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Topological Hochschild homology of Thom spectra which
are E∞-ring spectra

Andrew J. Blumberg

Abstract

We identify the topological Hochschild homology (THH) of the Thom spectrum associated
to an E∞ classifying map X → BG for G an appropriate group or monoid (e.g. U , O, and
F ). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that
THH of a cofibrant commutative S-algebra (E∞-ring spectrum) R can be described as an
indexed colimit together with a verification that the Lewis–May operadic Thom spectrum
functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result
THH(Mf) � Mf ∧ BX+, which yields a convenient description of THH(MU). This splitting
holds even when the classifying map f : X → BG is only a homotopy commutative A∞ map,
provided that the induced multiplication on Mf extends to an E∞-ring structure; this permits
us to recover Bokstedt’s calculation of THH(HZ).

1. Introduction

The algebraic K-theory of ring spectra encodes subtle and interesting invariants. It has long
been known that theK-theory of ordinary rings contains a great deal of arithmetic information.
On the other hand, Waldhausen showed that there is a deep connection between the K-theory
of the sphere spectrum and the geometry of high-dimensional manifolds (as seen by pseudo-
isotopy theory) [36]. Waldhausen’s ‘chromatic’ program for analyzing K(S) in terms of a
chromatic tower of K-theory spectra suggests a connection between these seemingly disparate
bodies of work, as such a tower can be regarded as interpolating from arithmetic to geometry
[35]. Recently, Rognes’ development of a Galois theory of S-algebras [32] and attendant
generalizations of classical K-theoretic descent [1] along with Lurie’s work on derived algebraic
geometry [18] have raised the prospect of an arithmetic theory of ring spectra, which would
provide a unified viewpoint on these phenomena. To gain insight into the situation, examples
provided by computations of the K-theory of ring spectra that do not come from ordinary
rings are essential.

Of course, computation of algebraic K-theory tends to be extremely difficult. However,
for connective ring spectra, algebraic K-theory is in principle tractable via ‘trace methods’,
which relates K-theory to the more computable topological Hochschild homology (THH) and
topological cyclic homology (TC). Specifically, there is a topological lifting of the Dennis trace
to a ‘cyclotomic trace’ map [7], and the fiber of this map is well understood [11, 28]. Moreover,
TC(R) is built as a certain homotopy limit of the fixed-point spectra of THH(R) with regard
to the action of subgroups of the circle, and so is relatively computable via the methods of
equivariant stable homotopy theory. One of the major early successes of this methodology
was the resolution of the ‘K-theory Novikov conjecture’ by Bokstedt, Hsiang, and Madsen [7].
Central to their results was a computation of the TC and THH of the ‘group ring’ Σ∞(ΩX)+
for a space X; these theories receive the trace map from Waldhausen’s A(X).
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536 ANDREW J. BLUMBERG

Thom spectra associated to multiplicative classifying maps provide a natural generalization
of the suspension spectra of monoids. Moreover, many interesting ring spectra arise naturally as
Thom spectra. The purpose of this paper is to provide an explicit and conceptual description of
the THH of Thom spectra which are E∞-ring spectra. As the starting point for the calculation
of TC is the determination of THH, this description provides necessary input to ongoing work
to understand the TC and K-theory of such spectra. This paper is a companion to a joint
paper with Cohen and Schlichtkrull [4], which uses somewhat different methods to study the
THH of Thom spectra which are A∞-ring spectra.

The operadic approach to Thom spectra of Lewis and May (see [17, 7.3; 27]) provides
a Thom spectrum functor M that yields structured ring spectra when given suitable input.
Specifically, for suitable topological groups and monoids G, Lewis constructs a Thom spectrum
functor

M : T/BG −→ S \ S
from the category of based spaces over BG to the category S \ S of unital spectra. Furthermore,
he shows that if f : X → BG is an En map, then Mf is an En-ring spectrum, where En denotes
an operad that is augmented over the linear isometries operad L and weakly equivalent to
the little n-cubes operad. In particular, M takes E∞ maps to E∞-ring spectra. Since E∞-ring
spectra can be functorially replaced by commutative S-algebras, we can regard M as restricting
to a functor

M : T[L ]/BG −→ CAS .

Thus, M produces output that is suitable for the construction of THH.
The development of symmetric monoidal categories of spectra has made possible direct

constructions of THH that mimic the classical algebraic descriptions of Hochschild homology,
replacing the tensor product with the smash product. Thus, for a cofibrant S-algebra R,
THH(R) can be computed as the realization of the cyclic bar construction N cycR with respect
to the smash product, where N cycR is the simplicial spectrum

[k] → R ∧R ∧ . . . ∧R︸ ︷︷ ︸
k+1

with the usual Hochschild structure maps [12, 9.2.1].
Recall that the category of commutative S-algebras is enriched and tensored over unbased

spaces, and more generally has all indexed colimits [12, 7.2.9]. When R is commutative,
McClure, Schwanzl, and Vogt [29] made precise an insight of Bokstedt’s that there should
be a homeomorphism

|N cycR| ∼= R⊗ S1.

Here R⊗ S1 denotes the tensor of the commutative S-algebra R with the unbased space S1.
Thus, we can describe THH(Mf) by studying Mf ⊗ S1.

The category of L -spaces is also tensored over unbased spaces, and this induces a tensored
structure on the category of L -maps f : X → BG. Our first main theorem, proved in Section 5,
states that the Thom spectrum functor is compatible with the topologically tensored structures
on its domain and range categories.

Theorem 1.1. The Thom spectrum functor

M : T[L ]/BG −→ CAS

preserves indexed colimits and in fact is a continuous left adjoint. In particular, for an unbased
space A and an L -map X → BG, there is a homeomorphism

M(f ⊗A) ∼= Mf ⊗A.
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 537

When G is a group, M is a Quillen left adjoint with respect to the standard model structures
on T[L ]/BG and CAS .

This theorem follows from an appropriate categorical viewpoint on the Thom spectrum
functor. The category of L -spaces can be regarded as the category T[K] of algebras over a
certain monad K on the category T of based spaces. We can utilize this description to describe
the category of L -maps X → BG as the category (T/BG)[KBG] of algebras over a closely
related monad KBG. Similarly, the category of E∞-ring spectra can be regarded as the category
(S \ S)[C̃] of algebras over a monad C̃ on the category S \ S of unital spectra. Each of these
categories admits the structure of a topological model category, by which we mean a model
category structure compatible with an enrichment in spaces [12, 7.2–7.4]. In particular, each
of these categories has tensors with unbased spaces.

Furthermore, the work of Lewis [17, 7] describes the interaction of M with these monads.
Specifically, Lewis [17, 7.7.1] show that

MKBGf ∼= C̃Mf

and, moreover, that in fact M takes the monad KBG to the monad C̃ (that is, the indicated
isomorphism is suitably compatible with the monad structure maps). In Section 2, we study
this situation more generally and prove the following result about the preservation of indexed
colimits by induced functors on categories of monadic algebras; Theorem 1.1 is then a
straightforward consequence.

Theorem 1.2. Let A and B be categories tensored over unbased spaces and let MA be a
continuous monad on A and MB be a continuous monad on B, such that MA and MB preserve
reflexive coequalizers. Let F : A → B be a continuous functor such that:

(1) F preserves colimits and tensors;
(2) there is an isomorphism FMAX ∼= MBFX which is compatible with the monad structure

maps.
Then F restricts to a functor

FM : A[MA] −→ B[MB ],

which preserves colimits and tensors. If F is a left adjoint, then FM is also a left adjoint.

Remark 1.3. Note that a consequence of Theorem 1.1 is that the Thom spectrum
functor from L -spaces over BG to commutative S-algebras commutes with homotopy colimits.
Essentially the same result has also been obtained in the ‘symmetric Thom spectrum’ setup of
Schlichtkrull [34], where it is used to analyze the interaction of the Thom spectrum construction
with ‘higher’ topological Hochschild homology.

In order to use the formula M(f ⊗ S1) ∼= Mf ⊗ S1 provided by Theorem 1.1 to compute
THH(Mf), we must first ensure that we have homotopical control over Mf . Two technical
issues arise. First, the cyclic bar construction description of THH(R) only has the correct
homotopy type when the point-set smash product R ∧R represents the derived smash product
(for instance, if R is cofibrant as a commutative S-algebra). Second, when working over BF ,
Lewis’ construction of the Thom spectrum functor preserves weak equivalences only for certain
classifying maps (‘good’ maps), notably Hurewicz fibrations.

We show in Section 6 that, by appropriate cofibrant replacement of f : X → BG, we
can ensure that Mf is suitable for computing the derived smash product. The second
problem can be handled by the classical device of functorial replacement by a Hurewicz
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538 ANDREW J. BLUMBERG

fibration. Unfortunately, it turns out to be complicated to analyze the interaction of these two
replacements. In the companion paper [4] we discuss the technical details of the interaction
between these processes. In the present context, we are able to obtain our main applications
without confronting this issue; although with the tools described herein the next result is only
practically applicable when G is a group, in which case all maps are good, the splitting in
Theorem 1.6 holds more generally.

