# $\mathbb{R}$-MOTIVIC STABLE STEMS 

EVA BELMONT AND DANIEL C. ISAKSEN


#### Abstract

We compute some $\mathbb{R}$-motivic stable homotopy groups. For $s-w \leq$ 11, we describe the motivic stable homotopy groups $\pi_{s, w}$ of a completion of the $\mathbb{R}$-motivic sphere spectrum. We apply the $\rho$-Bockstein spectral sequence to obtain $\mathbb{R}$-motivic Ext groups from the $\mathbb{C}$-motivic Ext groups, which are wellunderstood in a large range. These Ext groups are the input to the $\mathbb{R}$-motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by $\rho, 2$, and $\eta$. As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.


## 1. Introduction

The goal of this article is to compute the stable homotopy groups of the $\mathbb{R}$ motivic sphere spectrum in a range. These stable homotopy groups are the most fundamental invariants of the $\mathbb{R}$-motivic stable homotopy category, and thus lead to a deeper understanding of many of the computational aspects of $\mathbb{R}$-motivic homotopy theory. More specifically, we work in cellular $\mathbb{R}$-motivic stable homotopy theory, completed appropriately at 2 and $\eta$ so that the $\mathbb{R}$-motivic Adams spectral sequence converges.

Our main tool is the $\mathbb{R}$-motivic Adams spectral sequence, which takes the form

$$
E_{2}=\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right) \Longrightarrow \pi_{* *}
$$

Here $\mathcal{A}$ is the $\mathbb{R}$-motivic Steenrod algebra, $\mathbb{M}_{2}$ is the $\mathbb{R}$-motivic cohomology of a point, and $\pi_{*, *}$ is the bigraded homotopy groups of the $\mathbb{R}$-motivic sphere (completed at 2 and $\eta$ ). We obtain complete results about $\pi_{s, w}$ for $s-w \leq 11$. This approach follows [11], which computed $\pi_{s, w}$ for $s-w \leq 3$.

See [7] for large-scale $\mathbb{R}$-motivic Adams charts. These charts are an essential companion to this manuscript. In a sense, this manuscript consists of a series of arguments for the computational facts displayed in the Adams charts.
1.1. The $\rho$-Bockstein spectral sequence. The first step in an Adams spectral sequence program is to obtain the algebraic $E_{2}$-page. We study this computation in Sections 5, 6, and 7. We use the $\rho$-Bockstein spectral sequence, which takes the form

$$
\operatorname{Ext}_{\mathcal{A}^{\mathbb{C}}}\left(\mathbb{M}_{2}^{\mathbb{C}}, \mathbb{M}_{2}^{\mathbb{C}}\right)[\rho] \Longrightarrow \operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)
$$

Here $\mathcal{A}^{\mathbb{C}}$ is the $\mathbb{C}$-motivic Steenrod algebra, and $\mathbb{M}_{2}^{\mathbb{C}}$ is the $\mathbb{C}$-motivic cohomology of a point.

[^0]The $\rho$-Bockstein spectral sequence is a tool that passes from $\mathbb{C}$-motivic Ext groups to $\mathbb{R}$-motivic Ext groups. We discuss the general properties of this spectral sequence in Section 5, and we describe an unexpectedly effective strategy for computing differentials. The key idea is to compute the $\rho$-periodic groups $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)\left[\rho^{-1}\right]$ in advance. Then naive combinatorial considerations force a very large number of Bockstein differentials. We discuss specific Bockstein differential computations in Section 6.

Having obtained the $E_{\infty}$-page of the $\rho$-Bockstein spectral sequence, we do not yet have a complete knowledge of $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$. It remains to resolve extensions that are hidden by the $\rho$-Bockstein filtration. There is an unmanageable quantity of hidden extensions, so we do not attempt to analyze them completely, not even in a range. Nevertheless, we do analyze all extensions by $h_{0}$ and $h_{1}$ in the range under consideration. These computations are carried out in Section 7.
1.2. The $\mathbb{R}$-motivic Adams spectral sequence. Having obtained the $E_{2}$-page of the $\mathbb{R}$-motivic Adams spectral sequence, the next step is to determine Adams differentials. We carry out these computations in Section 8. These differentials can be obtained by a variety of techniques. One important technique is the use of the Moss Convergence Theorem 8.2 to compute Toda brackets, which determine that certain elements are permanent cycles. Another technique is comparison to previously established computations in the $\mathbb{C}$-motivic and classical computations. See Section 1.3 for more discussion of these comparisons.

After computing Adams differentials and obtaining the Adams $E_{\infty}$-page, there are once again hidden extensions to resolve. As in the algebraic case, there are too many extensions to study exhaustively, but we do consider all extensions by $\rho$, h , and $\eta$ exhaustively (where $\rho$, h, and $\eta$ are stable homotopy elements detected by $\rho, h_{0}$, and $h_{1}$ respectively). These computations are carried out in Section 9. Once again, the key techniques are shuffling relations involving Toda brackets and comparison to the $\mathbb{C}$-motivic and classical cases.
1.3. Comparison of homotopy theories. An essential ingredient in our computations is comparison between the $\mathbb{R}$-motivic, $\mathbb{C}$-motivic, $C_{2}$-equivariant, and classical stable homotopy theories, as depicted in the diagram


The horizontal arrows labelled "realization" refer to the Betti realization functors that take a variety over $\mathbb{C}$ (resp., over $\mathbb{R}$ ) to the space (resp., $C_{2}$-equivariant space) of $\mathbb{C}$-valued points. The vertical arrow labelled "extension of scalars" refers to the functor that takes a variety over $\mathbb{R}$ and views it as a variety over $\mathbb{C}$. The vertical arrow labelled "forgetful" refers to the functor that takes a $C_{2}$-equivariant object to its underlying non-equivariant object.

Our philosophy in this article is to accept computational information about the $\mathbb{C}$-motivic and classical stable homotopy groups as given, and to use this information to study the $\mathbb{R}$-motivic stable homotopy groups. See [18] for an extensive summary of computational information about the $\mathbb{C}$-motivic and classical Adams spectral sequences. The presence of the $C_{2}$-equivariant stable homotopy category in this
diagram is relevant for our consideration of Mahowald invariants, to be discussed below in Section 1.4.

There is a surprising connection between $\mathbb{C}$-motivic and $\mathbb{R}$-motivic that enables many of our detailed computations. Namely, Theorem 3.4 shows that the $\mathbb{C}$-motivic stable homotopy groups are isomorphic to the $\mathbb{R}$-motivic homotopy groups of the cofiber $S / \rho$ of $\rho$. This means that the structure of $\mathbb{C}$-motivic stable homotopy groups governs both the cokernel and the kernel of multiplication by $\rho$. This allows us to deduce many $\mathbb{R}$-motivic computational facts with relative ease from known $\mathbb{C}$-motivic information.
1.4. Mahowald invariants. Let $\alpha$ be a non-zero classical stable homotopy element. The Mahowald invariant (or root invariant) $R(\alpha)$ is a non-zero equivalence class of classical stable homotopy elements in a stem that is higher than the stem of $\alpha$. One source of interest in Mahowald invariants is that $R(\alpha)$ appears to have greater chromatic complexity than $\alpha$. Thus one can construct more exotic stable homotopy elements out of elements that are better understood [20].

Bruner and Greenlees reformulated the definition of the Mahowald invariant in terms of $C_{2}$-equivariant stable homotopy groups [9]. Although we do not study $C_{2}$-equivariant homotopy groups directly, we have indirectly obtained information about them because the $\mathbb{R}$-motivic and $C_{2}$-equivariant stable homotopy groups are isomorphic in a range [6]. In Section 4, we show how many Mahowald invariants can be immediately deduced from our $\mathbb{R}$-motivic computations. While these results only recover previously known Mahowald invariants [20] [4], we believe that our techniques can be extended into uncharted territory without much more effort.

Theorem 1.5. Table 1 gives some values of the Mahowald invariant.
Table 1: Some Mahowald invariants

| stem | $\alpha$ | $R(\alpha)$ | indeterminacy |
| :--- | :--- | :--- | :--- |
| 0 | 2 | $\eta$ |  |
| 0 | 4 | $\eta^{2}$ |  |
| 0 | 8 | $\eta^{3}$ |  |
| 1 | $\eta$ | $\nu$ | $2 \nu, 4 \nu$ |
| 2 | $\eta^{2}$ | $\nu^{2}$ |  |
| 3 | $\nu$ | $\sigma$ | $2 \sigma, 4 \sigma, 8 \sigma$ |
| 3 | $2 \nu$ | $\eta \sigma$ | $\epsilon$ |
| 3 | $4 \nu$ | $\eta^{2} \sigma$ | $\eta \epsilon$ |
| 6 | $\nu^{2}$ | $\sigma^{2}$ | $\kappa$ |
| 7 | $\sigma$ | $\sigma^{2}$ |  |
| 7 | $2 \sigma$ | $\eta_{4}$ | $\eta \rho_{15}$ |
| 7 | $4 \sigma$ | $\eta \eta_{4}$ | $\nu \kappa, \eta^{2} \rho_{15}$ |
| 8 | $\eta \sigma$ | $\nu_{4}$ | $2 \nu_{4}, 4 \nu_{4}$ |
| 8 | $\epsilon$ | $\bar{\sigma}$ |  |
| 9 | $\eta^{2} \sigma$ | $\nu \nu_{4}$ | $\eta \bar{\kappa}$ |

Proof. Theorem 4.10 reduces the computation to an $\mathbb{R}$-motivic Mahowald invariant, as defined in Section 4.3. Table 3 gives the values of the $\mathbb{R}$-motivic Mahowald
invariant. Finally, Table 17 gives the Betti realizations of the $\mathbb{R}$-motivic Mahowald invariants.

See Examples 4.9 and 4.11 for detailed illustrations of how this technique plays out in practice.

We have computed the Mahowald invariant of most, but not every, $\alpha$ through the 11-stem. In particular, we do not compute the Mahowald invariants of $2^{k}$ for $k \geq 4,8 \sigma, \eta \epsilon, \mu_{9}, \eta \mu_{9}$, nor $\zeta_{11}$ and its multiples. In these cases, the problem is that the inequality of Theorem 4.10 does not apply, so our $\mathbb{R}$-motivic computations do not determine $C_{2}$-equivariant behavior.

## 2. Notation

We write $\mathbb{M}_{2}$ for the $\mathbb{R}$-motivic homology of a point with coefficients in $\mathbb{F}_{2}$. Recall that $\mathbb{M}_{2}$ is isomorphic to $\mathbb{F}_{2}[\rho, \tau]$, where $\rho$ and $\tau$ have degrees $(-1,-1)$ and $(0,-1)$ respectively [26].

We write $\mathcal{A}$ for the $\mathbb{R}$-motivic dual Steenrod algebra. Recall that $\mathcal{A}$ is described by the equations

$$
\begin{aligned}
\mathcal{A} & =\mathbb{M}_{2}\left[\tau_{0}, \tau_{1}, \ldots, \xi_{1}, \xi_{2}, \ldots\right] /\left(\tau_{k}^{2}=\tau \xi_{k+1}+\rho \tau_{k+1}+\rho \tau_{0} \xi_{k+1}\right) \\
\eta_{L}(\tau) & =\tau, \quad \eta_{R}(\tau)=\tau+\rho \tau_{0}, \quad \eta_{L}(\rho)=\eta_{R}(\rho)=\rho \\
\Delta\left(\tau_{k}\right) & =\tau_{k} \otimes 1+\sum \xi_{k-i}^{2^{i}} \otimes \tau_{i} \\
\Delta\left(\xi_{k}\right) & =\sum \xi_{k-i}^{2^{i}} \otimes \xi_{i},
\end{aligned}
$$

where $\tau_{i}$ and $\xi_{k}$ have degrees $\left(2^{i+1}-1,2^{i}-1\right)$ and $\left(2^{i+1}-2,2^{i}-1\right)$ respectively [27].

We write $\mathbb{M}_{2}^{\mathbb{C}}$ for the $\mathbb{C}$-motivic homology of a point with coefficients in $\mathbb{F}_{2}$, and we write $\mathcal{A}_{*}^{\mathbb{C}}$ for the $\mathbb{C}$-motivic dual Steenrod algebra. These objects are easily described in terms of $\mathbb{M}_{2}$ and $\mathcal{A}$. Namely, they are the result of setting $\rho$ equal to zero.

We write $\mathcal{A}_{*}^{\text {cl }}$ for the classical dual Steenrod algebra, which can be obtained from $\mathcal{A}$ by setting $\rho$ and $\tau$ to be 0 and 1 respectively.

We write Ext or $\operatorname{Ext}_{\mathbb{R}}$ for $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$, i.e., the cohomology of the $\mathbb{R}$-motivic Steenrod algebra. We write Ext $\mathbb{C}^{C}$ and Ext $\mathrm{Ell}_{\text {l }}$ for the cohomologies of the $\mathbb{C}$-motivic and classical Steenrod algebras respectively.

We write $\pi_{p, q}$ or $\pi_{p, q}^{\mathbb{R}}$ for the stable homotopy groups of the $\mathbb{R}$-motivic sphere spectrum. Similarly, we write $\pi_{p, q}^{\mathbb{C}}$ for the stable homotopy groups of the $\mathbb{C}$-motivic sphere spectrum. We adopt the usual motivic grading convention, so that $\pi_{p, q} X$ denotes maps out of $S^{p, q}$, where $S^{p, q}$ is the smash product of $p-q$ copies of the simplicial sphere and $q$ copies of $\mathbb{A}^{1}-0$.

We write $\pi_{p, q}^{C_{2}}$ for the stable homotopy groups of the $C_{2}$-equivariant sphere spectrum. We use an equivariant grading convention that is compatible with the motivic grading convention, so that $\pi_{p, q} X$ denotes maps out of $S^{p, q}$, where $S^{p, q}$ is the onepoint compactification of $\mathbb{R}^{p}$, with $C_{2}$ acting by negating the last $q$ coordinates. Betti realization takes $\mathbb{R}$-motivic $S^{p, q}$ to $C_{2}$-equivariant $S^{p, q}$.

We write $\pi_{p}$ for the classical stable homotopy groups.

All stable homotopy groups are suitably completed so that Adams spectral sequences converge. Classically, this means completion at 2. In the motivic cases, this means completion at 2 and $\eta$ [17].
Grading conventions. Following [18] and [11], we use the following grading convention for the motivic Adams spectral sequence: $s$ denotes the stem, $f$ denotes the Adams filtration, and $w$ denotes the motivic weight. Then the internal degree is $s+f$. In this grading, Adams differentials take the form

$$
d_{r}: E_{r}^{s, f, w} \rightarrow E_{r}^{s-1, f+r, w} .
$$

The coweight of an element in degree $(s, f, w)$ is defined to be $s-w$. Note that $\rho$ has coweight 0 . In particular, an element $x$ and its $\rho$-multiple $\rho x$ lie in the same coweight. This makes coweights particularly useful in the $\rho$-Bockstein perspective that we adopt.
2.1. Stable homotopy elements. We adopt conventional notation, as used (for example) in [18] [19], for the names of elements in the classical stable homotopy groups $\pi_{*}$ and the $\mathbb{C}$-motivic stable homotopy groups $\pi_{*, *}^{\mathbb{C}}$.

