvere theories S and T , we’ve thus reduced our problem to finding a binary morphism of
permutative categories FS×FT → FS⊗T . By definition, this is just a bilinear functor with strict
unit and is precisely what we constructed in the Proof of Theorem 5.8, above.

We’ve thus constructed all the data making Uι : Lawvere→Mult∗ a lax monoidal functor. To
complete the proof, one must show that the coherence maps are associative and unital. These are
fairly straightforward to check using the universal property of the tensor product of multicategories:
since the tensor product represents based bilinear maps of multicategories, it suffices to check that
the required morphisms agree on that level.

For example, to check the commutativity of the left unit diagram

1∗⊗Uι(S)

��

//Uι(E)⊗Uι(S)

��
Uι(S) Uι(E⊗S)oo
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we simply check that the two bilinear maps 1∗×Uι(S)→ Uι(S) agree. On objects, both are
given by sending (1,Sn) 7→ Sn. Any non-basepoint-involving morphism in 1∗×Uι(S) is of the
form (id1, f : Sn1 ⊕ ·· ·⊕ Sn j → Sn), and both bilinear maps send this to f . In the map along the
right hand side, this follows because id1× f ∈ E⊗S is sent to f under the unit map E⊗S→ S of
Lawvere theories. The right unit diagram is similar.

For the associativity diagram, we can use the fact that the underlying multicategory functor U is
full and faithful, and so it suffices to check that the two trilinear maps represented by the two
composites

(Uι(S)⊗Uι(T ))⊗Uι(V ) //

��

Uι(S)⊗ (Uι(T )⊗Uι(V ))

��
Uι(S⊗T )⊗Uι(V )

��

Uι(S)⊗Uι(T ⊗V )

��
Uι((S⊗T )⊗V ) //Uι(S⊗ (T ⊗V ))

are given by the same functor FS×FT ×FV → FS⊗T⊗V . Inspecting the definitions shows that both
functors send an object (Sl,Tm,Vn) to (S⊗ (T ⊗V ))lmn and both send a morphism ( f ,g,h) to the
composite ( f × (id× id))◦ (id×(g× id))◦ (id×(id×h)), which by the definition of the Kronecker
product agrees with the composite of these three maps in any other order.

To see that Uι× is also lax monoidal, it suffices to observe that the functor 1∗ →Uι(E) factors
through Uι×(E) and, as observed in the above proof of Theorem 5.8, the binary morphism of
permutative categories FS×FT → FS⊗T restricts to a binary morphism F×S ×F×T → F×S⊗T .

Remark 5.12. We could alternatively show that both of the two functors Uι : Lawvere→Mult∗
and Uι× : Lawvere→Mult∗ are lax monoidal functors as follows. As discussed in [EM09,
Sec. 3], a lax monoidal functor between symmetric monoidal categories is simply a map between
their underlying multicategories. Hence, it suffices to show that Uι and Uι× are multifunctors
between the underlying multicategories of Lawvere and Mult∗. In the diagram

Lawvere
ι

ww

ι×

''
PermCat

(−)×
//

U
��

PermCat
U
��

Mult∗ Mult∗

the maps U are multifunctors by Theorem 1.1 of [EM09] and we have already observed that (−)×
is a multifunctor. Hence both composites Lawvere→Mult∗ are multifunctors if ι is. Elmendorf–
Mandell’s work ([EM06, Theorem 1.1] or the results of [EM09] stated as Theorem 5.9 above) then
implies that K-theory of Lawvere theories, which is given by the composite

Lawvere ι×−→ PermCat U−→Mult∗
K−→ Spectra,

is multiplicative.

28



Multilinearity of ι requires that for any map of Lawvere theories S1⊗·· ·⊗Sk→ T , we must have
a k–linear functor of permutative categories FS1×·· ·×FSk → FT . The universality of Kronecker
products means we can reduce the construction of any such map to constructing a multilinear func-
tor FS1×·· ·×FSk→FS1⊗···⊗Sk , extending our construction of the bilinear functor FS×FT → FS⊗T
from Theorem 5.10.