Corollary 1.4. Let f : X → BG be a good map of L -spaces such that X is a cofibrant
L -space. Then THH(Mf) and M(f ⊗ S1) are isomorphic in the derived category.

Just as R⊗ S1 is the cyclic bar construction in the category of commutative S-algebras, for
an L -space X we can similarly regard X ⊗ S1 as a cyclic bar construction [3, 6.7]. Unlike
commutative S-algebras, L -spaces are tensored over based spaces and the tensor with an
unbased space is constructed by adjoining a disjoint basepoint. Thus, for an L -space X it is
preferable to think of the unbased tensor X ⊗ S1 as the based tensor X ⊗ S1

+. This description
allows us to construct a natural map to the free loop space

X ⊗ S1
+ −→ L(X ⊗ S1),

which is a weak equivalence when X is group-like. Note that the based tensor X ⊗ S1 is a model
of the classifying space ofX, so that we have recovered the familiar relationship between N cycX
and L(BX) (see [7]). Furthermore, in Section 7 we use the stable splitting of S1

+ to provide an
extremely useful splitting of THH(Mf).

Theorem 1.5. Let f : X → BG be a good map of L -spaces such that X is a cofibrant
and group-like L -space. Then there is a weak equivalence of commutative S-algebras

THH(Mf) �Mf ∧BX+.

This theorem provides convenient formulas describing THH for various bordism spectra,
notably

THH(MU) �MU ∧BBU+.

Furthermore, we show that this splitting theorem holds when f : X → BG is only an E2 map,
provided that the induced multiplicative structure on Mf ‘extends to’ an E∞-structure. In this
context, the result follows from a separate analysis that exploits the multiplicative equivalence

Mf ∧Mf �Mf ∧X+

induced by the Thom isomorphism. Note that in the statement of the following theorem we do
not require X to be cofibrant, and so we can always arrange for f to be a good map.

Theorem 1.6. Let C2 denote an E2-operad augmented over the linear isometries operad
and let f : X → BG be a good C2 map such that X is group-like. Assume that there is a map
γ : Mf →M ′ that is a weak equivalence of homotopy commutative S-algebras such that M ′

is a commutative S-algebra. Then there is a weak equivalence of S-modules

THH(Mf) �Mf ∧BX+.

Although the hypotheses of this theorem may seem strange, in fact this situation arises in
nature. It has long been known that HZ/2 is the Thom spectrum of an E2 map f : Ω2S3 → BO
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 539

(see [10, 19]). There is a similar construction of HZ/p for odd primes due to Hopkins, which is
described in [20]. Constructions of HZ as a Thom spectrum over Ω2S3 〈3〉 are also well known
[10, 19], but these descriptions only yield an H-space structure on HZ.

In Section 9, we provide a new construction of HZ as the Thom spectrum associated to
an E2 map. Then Theorem 1.6 allows us to recover the classical computations of Bokstedt of
THH(Z/2), THH(Z/p), and THH(Z).

2. Colimit-preserving functors in categories of monadic algebras

In this section, we prove Theorem 1.2. The theorem is essentially a straightforward consequence
of categorical results due to Kelly describing the construction of colimits and tensors in enriched
categories of monadic algebras. We begin by briefly reviewing the relevant background material,
largely following the exposition of [12].

Let V denote a symmetric monoidal category and let C be a category enriched over V. In
such a context we can define tensors and cotensors (and more generally enriched or indexed
colimits and limits). The tensors and cotensors are particularly important in the setting of
topological categories, as a consequence of the following result of Kelly [12, 7.2.6].

Theorem 2.1. A topological category has all indexed colimits, provided that it is
cocomplete and tensored. Dually, a topological category has all indexed limits, provided that
it is complete and cotensored.

For our application, we need to understand the tensor in the category of commutative
S-algebras and the tensor in the category of E∞ spaces. Unlike in the case of spectra,
where the tensor of an unbased space A and a spectrum X is the smash product X ∧A+,
there is not a familiar construction that yields the tensor. For that matter, construction
of colimits in these categories is not obvious either. The key observation of McClure and
Hopkins [13], further developed in [12], is that since these categories admit descriptions
as algebras over monads, we can apply general constructions for lifting colimits and ten-
sors from a category C to the category C[A] of algebras for a monad A on C; that is,
colimits and tensors in C[A] can be constructed in terms of certain colimits and tensors
in C.

The category of commutative S-algebras is precisely the category of algebras over a certain
monad in S-modules, and the category of L -spaces is the category of algebras over a certain
monad in based spaces. Moreover, these monads preserve reflexive coequalizers. (This latter
technical condition is needed in order to apply the lifting results.)

Now, let F : C → D be a functor between topological categories, let A : C → C be a monad on
C, and let B : D → D be a monad on D. The following easy lemma provides a simple condition
for F to yield a functor on the associated categories of algebras, F : C[A] → D[B].

Lemma 2.2. Let φ : BF (X) ∼= F (AX) be a natural isomorphism such that the following
diagrams commute for any object X of C:

BF (X)
φ

�� F (AX) BBF (X)
μB ��

φ

��

BF (X)

φ

��

F (X)

ηB

�����������
F (ηA)

��

F (AAX)
F (μA)

�� F (AX)
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540 ANDREW J. BLUMBERG

Then, if X is a A-algebra in C with an action map ψ : AX → X, we have that F (X) is a
B-algebra in D with the action map

BF (X) ∼= F (AX)
F (ψ)

�� F (X) .

Therefore F yields a functor from C[A] to C[B].

We now prove Theorem 1.2. We assume that we are in the situation described in the preceding
lemma, with the additional hypothesis that C and D are topological categories.

Theorem 2.3. Let C and D be cocomplete topological categories, and A : C → C and
B : D → D be continuous monads. Further, suppose that there is a continuous functor F :
C → D that satisfies the hypothesis of the preceding lemma and therefore yields a functor
F : C[A] → D[B]. Then the following conditions hold.

(i) If F : C → D preserves colimits and tensors, and the monads A and B preserve
reflexive coequalizers, then F : C[A] → D[B] preserves colimits and tensors in C[A]. Therefore
F preserves all indexed colimits in C.

(ii) Furthermore, if F is a left adjoint as a functor from C to D, then F induces a left adjoint
from C[A] to D[B].

Proof. First, we handle the issue of colimits. We can apply [12, 2.7.4] to describe colimits
in the category C[A] of A-algebras. Given a diagram of {Ri} of A-algebras, we can describe
F (colimRi) as F applied to the reflexive coequalizer that creates colimits in the category C[A].

F

⎛
⎝A(colim ARi)

A(colim ξi)
��

μ◦Aα
�� A(colimRi)

⎞
⎠.

Since F commutes with colimits in A, this is homeomorphic to the reflexive coequalizer

B(colim BFRi)
B(colimF (ξi))

��

μ◦BF (α)
�� B(colimFRi) .

This is precisely the colimit of the diagram {FRi} in the category of B-algebras by [12, 2.7.4]
once again.

Next, we consider tensors. We can express F (X ⊗A) as F applied to the reflexive coequalizer
that creates the tensors in the category C[A] as follows:

F

⎛
⎝A(AX ⊗A)

A(ξ⊗id)
��

μ◦Aν
�� A(X ⊗A)

⎞
⎠.

We can rewrite this expression using the fact that F commutes with colimits in A, as follows:

BF (AX ⊗A)
B(ξ⊗id)

��

μ◦Bν
�� BF (X ⊗A) .

As F commutes with tensors in A, this becomes

B(BFX ⊗A)
B(B(ξ⊗id)

��

μ◦Bν
�� B(FX ⊗A) .

This is precisely the diagram expressing the tensor FX ⊗A in the category C[B]. It is now a
consequence of Theorem 2.1 that M preserves all indexed colimits.
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 541

Finally, assume that F : C → D is a left adjoint. There is a diagram of categories

C[A] F ��

U

��

D[B]

V

��

C

G

��

F �� D.

G

��

Here U and V denote forgetful functors and G denotes the free algebra functors. The square
commutes in the sense that F ◦G = G ◦ F and F ◦ U = V ◦ F . To show that F : C[A] → D[B]
is a continuous left adjoint, it suffices to show that F preserves tensors and F is a left adjoint
when the enrichment is ignored [8, 6.7.6]. We know that the former holds, and since F : A → B

is a left adjoint by hypothesis and C[A] has coequalizers, we can apply the adjoint lifting theorem
[8, 4.5.6] and conclude the latter.

3. Parameterized spaces and operadic algebras

In this section, we review the definitions of the domain and range categories of the Lewis–May
operadic Thom spectrum functor. We begin by discussing operadic algebras.