Table 9 gives the notation that we use for elements of $\pi_{*, *}^{\mathbb{R}}$. We define these elements in terms of the elements of the Adams $E_{\infty}$-page that detect them. These definitions have indeterminacy parametrized by elements of the Adams $E_{\infty}$-page in higher Adams filtration. As a general rule, this indeterminacy does not matter to our computations. It is possible to use Toda brackets, or geometric constructions (see [10]), to eliminate the indeterminacy in many cases.

Remark 2.2. We use the symbol $h$ to denote an element of $\pi_{0,0}$ that is detected by $h_{0}$. The symbol stands for "hyperbolic" because it corresponds to the hyperbolic plane in the Grothendieck-Witt group interpretation of $\pi_{0,0}$ [22, Remark 6.4.2]. (Alternatively, it can also stand for "Hopf", since $h$ is the zeroth Hopf map.) Beware that h does not equal 2 ; in fact, $2=\mathrm{h}+\rho \eta$.

Remark 2.3. The element $\sigma$ requires more discussion. We write $\sigma$ for an element of $\pi_{7,4}$ that is detected by $h_{3}$. There are 256 possible choices for $\sigma$, because of the presence of elements in higher Adams filtration. One such element in higher filtration is $\rho c_{0}$. Lemma 7.19 shows that $\tau^{2} h_{2} \cdot \rho c_{0}$ equals $\rho^{4} d_{0}$. Therefore, some possible choices of $\sigma$ have the property that $\tau^{2} \nu \cdot \sigma$ is detected by $\rho^{4} d_{0}$ in $\pi_{10,4}$, while other possible choices of $\sigma$ have the property that $\tau^{2} \nu \cdot \sigma$ is zero. (The elements $\tau h_{1} \cdot \tau P h_{1}$ and $\rho h_{1} \cdot \tau h_{1} \cdot \tau P h_{1}$ are not relevant, by comparison to $k q$ as in Remark 8.15.)

We will need to use the relation $\tau^{2} \nu \cdot \sigma=0$ in later computations, so we must assume that our choice of $\sigma$ satisfies this condition.

Remark 2.4. In some cases, we have chosen names for elements of $\pi_{*, *}^{\mathbb{R}}$ that reflect the values of the extension of scalars functor given in Table 17. For example, we write $\tau \sigma^{2}$ for an element of $\pi_{14,7}^{\mathbb{R}}$ that is detected by $\rho h_{4}$, since this element maps to $\tau \sigma^{2}$ in $\pi_{14,7}^{\mathbb{C}}$.

Remark 2.5. Beware that our use of the symbol $\bar{\kappa}$ is inconsistent with its usage in [18]. In this manuscript, $\tau \bar{\kappa}$ refers to a non-zero element of $\pi_{20,11}^{\mathbb{C}}$ that is detected by $\tau g$. The symbol $\bar{\kappa}$ is used in [18] for the same element.

Remark 2.6. Occasionally we refer to stable homotopy elements that have no standard name. In these cases, we use the symbol $\{x\}$ to indicate a stable homotopy element that is detected by an element $x$ of an Adams $E_{\infty}$-page.

## 3. Comparison between $\mathbb{R}$-motivic and $\mathbb{C}$-motivic homotopy

We first discuss the relationship between $\mathbb{R}$-motivic and $\mathbb{C}$-motivic stable homotopy theory. We will use these ideas frequently in later sections to obtain $\mathbb{R}$-motivic information from known $\mathbb{C}$-motivic information.

Consider the cofiber sequence

$$
S^{-1,-1} \xrightarrow{\rho} S^{0,0} \longrightarrow S / \rho
$$

The cofiber $S / \rho$ of $\rho$ is a 2 -cell complex whose structure governs multiplication by $\rho$ in the $\mathbb{R}$-motivic stable homotopy groups, in a sense to be made precise in this section. In addition, we will draw an unexpected connection between the $\mathbb{R}$-motivic homotopy groups of $S / \rho$ and $\mathbb{C}$-motivic stable homotopy groups.

As shown in diagram (1.1), there is an extension of scalars functor from $\mathbb{R}$ motivic stable homotopy theory to $\mathbb{C}$-motivic stable homotopy theory, and a Betti realization functor from $\mathbb{C}$-motivic stable homotopy theory to classical stable homotopy theory. These functors take Eilenberg-Mac Lane spectra to Eilenberg-Mac Lane spectra, and thus interact nicely with Adams spectral sequences. In particular, they induce highly structured morphisms of Adams spectral sequences. We will frequently use these comparison functors to deduce information about the $\mathbb{R}$-motivic Adams spectral sequence from already known information about the $\mathbb{C}$ motivic and classical Adams spectral sequences. See [18] for an extensive summary of computational information about the $\mathbb{C}$-motivic and classical Adams spectral sequences.

Extension of scalars takes the element $\rho$ of $\pi_{-1,-1}$ to zero. In particular, it induces the map $\mathbb{M}_{2} \rightarrow \mathbb{M}_{2}^{\mathbb{C}}$ that takes $\rho$ to zero, and it similarly induces the map $\mathcal{A} \rightarrow \mathcal{A}_{*}^{\mathbb{C}}$ that takes $\rho$ to zero.

For an $\mathbb{R}$-motivic spectrum, we write $\operatorname{Ext}_{\mathbb{R}}(X)$ for the $E_{2}$-page of the $\mathbb{R}$-motivic Adams spectral sequence that converges to $\pi_{*, *}(X)$, i.e., for $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, H^{*, *}(X)\right)$, and similarly for $\operatorname{Ext}_{\mathbb{C}}(X)$.

Extension of scalars induces a diagram


Because $\rho$ becomes zero after extension of scalars, the bottom row of the diagram splits. The map $\operatorname{Ext}_{\mathbb{R}}(S / \rho) \rightarrow \operatorname{Ext}_{\mathbb{C}}\left(S^{0,0} \vee S^{-2,-1}\right)$ lifts to a map $\operatorname{Ext}_{\mathbb{R}}(S / \rho) \rightarrow$ $\operatorname{Ext}_{\mathbb{C}}\left(S^{0,0}\right)$ that makes the diagram

commute.

Proposition 3.1. The map $\operatorname{Ext}_{\mathbb{R}}(S / \rho) \rightarrow \operatorname{Ext}_{\mathbb{C}}\left(S^{0,0}\right)$ is an isomorphism.
Proof. Let $C_{\mathbb{R}}^{*}$ and $C_{\mathbb{C}}^{*}$ be the cobar complexes for $\operatorname{Ext}_{\mathbb{R}}\left(S^{0,0}\right)$ and $\operatorname{Ext}_{\mathbb{C}}\left(S^{0,0}\right)$ respectively. Note that $C_{\mathbb{C}}^{*}$ is isomorphic to $C_{\mathbb{R}}^{*} / \rho$. Because multiplication by $\rho$ is injective on $C_{\mathbb{R}}^{*}$, this is also isomorphic to the cobar complex that computes $\operatorname{Ext}_{\mathbb{R}}(S / \rho)$.
Remark 3.2. Because of the isomorphism of Proposition 3.1, the object Ext $\mathbb{C}_{\mathbb{C}}$ is a module over $E x t_{\mathbb{R}}$. By careful inspection of definitions, this module action is easy to describe. Using the $\rho$-Bockstein spectral sequence notation from Section 5, a typical element of $\operatorname{Ext}_{\mathbb{R}}$ is of the form $\rho^{k} x$, where $x$ belongs to Ext ${ }_{\mathbb{C}}$. The Ext $_{\mathbb{R}}$-module action on Ext $_{\mathbb{C}}$ is described by

$$
\rho^{k} x \cdot y= \begin{cases}0 & \text { if } k>0 \\ x y & \text { if } k=0\end{cases}
$$

where the last expression $x y$ is to be interpreted as the usual Yoneda product of elements in Ext ${ }_{C}$.

Remark 3.3. Proposition 3.1 implies that there is a long exact sequence

$$
\cdots \longrightarrow \operatorname{Ext}_{\mathbb{R}} \xrightarrow{\rho} \operatorname{Ext}_{\mathbb{R}} \xrightarrow{i} \operatorname{Ext}_{\mathbb{C}} \xrightarrow{p} \operatorname{Ext}_{\mathbb{R}} \xrightarrow{\rho} \operatorname{Ext}_{\mathbb{R}} \longrightarrow \cdots
$$

of $\operatorname{Ext}_{\mathbb{R}^{-}}$-module maps, where $\mathrm{Ext}_{\mathbb{C}}$ is an $\mathrm{Ext}_{\mathbb{R}}$-module as in Remark 3.2. If $x$ is a permanent cycle in the $\rho$-Bockstein spectral sequence, then the map $i$ takes $x$ in Ext $_{\mathbb{R}}$ to the element of Ext $\mathbb{C}_{\mathbb{C}}$ of the same name.

Now consider the diagram

in which the diagonal arrow exists because $\rho$ maps to zero in $\pi_{*, *}^{\mathbb{C}}$.
Theorem 3.4. The map $\pi_{*, *}^{\mathbb{R}}(S / \rho) \rightarrow \pi_{*, *}^{\mathbb{C}}$ is an isomorphism.
Proof. Proposition 3.1 shows that there is an isomorphism of $E_{2}$-pages of Adams spectral sequences, so the targets of the spectral sequences are also isomorphic.

Corollary 3.5. Let $\alpha$ be an element of $\pi_{*, *}^{\mathbb{R}}$. Extension of scalars takes $\alpha$ to zero in $\pi_{*, *}^{\mathbb{C}}$ if and only if $\alpha$ is divisible by $\rho$.
Proof. Chase the diagram (3.1), using that the diagonal map is an isomorphism.
Remark 3.6. Corollary 3.5 has a $C_{2}$-equivariant analogue, as stated later in Proposition 4.2.

Remark 3.7. The isomorphism of Theorem 3.4 can be strengthened to an equivalence of categories [5, Corollary 8.6]. Namely, the 2-complete $\mathbb{C}$-motivic cellular stable homotopy category is equivalent to the homotopy category of $S / \rho$-modules in the 2 -complete $\mathbb{R}$-motivic cellular stable homotopy category.
Corollary 3.8. There is a long exact sequence

$$
\cdots \longrightarrow \pi_{s+1, w+1}^{\mathbb{R}}(S) \xrightarrow{\rho} \pi_{s, w}^{\mathbb{R}}(S) \longrightarrow \pi_{s, w}^{\mathbb{C}}(S) \longrightarrow \pi_{s, w+1}^{\mathbb{R}}(S) \longrightarrow \cdots
$$

Proof. This is the long exact sequence in homotopy for the fiber sequence

$$
S \xrightarrow{\rho} S \longrightarrow S / \rho
$$

in $\mathbb{R}$-motivic spectra, after applying the identification in Theorem 3.4.

## 4. Mahowald invariants

The goal of this section is to use $\mathbb{R}$-motivic computations to recompute some Mahowald invariants. See [4, Section 4] for a careful discussion of the definition, using Lin's theorem that $\mathbb{R} P_{-\infty}^{\infty}$ is equivalent to $S^{-1}$.
4.1. $C_{2}$-equivariant homotopy theory and Mahowald invariants. Using $C_{2^{-}}$ equivariant homotopy theory, Bruner and Greenlees [9] gave an alternative definition of the Mahowald invariant. We will summarize this definition, but first we need some background on $C_{2}$-equivariant homotopy theory.

Let $S^{a, b}$ be the one-point compactification of $\mathbb{R}^{a}$, where $C_{2}$ acts by negating the last $b$ coordinates. Then $\rho: S^{0,0} \rightarrow S^{1,1}$ is the inclusion of fixed points. Note that the cofiber of this map is $\Sigma\left(C_{2}\right)_{+}$, i.e., the suspension of the based free $C_{2}$-space.

We use the same notation $\rho$ for the map $S^{-1,-1} \rightarrow S^{0,0}$ in the $C_{2}$-equivariant stable homotopy group $\pi_{-1,-1}^{C_{2}}$. The identification of the cofiber of $\rho$ leads immediately to the following proposition, whose short proof appears in [12, Proposition 11.2].

Proposition 4.2. Let $\alpha$ be a $C_{2}$-equivariant stable homotopy element. The underlying classical stable homotopy element $U(\alpha)$ of $\alpha$ is zero if and only if $\alpha$ is divisible by $\rho$.

Geometric fixed points gives a map $\pi_{a, b}^{C_{2}} \rightarrow \pi_{a-b}$, and this map takes $\rho$ to 1 . The $\rho$-periodic groups $\pi_{*, *}^{C_{2}}\left[\rho^{-1}\right]$ are isomorphic to $\pi_{*} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right]$, i.e., to the classical stable homotopy groups with $\rho$ and $\rho^{-1}$ adjoined [8, Proposition] [2, Proposition 7.0].

With this background on $C_{2}$-equivariant stable homotopy groups, we now give the Bruner-Greenlees definition of the Mahowald invariant. Start with a classical stable homotopy element $\alpha$ in $\pi_{n}$, which we identify with the obvious element of $\pi_{*} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right]$ in degree $(0,-n)$. Using the isomorphism

$$
\pi_{*} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right] \cong \pi_{*, *}^{C_{2}}\left[\rho^{-1}\right]
$$

write $\alpha=\rho^{k} \beta$ for some $\beta$ in $\pi_{*, *}^{C_{2}}$ and some integer $k$, with $k$ maximal. Finally, the Mahowald invariant $R(\alpha)$ is the underlying classical stable homotopy element $U(\beta)$ of $\beta$.

Note that the Mahowald invariant is not strictly defined; it is a set of classical stable homotopy elements. While the choice of $k$ is unique, the choice of $\beta$ is not. Different choices of $\beta$ can lead to different values of $U(\beta)$.

Also note that $U(\beta)$ is necessarily non-zero by Proposition 4.2. The point is that $\beta$ is not divisible by $\rho$, since $k$ was chosen to be maximal.
4.3. $\mathbb{R}$-motivic homotopy theory and Mahowald invariants. We will now adapt the framework of Bruner and Greenlees [9] from the $C_{2}$-equivariant to the $\mathbb{R}$ motivic settings. In order to carry this out, we need to observe some key $\mathbb{R}$-motivic properties.