Remark 5.13. Phrased ∞–categorically, this final description of multiplicativity of K-theory sim-
ply comes down to showing that ι : Lawvere → PermCat is a map of ∞–operads, and hence
the composites Uι and Uι× are as well. Both the domain and codomain of these composites
are ∞–operads coming from actual symmetric monoidal categories, and so one can describe maps
of ∞–operads as straightforward lax monoidal functors. Note, however, that in comparing Law-
vere theories and multicategories, we naturally pass through PermCat, which simply isn’t a sym-
metric monoidal category. Hyland and Power [HP02] show that it only has a “weak” or “pseudo”
monoidal structure, and the context of ∞–operads or multicategories is one way of providing elbow
room for this weak structure. In fact, many of the subtle issues at the heart of multiplicative K-
theory can be attributed to the need to consider a weak monoidal structure when thinking about
permutative categories.

These remarks bring us to a peak of abstraction in our thinking about the multiplicativity of K-
theory of Lawvere theories. In the next section, we return to the down-to-earth realm of applica-
tions of the concrete maps that multiplicativity produces.

6 First applications

In this section, we discuss some applications of the results of the preceding Section 5 that are not
yet related to assembly.

6.1 Monoids in the category of Lawvere theories

Lawvere theories form a symmetric monoidal category with respect to ⊗; the theory of sets is the
monoidal unit.

Definition 6.1. A monoidal Lawvere theory T is a monoid object in the symmetric monoidal
category of Lawvere theories.

Which Lawvere theories T support such monoidal structures, and how many?

Proposition 6.2. Any Lawvere theory T supports at most one monoidal structure.

Proof. Since the monoidal unit E, the Lawvere theory of sets, is the initial object in the category,
every Lawvere theory T has a canonical map E → T from the monoidal unit. Therefore, the
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question is: when does there exist a map T ⊗T → T that turns T into a monoid object in Lawvere
theories?

Suppose we have a map T ⊗ T → T . Then every T –model determines a T ⊗ T –model. What
are these two potentially new T –structures on a given T –model? The unit axiom implies that
both agree with the old structure. Thus, such a multiplication is automatically unique: the mor-
phism T ⊗T → T is the inverse of the isomorphism T → T⊗T given by the (left or right) unit.

We see that to be a monoidal Lawvere theory is a property, not a structure, and theories that have
this property are also called commutative. Such structures have been considered by Kock [Koc70,
Koc71, Koc72] and, much more recently, in Durov’s thesis [Dur].

Proposition 6.3. If T is a commutative Lawvere theory, then its algebraic K-theory spectrum K(T )
is a commutative ring spectrum.

Proof. This follows immediately from the multiplicative properties of the K-theory functor for
Lawvere theories (see Theorem 5.8 again).

Example 6.4. The theory of modules over a given commutative ring is commutative.

For this reason, commutative Lawvere theories can be seen as generalizations of commutative
rings.

Example 6.5. The theory of sets with an action of a fixed abelian group A is commutative.

6.2 Group actions

There is one important situation where the map (5.1) from Theorem 5.8 is an equivalence:

Proposition 6.6. For any groups G and H, the map

K(G–Sets)∧K(H–Sets)−→ K(G–Sets⊗H–Sets)

from Theorem 5.8 is an equivalence.

Proof. Recall the equivalence

K(G–Sets⊗H–Sets)' K((G×H)–Sets),

from Example 1.10: the two Lawvere theories G–Sets⊗ H–Sets and (G× H)–Sets are the
same. Now we can use the equivalence K(G–Sets) ' Σ∞

+BG of spectra from Example 3.3
and the equivalence B(G×H)' B(G)×B(H) of classifying spaces which induces the equiva-
lence Σ∞

+B(G×H)' Σ∞
+BG∧Σ∞

+BH of suspension spectra.
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6.3 Higher-dimensional Higman–Thompson groups

We continue the discussion of the Cantor theories from Example 3.7.