3.1. Review of operadic algebras

Let I be the (unbased) category of finite-dimensional or countably infinite dimensional real
inner product spaces and linear isometries. This is a symmetric monoidal category under the
direct sum.

Definition 3.1. Let U j be the direct sum of j copies of U (an infinite-dimensional real
inner product space), and let L (j) be the mapping space I (U j , U). The action of Σj on U j

by permutation induces an action of Σj on L (j). There are the maps

γ : L (k) × L (j1) × . . .× L (jk) −→ L (j1 + . . .+ jk)

given by γ(g; f1, . . . , fk) = g ◦ (f1 ⊕ . . .⊕ fk). The spaces L (j) form an operad, which we will
refer to as the linear isometries operad.

The properties of the linear isometries operad have been explored at length, notably in
[12, Section XI]. Recall that L is an E∞-operad, as L (j) is contractible, L (1) contains the
identity, L (0) is a point, and Σn acts freely on L (n). We can consider both based spaces and
spectra that admit actions of L . We will make frequent use of the fact that, for any operad O,
there is an associated monad O such that objects X with actions by O are precisely algebras
over O (see [23]).

A space X with an action of the operad L is the same as an algebra over a certain monad K

on the category of based spaces. Since the monad K preserves reflexive coequalizers, standard
lifting techniques suffice to show the following theorem [3, 6.2; 13].

Theorem 3.2. The category T[K] of L -spaces admits the structure of a topological model
category. Fibrations and weak equivalences are created in the category T, and cofibrations are
defined as having the left-lifting property with respect to acyclic fibrations.

Since L is an E∞ operad, we can functorially associate a spectrum Z to an L -space X
such that the map X → Ω∞Z is a group completion. When π0(X) is a group and not just a
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542 ANDREW J. BLUMBERG

monoid, this map is a weak equivalence. Such L -spaces X for which π0(X) is a group are said
to be group-like.

Similarly, the category of E∞-ring spectra can be described as a category of algebras over
monads, following [12, 2.4]. Let S denote the category of coordinate-free spectra [17]. For
clarity, we emphasize that S is not a symmetric monoidal category of spectra prior to passage
to the homotopy category. An E∞-ring spectrum structured by the operad L is an algebra
over a certain monad C in S.

Since the Thom spectrum associated to an object f of T/BG will have a natural unit S →Mf
induced by the inclusion of the basepoint, we also consider the category S \ S of unital spectra.
In this setting, an E∞-ring spectrum X over the operad L is the same as an algebra over the
monad C̃, where C̃X is a ‘reduced’ version of C quotiented to ensure that the unit provided
by the algebra structure coincides with the existing unit.

There is a close relationship between the category of algebras over C and algebras over C̃ (see
[12, 2.4.9]). The category S \ S is itself a category of algebras over S for the monad U which
takes X to X ∨ S. The monad C is precisely the composite monad C̃U, and in this situation the
categories of algebras are equivalent [12, 2.6.1]. Therefore the two notions of E∞-ring spectrum
we have described are equivalent. In the language of [12], C̃ is the ‘reduced’ monad associated
to the monad C. Both of these monads preserve reflexive coequalizers.

Finally, given an E∞-ring spectrum, the functor S ∧L − converts it to a weakly equivalent
commutative S-algebra (see [12, 2.3.6, 2.4.2]). Moreover, S ∧L − is a continuous left adjoint.

3.2. Parameterized operadic algebras

Now we move on to consider the category of spaces over a fixed base space B. The category
U/B has objects maps p : X → B, where X and B are objects of U. A morphism (p1 : X →
B) → (p2 : Y → B) is a map f : X → Y such that p2f = p1. The properties of this category
have been investigated in a variety of places [14, 16; 17, 7.1]. In particular, this is a topological
category where the tensor of p : X → B and an unbased space A is given by the composite

X ×A
π1 �� X

p
�� B

(where π1 is the projection onto the first factor).
Since we shall be interested in spaces that admit operad actions, we also consider the related

category of based spaces over B. This is the category T/B, defined in the same fashion as U/B,
replacing spaces with based spaces and requiring that the maps be based. The category T/B
inherits the structure of a category tensored over unbased spaces from U/B, where the tensor
of X → B and an unbased space A is given by X ∧A+ → B.

Colimits in T/B are formed as follows. Given a diagram D → T/B, via the forgetful functor
we obtain a diagram D → T/B → T. The colimit over D → T/B is computed by taking the
colimit of this diagram in T and using the induced map to B given by the universal property
of the colimit.

When B is an L -space, there is a category where the objects are L -maps X → B and the
morphisms are L -maps over B. We will sometimes refer to this category as L -spaces over B.
We can regard this category as algebras over a monad on T/B. Given a map f : Y → B, where
B is an L -space, the space KY admits an L -map to B given by the unique extension of f
(see [17, 7.7]). This specifies a monad on T/B, with structure maps inherited from those of K,
which we refer to as KB . Denote by (T/B)[KB ] the category of KB-algebras.

There is a model structure on this category defined in analogy with the standard model
structure on T/B. We need to verify the existence of tensors and colimits in (T/B)[KB ]. In
order to show that (T/B)[KB ] is topologically cocomplete, it will suffice to show that the monad
KB preserves reflexive coequalizers. This follows immediately from the fact that K preserves
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 543

reflexive coequalizers, since colimits in T/B are constructed by taking the colimit in T and
using the natural map to B.

Proposition 3.3. The category (T/B)[KB ] is topologically cocomplete (and in particular
has all colimits and tensors with based spaces).

It will be useful later on to write out an explicit description of the tensor in (T/B)[KB ]. We
regard the category of L -spaces as tensored over unbased spaces via the tensor over based
spaces: for an unbased space A the tensor with an L -space X is the based tensor X ⊗A+.

Lemma 3.4. The tensor of an unbased space A and (X → B) is given by

X ⊗A+ −→ X ⊗ S0
∼= X −→ B,

where the first map is the collapse map that takes A to the nonbasepoint of S0.

4. The operadic Thom spectrum functor

In this section we review the operadic theory of Thom spectra developed by Lewis [17, 7.3]
and May [27]. Our discussion is updated slightly to take account of more recent developments
in the theory of diagram spectra [21, 22]. In particular, our terminology regarding I -spaces
reflects the modern usage and is at variance with the definitions in the original articles.

4.1. The definition of M

Recall that I denotes the category of finite-dimensional or countably infinite-dimensional real
inner product spaces and linear isometries.

Definition 4.1. An I -space is a continuous functor X from I to the category of based
topological spaces.

We restrict attention to I -spaces with the property that X(V ) is the colimit of X(W ) for
the finite-dimensional subspaces W ⊂ V . This constraint implies that it is sufficient to consider
the restriction of X to the full subcategory of I consisting of the finite-dimensional real inner
product spaces [27, 1.1.8, 1.1.9].

The idea of using I to capture structure about infinite loop spaces and operad actions
dates back to Boardman and Vogt’s original treatment [5]. In the context of Thom spectra,
I -spaces first arose in [27]. More recently, May has introduced the terminology of ‘functors
with cartesian product’ (FCP) to highlight the connection to diagram spectra [26], in analogy
with Bokstedt’s ‘functors with smash product’ (FSPs).

Definition 4.2. An FCP over I (I -FCP) is a I -space equipped with a unital and
associative ‘Whitney sum’ natural transformation ω from X ×X to X ◦ ⊕.

A commutative I -FCP is a I -FCP for which the natural transformation X ×X to X ◦ ⊕
is commutative. We assume in the following that by default the I -FCP are commutative. The
commutative I -FCP encode an E∞-structure [27, 1.1.6]; specifically, a commutative I -FCP
X yields an L -space structure on X(R∞). The essential observation is that we can use the
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544 ANDREW J. BLUMBERG

Whitney sum to obtain a natural map L (j) ×X(R∞)j → X(R∞) specified by

(f, x1, x2, . . . , xj) �−→ Xf(x1 ⊕ x2 ⊕ . . .⊕ xj).

Similarly, a noncommutative I -FCP yields a non-Σ L -space structure on X(R∞).
There is an obvious product structure on the category of I -spaces specified by the levelwise

cartesian product: if X is an I -space, then X ×X is specified by V �→ X(V ) ×X(V ). The
product of (commutative) I -FCP is itself a (commutative) I -FCP.

Definition 4.3. A (commutative) monoid I -FCP is a (commutative) I -FCP such that
each X(V ) is itself a topological monoid and the levelwise monoid maps assemble into a
morphism of (commutative) I -FCP X ×X → X. A (commutative) monoid I -FCP is group-
like if each X(V ) is group-like. A (commutative) group I -FCP is a (commutative) monoid
I -FCP in which each X(V ) is a topological group.

The classical groups furnish examples; for instance, there are commutative group I -FCP
given by the functors specified by V �→ O(V ) and V �→ U(V ). The most important example for
our purposes is the commutative I -FCP assembled from the classifying spaces for spherical
fibrations.