First, the $\rho$-periodic groups $\pi_{*, *}^{\mathbb{R}}\left[\rho^{-1}\right]$ are isomorphic to $\pi_{*} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right]$, i.e., to the classical stable homotopy groups with $\rho$ and $\rho^{-1}$ adjoined [11]. See also [3]
for a more structured version of this isomorphism. Second, Corollary 3.5 relates $\rho$-divisibility to the kernel of the extension of scalars map.
Definition 4.4. Let $\alpha$ be a classical stable homotopy element in $\pi_{n}$. The $\mathbb{R}$-motivic Mahowald invariant $R^{\mathbb{R}}(\alpha)$ is defined as follows. Identify $\alpha$ with the obvious element of

$$
\pi_{*} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right] \cong \pi_{*, *}^{\mathbb{R}}\left[\rho^{-1}\right]
$$

in degree $(0,-n)$. Write $\alpha=\rho^{k} \beta$ for some $\beta$ in $\pi_{*, *}^{\mathbb{R}}$ and some integer $k$, with $k$ maximal. Define $R^{\mathbb{R}}(\alpha)$ in $\pi_{*, *}^{\mathbb{C}}$ to be the extension of scalars of $\beta$.

Remark 4.5. As for the traditional Mahowald invariant, the $\mathbb{R}$-motivic Mahowald invariant is not strictly defined. Different choices of $\beta$ can have different values in $\pi_{*, *}^{\mathbb{C}}$ under extension of scalars.
Remark 4.6. As for the traditional Mahowald invariant, the $\mathbb{R}$-motivic Mahowald invariant is always non-zero by Corollary 3.5. The point is that $\beta$ is not divisible by $\rho$, since $k$ was chosen to be maximal.

Remark 4.7. See [24] [25] for a different consideration of Mahowald invariants in the motivic context. Our construction does not compare directly.

Theorem 4.8. Some values of the $\mathbb{R}$-motivic Mahowald invariant are given in Table 3.

Proof. This follows immediately from the computations carried out later in the article. In particular, one needs the values of the extension of scalars map, as shown in Table 17 and discussed in Section 10

Example 4.9. We illustrate Theorem 4.8 by describing the computation of $M^{\mathbb{R}}(\sigma)$. The element $\sigma$ in $\pi_{7}$ is identified with the element $\alpha$ of $\pi_{*, *}^{\mathbb{R}} \otimes \mathbb{Z}\left[\rho^{ \pm 1}\right]$ in degree $(0,-7)$ that is detected by $\rho^{15} h_{4}$. Then $\alpha$ equals $\rho^{14} \beta$, where $\beta$ is detected by $\rho h_{4}$. Finally, Table 17 shows that the realization of $\beta$ is $\tau \sigma^{2}$ in $\pi_{14,7}^{\mathbb{C}}$.

In general, the relationship between $R(\alpha)$ and $R^{\mathbb{R}}(\alpha)$ is not obvious. The choices involved in the definitions are not necessarily compatible. For example, it is possible that an element $\beta$ in $\pi_{*, *}^{\mathbb{R}}$ is not divisible by $\rho$, while its realization in $\pi_{*, *}^{C_{2}}$ is divisible by $\rho$.

The main result of [6] tells us that the $\mathbb{R}$-motivic and $C_{2}$-equivariant stable homotopy groups agree in a range. In this range, $R(\alpha)$ and $R^{\mathbb{R}}(\alpha)$ are easier to compare.

Theorem 4.10. Let $R^{\mathbb{R}}(\alpha)$ belong to $\pi_{s, w}^{\mathbb{C}}$, and Suppose that $2 w-s<4$. Then $R(\alpha)$ equals the Betti realization of $R^{\mathbb{R}}(\alpha)$.

Proof. The isomorphism between $\mathbb{R}$-motivic and $C_{2}$-equivariant stable homotopy groups [6] implies that the choice of $\beta$ in the definition of $R^{\mathbb{R}}(\alpha)$ realizes to the choice of $\beta$ in the definition of $R(\alpha)$. By the commutativity of the diagram (1.1), the realization of $R^{\mathbb{R}}(\alpha)$ equals $R(\alpha)$.
Example 4.11. We showed in Example 4.9 that $R^{\mathbb{R}}(\sigma)$ equals $\tau \sigma^{2}$ in $\pi_{14,7}^{\mathbb{C}}$. The numerical condition of Theorem 4.10 is satisfied. It follows that $R(\sigma)$ equals $\sigma^{2}$ in $\pi_{14}$, since $\sigma^{2}$ is the realization of $\tau \sigma^{2}$.

Remark 4.12. Theorem 4.10, together with our computations of $\mathbb{R}$-motivic stable homotopy groups, can be used to compute the Mahowald invariants $R(\alpha)$ for most $\alpha$ up to the 11 -stem. The exceptions are $2^{k}$ for $k \geq 4,8 \sigma, \eta \epsilon, \mu_{9}, \eta \mu_{9}$, and $\zeta_{11}$ and its multiples. In these cases, $R^{\mathbb{R}}(\alpha)$ can still be computed as shown in Table 3. However, the numerical condition of Theorem 4.10 does not hold, so we cannot draw a conclusion about $R(\alpha)$ in these cases.

## 5. The $\rho$-Bockstein spectral sequence

We briefly recall some background on the $\rho$-Bockstein spectral sequence that computes the cohomology of the $\mathbb{R}$-motivic Steenrod algebra. See [16] and [11] for additional details.

Begin with the observation that the $\mathbb{C}$-motivic cohomology of a point $\mathbb{M}_{2}^{\mathbb{C}}$ equals $\mathbb{M}_{2} / \rho$, and the $\mathbb{C}$-motivic dual Steenrod algebra $\mathcal{A}_{*}^{\mathbb{C}}$ equals $\mathcal{A} / \rho$. Then filter the cobar complex by powers of $\rho$ to obtain the $\rho$-Bockstein spectral sequence

$$
\begin{equation*}
E_{1}=\operatorname{Ext}_{\mathcal{A}_{*}^{\mathbb{C}}}^{* *}\left(\mathbb{M}_{2}^{\mathbb{C}}, \mathbb{M}_{2}^{\mathbb{C}}\right)[\rho] \Longrightarrow \operatorname{Ext}_{\mathcal{A}}^{* *}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right) \tag{5.1}
\end{equation*}
$$

Our goal is to analyze the $\rho$-Bockstein spectral sequence (5.1) in computational detail in a range of degrees. We recall some structural results about this spectral sequence from [11].

Proposition 5.1. [11, Lemma 3.4] If $d_{r}(x)$ is nontrivial in the $\rho$-Bockstein spectral sequence, then $x$ and $d_{r}(x)$ are both $\rho$-torsion free on the $E_{r}$-page.

Recall that $\mathcal{A}_{*}^{\mathrm{cl}}$ is the classical dual Steenrod algebra.
Proposition 5.2. [11, Theorem 4.1] There is an isomorphism

$$
\operatorname{Ext}_{\mathcal{A}_{*}^{c l}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\left[\rho^{ \pm 1}\right] \cong \operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)\left[\rho^{-1}\right]
$$

that takes elements of degree $(s, f)$ in $\operatorname{Ext}_{\mathcal{A}_{*}^{c l}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ to elements of degree $(2 s+$ $f, f, s+f)$ in $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$. In particular, the classical element $h_{n}$ corresponds to the $\mathbb{R}$-motivic element $h_{n+1}$. Moreover, the isomorphism is highly structured, i.e., preserves products and Massey products.

The point of Proposition 5.2 is that we a priori know the elements of Ext $_{\mathbb{R}}$ that are $\rho$-periodic, in the sense that they support infinitely many non-zero multiplications by $\rho$. In the range considered in this manuscript, these $\rho$-periodic elements are $h_{1}$, $h_{2}, h_{3}, h_{4}, c_{1}, h_{2} g, h_{3} g$, as well as products of these elements. This corresponds to the fact that through the 11-stem, Ext ${ }_{\mathrm{cl}}$ is generated by the classical elements $h_{0}$, $h_{1}, h_{2}, h_{3}, c_{0}, P h_{1}$, and $P h_{2}$. We may effectively ignore these $\rho$-periodic elements when analyzing the $\rho$-Bockstein spectral sequence, since they can be neither source nor target of any $\rho$-Bockstein differential.

Let $\left\{x_{i}\right\}$ be an $\mathbb{F}_{2}$-linear basis for $\operatorname{Ext}_{\mathbb{C}}$, i.e., an $\mathbb{F}_{2}[\rho]$-linear basis for the $\rho$ Bockstein $E_{1}$-page, excluding the $\rho$-periodic permanent cycles described in the previous paragraph. For every $i$, either $x_{i}$ supports a differential, or $\rho^{r} x_{i}$ is the target of the $d_{r}$ differential for some $r$. In other words, the set $\left\{x_{i}\right\}$ may be partitioned into pairs $\left(x_{i}, x_{j}\right)$ such that $d_{r}\left(x_{i}\right)=\rho^{r} x_{j}$ for some $j$. Actually, one must be somewhat careful about the choice of basis in situations where two or more elements of the basis have the same degree. Nevertheless, it is always possible to change basis so that the basis elements can be partitioned into pairs.

The Bockstein differential $d_{r}: E_{r}^{s, f, w} \rightarrow E_{r}^{s-1, f+1, w}$ preserves the quantity $s+$ $f-w$, and $\rho$ lies in a degree satisfying $s+f-w=0$. Thus we may consider one value of $s+f-w$ at a time when analyzing the $\rho$-Bockstein spectral sequence.

We exploit this structure in the following strategy for analyzing the $\rho$-Bockstein spectral sequence.

## Strategy 5.3.

(1) Fix a value $N=s+f-w$.
(2) Find an $\mathbb{F}_{2}[\rho]$-basis $B_{N}$ for the part of the $\rho$-Bockstein $E_{1}$-page in degrees $(s, f, w)$ satisfying $N=s+f-w$.
(3) Remove elements from $B_{N}$ that detect $\rho$-periodic elements of Ext ${ }_{\mathbb{R}}$.
(4) Use a variety of techniques, to be described below, to identify some differential $d_{r}\left(x_{i}\right)=\rho^{r} x_{j}$, where $x_{i}$ and $x_{j}$ belong to $B_{N}$.
(5) Remove $x_{i}$ and $x_{j}$ from $B_{N}$.
(6) Repeat steps (4) and (5) until $B_{N}$ is empty.

For this strategy to be effective, we need to know that the basis $B_{N}$ chosen in step 2 is finite. Lemma 5.4 establishes this fact.
Lemma 5.4. Let $N$ be fixed. In degrees $(s, f, w)$ satisfying $N=s+f-w$, the $\rho$-Bockstein $E_{1}$-page is a finitely generated $\mathbb{F}_{2}[\rho]$-module.
Proof. Recall that Ext $\mathbb{C}_{\mathbb{C}}$ is non-zero only in degrees $(s, f, w)$ satisfying $s+f-2 w \geq 0$ [18, Remark 2.20]. This inequality can be rewritten in the form

$$
s+f-w \geq \frac{1}{2}(s+f)
$$

In other words, we only need consider the part of $\operatorname{Ext}_{\mathbb{C}}$ in total degree at most $2 N$.

One consequence of our strategy is that we do not compute the Bockstein differentials $d_{r}$ in order of increasing $r$. Rather, we obtain all differentials as part of the same process.

Step (4) is the limiting factor in the practical effectiveness of our algorithm. The ad hoc arguments required to establish specific differentials become more difficult as the value of $N$ increases. However, these difficulties increase at a surprisingly slow rate, and we are able to carry out the computation remarkably far without much difficulty.

Our goal is to compute the $\rho$-Bockstein spectral sequence through coweight 13 . Unfortunately, infinitely many values of $N$ in Step 1 are relevant in this range. For example, consider the elements $h_{1}^{k}$ of coweight 0 , which belong to degrees satisfying $s+f-w=k$.

Similarly, any $h_{1}$-periodic sequence of elements $h_{1}^{k} x$ of Ext ${ }_{\mathbb{C}}$ lies in degrees for which $s+f-w$ is unbounded. Fortunately, it is only these $h_{1}$-periodic families that are problematic.

Lemma 5.5. Let $x$ be a non-zero element of $\operatorname{Ext}_{\mathbb{C}}$ of degree $(s, f, w)$ whose coweight is at most $k$. Then:
(1) $x$ is an $h_{1}$-periodic element, in the sense that $h_{1}^{i} x$ is non-zero for all $i \geq 0$; or
(2) $s+f-w \leq 3 k+3$.

Proof. If $2 f-s \geq 4$, then $x$ is $h_{1}$-periodic [14]. So we may assume that $2 f-s<4$.
By [18, Remark 2.20], we also have the inequality $s+f-2 w \geq 0$. Combining with the assumption $s-w \leq k$, we conclude that

$$
s+f-w=(2 f-s)-(s+f-2 w)+3(s-w)<4+0+3 k=3 k+4 .
$$

As we wish to consider elements up to coweight 13, Lemma 5.5 suggests we need to look at degrees satisfying the inequality $s+f-w \leq 42$, in addition to studying $h_{1}$-periodic elements. However, inspection of elements in Ext ${ }_{\mathbb{C}}$ shows that $s+f-w \leq 28$ for all elements that are relevant in our range.

The $h_{1}$-periodic elements of Ext $\mathbb{C}_{\mathbb{C}}$ are well-understood [13]. Up to coweight 13, all such elements are of the form $1, P^{k} h_{1}, P^{k} c_{0}, P^{k} d_{0}, P^{k} e_{0}, P^{k} c_{0} d_{0}, d_{0}^{2}$, or $c_{0} e_{0}$, as well as the $h_{1}$-multiples of these elements. Lemma 5.5 indicates that the behavior of the $\rho$-Bockstein spectral sequence on these elements must be studied separately. See Proposition 6.2 for the analysis of these $h_{1}$-periodic elements.

## 6. $\rho$-Bockstein differentials

The goal of this section is to describe a variety of methods for determining $\rho$ Bockstein differentials. These methods are applied in Step (4) of Strategy 5.3. Taken together, these methods allow us to determine all $\rho$-Bockstein differentials through coweight 13.

We begin with a result that describes all $\rho$-Bockstein differentials on the elements of Adams filtration zero.

Proposition 6.1. [11, Proposition 3.2]
(1) $d_{1}(\tau)=\rho h_{0}$.
(2) $d_{2^{k}}\left(\tau^{2^{k}}\right)=\rho^{2^{k}} \tau^{2^{k-1}} h_{k}$ for $k \geq 1$.

Next we consider $h_{1}$-periodic elements. These elements must be treated as special cases because of Case (1) of Lemma 5.5.