Example 6.7. Brin has introduced the higher-dimensional Higman–Thompson groups in [Bri04].
These are the automorphism groups of the free models for the Lawvere theories

Cantora(1)⊗Cantora(2)⊗·· ·⊗Cantora(n),

for a finite sequence of integers a(n) > 2 (see [M-PN13, DM-P14, M-PMN18, FN18]). The
stable homology of these groups, by Theorem 2.7, is described by the algebraic K-theory spec-
trum K(Cantora(1)⊗·· ·⊗Cantora(n)) of these Lawvere theories. From Theorem 5.8, we get a map

K(Cantora(1))∧K(Cantora(2))∧·· ·∧K(Cantora(n))−→ K(Cantora(1)⊗·· ·⊗Cantora(n)) (6.1)

from the smash product of the algebraic K-theory spectra into it. The homotopy type of this smash
product can be worked out, because the algebraic K-theory spectra are Moore spectra by [SW19],
but it is not known whether the map (6.1) is an equivalence or not.

7 Assembly

In this section, we apply our results from Section 5 to assembly maps in the context of Lawvere
theories.

Theorem 7.1. For each Lawvere theory T there exists a unique K(Z)–linear morphism

K(Z)∧K(T )−→ K(Z⊗T ) (7.1)

between K(Z)–module spectra that extends the morphism K(T )→ K(Z⊗T ) induced by the lin-
earization T → Z⊗T of the Lawvere theory T as defined in (1.1).

Proof. This follows from Theorem 5.8, applied for the Lawvere theory S = Z of abelian groups.

Definition 7.2. The map (7.1) is the assembly map for the Lawvere theory T .

7.1 The theories of group actions

We can now see how to recover one of the classical assembly maps in algebraic K-theory as a
special case of our general assembly map (7.1).
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Corollary 7.3. For each group G there exists a unique K(Z)–linear morphism

K(Z)∧Σ
∞
+(BG)−→ K(ZG) (7.2)

between K(Z)–module spectra, naturally in the group G.

This is Loday’s version of the assembly map in algebraic K-theory [Lod76]. There are obvious
extensions to other coefficient rings than Z.

Proof. If T is the theory of G–sets for a group G, then Z⊗T is the theory of abelian groups with
a linear G–action. These are precisely the modules over the group ring ZG. Since we have a
natural equivalence K(G–Sets) ' Σ∞

+(BG) of spectra from Example 3.3, we get a map of spectra
as indicated.

Example 7.4. The assembly map (7.2) is obviously an equivalence for the trivial group G= e. Less
obviously, it is also an equivalence when G ∼= C∞ is infinite cyclic: we have ZC∞

∼= Z[q±1] and
Example 3.3, which together with Quillen’s work on the algebraic K-theory of Laurent polynomial
rings gives an equivalence

K(Z[q±1])' K(Z)∨ΣK(Z)' K(Z)∧ (S0∨S1)' K(Z)∧Σ
∞
+(BC∞)

of spectra (see Grayson’s paper [Gra76]).

The assembly map (7.2) fails to be an equivalence in general. For instance, the failure of sur-
jectivity on π1 is measured by the Whitehead group of G, and the Whitehead group is often non-
trivial (take G of prime order p> 5). It is known that the map (7.2) is rationally injective for groups
whose integral homology is of finite type by work of Bökstedt–Hsiang–Madsen [BHM89, BHM93]
on the algebraic K-theoretic analogue of Novikov’s conjecture. We refer to the surveys cited in the
introduction for more recent results in this vein.

7.2 Other examples

We now present examples that show the interest of our assembly maps beyond the classical case
of theories of group actions. We first continue the discussion of the Examples 3.7 and 6.7.

Theorem 7.5. The assembly map (7.1) for the Lawvere theory Cantora of Cantor algebras of arity a
is an equivalence.

Proof. We start from [SW19], where the algebraic K-theory of Cantora is identified with the Moore
spectrum S/(a− 1). That Moore spectrum is the the cofiber of multiplication with a− 1 on the
sphere spectrum, so that K(Z)∧K(Cantora) is the cofiber of multiplication with a−1 on K(Z).
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Then we have the observation that Z⊗Cantora is the theory of modules over the Leavitt alge-
bra La, the quotient of the free associative ring with unit on 2a generators, given as two vec-
tors R = (R1, . . . ,Ra) and C = (C1, . . . ,Ca), modulo the ideal defined by the a2 + 1 relations that
ensure that the two square matrices RtC and RCt are the identity matrices. In other words, the
modules over the ring La are the abelian groups M together with linear bijections Ma→ M, and
these are precisely the models for Z⊗Cantora.