Definition 4.4. Let F be the commutative monoid I -FCP given by taking F (V ) to be
the space of based homotopy equivalences of SV .

For any monoid I -FCP X, we can construct a related I -FCP BX via the two-sided bar
construction. Specifically, define BX as the functor specified by

BX(V ) = B(∗,X(V ), ∗),

where B(−,−,−) denotes the geometric realization of the two-sided bar construction. When
X is equipped with an augmentation to F which is a map of monoid I -FCP, we can construct
EX as

EX(V ) = B(∗,X(V ), SV ),

where X(V ) acts on SV via the augmentation. There is a projection map π : EX → BX and
a section defined by the basepoint inclusion ∗ ↪−→ SV . This section is a Hurewicz cofibration,
when X is group-like, π is a quasifibration, and π has fiber SV (see [17, 7.2]). If X actually
takes values in groups, then π is a bundle.

When X = F , this construction provides a model of the universal quasifibration with
spherical fibers [24]. More generally, we obtain universal quasifibrations and fibrations with
spherical fibers and prescribed structure groups. Note that we are following Lewis in letting
EG(V ) denote the total space of the universal spherical quasifibration rather than the
associated principal quasifibration.

Moving on, we now describe the Thom spectrum construction. Let G be a group-like
commutative monoid I -FCP that is augmented over F . Abusing notation, we write BG to
denote both the I -FCP BG and the space colimV BG(V ). We assume that we are given a
map of spaces f : Y → BG. The filtration of BG by inner product spaces V induces a filtration
on Y defined as Y (V ) = f−1(BG(V )).
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 545

Associated to the inclusion V ⊂W is an inclusion Y (V ) ⊂ Y (W ), and this induces a map
of pullbacks as follows:

ZW ��

��

EG(W )

��

QV ��

��

EG(V ) ��

��

EG(W )

��

Y (W ) �� BG(W ) Y (V ) �� BG(V ) �� BG(W ).

Upon passage to Thom spaces, we can identify the Thom space of QV as the fiberwise
suspension ΣW−V of the Thom space of ZV (see [17, 7.2.2]), and so the map QV → ZW is the
suspension map ΣW−V ZV → ZW . One checks that these suspension maps are appropriately
coherent [17, 7.2.1], and this permits the following definition.

Definition 4.5. The Thom prespectrum associated to f : Y → BG is specified as follows.
Set Tf(V ) to be the Thom space of the pullback ZV in the following diagram:

ZV ��

��

EG(V )

��

Y (V ) �� BG(V ),

that is, the map ZV → Y (V ) has a section i, and Tf(V ) = ZV /i(Y (V )). Here Tf is a
prespectrum, and we define the Thom spectrum in S associated to f as the spectrification
Mf = LTf .

Other filtrations can also be used in this construction, but it can be shown that the choice
of filtration does not matter up to isomorphism of spectra [17, 7.4.4].

Remark 4.6. Lewis treated only group-like commutative monoid I -FCP X augmented
over F ; this augmentation gives an action of X on SV , which allows the construction of EX.
However, we can develop the theory of Thom spectra for other choices of fiber, as long as
we specify a levelwise action of X on the fiber. Such constructions will be useful for us when
considering models of Eilenberg–Mac Lane spectra as Thom spectra in Section 9. We shall
consider p-local and p-complete spherical fibrations, and employ ‘localized’ and ‘completed’
versions of F formed from spaces of based self-equivalences of the p-local sphere SV(p) and based
self-equivalences of the p-complete sphere (SV )∧p .

We have constructed the Thom spectrum as a continuous functor from U/BG to coordinate-
free spectra S. Working with T/BG, we obtain a functor to S\S, unital spectra. Here the unit
S →Mf is induced by the inclusion ∗ → X over BG. In abuse of notation, we refer to both
of these functors as M .

4.2. Properties of M

Lewis proves that the Thom spectrum functor M preserves colimits in U/BG (see [17, 7.4.3]).
It is straightforward to extend this to the functor M from T/BG to S\S.

Lemma 4.7. The Thom spectrum functor takes colimits in T/BG to colimits in the category
S\S.
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546 ANDREW J. BLUMBERG

Proof. A colimit over D in T/BG is given as the pushout in U/BG

colimD∗ ��

��

∗

��

colimDRd �� Z

where the indicated colimits are also taken in the category U/BG. Similarly, a colimit over D

in S\S is constructed as the pushout in S

colimD S ��

��

S

��

colimDRd �� Z

where the indicated colimits are also taken in S. The result follows from the fact that M takes
colimits in U/BG to colimits in spectra and M(∗) ∼= S.

Lewis also shows that the functor M also preserves tensors with unbased spaces in T/BG
(see [17, 7.4.6]).

Proposition 4.8. The Thom spectrum associated to the composition X ∧A+ → X →
BG is naturally isomorphic to Mf ∧A+.

When A = I, this implies that functor M converts fiberwise homotopy equivalences into
homotopy equivalences in S\S.

The question of invariance under weak equivalence is somewhat more delicate. Unfortunately,
quasifibrations are not preserved under pullback along arbitrary maps. This can cause technical
difficulty when working with BF , or any other monoid I -FCP (which is not a group I -FCP).
Following Lewis et al. [17, 7.3.4], we make the following definition.

Definition 4.9. Define a map f : X → BG to be good if the projections ZV → X(V )
(where ZV is the pullback of Definition 4.5) are quasifibrations and the sections X(V ) → ZV
are Hurewicz cofibrations.

A map f : X → BG associated to a group I -FCP G is always good, and all Hurewicz
fibrations are good [17, 7.3.4]. Therefore, it is sometimes useful to replace arbitrary maps
by Hurewicz fibrations when working over BF via the functor Γ (see [17, 7.1.11]). This is
compatible with the linear isometries operad — recall that given an L -map f : X → BF , the
map Γf : ΓX → BF is also an L -map [23, 1.8]. Our discussion of Γ is brief, as we do not use
it extensively in this paper.

When the maps in question are good, the Thom spectrum functor preserves weak
equivalences over BG (see [17, 7.4.9]).

Theorem 4.10. If f : X → BG and g : X ′ → BG are good maps such that there is a weak
equivalence h : X � X ′ over BG, then there is a stable equivalence Mh : Mf �Mg.

In this situation, M also takes homotopic maps to stably equivalent spectra [17, 7.4.10].
However, note that the stable equivalence depends on the homotopy.
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 547

Theorem 4.11. If f : X → BG and g : X → BG are good maps that are homotopic, then
there is a stable equivalence Mf �Mg.

5. The Thom spectrum functor is a left adjoint

As discussed previously, spaces with actions by the linear isometries operad L can be regarded
as the category T[K] of algebras over the monad K. Similarly, spectra in S\S which are E∞-ring
spectra structured by the linear isometries operad can be regarded as the category (S\S)[C] of
algebras with respect to the monad C̃.

One of the main results of Lewis’ work is that the Thom spectrum functor M ‘commutes’
with these monads. Specifically, Lewis [17, 7.7.1] prove the following.

Theorem 5.1. Let G be a group-like commutative monoid I -FCP that is augmented
over F .

(i) Given a map f : X → BG, there is an isomorphism C̃Mf ∼= M(KBGf), where the map

KBGf : KBGX −→ BG

is the natural map induced from X → BG.
(ii) This isomorphism is coherently compatible with the unit and multiplication maps for

these monads, in the sense of Lemma 2.2.

As we have observed, a consequence of this result is that the Thom spectrum functor
induces a functor ME∞ from (T/BG)[KBG] to E∞-ring spectra structured by C̃. Composing
with the functor S ∧L −, we obtain a Thom spectrum functor MCAS

from (T/BG)[KBG] to
commutative S-algebras. Now employing Theorem 1.2, we obtain the main result. Note that
here and in the remainder of the paper, we assume, unless otherwise indicated, that G is a
group-like commutative monoid I -FCP that is augmented over F .

Theorem 5.2. The Thom spectrum functor

MCAS
: (T/BG)[LBG] −→ CAS

commutes with indexed colimits.

Proof. We have verified that the functor ME∞ satisfies the hypotheses of Theorem 1.2, and
so we can conclude that ME∞ commutes with indexed colimits. Since MCAS

is obtained from
ME∞ via composition with a continuous left adjoint, the result follows.

Since the Thom spectrum functor MCAS
preserves indexed colimits, one would expect that

it should in fact be a continuous left adjoint. We will prove this by showing that the hypotheses
of the second part of Theorem 1.2 are satisfied. However, our method of proof does not produce
an explicit description of the right adjoint and so is somewhat unsatisfying.

Lemma 5.3. The Thom spectrum functor from T/BG to S\S is a left adjoint.