Proposition 6.2. Table 4 gives some Bockstein differentials that are non-zero after inverting $h_{1}$. Through coweight 13 , these are the only $h_{1}$-periodic $\rho$-Bockstein differentials.

For legibility, we have not included powers of $\rho$ in the values of the Bockstein differentials in Table 4. For example, the first row of the table is to be interpreted as $d_{3}\left(P h_{1}\right)=\rho^{3} h_{1}^{3} c_{0}$.

Proof. The differentials in the $h_{1}$-periodic $\rho$-Bockstein spectral sequence are completely known [15]. For each $h_{1}$-periodic element $x$, this determines $d_{r}\left(h_{1}^{k} x\right)$ for large values of $k$. However, it is possible that the elements $h_{1}^{k} x$ support shorter differentials for small values of $k$. By inspection, no such shorter differentials occur.

Remark 6.3. The phenomenon considered at the end of the proof of Proposition 6.2 turns out not to occur through coweight 13. However, it does occur in higher coweights.

The following examples are representative arguments for establishing $\rho$-Bockstein differentials. In many situations, more than one argument leads to the same result.

Example 6.4. Table 2 summarizes the analysis of Bockstein differentials in degrees $(s, f, w)$ satisfying $s+f-w=6$. In these degrees, the $E_{1}$-page consists of $\rho$ multiples of twenty elements. The first part of Table 2 lists the two elements that are $\rho$-periodic, as in Proposition 5.2. They correspond to the classical elements $h_{0}^{6}$ and $h_{0}^{2} h_{2}$.

The second section of Table 2 lists some differentials that are easily deduced from Proposition 6.1 and the Leibniz rule.

At this point, only the elements $\tau^{4} h_{1}^{2}$ and $c_{0}$ remain unaccounted. The third section of Table 2 gives the only possibility.

Table 2: Bockstein differentials for $s+f-w=6$

| coweight | $(s, f, w)$ | $x$ | $d_{r}$ | $d_{r}(x)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | $(6,6,6)$ | $h_{1}^{6}$ |  |  |
| 3 | $(9,3,6)$ | $h_{1}^{2} h_{3}$ |  |  |
| 6 | $(0,0,-6)$ | $\tau^{6}$ | $d_{2}$ | $\tau^{5} h_{1}$ |
| 5 | $(0,1,-5)$ | $\tau^{5} h_{0}$ | $d_{1}$ | $\tau^{4} h_{0}^{2}$ |
| 3 | $(0,1,-3)$ | $\tau^{3} h_{0}^{3}$ | $d_{1}$ | $\tau^{2} h_{0}^{4}$ |
| 1 | $(0,1,-1)$ | $\tau h_{0}^{5}$ | $d_{1}$ | $h_{0}^{6}$ |
| 4 | $(3,2,-1)$ | $\tau^{3} h_{0} h_{2}$ | $d_{1}$ | $\tau^{3} h_{1}^{3}$ |
| 5 | $(7,1,2)$ | $\tau^{2} h_{3}$ | $d_{2}$ | $\tau h_{1} h_{3}$ |
| 4 | $(7,2,3)$ | $\tau h_{0} h_{3}$ | $d_{1}$ | $h_{0}^{2} h_{3}$ |
| 5 | $(3,1,-2)$ | $\tau^{4} h_{2}$ | $d_{4}$ | $\tau^{2} h_{2}^{2}$ |
| 4 | $(2,2,-2)$ | $\tau^{4} h_{1}^{2}$ | $d_{7}$ | $c_{0}$ |

Example 6.5. In some situations, a more careful analysis of multiplicative structure establishes a differential. For example, $d_{1}\left(f_{0}\right)$ cannot equal $\rho h_{1} e_{0}$ because $h_{1} f_{0}=0$ but $\rho h_{1}^{2} e_{0}$ is not zero.

For a slightly more complicated example, consider the relation $h_{0} \cdot \tau g=\tau \cdot h_{0} g$. This implies that

$$
h_{0} \cdot d_{1}(\tau g)=d_{1}(\tau) \cdot h_{0} g=\rho h_{0}^{2} g
$$

so $d_{1}(\tau g)$ must equal $\rho h_{0} g$.
Example 6.6. Sometimes, the multiplicative structure and an already known differential imply that a certain element is killed by $\rho^{k}$. Then that element must be killed by a differential $d_{r}$ with $r \leq k$. For example, the element $\tau^{4} h_{1}^{2} h_{3}=\left(\tau^{2} h_{2}\right)^{2} h_{2}$ is a permanent cycle because it is a product of permanent cycles. There are two possible differentials that could hit a $\rho$-multiple of it: $d_{4}\left(\tau^{6} h_{2}^{2}\right)$ or $d_{8}\left(\tau^{8} h_{1}^{2}\right)$. Note that $\tau^{4} h_{1}^{2} h_{3}$ is killed by $\rho^{4}$ because of the differential $d_{4}\left(\tau^{4}\right)=\rho^{4} \tau^{2} h_{2}$. Therefore, $\rho^{4} \tau^{4} h_{1}^{2} h_{3}$ must be hit by a $d_{r}$ differential with $r \leq 4$. The only possibility is that $d_{4}\left(\tau^{6} h_{2}^{2}\right)=\rho^{4} \tau^{2} h_{1}^{2} h_{3}$.

This differential can be obtained another way using the Leibniz rule, the multiplicative relation $\tau^{6} h_{2}^{2}=\tau^{4} \cdot \tau^{2} h_{2} \cdot h_{2}$, and the differential $d_{4}\left(\tau^{4}\right)=\rho^{4} \tau^{2} h_{2}$.
Example 6.7. Sometimes one must look ahead to larger values of $s+f-w$ in order to use multiplicative relations to rule out differentials. For example, in order to show that $d_{4}(i)=\rho^{4} h_{1} c_{0} e_{0}$ (in degrees satisfying $s+f-w=18$ ), we first use other techniques to rule out possible differentials until it suffices to eliminate the possibility that $d_{11}\left(\tau^{4} P c_{0}\right)$ might equal $\rho^{11} h_{1} c_{0} e_{0}$. But this would imply that
$d_{11}\left(\tau^{4} P h_{1} c_{0}\right)$ equals $h_{1}^{2} c_{0} e_{0}$ (in degrees satisfying $s+f-w=19$ ), and this contradicts the $h_{1}$-periodic differential $d_{3}\left(P e_{0}\right)=\rho^{3} h_{1}^{2} c_{0} e_{0}$ from Table 4.
Example 6.8. The Leibniz rule implies that certain elements survive at least to a certain page of the spectral sequence. For example, the element $\tau^{6} h_{3}^{2}$ cannot be hit by a differential, so it must support a differential. There are two possibilities: $d_{4}\left(\tau^{6} h_{3}^{2}\right)$ might equal $\rho^{4} \tau^{4} h_{1}^{2} h_{4}$, or $d_{6}\left(\tau^{6} h_{3}^{2}\right)$ might equal $\rho^{6} \tau^{3} c_{1}$. The Leibniz rule and the relation $\tau^{6} h_{3}^{2}=\tau^{4} \cdot \tau^{2} h_{3}^{2}$ imply that

$$
d_{4}\left(\tau^{6} h_{3}^{2}\right)=d_{4}\left(\tau^{4}\right) \cdot \tau^{2} h_{3}^{2}=\rho^{4} \tau^{2} h_{2} \cdot \tau^{2} h_{3}^{2}=0
$$

Therefore, $d_{6}\left(\tau^{6} h_{3}^{2}\right)$ must equal $\rho^{6} \tau^{3} c_{1}$.
Example 6.9. The multiplicative structure implies that certain elements do not support any differentials because they are the product of elements that do not support any differentials.

Extending Example 6.6, sometimes the Massey product structure of Ext $\mathrm{E}_{\mathbb{R}}$ implies that some element $\rho^{k} x$ must be zero. Then $\rho^{k} x$ must be the target of a Bockstein $d_{r}$ differential for $r \leq k$. Through coweight 12 , we apply this method only once in the following Lemma 6.10. However, we anticipate that this approach will become more and more important in higher coweights. Massey products in Ext $\mathbb{R}_{\mathbb{R}}$ are discussed below in Section 7 and Table 6.

Lemma 6.10. $d_{2}\left(\tau^{2} g\right)=\rho^{2} h_{2} f_{0}$.
Proof. Table 6 shows that $h_{2} f_{0}$ equals the Massey product $\left\langle\tau h_{1}, h_{1}^{4}, h_{4}\right\rangle$ in $\operatorname{Ext}_{\mathbb{R}}$. Shuffle to obtain

$$
\rho^{2}\left\langle\tau h_{1}, h_{1}^{4}, h_{4}\right\rangle=\left\langle\rho^{2}, \tau h_{1}, h_{1}^{4}\right\rangle h_{4},
$$

which equals zero because the last bracket is zero. Therefore, $\rho^{2} h_{2} f_{0}$ is hit by a $d_{1}$ or $d_{2}$ differential, and the only possibility is that $d_{2}\left(\tau^{2} g\right)=\rho^{2} h_{2} f_{0}$.

Theorem 6.11 summarizes the results of the analysis of $\rho$-Bockstein differentials.
Theorem 6.11. Table 5 lists some values of the $\rho$-Bockstein $d_{r}$ differentials on multiplicative generators of the $E_{r}$-page. Through coweight 13 , the $d_{r}$ differential vanishes on all other multiplicative generators of the $E_{r}$-page.

For legibility, we have not included powers of $\rho$ in the values of the Bockstein differentials in Table 5. For example, the first row of the table is to be interpreted as $d_{1}(\tau)=\rho h_{0}$.

## 7. Hidden extensions in the $\rho$-Bockstein spectral sequence

Section 6 explains how to obtain the $E_{\infty}$-page of the $\rho$-Bockstein spectral sequence through coweight 12 . As usual, this $E_{\infty}$-page is an associated graded object of $\operatorname{Ext}_{\mathbb{R}}$.

We abuse notation and use the same name for generators of the $\rho$-Bockstein $E_{\infty}$-page and elements of Ext $\mathbb{R}_{\mathbb{R}}$ that they represent. A generator of the $\rho$-Bockstein $E_{\infty}$-page can represent more than one element in $\mathrm{Ext}_{\mathbb{R}}$, where the indeterminacy is parametrized by elements of the $E_{\infty}$-page in higher filtration. For example, the element $\tau^{2} h_{2}$ of the $E_{\infty}$-page represents two elements of $\mathrm{Ext}_{\mathbb{R}}$ whose difference is $\rho^{4} h_{3}$.

We adopt the following convention in selecting generators in Ext $\mathbb{R}_{\mathbb{R}}$. We always choose an element of $\operatorname{Ext}_{\mathbb{R}}$ that is annihilated by the same power of $\rho$ as its representative in the $E_{\infty}$-page. For example, $\tau^{2} h_{2}$ is annihilated by $\rho^{4}$ in the $E_{\infty}$-page. Therefore, we write $\tau^{2} h_{2}$ for the (unique) element of $\mathrm{Ext}_{\mathbb{R}}$ that is annihilated by $\rho^{4}$. (The other possible choice is $\rho$-periodic.)

This convention concerning annihilation by powers of $\rho$ eliminates much of the ambiguity in passing from the $E_{\infty}$-page to $\mathrm{Ext}_{\mathbb{R}}$. In some cases, our convention does not eliminate all ambiguities. However, the remaining ambiguities make little practical difference.

In order to recover the full structure of $\operatorname{Ext}_{\mathbb{R}}$ from the $\rho$-Bockstein $E_{\infty}$-page, we must determine hidden multiplicative extensions. We adopt the precise definition of a hidden extension given in [18, Section 4.1.1]. In this section, we will analyze all hidden extensions by $h_{0}$ and $h_{1}$ through coweight 12 .

The $\rho$-Bockstein spectral sequence has numerous hidden extensions by other elements. There are so many examples that it is not practical to enumerate them exhaustively. In practice, these other hidden extensions are occasionally useful, and we treat them on an ad hoc basis as necessary.

Definition 7.1. A hidden $a$ extension from $x$ to $y$ is decomposable if there exists a hidden $a$ extension from $u$ to $v$, and there exists $z$ such that $x=z u$ and $y=z v$ in the $E_{\infty}$-page.

Example 7.2. There is a hidden $h_{0}$ extension from $\tau h_{1}$ to $\rho \tau h_{1}^{2}$. Multiplication by $\tau h_{1}$ gives the decomposable hidden $h_{0}$ extension from $\tau^{2} h_{1}^{2}$ to $\rho \tau^{2} h_{1}^{3}$.

Definition 7.1 allows us to focus only on the hidden extensions that are most significant. In practice, decomposable hidden extensions are easy to understand, once the indecomposable hidden extensions have been studied.

Remark 7.3. The structure of the $\rho$-Bockstein spectral sequence guarantees that there are no hidden extensions by $\rho$. For degree reasons, if there is a possible hidden $\rho$ extension from $x$ to $y$, then in fact $y$ is a multiple of $\rho$. According to the definition of a hidden extension [18, Section 4.1.1], this means that $y$ cannot be the target of a hidden $\rho$ extension.
7.4. Massey products. Our main tool for establishing hidden extensions is the May Convergence Theorem [21, Theorem 4.1], restated here for convenience.

Theorem 7.5 (May Convergence Theorem). Let $\alpha_{0}, \alpha_{1}$, and $\alpha_{2}$ be elements of $\operatorname{Ext}_{\mathbb{R}}$ such that the Massey product $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}\right\rangle$ is defined. For each $i$, let $a_{i}$ be $a$ permanent cycle in the Bockstein $E_{r}$-page that detects $\alpha_{i}$. Suppose further that:
(1) there exist elements $a_{01}$ and $a_{12}$ in the Bockstein $E_{r}$-page such that $d_{r}\left(a_{01}\right)$ equals $a_{0} a_{1}$ and $d_{r}\left(a_{12}\right)$ equals $a_{1} a_{2}$;
(2) if either $a_{01}$ or $a_{12}$ has degree $(s, f, w)$ and $\rho$-Bockstein degree $m$, and $x$ is an element in degree $(s, f, w)$ and $\rho$-Bockstein degree $m^{\prime}$ such that $m^{\prime} \leq m$, then $d_{t}(x)=0$ for all $t$ such that $m^{\prime}+t>\left(m-m^{\prime}\right)+r$.
Then $a_{0} a_{12}+a_{01} a_{2}$ is a permanent cycle in the $\rho$-Bockstein spectral sequence, and it detects an element of $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}\right\rangle$ in $\operatorname{Ext}_{\mathbb{R}}$.