Finally, the algebraic K-theory K(La) has been computed in [ABC09], and the result shows that it
is also the cofiber of multiplication with a−1 on K(Z).

On the other extreme, there are Lawvere theories for which the assembly map is trivial because the
target is contractible. For instance, in any abelian T –model M, all constants of T need to be equal,
because there is a unique homomorphism 0 = M0→M of abelian groups. This happens for rings
with unit (1 = 0 implies a = 1 ·a = 0 ·a = 0 for all a), but also for Boolean algebras:

Proposition 7.6. Any abelian group object in the category of Boolean algebras is trivial.

Proof. We first note that 0∧ x = 0 and 1∧ x = x hold in every Boolean algebra. If, in addition, we
have 0 = 1, then this implies x = 1∧ x = 0∧ x = 0 for all x, and we are done.

Corollary 7.7. The assembly map for the Lawvere theory Boole is zero and, in particular, not
rationally injective.

Proof. It follows from Proposition 7.6 that Z⊗Boole is the theory of modules over the trivial ring,
and the algebraic K-theory spectrum K(Z⊗Boole)' ? is contractible.

On the other hand, the source K(Z)∧K(Boole) 6' ? of the assembly map is not contractible
because of π0(K(Z)∧K(Boole))∼= K0(Z)⊗K0(Boole)∼= Z⊗Z∼= Z.

It is easy to generalize the preceding results from Boolean algebras to v–valued Post algebras; we
omit the details.

7.3 More groups

The assembly map (7.1) for the theory of abelian groups is not an equivalence. In fact,

Theorem 7.8. The assembly map

K(Z)∧K(Nilc)−→ K(Z⊗Nilc) = K(Z) (7.3)

for the theory Nilc of nilpotent groups of any given class c > 1 is not rationally injective.
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Proof. To see that, assume that it is rationally injective, and base change the K(Z)–linear assembly
map along the composition K(Z)→ HZ→ HQ to get a HQ–linear map

HQ∧K(Nilc)−→ HQ,

which were then also rationally injective, contradicting the results in [Szy19]: the rational homol-
ogy of K(Nilc) is non-trivial for all positive integers c.

One might, therefore, say that a generalization of the Novikov conjecture to algebraic theories is
impossible. On the other hand:

Example 7.9. The assembly map (7.1) for the theory of groups is an equivalence. This follows
from Galatius’s theorem (see Example 3.4) and the fact that (abelian) group objects in the category
of groups are just abelian groups.

7.4 Non-linear assembly and a nilpotent interpolation

Example 7.9 might suggest using the theory of all groups (instead of the theory Z of abelian
groups) and consider assembly-like maps

K(Groups)∧K(T )−→ K(Groups⊗T ). (7.4)

By Galatius’s theorem, this is equivalent to the map

K(T )−→ K(Groups⊗T ) (7.5)

of spectra induced by the canonical morphism T → Groups⊗ T in the sense that the obvious
triangle commutes.

Inspired by Example 3.5, we find that there is an entire interpolation of assembly-style maps
between Loday’s assembly map (7.1) and the map (7.4): there is a tower

K(Nilc)∧K(T )−→ K(Nilc⊗T ) (7.6)

of maps of spectra, indexed by the intenger c > 1. Note how this differs from (7.3) in the way the
theory Nilc enters.

At the time of writing, it is not known to us whether the tower of spectra K(Nilc) con-
verges (as c→ ∞) to the spectrum K(Groups) ' S or not. More generally, one may wonder
whether or not the tower K(Nilc)∧K(T ) converges to K(Groups)∧K(T ), or whether or not the
tower K(Nilc⊗T ) converges to K(Groups⊗T ). It would be interesting to pursue the question for
which Lawvere theories T one or both of these is the case.
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