Proof. We know that the Thom spectrum functor preserves colimits in T/BG. Moreover, it
is easy to verify that the category T/BG satisfies the hypotheses of the special adjoint functor
theorem, since T does. Therefore M is a left adjoint.
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548 ANDREW J. BLUMBERG

Now we have the following diagram of categories:

T/BG[KBG]

U

��

ME∞ �� (S\S)[C̃]

V

��

T/BG

F

��

M �� (S\S).

G

��

Here U and V denote forgetful functors, and F and G denote the free algebra functors. Recall
that (S\S)[C̃] is the category of E∞-ring spectra [12, 2.4.5]. The square commutes in the sense
that M ◦ U = V ◦ME∞ and ME∞ ◦ F = G ◦M .

Corollary 5.4. The Thom spectrum functor MCAS
from T/BG[KBG] to the category of

commutative S-algebras is a continuous left adjoint.

Proof. It follows from Theorem 1.2 that ME∞ is a continuous left adjoint. Since S ∧L −
is a continuous left adjoint, the composite functor to commutative S-algebras is a continuous
left adjoint as well.

When restricting attention to vector bundles (that is, when G is a commutative group
I -FCP over F ), we can improve this result as follows. Recall that the categories of L -spaces,
E∞-ring spectra, and commutative S-algebras are all categories of algebras over monads.
In each case, a model structure is constructed by lifting a cofibrantly generated model
structure from the base category. As a consequence, we have an explicit description of the
cell objects.

In each case, the cell objects are colimits of pushouts of the form

ZA

��

�� Xn−1

��

ZCA �� Xn

where Z is the appropriate monad and where A to CA is a generating cofibration in the base
category. For instance, in the case of L -spaces, A→ CA is a map of the form∨

i

Sni−1
+ −→

∨
i

Dni
+ .

For the category of commutative S-algebras, A→ CA is a map of the form∨
i

Σ∞Sni−1
+ −→

∨
i

Σ∞Dni
+

where the suspension spectrum functor takes values in S-modules. The description for E∞-ring
spectra is analogous.

Corollary 5.5. Let G be a commutative group I -FCP augmented over F . Then the
functor MCAS

is a Quillen left adjoint.

Proof. In these cases all maps are good, and so M preserves weak equivalences. Therefore,
it will suffice to show that M takes the generating cofibrations to cofibrations. The generating
cofibrations in T[KBG] are maps of the form h : KBGA→ KBGCA, where A is a wedge of
Sni−1

+ and CA the corresponding wedge of Dn
+. The maps Dn

+ → BG are arbitrary, and
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 549

these choices determine the maps Sni−1 → BG. Denote the map KBGA→ BG by h1 and
the map KBGCA→ BG by h2. Recall that MKBGf ∼= C̃Mf . In addition, a map from
a contractible space to BG represents a bundle that is isomorphic to a trivial bundle.
Therefore, there is a homeomorphism Mh1

∼= C̃Σ∞A and Mh2
∼= C̃Σ∞CA. The induced map

Mh : Mh1 →Mh2 clearly yields a generating cofibration in the category of E∞-ring spectra
structured by C̃.

6. Computing THH

The formula M(f ⊗ S1) ∼= Mf ⊗ S1 is a point-set result; Mf ⊗ S1 is an object in the category
of commutative S-algebras. In this section we discuss how to ensure that Mf ⊗ S1 has the
correct homotopy type so that it represents THH(Mf).

For an S-algebra R, in analogy with the classical definition of Hochschild homology as Tor
we define

THH(R) = R ∧LR∧Rop R.

In the algebraic setting, this Tor can be computed via the Hochschild resolution. In spectra,
this leads to a candidate point-set description of THH(R) as the cyclic bar construction
N cyc(R). The precise relationship between these is studied in [12, 9.2]; the main result is
that when R is cofibrant they are canonically isomorphic in the derived category of R-modules
[12, 9.2.2].

First, observe that there is a derived version of the cyclic bar construction in L -spaces. This
is a consequence of the very useful fact that, for a simplicial set A· and an L -space X, there is a
homeomorphism X ⊗ |A·| ∼= |X ⊗A·| (see [3, 6.7]). When A· has finitely many nondegenerate
simplices in each simplicial degree, this provides a tractable description of the tensor with |A·|
in terms of tensors with finite sets, that is, finite coproducts.

Lemma 6.1. Let g : X → X ′ be a weak equivalence of cofibrant L -spaces. Then there is
an induced weak equivalence g ⊗ S1

+ : X ⊗ S1
+ → X ′ ⊗ S1

+.

Proof. Since X ⊗ S1
+ is a proper simplicial space for any L -space X, the result follows

from the fact that the induced map g
∐
g : X

∐
X → X ′ ∐X ′ is a weak equivalence when X

and X ′ are cofibrant.

One might hope that for cofibrant X, Mf is necessarily cofibrant as a (commutative)
S-algebra. Of course when M is a left Quillen adjoint this holds, but in general it turns
out that Mf does belong to a class of commutative S-algebras for which the point-set smash
product has the correct homotopy type.

Theorem 6.2. Let f : X → BG be a good L -map such that X is a cell L -space. Then
Mf ∧Mf represents the derived smash product.

Recall the notion of an extended cell module [2, 9.6]. An extended S-cell is a pair (X ∧
Bn+,X ∧ Sn−1

+ ), where X = S ∧L L (i) �G K for a G-spectrum K indexed on U i which has
the homotopy type of a G-CW-spectrum for some G ⊂ Σi. An extended cell S-module is
an S-module M = colimMi, where M0 = 0 and Mn is obtained from Mn−1 by a pushout of
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550 ANDREW J. BLUMBERG

S-modules of the form ∨
j

Xj ∧ Snj−1
+

��

�� Mn−1

��
∨
j

Xj ∧Bnj

+ �� Mn.

Extended cell S-modules have the correct homotopy type for the purposes of the smash
product. Therefore, it will suffice to show the following result.

Proposition 6.3. Let f : X → BG be a good E∞-map over the linear isometries operad
such that X is a cell L -space. Then the underlying S-module of the S-algebra Mf has the
homotopy type of an extended cell S-module.

Proof. By hypothesis, X = colimXi, where X0 = ∗ and Xi is obtained from Xi−1 as the
pushout

K̃A ��

��

Xi−1

��

K̃CA �� Xi

where A is a wedge of spheres Sni−1
+ and CA is the associated wedge of Dni

+ . Since M commutes
with colimits and MKg ∼= C̃Mg, we have that Mf = colimMfi, where Mf0 = S and Mfi is
obtained from Mfi−1 as the pushout

C̃MA ��

��

Mfi−1

��

C̃MCA �� Mfi.

As CA is a contractible space with a disjoint basepoint, MCA is homotopy equivalent to a cell
S-module. Here MA is the wedge of a Thom spectrum over a suspension with S, and so we
know that it is also a cell S-module [17, 7.3.8]. Temporarily assume that C̃MA and C̃MCA
are extended cell S-modules. Then we proceed as in [12, 7.7.5]. We see that Mfi is isomorphic
under Mfi−1 to the two-sided bar construction B(C̃MCA, C̃MA,MXi−1). This is a proper
simplicial spectrum, and since each simplicial level is an extended cell module and the face
and degeneracy maps are cellular, so is the bar construction. By passage to colimits, the result
follows.

To see that C̃MA and C̃MCA are extended cell S-modules, we essentially argue as in [12,
7.7.5] but must account for the quotients since we are using the reduced monads. Recall that
there is a standard filtration on the reduced monads [17, 7.3.6], which allows us to regard the
free C̃ algebra as the colimit of spectra formed by pushouts of layers of the form Zj/Σj . These
are extended cell S-modules, and then a similar induction as above allows us to conclude the
result.

There is an additional difficulty that arises when working over BF ; it seems to be difficult
to replace an arbitrary map of L -spaces X → BF with a map X ′ → BF which is a Hurewicz
fibration and such that X ′ is cofibrant as an L -space. However, we believe that it suffices to
work with the following composite replacement: given an arbitrary map of L -spaces X → BF ,
we work with ΓX ′ → BF , where X ′ is a cofibrant replacement of X. This should be proved
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 551

along the lines of the analogous statement for associative S-algebras in [4], but we do not
discuss it further here as we are able to obtain our main applications without this replacement
process.

7. Splitting of THH(Mf)

In the previous section, we have verified that by appropriate modification of the map
f : X → BG we can ensure that we can identify THH(Mf) as M(f ⊗ S1). In this section,
we study M(f ⊗ S1). In particular, we discuss briefly a connection to the free loop space LBX
and then investigate in detail the splitting result THH(Mf) �Mf ∧BX+.

The starting point for our analysis is the observation that the based cofiber sequence
S0 → S1

+ → S1 yields an associated sequence of L -spaces

X −→ X ⊗ S1
+ −→ X ⊗ S1.

The map X → X ⊗ S1
+ is split by the collapse map S1

+ → S0, and this induces a map
θ : X ⊗ S1

+ → X × (X ⊗ S1).