We will often use Theorem 7.5 in the situation when $a_{01}$ has $\rho$-Bockstein degree 0 and $a_{12}$ has negative $\rho$-Bockstein degree. Since the $\rho$-Bockstein spectral sequence is zero in negative $\rho$-Bockstein degrees, condition (2) of Theorem 7.5 simplifies to
the condition that no element in the same degree as $a_{01}$ with $\rho$-Bockstein degree 0 supports a longer differential.
Proposition 7.6. Table 6 lists some Massey products in $\operatorname{Ext}_{\mathbb{R}}$.
Proof. Most of these Massey products are straightforward applications of the May Convergence Theorem 7.5. In those cases, the sixth column of Table 6 gives the $\rho$-Bockstein differential that is relevant for computing the Massey product.

In some cases, the Massey products follow by comparison to the $\mathbb{C}$-motivic case. This is denoted by the word "C-motivic" in the sixth column of Table 6. However, this only determines the Massey product up to multiples of $\rho$. These ambiguities can typically be eliminated by the multiplicative structure. In particular, if the Massey product $\langle x, y, z\rangle$ is defined and $\rho^{a} x$ and $\rho^{b} z$ are both zero, then

$$
\rho^{a+b}\langle x, y, z\rangle=\rho^{b}\left\langle\rho^{a}, x, y\right\rangle z=0
$$

The indeterminacies can be computed by inspection.
Table 6 is not meant to be an exhaustive list of Massey products. It merely provides an assortment of Massey products that are needed for various specific computations throughout the manuscript.

### 7.7. Hidden $h_{0}$ extensions.

Proposition 7.8. Table 7 lists all indecomposable hidden $h_{0}$ extensions in the $\rho$-Bockstein spectral sequence, through coweight 12 .

Proof. All of the hidden $h_{0}$ extensions in Table 7 are proved using a single technique, which was introduced in the proof of [11, Lemma 6.2]. To illustrate this technique, we will show that there is a hidden $h_{0}$ extension from $\tau^{2} h_{1} c_{0}$ to $\rho^{2} P h_{2}$.

First we show that the product $h_{0} \cdot \tau^{2} h_{1} c_{0}$ is nonzero in $\operatorname{Ext}_{\mathbb{R}}$. If not, then the Massey product $\left\langle\rho, h_{0}, \tau^{2} h_{1} c_{0}\right\rangle$ would be defined in $\operatorname{Ext}_{\mathbb{R}}$. The May Convergence Theorem 7.5, together with the $\rho$-Bockstein differential $d_{1}(\tau)=\rho h_{0}$, would then imply that $\tau^{3} h_{1} c_{0}$ is a permanent cycle. But this contradicts the $\rho$-Bockstein differential $d_{3}\left(\tau^{3} h_{1} c_{0}\right)=\rho^{3} P h_{2}$.

This shows that there must be a hidden $h_{0}$ extension on $\tau^{2} h_{1} c_{0}$. The target of this hidden extension can only be $\rho^{2} P h_{2}$ or $\tau P h_{1}$. But the target must have higher $\rho$-Bockstein filtration than the source, which rules out $\tau P h_{1}$.

In some cases, one needs to use multiplicative relations to rule out possible hidden $h_{0}$ extensions. For example, the target of a hidden $h_{0}$ extension cannot support a $\rho$ multiplication, since $\rho h_{0}=0$ in $\mathrm{Ext}_{\mathbb{R}}$.

We must also show that many elements do not support hidden $h_{0}$ extensions. In all cases through coweight 12, the non-existence follows from simple multiplicative relations. For example, if $x$ is already known to not support an $h_{0}$ extension, then the product $x y$ cannot support an $h_{0}$ extension. Similarly, if $h_{1} y$ or $\rho y$ is non-zero, then $y$ cannot be the target of a hidden extension because of the relations $h_{0} h_{1}=0$ and $\rho h_{0}=0$ in $\operatorname{Ext}_{\mathbb{R}}$.

### 7.9. Hidden $h_{1}$ extensions.

Proposition 7.10. Table 8 lists all indecomposable hidden $h_{1}$ extensions in the $\rho$-Bockstein spectral sequence, through coweight 12.

Proof. Many of the extensions are established using the map

$$
\operatorname{Ext}_{\mathbb{C}} \xrightarrow{p} \operatorname{Ext}_{\mathbb{R}}
$$

of Remark 3.3. To illustrate this technique, we will show that there is a hidden $h_{1}$ extension from $\tau^{2} h_{1} c_{0}$ to $\rho P h_{2}$. The relation $h_{1} \cdot \tau^{3} c_{0}=\tau^{3} h_{1} c_{0}$ in Ext $\mathbb{E}_{\mathbb{C}}$ implies that $h_{1} \cdot p\left(\tau^{3} c_{0}\right)=p\left(\tau^{3} h_{1} c_{0}\right)$. Observe that $p\left(\tau^{3} c_{0}\right)=\rho \tau h_{1} \cdot \tau c_{0}$ and $p\left(\tau^{3} h_{1} c_{0}\right)=\rho^{2} P h_{2}$. This shows that there is a hidden $h_{1}$ extension from $\rho \tau^{2} h_{1} c_{0}$ to $\rho^{2} P h_{2}$, and it follows that there is also a hidden $h_{1}$ extension from $\tau^{2} h_{1} c_{0}$ to $\rho P h_{2}$.

Several more difficult cases are established in the following lemmas.
We must also show that many elements do not support hidden $h_{1}$ extensions. In most cases through coweight 12 , the non-existence follows from simple multiplicative relations. For example, if $x$ is already known to not support an $h_{1}$ extension, then the product $x y$ cannot support an $h_{1}$ extension. Similarly, if $h_{0} y$ is nonzero, then $y$ cannot be the target of a hidden $h_{1}$ extension because of the relation $h_{0} h_{1}=0$ in $\mathrm{Ext}_{\mathbb{R}}$.

Additionally, the map $p: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{\mathbb{R}}$ can be used to detect the absence of some $h_{1}$ extensions.

Remark 7.11. The first three extensions in Table 8 were established in [11].
Lemma 7.12. There is a hidden $h_{1}$ extension from $\tau^{3} h_{2}^{3}$ to $\rho^{4} d_{0}$.
Proof. The element $\tau^{3} h_{2}^{3}$ of the $\rho$-Bockstein $E_{\infty}$-page detects the element $\tau^{2} h_{2} \cdot \tau h_{2}^{2}$ in $\operatorname{Ext}_{\mathbb{R}}$. Table 8 shows that $h_{1} \cdot \tau h_{2}^{2}=\rho c_{0}$, and $h_{1}^{2} \cdot \tau^{2} h_{2}=\rho^{3} c_{0}$. Therefore,

$$
h_{1}^{3} \cdot \tau^{2} h_{2} \cdot \tau h_{2}^{2}=\rho^{3} c_{0} \cdot \rho c_{0}=\rho^{4} h_{1}^{2} d_{0}
$$

It follows that $h_{1} \cdot \tau^{2} h_{2} \cdot \tau h_{2}^{2}$ equals $\rho^{4} d_{0}$.
Lemma 7.13. There is a hidden $h_{1}$ extension from $\tau^{2} f_{0}$ to $\rho^{2} \tau^{2} h_{1} g$.
Proof. Table 6 shows that $\tau^{2} f_{0}$ belongs to the Massey product $\left\langle\tau^{2} h_{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle$. Table 8 shows that there is a hidden $h_{1}$ extension from $\tau^{2} h_{2}$ to $\rho^{2} \tau h_{2}^{2}$. Therefore, we have

$$
h_{1}\left\langle\tau^{2} h_{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle=\left\langle\rho^{2} \tau h_{2}^{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle=\rho^{2}\left\langle\tau h_{2}^{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle,
$$

where the equalities follow from inspection of indeterminacies. Table 6 shows that the element $\tau^{2} h_{1} g$ of the Bockstein $E_{\infty}$-page detects both elements of the Massey product $\left\langle\tau h_{2}^{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle$, so $\rho^{2} \tau^{2} h_{1} g$ is the target of the hidden $h_{1}$ extension.

## Lemma 7.14.

(1) There is a hidden $h_{1}$ extension from $\tau^{8} h_{1} c_{0}$ to $\rho \tau^{6} P h_{2}$.
(2) There is a hidden $h_{1}$ extension from $\tau^{6} P h_{2}$ to $\rho^{2} \tau^{5} h_{0}^{2} d_{0}$.
(3) There is a hidden $h_{1}$ extension from $\tau^{4} P h_{1} c_{0}$ to $\rho \tau^{2} P^{2} h_{2}$.
(4) There is a hidden $h_{1}$ extension from $\tau^{2} P^{2} h_{2}$ to $\rho^{2} \tau P h_{0}^{2} d_{0}$.

Proof. We will show that $h_{1}^{3} \cdot \tau^{8} c_{0}$ equals $\rho^{3} \tau^{5} h_{0}^{2} d_{0}$. This will establish the first two extensions simultaneously.

Table 6 shows that $h_{1} \cdot \tau^{8} c_{0}$ equals the Massey product $\left\langle\tau h_{1} \cdot \tau^{5} c_{0}, \tau h_{1}, \rho^{2}\right\rangle$. By inspection of indeterminacies,

$$
h_{1}^{2}\left\langle\tau h_{1} \cdot \tau^{5} c_{0}, \tau h_{1}, \rho^{2}\right\rangle=h_{1}\left\langle h_{1} \cdot \tau h_{1} \cdot \tau^{5} c_{0}, \tau h_{1}, \rho^{2}\right\rangle
$$

This expression equals $h_{1}\left\langle\rho \tau^{4} P h_{2}, \tau h_{1}, \rho^{2}\right\rangle$, since Table 8 shows that there is a hidden $h_{1}$ extension from $\tau^{6} h_{1} c_{0}$ to $\rho \tau^{4} P h_{2}$. By inspection of indeterminacies again, this also equals $\rho h_{1}\left\langle\tau^{4} P h_{2}, \tau h_{1}, \rho^{2}\right\rangle$.

Now shuffle to obtain

$$
\rho h_{1}\left\langle\tau^{4} P h_{2}, \tau h_{1}, \rho^{2}\right\rangle=\rho^{3}\left\langle h_{1}, \tau^{4} P h_{2}, \tau h_{1}\right\rangle
$$

Finally, Table 6 shows that $\left\langle h_{1}, \tau^{4} P h_{2}, \tau h_{1}\right\rangle$ equals $\tau^{5} h_{0}^{2} d_{0}$. This establishes the first two extensions.

The argument for the last two extensions is essentially identical. The Massey product $\left\langle\tau h_{1} \cdot \tau P c_{0}, \tau h_{1}, \rho^{2}\right\rangle$ equals $h_{1} \cdot \tau^{4} P c_{0}$. We have

$$
h_{1}^{2}\left\langle\tau h_{1} \cdot \tau P c_{0}, \tau h_{1}, \rho^{2}\right\rangle=h_{1}\left\langle h_{1} \cdot \tau h_{1} \cdot \tau P c_{0}, \tau h_{1}, \rho^{2}\right\rangle
$$

which equals

$$
h_{1}\left\langle\rho P^{2} h_{2}, \tau h_{1}, \rho^{2}\right\rangle=\rho h_{1}\left\langle P^{2} h_{2}, \tau h_{1}, \rho^{2}\right\rangle .
$$

Finally, shuffle to obtain

$$
\rho h_{1}\left\langle P^{2} h_{2}, \tau h_{1}, \rho^{2}\right\rangle=\rho^{3}\left\langle h_{1}, P^{2} h_{2}, \tau h_{1}\right\rangle=\rho^{3} \tau P h_{0}^{2} d_{0}
$$

Lemma 7.15. There is a hidden $h_{1}$-extension from $\tau^{3} c_{1}$ to $\rho^{2} \tau^{2} h_{2} c_{1}$.
Proof. Table 6 shows that $\tau^{3} c_{1}$ is contained in the Massey product $\left\langle\rho^{2}, \tau h_{1}, \tau c_{1}\right\rangle$. Shuffle to obtain

$$
\left\langle\rho^{2}, \tau h_{1}, \tau c_{1}\right\rangle h_{1}=\rho^{2}\left\langle\tau h_{1}, \tau c_{1}, h_{1}\right\rangle
$$

Table 6 shows that the element $\tau^{2} h_{2} c_{1}$ of the Bockstein $E_{\infty}$-page detects both elements of $\left\langle\tau h_{1}, \tau c_{1}, h_{1}\right\rangle$, so $\rho^{2} \tau^{2} h_{2} c_{1}$ is the target of the hidden $h_{1}$ extension.

## Lemma 7.16.

(1) There is a hidden $h_{1}$ extension from $\tau^{3} h_{2}^{2} e_{0}$ to $\rho^{2} j$.
(2) There is a hidden $h_{1}$ extension from $j$ to $\rho d_{0}^{2}$.

Proof. Table 8 shows that $h_{1} \cdot \tau h_{2}^{2}=\rho c_{0}$, and $h_{1}^{3} \cdot \tau^{2} e_{0}=h_{1} \cdot \rho \tau h_{2}^{2} \cdot d_{0}=\rho^{2} c_{0} d_{0}$. Therefore,

$$
h_{1}^{4} \cdot \tau h_{2}^{2} \cdot \tau^{2} e_{0}=\rho^{3} c_{0}^{2} d_{0}=\rho^{3} h_{1}^{2} d_{0}^{2}
$$

Both hidden extensions are immediate consequences.
7.17. Miscellaneous relations. We briefly consider a few other types of hidden extensions.

In the Bockstein $E_{\infty}$-page, we have the relation $h_{1}^{2} \cdot \tau^{4} h_{3}+\left(\tau^{2} h_{2}\right)^{2} h_{2}=0$. However, in $\mathrm{Ext}_{\mathbb{R}}$, it is possible that the sum $h_{1}^{2} \cdot \tau^{4} h_{3}+\left(\tau^{2} h_{2}\right)^{2} h_{2}$ equals a non-zero element that is detected in higher $\rho$-Bockstein filtration. Lemma 7.18 demonstrates that this does in fact occur. It provides one additional piece of information about the multiplicative structure of $\mathrm{Ext}_{\mathbb{R}}$.
Lemma 7.18. In $\operatorname{Ext}_{\mathbb{R}}$ we have the relation

$$
h_{1}^{2} \cdot \tau^{4} h_{3}+\left(\tau^{2} h_{2}\right)^{2} h_{2}=\rho^{5} \tau h_{0} h_{3}^{2}
$$

Proof. This follows by comparison along the map $p: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{R}$ of Remark 3.3. The relation $h_{1} \cdot \tau^{8} h_{1}=\tau^{8} h_{1}^{2}$ in Ext $\mathbb{E}_{\mathbb{C}}$ implies that $h_{1} \cdot p\left(\tau^{8} h_{1}\right)=p\left(\tau^{8} h_{1}^{2}\right)$ in Ext $\mathbb{R}_{\mathbb{R}}$. Observe that $p\left(\tau^{8} h_{1}\right)=\rho^{7} \tau^{4} h_{1} h_{3}$ and $p\left(\tau^{8} h_{1}^{2}\right)=\rho^{12} \tau h_{0} h_{3}^{2}$. This shows that there is a hidden $h_{1}$ extension from $\rho^{7} \tau^{4} h_{1} h_{3}$ to $\rho^{12} \tau h_{0} h_{3}^{2}$, which implies the desired relation.