Remark 7.1. Recall that X ⊗ S1
+ is the realization of the simplicial object X ⊗ (S1

+)•
induced by the standard description of S1

+ as a simplicial set. This is in fact a cyclic object, and
therefore X ⊗ S1

+ has an action of S1 induced by the cyclic structure. The adjoint of the action
map composed with the projection X ⊗ S1

+ → X ⊗ S1 yields a map X ⊗ S1
+ → L(X ⊗ S1),

which is a weak equivalence for group-like L -spaces. When working over a commutative group
I -FCP, this weak equivalence implies a weak equivalence of Thom spectra, and so we obtain
a description of THH(Mf) in terms of a map L(BX) → BG. This relationship is studied in
detail in the companion paper [4].

7.1. The splitting arising from an E∞-map

In this section, we assume that we have a fixed L -map f : X → BG such that X is a group-
like L -space and G is a commutative group I -FCP augmented over F . We require this latter
hypothesis to ensure that all maps that arise are good.

Lemma 7.2. Let X be a group-like cofibrant L -space. The map

θ : X ⊗ S1
+ −→ X ⊗ S1 ×X ⊗ S0

is a weak equivalence.

Proof. Since L is an E∞-operad, we can functorially associate an Ω-prespectrum Z to
X using an ‘infinite loop space machine’. We will show that X ⊗A is weakly equivalent to
Ω∞(Z ∧A). Assuming this fact, the lemma is now a consequence of the stable splitting of S1

+.
Specifically, there is a chain of equivalences Z ∧ S1

+ � (Z ∧ S0) ∨ (Z ∧ S1) � (Z ∧ S0) × (Z ∧
S1). Applying Ω∞ to this composite yields an equivalence Ω∞(Z ∧ S1

+) → (Ω∞Z) × (Ω∞(Z ∧
S1)), since Ω∞ preserves products and weak equivalences of spectra. Under the equivalence
between X and Ω∞Z, this map coincides with the map induced from the splitting and so the
result follows.

To compare X ⊗A and Z ∧A, we use a technique from [3]. Let X̃ denote the functor that
assigns to a finite set n the tensor X ⊗ n. Using the folding map, this specifies a Γ-object
in L -spaces. Recall that the construction of a prespectrum from a Γ-object proceeds by
prolonging the Γ-object to a functor from the category of spaces of the homotopy type of finite
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552 ANDREW J. BLUMBERG

CW -complexes. Such a functor is called a W-space, and is an example of a diagram spectrum
[22]. In this situation, the associated W-space can be specified simply as A �→ X ⊗A. For any
W-space Y and based space A, there is a stable equivalence between the prespectrum {Y (Sn) ∧
A} and the prespectrum {Y (A ∧ Sn)} induced by the assembly map Y (Sn) ∧A→ Y (A ∧ Sn)
(see [22, 17.6]). Since X was a cofibrant group-like L -space, it follows that X̃ is very special [3,
6.8]. Therefore the associated W-space X̃ is fibrant, which means that the underlying prespectra
{X̃(Sn ∧A)} are Ω-prespectra for all A. Finally, this implies that there is an equivalence
between Ω∞(Z ∧A) and Z(A). A similar result (with a different proof) appears in [33].

Proposition 7.3. Let f : X → BG be an L -map, where G is a commutative group
I -FCP augmented over F and X is a group-like L -space. Then there is a weak equivalence
of commutative S-algebras

Mf ⊗ S1 � BX+ ∧Mf.

Proof. By inspection of the description of the map f ⊗ S1
+ : X ⊗ S1

+ → BG, we see that it
can be factored as

X ⊗ S1
+

θ �� (X ⊗ S0) × (X ⊗ S1)
π1 �� X ⊗ S0 ∼= X

f
�� BG,

where π1 is the projection onto the first factor. By the preceding lemma, the hypotheses imply
that the map θ : X ⊗ S1

+ → (X ⊗ S1) × (X ⊗ S0) is a weak equivalence. Therefore, there is an
equivalence of Thom spectraMθ : M(f ⊗ S1

+) →M(f ◦ π1). By the standard description of the
Thom spectrum of a projection (Proposition 4.8), we know thatM(f ◦ π1) ∼= Mf ∧ (X ⊗ S1)+.
Moreover, Theorem 1.1 implies thatM(f ⊗ S1

+) ∼= Mf ⊗ S1. Finally,X ⊗ S1 is a model of BX;
this follows by considering the Γ-space associated to X as in the previous lemma [3, 6.5].

7.2. Splitting arising from an E2-map f : X → BG

It is sometimes the case that even though f : X → BG is not an E∞-map, Mf is equivalent to
a commutative S-algebra. We consider the situation in which f : X → BG is an E2-map such
that there is an equivalence of E2-ring spectra from Mf to an E∞-ring spectrum. Although
this may seem at first like an artificial hypothesis, in fact this situation arises when considering
the Thom spectra that yield Eilenberg-Mac Lane spectra. We will show that the splitting result
holds here as well.

We drop the requirement here that G is a commutative group I -FCP. Fix an E2-operad
C2 which is augmented over the linear isometries operad. Then BG is a C2-space and Lewis’
theorem (see [17, 7.7.1]) shows that the Thom spectrum associated to a C2-map f : X → BG
is a C2-ring spectrum.

Recall that there is a two-sided bar construction for spectra [12, 4.7.2]. Let R be a
commutative S-algebra. If A is a left R-module and N a right R-module, then the bar
construction B(A,R,N) is the realization of a simplicial spectrum in which the k-simplices
are given by A ∧Rk ∧N and the faces are given by the multiplication. When R is a cofibrant
commutative S-algebra and A is a cofibrant R-module, the bar construction is naturally weakly
equivalent to A ∧R N and weak equivalences in each variable induce weak equivalences of bar
constructions.

Remark 7.4. A simplicial spectrum K is proper if the ‘inclusion’ sKq → Kq is a
cofibration, where sKq is the ‘union’ of the subspectra sjKq−1, with 0 � j < q (see [12, 10.2.2]).
Of course, the ‘union’ denotes an appropriate pushout, and the ‘inclusion’ associated maps,
but the terms are useful to emphasize the analogy with the situation in spaces. Maps between
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 553

proper simplicial spectra, which induce levelwise equivalences, produce weak equivalences upon
realization [12, 10.2.4]. When R is a cofibrant commutative S-algebra and A is a cofibrant
R-module, the bar construction is a proper simplicial spectrum.

Theorem 7.5. Let f : X → BG be a good C2-map, where G is a group-like commutative
monoid I -FCP augmented over F . Assume that Mf is equivalent as a homotopy commutative
S-algebra to some (strictly) commutative S-algebra M ′. Then there is an isomorphism in the
derived category as follows:

THH(Mf) � BX+ ∧Mf.

Proof. One can describe THH(A) as the derived smash product A ∧LA∧Aop A (see [12,
9.1.1]). Of course if A is commutative, then A ∧Aop ∼= A ∧A. In our situation, this specializes
to the derived smash product

THH(Mf) = Mf ∧LMf∧Mfop Mf.

If Mf were a commutative S-algebra, then we could use the Thom isomorphism to replace
Mf ∧Mfop ∼= Mf ∧Mf . We will show that in fact it suffices for Mf to be weakly equivalent
to a commutative S-algebra. We can assume without loss of generality that Mf is cofibrant.
Moreover, the hypotheses provide an equivalence of S-algebras Mf →M ′, where M ′ can be
taken to be a cofibrant commutative S-algebra.

The composite

Mfop −→Mfop ∧ S0 −→Mfop ∧Xop
+ −→ (M ′)op ∧Xop

+ �M ′ ∧Xop
+

is a map of S-algebras, and the map M ′ →M ′ ∧ S0 →M ′ ∧Xop
+ is central [12, 7.1.2].

Therefore extension of scalars yields an induced map of M ′-algebras M ′ ∧Mfop →M ′ ∧Xop
+ ,

and the Thom isomorphism theorem implies that this map is a weak equivalence.
We will model the derived smash product using the two-sided bar construction. The preceding

discussion implies that the composite

B(Mf,Mf ∧Mfop,Mf) −→ B(M ′,Mf ∧Mfop,M ′) −→ B(M ′,M ′ ∧Xop
+ ,M ′)

is a weak equivalence. Therefore we have an isomorphism

Mf ∧LMf∧Mfop Mf −→M ′ ∧LM ′∧Xop
+
M ′.

The kth simplicial level of B(M ′,M ′ ∧Xop
+ ,M ′) is the product

M ′ ∧ (M ′ ∧Xop
+ )k ∧M ′,

where the actions of M ′ ∧Xop
+ on M ′ are given by projecting M ′ ∧Xop

+ →M ′ and then using
the multiplication on M ′. Clearly, there is an isomorphism

M ′ ∧ (M ′ ∧Xop
+ )k ∧M ′ −→ (M ′ ∧ (M ′)k ∧M ′ ∧ (Xop

+ )k

given by permuting the Xop
+ factors to the right, and this map commutes with the simplicial

identities. Thus, there is an equivalence

B(M ′,M ′ ∧Xop
+ ,M ′) � B(M ′,M ′,M ′) ∧B(S,Σ∞Xop

+ , S),

using the fact that the smash product commutes with realization. However, since Σ∞ commutes
with the bar construction for monoids [12], we have weak equivalences

B(S,Σ∞Xop
+ , S) � Σ∞BXop

+ � Σ∞BX+.

We also know that B(M ′,M ′,M ′) is homotopic to M ′.
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554 ANDREW J. BLUMBERG

8. Calculation of THH(Z), THH(Z/p), and THH(MU)

In this section, we use the splitting results of the previous section to provide easy calculations
of THH for various interesting Thom spectra. First, we recover the results of Bokstedt for
HZ/p and HZ (see [6]). Next, we compute THH(MU), recovering a calculation of McClure
and Staffeldt [30]. Further calculations of bordism spectra are discussed in the companion
paper [4].

8.1. THH(Z) and THH(Z/p)

There is an identification by Mahowald of HZ/2 as the Thom spectrum associated to a
certain map Ω2S3 → BO (see [10, 19]). A modification of this approach by Hopkins allows the
construction of HZ/p as the Thom spectrum associated to a certain p-local bundle over Ω2S3.
Finally, HZ can be obtained as the Thom spectrum of a map Ω2S3 〈3〉 → BSF . We discuss
these constructions in the following section, in particular verifying that all of these Thom
spectra are E2-ring spectra associated to E2 maps structured by the little 2-cubes operad. Using
standard ‘change of operad’ techniques discussed in Appendix A, we can functorially convert
these to classifying maps structured by an E2 operad augmented over the linear isometries
operad.

We have the following proposition, which will allow us to apply Theorem 7.5.

Proposition 8.1. For any connective E2-ring spectrum R, there is a map of E2-ring
spectra from R to Hπ0(R), unique up to homotopy, which induces an isomorphism on π0. Here
Hπ0(R) is regarded as an E2-ring spectrum via the commutative S-algebra structure.

Recall that THH(HR) for R a commutative ring is a product of Eilenberg–Mac Lane spectra
[6, 12, 9.1.3]. This implies that we can read off the homotopy type from the homotopy
groups. Thus to compute THH(HZ/2), we must compute π∗(B(Ω2S3) ∧HZ/2). This is just
the homology of ΩS3 with Z/2 coefficients, which can be easily calculated via inspection of the
James construction. One immediately recovers the result

THH(HZ/2) =
∞∏
i=0

K(Z/2, 2i).

A similar argument applies to THH(HZ/p).
Finally, to compute THH(HZ), we must compute π∗(B(Ω2S3 〈3〉) ∧HZ). Once more, this

is just the ordinary homology with integral coefficients of ΩS3 〈3〉. Computing again, we find

THH(HZ) = K(Z, 0) ×
∞∏
i=1

K(Z/i, 2i− 1).

8.2. THH(MU)

The splitting formula implies that

THH(MU) �MU ∧BBU+ �MU ∧ SU+.

We can compute MU∗(SU) via a standard Atiyah–Hirzebruch spectral sequence calculation,
and it turns out to be MU∗(pt) ⊗ Λ(x1, x2, . . .), with the generators in odd degrees. This
agrees with the answer obtained by McClure and Staffeldt [30] and, as they observe, implies
that THH(MU) is a product of suspensions of MU . Other bordism spectra are analogous; see
the companion paper [4] for further discussion.
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 555

9. Realizing Eilenberg–Mac Lane spectra as Thom spectra

In this section, we review and extend the classical realizations of Eilenberg–Mac Lane spectra
as Thom spectra associated to certain bundles over Ω2S3 and Ω2S3 〈3〉. Our main purpose is to
ensure that we can obtain these Thom spectra as ring spectra that are sufficiently structured so
as to permit the construction of THH and the application of our splitting theorem. In particular,
improving on [10], we give a new description of HZ as the Thom spectrum associated to a
double loop map Ω2S3 〈3〉 → BSF .

9.1. HZ/2 as the Thom spectrum of a double loop map

The construction of HZ/2 as a Thom spectrum was the first to be extensively studied [10, 19,
31]. We briefly review the construction. Consider the map ψ : S1 → BO representing the non-
trivial element of π1(BO). The Thom spectrum associated to this map is the Moore spectrum
MZ/2. There is an induced map γ : Ω2S3 → BO, as BO is an infinite loop space (and in
particular a double loop space). The Thom spectrum of γ is HZ/2.

A sketch of the proof for this is as follows. There is a map A → H∗(Mγ; Z/2) given by
evaluation on the Thom class, which is a map of modules over the Steenrod algebra. As Mγ
is 2-local, it suffices to show that this map is an isomorphism. Dualizing, we can consider
the corresponding map H∗(Mγ; Z/2) → A∗ of comodules over the dual Steenrod algebra A∗.
Next, by the Thom isomorphism we know that H∗(Mγ; Z/2) ∼= H∗(Ω2S3; Z/2). The homology
of Ω2S3 is P{xn | n � 0}, where x0 comes from the inclusion of H∗(S1; Z/2) and the action of
the Dyer–Lashof operations is known [10]; specifically, x0 generates the homology as a module
over the Dyer–Lashof algebra. Now, note that since the dimensions of A and H∗(Ω2S3; Z/2)
are the same, it is enough to show that the evaluation map is either an injection or a surjection.

There are a variety of arguments to establish this fact; we shall review the technique used by
[31]. First, we observe that both the Thom isomorphism and the map γ∗ : H∗(Ω2S3; Z/2) →
H∗(BO; Z/2) commute with the Dyer–Lashof operations. Recall thatH∗(BO; Z/2) is generated
by the images of the class in degree 1 under the first Dyer–Lashof operation. Therefore the
behavior of γ∗ is completely determined by the fact that γ∗(x0) is that generating class in
degree 1. Finally, we note that under the evaluation map H∗(MO; Z/2) → A the images of the
iterates of γ∗(x0) under the Dyer–Lashof operation hit all of the generators of A.

9.2. HZ/p as the Thom spectrum of a double loop map

Unfortunately, no stable spherical fibration can have HZ/p as its associated Thom spectrum:
π0(Mf) is either Z or Z/2, depending on whether f represents an orientable bundle or not.
Nonetheless, in [20] there is a brief discussion of an argument by Hopkins for realizing HZ/p
as the Thom spectrum associated to a p-local stable spherical fibration.

In the bulk of this paper, we studied Thom spectra associated to the monoid I -FCP that
were augmented over F . The map to X → F was used to give an action of X(V ) on the sphere
SV , the fiber of the universal quasifibration B(∗,X(V ), SV ) → B(∗,X(V ), ∗). However, as we
noted previously, this theory can be carried out with other choices of fiber, in particular the
collection of p-local spheres SV(p) or p-complete spheres (SV )∧p . Rather than an augmentation
over F , we will in this setting require augmentation over the appropriate ‘p-local’ or ‘p-complete’
analog. We rely on the careful treatment of fiberwise localization and completion given by
May [25].

Definition 9.1. (i) Let F(p) denote the commutative monoid I -FCP specified by taking
V to the based homotopy self-equivalences of SV(p). Denote by BF(p) the commutative monoid
I -FCP obtained by passing to classifying spaces levelwise.
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556 ANDREW J. BLUMBERG

(ii) Let (F )∧p denote the commutative monoid I -FCP specified by taking V to the based
homotopy self-equivalences of (SV )∧p . Denote by B(F )∧p the commutative monoid I -FCP
obtained by passing to classifying spaces levelwise.

Here BF(p)(V ) classifies spherical fibrations with fiber SV(p) and B(F )∧p(V ) classifies spherical
fibrations with fiber (SV )∧p (see [25]). Note that we must use continuous versions of localization
and completion in order to ensure that we have continuous functors [15].

Remark 9.2. The notation we are using is potentially confusing, as the spaces BF(p)(V )
are not the p-localizations of BF (V ) and the spaces B(F )∧p are not the p-completions of BF (V ).
Such equivalences are only true after passage to universal covers, as there is an evident difference
at π1.

In this setting, we can set up the theory of Thom spectra as discussed in previous sections
of the paper with minimal modifications. For oriented bundles there is a Thom isomorphism
with Z(p) or Z∧

p and for unoriented bundles there is a Z/p Thom isomorphism [25].
Now, π1(BF(p)) is the group of p-local units Z

×
p . Consider a map φ : S1 → BFp associated

to a choice of unit u. The Thom spectrum associated to φ is the Moore spectrum obtained as
the cofiber of the map Sp → Sp given by multiplication by u− 1. This identification follows
immediately from the general description of the Thom spectrum of a bundle over a suspension
[17, 9.3.8]. Taking u = p+ 1, which is a p-local unit, we obtain the Moore spectrum M(Z/p).
As before, there is an induced map γ : Ω2S3 → BF(p) since BF(p) in an infinite loop space.