Lemma 7.19. There is a hidden $\tau^{2} h_{2}$ extension from $c_{0}$ to $\rho^{3} d_{0}$.
Proof. Table 8 shows that there are hidden $h_{1}$ extensions from $\tau h_{2}^{2}$ to $\rho c_{0}$, and from $\tau^{3} h_{2}^{2}$ to $\rho^{4} d_{0}$. Therefore,

$$
\tau^{2} h_{2} \cdot \rho c_{0}=\tau^{2} h_{2} \cdot h_{1} \cdot \tau h_{2}^{2}=\rho^{4} d_{0}
$$

Lemma 7.20. There is a hidden $h_{2}$ extension from $h_{2} f_{0}$ to $\rho h_{1}^{2} h_{4} c_{0}$.
Proof. We use the map $p: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{\mathbb{R}}$ of Remark 3.3. The relation $h_{2} \cdot \tau^{2} g=$ $\tau^{2} h_{2} g$ in Ext $\mathbb{E}_{\mathbb{C}}$ implies that $h_{2} \cdot p\left(\tau^{2} g\right)=p\left(\tau^{2} h_{2} g\right)$. Observe that $p\left(\tau^{2} g\right)=\rho h_{2} f_{0}$, and $p\left(\tau^{2} h_{2} g\right)=\rho^{2} h_{1}^{2} h_{4} c_{0}$.

Therefore, there is a hidden $h_{2}$ extension from $\rho h_{2} f_{0}$ to $\rho^{2} h_{1}^{2} h_{4} c_{0}$, and also a hidden $h_{2}$ extension from $h_{2} f_{0}$ to $\rho h_{1}^{2} h_{4} c_{0}$.

## 8. AdAMS DIFFERENTIALS

Sections 6 and 7 describe how to compute Ext $_{\mathbb{R}}$, which serves as the $E_{2}$-page of the $\mathbb{R}$-motivic Adams spectral sequence. We now proceed to analyze Adams differentials. We remind the reader of the notation for stable homotopy elements discussed in Section 2.1 and Table 9.

Recall from Section 3 that extension of scalars induces a map from the $\mathbb{R}$-motivic Adams spectral sequence to the $\mathbb{C}$-motivic Adams spectral sequence. We will frequently use these comparison functors to deduce information about the $\mathbb{R}$-motivic Adams spectral sequence from already known information about the $\mathbb{C}$-motivic and classical Adams spectral sequences. See [18] for an extensive summary of computational information about the $\mathbb{C}$-motivic and classical Adams spectral sequences.
8.1. Toda brackets. The Moss Convergence Theorem 8.2 is a key tool for determining Toda brackets [23] [18, Section 3.1]. We restate a version of the theorem here for convenience.

Theorem 8.2 (Moss Convergence Theorem). Let $\alpha_{0}, \alpha_{1}$, and $\alpha_{2}$ be elements of the $\mathbb{R}$-motivic stable homotopy groups such that the Toda bracket $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}\right\rangle$ is defined. Let $a_{i}$ be a permanent cycle on the Adams $E_{r}$-page that detects $\alpha_{i}$ for each i. Suppose further that:
(1) the Massey product $\left\langle a_{0}, a_{1}, a_{2}\right\rangle_{E_{r}}$ is defined (in $\operatorname{Ext}_{\mathbb{R}}$ when $r=2$, or using the Adams $d_{r-1}$ differential when $r \geq 3$ ).
(2) if $(s, f, w)$ is the degree of either $a_{0} a_{1}$ or $a_{1} a_{2} ; f^{\prime}<f-r+1$; $f^{\prime \prime}>f$; and $t=f^{\prime \prime}-f^{\prime}$; then every Adams differential $d_{t}: E_{t}^{s+1, f^{\prime}, w} \rightarrow E_{t}^{s, f^{\prime \prime}, w}$ is zero.
Then $\left\langle a_{0}, a_{1}, a_{2}\right\rangle_{E_{r}}$ contains a permanent cycle that detects an element of the Toda bracket $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}\right\rangle$.
Theorem 8.3. Table 10 lists some Toda brackets in $\pi_{*, *}$.
Proof. Most of these Toda brackets are straightforward applications of the Moss Convergence Theorem 8.2. When a Massey product appears in the fifth column of Table 10, the Toda bracket follows from the Moss Convergence Theorem 8.2 with $r=2$. When an Adams differential appears in the fifth column of Table 10, the Toda bracket follows from the Moss Convergence Theorem 8.2 with $r>2$, and the given Adams differential is relevant for computing the Toda bracket.

In some cases, the Toda brackets follow by comparison along the extension of scalars functor to the $\mathbb{C}$-motivic case. This is denoted by the word "C-motivic" in the fifth column of Table 10.

One slightly different case is handled below in Lemma 8.4.
Table 10 is not meant to be exhaustive in any sense. It merely provides the Toda brackets that are needed for various specific computations. Beware that these brackets have non-trivial indeterminacies, although we have not specified the indeterminacies because they are not generally relevant to our specific needs.

Beware that some of the Toda brackets in Table 10 require knowledge of Adams differentials that are established below in Section 8.5.
Lemma 8.4. The Toda bracket $\left\langle\rho^{2}, \tau \eta, \nu_{4}\right\rangle$ is detected by $\tau^{2} h_{2} \cdot h_{4}$.
Proof. Table 6 shows that $\tau^{2} h_{2}$ is contained in the Massey product $\left\langle\rho^{2}, \tau h_{1}, h_{2}\right\rangle$. By inspection of indeterminacies,

$$
\tau^{2} h_{2} \cdot h_{4}=\left\langle\rho^{2}, \tau h_{1}, h_{2}\right\rangle h_{4}=\left\langle\rho^{2}, \tau h_{1}, h_{2} h_{4}\right\rangle .
$$

The Moss Convergence Theorem 8.2 implies that $\tau^{2} h_{2} \cdot h_{4}$ detects the corresponding Toda bracket.
8.5. Adams $d_{2}$ differentials. We now proceed to analyze Adams differentials.

Theorem 8.6. Table 12 lists some values of the $\mathbb{R}$-motivic Adams $d_{2}$ differential. Through coweight 12 , the $d_{2}$ differential is zero on all other multiplicative generators of the $\mathbb{R}$-motivic Adams $E_{2}$-page.
Proof. The multiplicative structure rules out many possible differentials. For example, $d_{2}\left(\tau^{5} h_{1}\right)$ cannot equal $\tau^{4} h_{0} \cdot h_{0}^{2}$ because $h_{0}^{2} \cdot \tau^{5} h_{1}=0$, while $\tau^{4} h_{0} \cdot h_{0}^{4}$ is non-zero.

Other multiplicative generators are known to be permanent cycles, because the Moss Convergence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances are shown in Table 11. In one case, the element $h_{4} \cdot \tau c_{0}$ must survive to detect the product $\sigma \cdot \tau \eta_{4}$, by comparison to the $\mathbb{C}$-motivic stable homotopy groups.

Many non-zero differentials follow by comparison to the $\mathbb{C}$-motivic or classical Adams spectral sequences.

Several more difficult cases are established in the following lemmas.
Remark 8.7. Table 11 shows that $\tau^{4} h_{3}$ is a permanent cycle because it detects the Toda bracket $\left\langle\rho^{4}, \tau^{2} \nu, \sigma\right\rangle$. We give an alternative proof that is geometrically interesting, following the method of [11, Lemma 7.3].

There is a functor from classical homotopy theory to $\mathbb{R}$-motivic homotopy theory that takes the sphere $S^{p}$ to $S^{p, 0}$. Let $\sigma_{\text {top }}: S^{15,0} \rightarrow S^{8,0}$ be the image of the classical Hopf map $\sigma: S^{15} \rightarrow S^{8}$ under this functor.

The cohomology of the cofiber of $\sigma_{\text {top }}$ is free on two generators $x$ and $y$ of degrees $(8,0)$ and $(16,0)$, satisfying $\mathrm{Sq}^{8}(x)=\tau^{4} y$ and $\mathrm{Sq}^{16}(x)=\rho^{8} y$. The proof of these formulas is essentially identical to the proof of [11, Lemma 7.4].

This shows that $\tau^{4} h_{3}+\rho^{8} h_{4}$ is a permanent cycle in the Adams spectral sequence, since it detects the stabilization of $\sigma_{\text {top }}$ in $\pi_{7,0}$. Also, $\rho^{8} h_{4}$ is a permanent cycle because there are no possible values for differentials. Therefore, $\tau^{4} h_{3}$ is a permanent cycle.

Lemma 8.8. $d_{2}\left(\tau h_{0} h_{3}^{2}\right)=\rho^{2} h_{1} d_{0}$.
Proof. Table 12 shows that $d_{2}\left(e_{0}\right)=h_{1}^{2} d_{0}$. Therefore,

$$
d_{2}\left(h_{1} \cdot \tau h_{0} h_{3}^{2}\right)=d_{2}\left(\rho^{2} e_{0}\right)=\rho^{2} h_{1}^{2} d_{0}
$$

It follows that $d_{2}\left(\tau h_{0} h_{3}^{2}\right)$ equals $\rho^{2} h_{1} d_{0}$.
Lemma 8.9. $d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$.
Proof. Comparison to the $\mathbb{C}$-motivic or classical case shows that $d_{2}\left(f_{0}\right)$ equals either $h_{0}^{2} e_{0}$ or $h_{0}^{2} e_{0}+\rho^{2} h_{1}^{2} e_{0}$. But $h_{1} \cdot f_{0}=0$ in the $E_{2}$-page, while $h_{1}\left(h_{0}^{2} e_{0}+\rho^{2} h_{1}^{2} e_{0}\right)$ is non-zero. The only possibility is that $d_{2}\left(f_{0}\right)$ equals $h_{0}^{2} e_{0}$.
Lemma 8.10. $d_{2}\left(\tau^{2} f_{0}\right)=h_{0}^{2} \cdot \tau^{2} e_{0}+\rho^{3} \tau h_{2}^{2} \cdot d_{0}$.
Proof. The $\mathbb{C}$-motivic differential $d_{2}\left(\tau^{2} f_{0}\right)=\tau^{2} h_{0}^{2} e_{0}$ implies that $d_{2}\left(\tau^{2} f_{0}\right)$ equals either $h_{0}^{2} \cdot \tau^{2} e_{0}$ or $h_{0}^{2} \cdot \tau^{2} e_{0}+\rho^{3} \tau h_{2}^{2} \cdot d_{0}$. We rule out the first possibility by noting that $\left(h_{0}^{2}+\rho^{2} h_{1}^{2}\right) \cdot \tau^{2} f_{0}=0$ in $\operatorname{Ext}_{\mathbb{R}}$ whereas $\left(h_{0}^{2}+\rho^{2} h_{1}^{2}\right) \cdot \tau^{2} h_{0}^{2} e_{0}=\rho^{6} h_{1} c_{0} d_{0}$.
Lemma 8.11. $d_{2}\left(\tau^{2} h_{1} g\right)=\rho^{2} c_{0} d_{0}$.
Proof. Table 8 shows that $h_{1} \cdot \tau^{2} h_{1} g=\rho \tau h_{2}^{2} \cdot e_{0}$. Therefore,

$$
h_{1} \cdot d_{2}\left(\tau^{2} h_{1} g\right)=\rho \tau h_{2}^{2} \cdot d_{2}\left(e_{0}\right)=\rho \tau h_{2}^{2} \cdot h_{1}^{2} d_{0}
$$

which equals $\rho^{2} h_{1} c_{0} d_{0}$ because Table 8 shows that $h_{1} \cdot \tau h_{2}^{2}=\rho c_{0}$.
8.12. Higher Adams differentials. Theorem 8.6 completely describes the Adams $d_{2}$ differential through coweight 12. From this information, one can compute the Adams $E_{3}$-page in a range. We now proceed to analyze higher differentials.
Theorem 8.13. Table 13 lists some values of the $\mathbb{R}$-motivic Adams d differential for $r \geq 3$. Through coweight 12 , the $d_{3}$ differential is zero on all other multiplicative generators of the $\mathbb{R}$-motivic Adams $E_{3}$-page. Moreover, through coweight 12 , there are no higher differentials, and the $\mathbb{R}$-motivic Adams $E_{4}$-page equals the $\mathbb{R}$-motivic Adams $E_{\infty}$-page.

Proof. As in the proof of Theorem 8.6, many multiplicative generators cannot support differentials because there are no possible targets. Comparison to the $\mathbb{C}$-motivic and classical cases also determines some differentials. For example, $d_{3}\left(h_{1} h_{4}\right)$ cannot equal $h_{1} d_{0}$.

Other multiplicative generators are known to be permanent cycles, because the Moss Convergence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances are shown in Table 11.

The multiplicative structure rules out additional cases. For example $d_{3}\left(\rho h_{4}\right)$ cannot equal $\rho d_{0}$ because of the relation $h_{1} \cdot \rho h_{4}=\rho \cdot h_{1} h_{4}$, together with the fact that $d_{3}\left(h_{1} h_{4}\right)$ is already known to be zero.

The harder cases are established in the following lemmas.
Lemma 8.14. $d_{3}\left(\rho^{6} e_{0}\right)=0$.
Proof. If $d_{3}\left(\rho^{6} e_{0}\right)$ equaled $\rho h_{1} \cdot \tau h_{1} \cdot \tau P h_{1}$, then $\rho^{7} e_{0}$ would be a permanent cycle that detected an element $\alpha$ of $\pi_{10,3}$, and $\alpha$ could not be divisible by $\rho$. Therefore, by Corollary $3.5, \alpha$ would map to a non-zero element $\beta$ in $\pi_{10,3}^{\mathbb{C}}$. Then $\beta$ would have to be detected by $\tau^{3} P h_{1}^{2}$, so $\eta \beta$ would also have to be non-zero in $\pi_{11,4}^{C}$.

But $\eta \alpha$ would be detected by $\rho^{7} h_{1} e_{0}$ and would be divisible by $\rho$, so it would map to zero in $\pi_{11,4}^{\mathbb{C}}$. This contradicts that $\eta \beta$ is non-zero.