We will show that the Thom spectrum associated to this map is HZ/p. Once again, the
Thom class specifies a map Ap → H∗(Mγ) of modules over the Steenrod algebra. For odd p,
we have H∗(Ω2S3; Z/p) = E{xn | n � 0} ⊗ P{βxn | n � 1}, where x0 comes from the inclusion
of H∗(S1; Z/p), and is generated as a module over the Dyer–Lashof algebra by x0 (see [10]).
Again, note that since the dimensions of A and H∗(Ω2S3; Z/p) are the same, it is enough to
show that the evaluation map is either an injection or a surjection. This can be shown by an
argument analogous to the one described for p = 2.

9.3. HZ as the Thom spectrum of a double loop map

Finally, we consider the case of HZ. It has long been known that HZ arises as the Thom
spectrum associated to a certain map γ : Ω2(S3 〈3〉) → BSF (see [10, 19]). However, the best
published results obtain a description of this map as an H-map [10], which is inadequate
for construction of THH. Moreover, it is not clear how to adapt the existing construction to
improve this; the map γ is constructed a prime at a time, and the localized maps γp are seen
to be H-maps because certain obstructions vanish.

Therefore, we give a new construction, based on a suggestion of Mike Mandell, which enables
us to see that there is a suitable map that is a double loop map. Both Ω2S3 〈3〉 and BSF are
rationally trivial, and so split as the product of their completions. Therefore a map Ω2S3 〈3〉 →
BSF can be specified by the construction of a collection of maps Ω2S3 〈3〉 → (BSF )∧p . Note
that the p-completion of BSF is weakly equivalent to colimV B((SF )∧p), where (SF )∧p is the
monoid I -FCP constructed analogously to (F )∧p . The following lemma is standard.

Lemma 9.3. Let f : Ω2S3 〈3〉 → BSF be a map specified by a collection of maps

fp : Ω2S3 〈3〉 −→ (BSF )∧p .

If each fp is an n-fold loop map, then f is an n-fold loop map.
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THH OF THOM SPECTRA WHICH ARE E∞-RING SPECTRA 557

Next, we observe that it will suffice to show that at each prime, the map given by
evaluation on the Thom class induces an equivalence between the Thom spectrum associated
to Ω2S3 〈3〉 → B(SF )∧p and HZ

∧
p . For this it suffices to show that the evaluation map induces

an equivalence in Z/p cohomology for each p.
For p = 2 we can use the map induced by the composite

Ω2S3 〈3〉 −→ Ω2S3 −→ BO −→ B(SF )∧p .

This is a double loop map, and the associated Thom spectrum is HZ
∧
2 (see [10]). For odd

primes we proceed as follows. We know that π1(B(F )∧p) is the group of p-adic units (Z∧
p)

×.
Explicitly, for odd primes this is (Z∧

p)
× ∼= Z/(p− 1) ⊕ Z

∧
p . Take a map φ representing an

element of π1(B(F )∧p) which is 0 on the Z/(p− 1) factor and induces an isomorphism on
the other component. We can equivalently regard φ as a map φ : S3 → B3(F )∧p . Now we can
lift to a map S3 〈3〉 → B3(SF )∧p . Since φ is trivial on the Z/(p− 1) component of π3(B3(F )∧p),
we can lift the map to the fiber over the map B3(F )∧p → K(Z/(p− 1), 3). The induced map is
an isomorphism on π3 by construction, and so now we can pass to fibers over K((Z)∧p , 3) to
obtain the desired map. Looping twice, denote by γ the resulting map Ω2S3 → B(F )∧p and by
γ′ the resulting map Ω2S3 〈3〉 → BS(F )∧p .

We begin by identifying the Thom spectrum Mγ; we will then use this to determine Mγ′.
The analysis of Mγ proceeds essentially as in the previous examples. Specifically, the Thom
spectrum associated to the map φ is the Moore spectrum obtained as the cofiber of the map
which is multiplication by u− 1, where u is the chosen p-adic unit. This Moore spectrum is
determined by the p-adic valuation of u− 1. To compute this, let us recall the identification of
the p-adic units. A unit in (Z)∧p is a p-adic integer with an expansion such that the first digit is
nonzero. The projection onto the units of Z/p induces the first component of the identification.
In our case, we are requiring a choice where the first component is 1. Subtracting 1 from this,
we find that the first component must be 0 and the later components are arbitrary. Combining
with the constraint that the projection of u generates the (Z)∧p , we find that we have the Moore
spectra M(Z/p). A similar argument to the one employed above implies that Mγ is HZ/p.

Finally, we use this identification to determine the Thom spectrum Mγ′. Let us first consider
the case of p an odd prime. Essentially by construction, there is a commutative diagram of
Thom spectra

Mf ��

��

M((SF )∧p)

��

HZ/p �� M((F )∧p)

associated to the commutative diagram of spaces

Ω2S3 〈3〉 ��

��

B((SF )∧p)

��

Ω2S3 �� B((F )∧p).

By the naturality of the Thom isomorphism, this implies that we have a commutative
diagram of modules over the Steenrod algebra as follows:

A ��

��

H∗(Mγ)

��

A/βA �� H∗(Mγ′)
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The map A → A/βA is a surjection; we have seen that the map A → H∗(Mγ) is an
isomorphism, and Ω2S3 〈3〉 → Ω2S3 induces a surjection on cohomology (and on homology
a map of comodules over the dual Steenrod algebra). This implies that the bottom horizontal
map must be a surjection. Since the dimensions of A/βA and H∗(Ω2S3 〈3〉 ; Z/p) are the same,
this map must in fact be an isomorphism.

Remark 9.4. If we work at the prime 2, we have that π1 is (Z∧
2 )× = Z/2 ⊕ Z

∧
2 . Following

the outline above, we would like to identify the Thom spectrum associated to φ. The projection
onto the units of Z/4 induces the first component of the identification of (Z∧

2 )×. The two choices
are expansions that begin 1, 1, . . . and 1, 0, . . . . Since we want something that projects to 0,
we must have the latter. Subtracting 1 from this, we find we end up with a p-adic number
that begins 0, 0, . . . and therefore has p-adic valuation 2 or higher. Thus the associated Thom
spectrum is the Moore spectrum M(Z/4).

However, consideration of the Dyer–Lashof operations tells us that the Thom spectrum of
γ is not H(Z/4). In general, we cannot obtain H(Z/pn) as a Thom spectrum over Ω2S3. This
can be seen by considering the element x0 in H1(Ω2S3). The last Dyer–Lashof operation takes
this to Q2x, but since the classifying map takes x to 0, it must take Q2x to zero and thus must
be 0 on H3 as well, which implies that the Thom spectrum cannot be the Eilenberg–Mac Lane
spectrum. It is also possible to deduce the impossibility of realizing H(Z/pn) as such a Thom
spectrum by observing that the computations of [9] are incompatible with our splitting results.

Appendix A. Change of operads

The linear isometries operad arises naturally when considering the infinite loop space structure
on BG. Moreover, since we are interested in a Thom spectrum functor that takes values in
the EKMM category of spectra, the presence of the linear isometries operad is to be expected.
However, it is useful to be able to accept a somewhat broader range of input data.

In the examples above, the initial input was the mapsX → Bn(BF ), which were looped down
to produce the n-fold loop maps ΩnX → ΩnBn(BF ). To specify the multiplicative structure
carefully, we need to choose a precise model of the delooping B. Let us assume that we are
working with a specified choice of BF , where the E∞ structure is described by an action of the
linear isometries operad L . By pullback, we regard this as a space structured by the product
operad Cn × L , where Cn is the little n-cubes operad. Denote by D the monad associated to
this operad. Following [23, 13.1], for any D-space Z we have the diagram

Z B(D,D, Z)��� � �� ΩnB(Σn,D, Z)

in which the maps are maps of D-spaces, and the action of D on ΩnΣn comes from the
augmentation of D over the monad associated to the little n-cubes operad. The D-space action
on ΩnB(Σn,D, Z) is produced by pullback from the Cn action on B(ΩnΣn,D, Z). Thus, we use
B(Σn,D, BF ) as our model of BnBF .

Given a map X → B(Σn,D, BF ), the associated map ΩnX → ΩnB(Σn,D, BF ) is a map
of D-spaces with regard to the geometric action of the little n-cubes operad; and on
ΩnB(Σn,D, BF ), this is precisely the action that arises in the diagram above. Replacing the
map by a fibration and pulling back, we get a map of D-spaces X ′ → B(D,D, BF ), and pushing
forward we get a map of D-spaces X ′ → BF , where the D action on BF comes from the
augmentation over the linear isometries operad.
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