Remark 8.15. Lemma 8.14 can also be proved using the $\mathbb{R}$-motivic spectrum $k q$, which is the very effective slice cover of the Hermitian $K$-theory spectrum $K Q$ [1]. The cohomology of $k q$ is isomorphic to $\mathcal{A} / / \mathcal{A}(1)$, where $\mathcal{A}(1)$ is the $\mathbb{M}_{2}$-subalgebra of the $\mathbb{R}$-motivic Steenrod algebra that is generated by $\mathrm{Sq}^{1}$ and $\mathrm{Sq}^{2}$.

By a change-of-rings isomorphism, the homotopy of $k q$ is computed by an Adams spectral sequence whose $E_{2}$-page is $\operatorname{Ext}_{\mathcal{A}(1)}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$. This $E_{2}$-page was computed in [16], and also in [12, Section 6].

The element $\rho \tau h_{1} \cdot \tau P h_{1} \cdot h_{1}$ maps to a non-zero permanent cycle in

$$
\operatorname{Ext}_{A(1)}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)
$$

so it cannot be the target of a differential.
Lemma 8.16. $d_{3}\left(h_{0} h_{4}\right)=h_{0} d_{0}+\rho h_{1} d_{0}$
Proof. The classical differential $d_{3}\left(h_{0} h_{4}\right)=h_{0} d_{0}$ implies that in the $\mathbb{R}$-motivic case, $d_{3}\left(h_{0} h_{4}\right)$ equals either $h_{0} d_{0}$ or $h_{0} d_{0}+\rho h_{1} d_{0}$.

Note that $\tau h_{1} \cdot h_{0} d_{0}=\rho \tau h_{1} \cdot h_{1} d_{0}$ is non-zero on the $E_{3}$-page, but $\tau h_{1} \cdot h_{0} h_{4}=$ $\rho \tau h_{1} \cdot h_{1} h_{4}$ is a permanent cycle, as shown in Table 11. Therefore, $d_{3}\left(h_{0} h_{4}\right)$ cannot equal $h_{0} d_{0}$.

## Lemma 8.17.

(1) $d_{3}\left(\tau h_{2}^{2} \cdot \tau^{2} e_{0}\right)=\rho \tau P h_{1} \cdot d_{0}$.
(2) $d_{3}(\rho j)=\tau P h_{1} \cdot h_{1} d_{0}$.

Proof. Let $\alpha$ be an element of $\pi_{24,13}$ that is represented by $\tau P h_{1} \cdot h_{1} d_{0}$. By comparison of Adams spectral sequences, extension of scalars must take $\alpha$ to zero in $\pi_{24,13}^{\mathbb{C}}$. Moreover, $\tau P h_{1} \cdot h_{1} d_{0}$ cannot be the target of a hidden $\rho$ extension. Therefore, by Corollary 3.5, $\tau P h_{1} \cdot h_{1} d_{0}$ must be the target of an $\mathbb{R}$-motivic Adams differential, and there is only one possible such differential. This establishes the second formula.

The first formula follows immediately from the second one, using the relation $h_{1} \cdot \tau h_{2}^{2} \cdot \tau^{2} e_{0}=\rho c_{0} \cdot \tau^{2} e_{0}$.

## 9. Hidden extensions in the Adams spectral sequence

We have now obtained the Adams $E_{\infty}$-page through coweight 11 . It remains to determine hidden extensions that are hidden in the $\mathbb{R}$-motivic Adams spectral sequence. As in Section 7, we use the precise definition of a hidden extension given in $[18$, Section 4.1.1]. We will analyze all hidden extensions by $\rho$, h , and $\eta$ through coweight 11.

We begin by analyzing all hidden extensions by $\rho$. The main tools are Corollaries 3.5 and 3.8.

Proposition 9.1. Table 14 lists all hidden $\rho$ extensions in the Adams spectral sequence, through coweight 11.
Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

$$
0 \rightarrow(\operatorname{coker} \rho)_{s, w} \rightarrow \pi_{s, w}^{\mathbb{C}} \rightarrow(\operatorname{ker} \rho)_{s, w+1} \rightarrow 0
$$

The rank of $\pi_{s, w}^{\mathbb{C}}$, which is entirely known in our range [18] [19], severely constrains the possible ranks of coker $\rho$ and $\operatorname{ker} \rho$. From these constraints, we can generally deduce the presence and absence of hidden $\rho$ extensions, and there is typically only one possibility in each case in the range under consideration. The only exception is considered below in Lemma 9.2.

Lemma 9.2. There is a hidden $\rho$ extension from $\tau h_{1} c_{0} d_{0}$ to $P h_{0} d_{0}$.
Proof. Table 16 shows that there is a hidden $\eta$ extension from $\rho \tau c_{0} \cdot d_{0}$ to $P h_{0} d_{0}$. Therefore, there must be a hidden $\rho$ extension from $h_{1} \cdot \tau c_{0} \cdot d_{0}$ to $P h_{0} d_{0}$.

Theorem 9.3. Table 15 lists all hidden h extensions in the $\mathbb{R}$-motivic Adams spectral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

$$
0 \rightarrow(\operatorname{coker} \rho)_{s, w} \rightarrow \pi_{s, w}^{\mathbb{C}} \rightarrow(\operatorname{ker} \rho)_{s, w+1} \rightarrow 0
$$

Some of the extensions can be determined via these short exact sequences, using known 2 extensions in $\pi_{*, *}^{C}$. For example, the element $\rho^{6} e_{0}$ in the $\mathbb{R}$-motivic Adams $E_{\infty}$-page lies in $(\operatorname{coker} \rho)_{11,4}$, and it maps to the element $\tau^{2} \zeta_{11}$ in $\pi_{11,4}^{\mathbb{C}}$ that is detected by $\tau^{2} P h_{2}$. But $2 \tau^{2} \zeta_{11}$ is non-zero in $\pi_{11,4}^{\mathbb{C}}$, so $h \alpha$ must also be non-zero. It follows that $\rho^{6} e_{0}$ supports a hidden h extension.

We must also show that many elements do not support hidden h extensions. In most of the cases through coweight 11, the non-existence follows from simple multiplicative relations. For example, if $x$ is a multiple of $\rho$ or of $h_{1}$, then $x$ cannot support a hidden $h$ extension because of the relations $\rho \mathrm{h}=0$ and $\mathrm{h} \eta=0$. Similarly, if $h_{1} y$ or $\rho y$ is non-zero, then $y$ cannot be the target of a hidden h extension.

The following lemmas handle a few additional more complicated cases.
Lemma 9.4. There is a hidden h extension from $h_{2} f_{0}$ to $\rho c_{0} d_{0}$.
Proof. Table 10 shows that $h_{2} f_{0}$ detects the Toda bracket $\left\langle\rho,\left\{h_{2} e_{0}\right\}, \eta\right\rangle$. Shuffle to obtain

$$
\left\langle\rho,\left\{h_{2} e_{0}\right\}, \eta\right\rangle \mathrm{h}=\rho\left\langle\left\{h_{2} e_{0}\right\}, \eta, \mathrm{h}\right\rangle .
$$

Table 10 shows that $c_{0} d_{0}$ detects the latter bracket.
Lemma 9.5. There is no hidden h extension on $\tau h_{2}^{2} \cdot h_{4}$.
Proof. The only possible target is $\rho \tau c_{0} \cdot d_{0}$. Table 16 shows that $\rho \tau c_{0} \cdot d_{0}$ supports a hidden $\eta$ extension, so it cannot be the target of a hidden $h$ extension.
Lemma 9.6. There is a hidden h extension from $\tau c_{0} \cdot d_{0}$ to $P h_{0} d_{0}$.
Proof. Let $\alpha$ be an element of $\pi_{8,4}$ that is detected by $\tau c_{0}$, so $\tau c_{0} \cdot d_{0}$ detects $\alpha \kappa$. Table 14 shows that there is a hidden $\rho$ extension from $h_{1} \cdot \tau c_{0} \cdot d_{0}$ to $P h_{0} d_{0}$, so $P h_{0} d_{0}$ detects $\rho \eta \alpha \kappa$. But $(\mathrm{h}+\rho \eta) \kappa$ is zero, so $(\mathrm{h}+\rho \eta) \alpha \kappa$ must also be zero. This implies that $\mathrm{h} \alpha \kappa$ is also detected by $P h_{0} d_{0}$.

Lemma 9.7. There is no hidden h extension on $h_{4} c_{0}$.
Proof. By comparison to the $\mathbb{C}$-motivic (or classical) case, $h_{4} c_{0}$ detects the product $\sigma \eta_{4}$. By inspection, $\mathrm{h} \eta_{4}$ is zero in $\pi_{16,9}$.

Theorem 9.8. Table 16 lists some hidden $\eta$ extensions in the $\mathbb{R}$-motivic Adams spectral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

$$
0 \rightarrow(\operatorname{coker} \rho)_{s, w} \rightarrow \pi_{s, w}^{\mathbb{C}} \rightarrow(\operatorname{ker} \rho)_{s, w+1} \rightarrow 0
$$

Many of these extensions can be obtained by comparison to the $\mathbb{C}$-motivic case, using these short exact sequences, as in the proof of Theorem 9.3. For example, the
element $\rho \tau h_{1} \cdot \tau P c_{0}$ detects an element $\alpha$ in $(\operatorname{ker} \rho)_{16,7}$. The pre-image $\beta$ of $\alpha$ in $\pi_{16,6}^{\mathbb{C}}$ is detected by $\tau^{3} P c_{0}$. There is a $\mathbb{C}$-motivic hidden $\eta$ extension from $\tau^{3} h_{0}^{3} h_{4}$ to $\tau^{3} P c_{0}$, so $\beta$ is divisible by $\eta$. This implies that $\alpha$ is also divisible by $\eta$, and that there is an $\mathbb{R}$-motivic hidden $\eta$ extension from $\tau^{2} h_{0} \cdot h_{0}^{3} h_{4}$ to $\rho \tau h_{1} \cdot \tau P c_{0}$.

We must also show that many elements do not support hidden $\eta$ extensions. In all cases through coweight 11, the non-existence follows from simple multiplicative relations. For example, if $x$ is a multiple of $h_{0}$, then $x$ cannot support a hidden $\eta$ extension because of the relation $\mathrm{h} \eta=0$. Similarly, if $h_{0} y$ is non-zero, then $y$ cannot be the target of a hidden $\eta$ extension.

Lemma 9.9. There is no hidden $\eta$ extension on $\tau^{2} h_{3}^{2}$.
Proof. Table 10 shows that $\tau^{2} h_{3}^{2}$ detects the Toda bracket $\left\langle\tau^{2} \nu, \sigma, \nu\right\rangle$. Shuffle to obtain

$$
\left\langle\tau^{2} \nu, \sigma, \nu\right\rangle \eta=\tau^{2} \nu\langle\sigma, \nu, \eta\rangle
$$

The latter bracket is zero.
Lemma 9.10. There is no hidden $\eta$ extension on $\tau c_{1}$.
Proof. The possible target $\rho h_{2} f_{0}$ is ruled out by the fact that $\rho h_{2} f_{0}$ supports an $h_{2}$ extension, as shown in Lemma 7.20. The possible target $\tau h_{2}^{2} \cdot d_{0}$ is ruled out by comparison to the $\mathbb{C}$-motivic case.

## 10. Extension of scalars

We will now study the values of the extension of scalars map $\pi_{*, *}^{\mathbb{R}} \rightarrow \pi_{*, *}^{\mathbb{C}}$. Corollary 3.5 tells us exactly which elements of $\pi_{*, *}^{\mathbb{R}}$ have non-trivial images in $\pi_{*, *}^{\mathbb{C}}$. This information about extension of scalars is essential to our approach to the Mahowald invariant described in Section 4.

For the most part, the extension of scalars map is detected by the map from the $\mathbb{R}$-motivic Adams $E_{\infty}$-page to the $\mathbb{C}$-motivic Adams $E_{\infty}$-page. For example, the element $(\tau \eta)^{2}$ of $\pi_{2,0}^{\mathbb{R}}$ is detected by $\tau h_{1}^{2}$ in the $\mathbb{R}$-motivic Adams $E_{\infty}$-page, so its image in $\pi_{2,0}^{\mathbb{C}}$ must be $\tau^{2} \eta^{2}$, which is detected by $\tau^{2} h_{1}^{2}$ in the $\mathbb{C}$-motivic Adams $E_{\infty}$-page.

However, there are a few values that are hidden by the Adams spectral sequence. In other words, there exist elements $\alpha$ in $\pi_{*, *}^{\mathbb{R}}$ such that the Adams filtration of $\alpha$ is strictly less than the Adams filtration of its image in $\pi_{*, *}^{\mathbb{C}}$.
Theorem 10.1. Through coweight 11, Table 17 lists all hidden values of the extension of scalars map $\pi_{*, *}^{\mathbb{R}} \rightarrow \pi_{*, *}^{\mathbb{C}}$.
Proof. We inspect all elements of the $\mathbb{R}$-motivic Adams $E_{\infty}$-page that are not targets of $\rho$ extensions. Most of these elements map non-trivially to the $\mathbb{C}$-motivic Adams $E_{\infty}$-page. For example, $\left(\tau h_{1}\right)^{2}$ maps to $\tau^{2} h_{1}^{2}$.

A few elements map to zero in the $\mathbb{C}$-motivic Adams $E_{\infty}$-page. We treat these elements individually. In some cases, there is only one possible target in sufficiently high Adams filtration. The remaining cases are handled by the following lemmas.

Lemma 10.2. Extension of scalars takes elements detected by $\rho h_{4}$ to elements detected by $\tau h_{3}^{2}$.

Proof. Table 10 shows that $\rho h_{4}$ detects the Toda bracket $\left\langle\rho, \mathrm{h}, \sigma^{2}\right\rangle$. Extension of scalars takes $\left\langle\rho, \mathrm{h}, \sigma^{2}\right\rangle$ in $\pi_{14,7}^{\mathbb{R}}$ to $\left\langle 0,2, \sigma^{2}\right\rangle$ in $\pi_{14,7}^{\mathbb{C}}$, which equals $\left\{0, \tau \sigma^{2}\right\}$. The only non-zero value is $\tau \sigma^{2}$, which is detected by $\tau h_{3}^{2}$.

Lemma 10.3. Extension of scalars takes elements detected by $\rho f_{0}$ to elements detected by $\tau h_{2} d_{0}$.
Proof. Table 10 shows that $\rho f_{0}$ detects the Toda bracket $\langle\rho, \mathrm{h}, \nu \kappa\rangle$. Extension of scalars takes $\langle\rho, \mathrm{h}, \nu \kappa\rangle$ in $\pi_{17,9}^{\mathbb{R}}$ to $\langle 0,2, \nu \kappa\rangle$ in $\pi_{17,9}^{\mathbb{C}}$, which equals $\{0, \tau \nu \kappa\}$. The only non-zero value is $\tau \nu \kappa$, which is detected by $\tau h_{2} d_{0}$.

Lemma 10.4. Extension of scalars takes elements detected by $\rho^{3} \tau^{2} f_{0}$ to elements detected by $\tau^{4} h_{1} d_{0}$.

Proof. The long exact sequence of Corollary 3.8 gives a short exact sequence

$$
0 \rightarrow(\operatorname{coker} \rho)_{15,5} \rightarrow \pi_{15,5}^{\mathbb{C}} \rightarrow(\operatorname{ker} \rho)_{15,6} \rightarrow 0
$$

The group $\pi_{15,5}^{\mathbb{C}}$ is generated by an element of order 32 , detected by $\tau^{3} h_{0}^{3} h_{4}$, and an element of order 2 , detected by $\tau^{4} h_{1} d_{0}$. Also $(\operatorname{ker} \rho)_{15,6}$ is generated by an element of order 32 , detected by $\tau^{2} h_{0} \cdot h_{0}^{3} h_{4}$. It follows that (coker $\left.\rho\right)_{15,5}$ maps onto an element of order 2 that is detected by $\tau^{4} h_{1} d_{0}$.

## 11. Tables

Table 3: Some values of the $\mathbb{R}$-motivic Mahowald invariant

| $s$ | $\alpha$ | $M^{\mathbb{R}}(\alpha)$ | indeterminacy |
| :--- | :--- | :--- | :--- |
| 0 | $2^{k}$ | $\eta^{k}$ |  |
| 1 | $\eta$ | $\nu$ | $2 \nu, 4 \nu$ |
| 2 | $\eta^{2}$ | $\nu^{2}$ |  |
| 3 | $\nu$ | $\sigma$ | $2 \sigma, 4 \sigma, 8 \sigma$ |
| 3 | $2 \nu$ | $\eta \sigma$ | $\epsilon$ |
| 3 | $4 \nu$ | $\eta^{2} \sigma$ | $\eta \epsilon$ |
| 6 | $\nu^{2}$ | $\sigma^{2}$ | $\kappa$ |
| 7 | $\sigma$ | $\tau \sigma^{2}$ |  |
| 7 | $2 \sigma$ | $\eta_{4}$ | $\eta \rho_{15}$ |
| 7 | $4 \sigma$ | $\eta \eta_{4}$ | $\eta^{2} \rho_{15}, \nu \kappa$ |
| 7 | $8 \sigma$ | $\eta^{2} \eta_{4}$ | $\eta^{3} \rho_{15}$ |
| 8 | $\eta \sigma$ | $\nu_{4}$ | $2 \nu_{4}, 4 \nu_{4}$ |
| 8 | $\epsilon$ | $\bar{\sigma}$ |  |
| 9 | $\eta^{2} \sigma$ | $\nu \nu_{4}$ | $\tau \eta \bar{\kappa}$ |
| 9 | $\eta \epsilon$ | $\nu \bar{\sigma}$ | $\tau \eta^{2} \bar{\kappa}$ |
| 9 | $\mu_{9}$ | $\nu \bar{\kappa}$ | $2 \nu \bar{\kappa}, 4 \nu \bar{\kappa}$ |
| 10 | $\eta \mu_{9}$ | $\nu \cdot \nu \bar{\kappa}$ |  |
| 11 | $\zeta_{11}$ | $\tau \nu^{2} \bar{\kappa}$ | $\eta^{3} \rho_{23}$ |
| 11 | $2 \zeta_{11}$ | $\left\{h_{1} h_{3} g\right\}$ | $\eta^{5} \rho_{23}$ |
| 11 | $4 \zeta_{11}$ | $\eta\left\{h_{1} h_{3} g\right\}$ | $\eta^{6} \rho_{23}$ |

Table 4: $h_{1}$-periodic Bockstein differentials

| coweight | $(s, f, w)$ | $x$ | $d_{r}$ | $d_{r}(x)$ |
| :--- | :--- | :--- | :--- | :--- |
| 4 | $(9,5,5)$ | $P h_{1}$ | $d_{3}$ | $h_{1}^{3} c_{0}$ |
| 7 | $(16,7,9)$ | $P c_{0}$ | $d_{3}$ | $h_{1}^{4} d_{0}$ |
| 8 | $(17,9,9)$ | $P^{2} h_{1}$ | $d_{7}$ | $h_{1}^{6} e_{0}$ |
| 10 | $(22,8,12)$ | $P d_{0}$ | $d_{3}$ | $h_{1}^{2} c_{0} d_{0}$ |
| 11 | $(25,8,14)$ | $P e_{0}$ | $d_{3}$ | $h_{1}^{2} c_{0} e_{0}$ |
| 12 | $(25,13,13)$ | $P^{3} h_{1}$ | $d_{3}$ | $P^{2} h_{1}^{3} c_{0}$ |
| 13 | $(30,11,17)$ | $P c_{0} d_{0}$ | $d_{3}$ | $h_{1}^{4} d_{0}^{2}$ |

Table 5: Bockstein differentials

| coweight | $(s, f, w)$ | $x$ | $d_{r}$ | $d_{r}(x)$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $(0,0,-1)$ | $\tau$ | $d_{1}$ | $h_{0}$ |
| 2 | $(0,0,-2)$ | $\tau^{2}$ | $d_{2}$ | $\tau h_{1}$ |
| 4 | $(0,0,-4)$ | $\tau^{4}$ | $d_{4}$ | $\tau^{2} h_{2}$ |
| 4 | $(1,1,-3)$ | $\tau^{4} h_{1}$ | $d_{6}$ | $\tau h_{2}^{2}$ |
| 4 | $(2,2,-2)$ | $\tau^{4} h_{1}^{2}$ | $d_{7}$ | $c_{0}$ |
| 4 | $(7,4,3)$ | $\tau h_{0}^{3} h_{3}$ | $d_{4}$ | $h_{1}^{2} c_{0}$ |
| 4 | $(9,5,5)$ | $P h_{1}$ | $d_{3}$ | $h_{1}^{3} c_{0}$ |
| 5 | $(6,2,1)$ | $\tau^{3} h_{2}^{2}$ | $d_{3}$ | $\tau c_{0}$ |
| 6 | $(7,4,1)$ | $\tau^{3} h_{0}^{3} h_{3}$ | $d_{3}$ | $\tau P h_{1}$ |
| 6 | $(9,4,3)$ | $\tau^{3} h_{1} c_{0}$ | $d_{3}$ | $P h_{2}$ |
| 7 | $(8,3,1)$ | $\tau^{4} c_{0}$ | $d_{7}$ | $d_{0}$ |
| 7 | $(11,5,4)$ | $\tau^{2} P h_{2}$ | $d_{6}$ | $h_{1}^{2} d_{0}$ |
| 7 | $(14,6,7)$ | $\tau h_{0}^{2} d_{0}$ | $d_{4}$ | $h_{1}^{3} d_{0}$ |
| 7 | $(16,7,9)$ | $P c_{0}$ | $d_{3}$ | $h_{1}^{4} d_{0}$ |
| 8 | $(0,0,-8)$ | $\tau^{8}$ | $d_{8}$ | $\tau^{4} h_{3}$ |
| 8 | $(2,2,-6)$ | $\tau^{8} h_{1}^{2}$ | $d_{13}$ | $\tau h_{0} h_{3}^{2}$ |
| 8 | $(3,3,-5)$ | $\tau^{8} h_{1}^{3}$ | $d_{15}$ | $e_{0}$ |
| 8 | $(7,4,-1)$ | $\tau^{5} h_{0}^{3} h_{3}$ | $d_{12}$ | $h_{1} e_{0}$ |
| 8 | $(9,5,1)$ | $\tau^{4} P h_{1}$ | $d_{11}$ | $h_{1}^{2} e_{0}$ |
| 8 | $(15,8,7)$ | $\tau h_{0}^{7} h_{4}$ | $d_{8}$ | $h_{1}^{5} e_{0}$ |
| 8 | $(17,9,9)$ | $P^{2} h_{1}$ | $d_{7}$ | $h_{1}^{6} e_{0}$ |
| 9 | $(3,1,-6)$ | $\tau^{8} h_{2}$ | $d_{12}$ | $\tau^{2} h_{3}^{2}$ |
| 9 | $(14,3,5)$ | $\tau^{3} h_{0} h_{3}^{2}$ | $d_{5}$ | $f_{0}$ |
| 9 | $(14,6,5)$ | $\tau^{3} h_{0}^{2} d_{0}$ | $d_{3}$ | $\tau P c_{0}$ |
| 9 | $(20,4,11)$ | $\tau g$ | $d_{1}$ | $h_{0} g$ |
| 10 | $(6,2,-4)$ | $\tau^{8} h_{2}^{2}$ | $d_{14}$ | $\tau c_{1}$ |
| 10 | $(9,3,-1)$ | $\tau^{7} h_{1}^{2} h_{3}$ | $d_{9}$ | $\tau^{2} e_{0}$ |
| 10 | $(14,4,4)$ | $\tau^{4} d_{0}$ | $d_{5}$ | $\tau^{2} h_{1} e_{0}$ |
| 10 | $(15,8,5)$ | $\tau^{3} h_{0}^{7} h_{4}$ | $d_{3}$ | $\tau P^{2} h_{1}$ |
| 10 | $(17,8,7)$ | $\tau^{3} P h_{1} c_{0}$ | $d_{3}$ | $P^{2} h_{2}$ |
| 10 | $(20,4,10)$ | $\tau^{2} g$ | $d_{2}$ | $\tau h_{1} g$ |
| 10 | $(22,8,12)$ | $P d_{0}$ | $d_{3}$ | $h_{1}^{2} c_{0} d_{0}$ |
|  |  |  |  |  |
| 7 |  |  |  |  |
|  |  |  |  |  |

Table 5: Bockstein differentials

| coweight | $(s, f, w)$ | $x$ | $d_{r}$ | $d_{r}(x)$ |
| :--- | :--- | :--- | :--- | :--- |
| 11 | $(8,2,-3)$ | $\tau^{8} h_{1} h_{3}$ | $d_{12}$ | $\tau^{2} c_{1}$ |
| 11 | $(14,3,3)$ | $\tau^{5} h_{0} h_{3}^{2}$ | $d_{5}$ | $\tau^{2} f_{0}$ |
| 11 | $(17,4,6)$ | $\tau^{4} e_{0}$ | $d_{5}$ | $\tau^{2} h_{1} g$ |
| 11 | $(20,6,9)$ | $\tau^{3} h_{0} h_{2} e_{0}$ | $d_{6}$ | $c_{0} e_{0}$ |
| 11 | $(23,5,12)$ | $\tau^{2} h_{2} g$ | $d_{3}$ | $h_{1}^{2} h_{4} c_{0}$ |
| 11 | $(23,7,12)$ | $i$ | $d_{4}$ | $h_{1} c_{0} e_{0}$ |
| 11 | $(25,8,14)$ | $P e_{0}$ | $d_{3}$ | $h_{1}^{2} c_{0} e_{0}$ |
| 12 | $(7,4,-5)$ | $\tau^{9} h_{0}^{3} h_{3}$ | $d_{5}$ | $\tau^{6} P h_{2}$ |
| 12 | $(9,5,-3)$ | $\tau^{8} P h_{1}$ | $d_{6}$ | $\tau^{5} h_{0}^{2} d_{0}$ |
| 12 | $(10,6,-2)$ | $\tau^{8} P h_{1}^{2}$ | $d_{7}$ | $\tau^{4} P c_{0}$ |
| 12 | $(14,2,2)$ | $\tau^{6} h_{3}^{2}$ | $d_{6}$ | $\tau^{3} c_{1}$ |
| 12 | $(15,8,3)$ | $\tau^{5} h_{0}^{7} h_{4}$ | $d_{5}$ | $\tau^{2} P^{2} h_{2}$ |
| 12 | $(17,9,5)$ | $\tau^{4} P^{2} h_{1}$ | $d_{6}$ | $\tau P h_{0}^{2} d_{0}$ |
| 12 | $(18,10,6)$ | $\tau^{4} P^{2} h_{1}^{2}$ | $d_{7}$ | $P^{2} c_{0}$ |
| 12 | $(23,12,11)$ | $\tau h_{0}^{5} i$ | $d_{4}$ | $P^{2} h_{1}^{2} c_{0}$ |
| 12 | $(25,13,13)$ | $P^{3} h_{1}$ | $d_{3}$ | $P^{2} h_{1}^{3} c_{0}$ |
| 13 | $(14,3,1)$ | $\tau^{7} h_{0} h_{3}^{2}$ | $d_{7}$ | $\tau^{4} g$ |
| 13 | $(17,4,4)$ | $\tau^{6} e_{0}$ | $d_{5}$ | $\tau^{4} h_{1} g$ |
| 13 | $(18,5,5)$ | $\tau^{6} h_{1} e_{0}$ | $d_{6}$ | $\tau^{3} h_{0} h_{2} g$ |
| 13 | $(20,6,7)$ | $\tau^{5} h_{0} h_{2} e_{0}$ | $d_{7}$ | $j$ |
| 13 | $(22,10,9)$ | $\tau^{3} P h_{0}^{2} d_{0}$ | $d_{3}$ | $\tau P^{2} c_{0}$ |
| 13 | $(23,7,10)$ | $\tau^{2} i$ | $d_{6}$ | $d_{0}^{2}$ |
| 13 | $(25,8,12)$ | $\tau^{2} P e_{0}$ | $d_{5}$ | $h_{1} d_{0}^{2}$ |

Table 6: Some Massey products in Ext $_{\mathbb{R}}$

| coweight | $(s, f, w)$ | bracket | contains | indeterminacy | proof | used in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (3, 1, 0) | $\left\langle\rho^{2}, \tau h_{1}, h_{2}\right\rangle$ | $\tau^{2} h_{2}$ | $\rho^{4} h_{3}$ | $d_{2}\left(\tau^{2}\right)=\rho^{2} \tau h_{1}$ | $\left\langle\rho^{2}, \tau \eta, \nu\right\rangle$, Lemma 8.4 |
| 4 | $(8,3,4)$ | $\left\langle c_{0}, h_{0}, \rho\right\rangle$ | $\tau c_{0}$ | $\rho \tau h_{1} \cdot h_{1} h_{3}$ | $d_{1}(\tau)=\rho h_{0}$ | $\langle\epsilon, \mathrm{h}, \rho\rangle$ |
| 7 | ( $7,1,0$ ) | $\left\langle\rho^{4}, \tau^{2} h_{2}, h_{3}\right\rangle$ | $\tau^{4} h_{3}$ | $\rho^{8} h_{4}$ | $d_{4}\left(\tau^{4}\right)=\rho^{4} \tau^{2} h_{2}$ | $\left\langle\rho^{4}, \tau^{2} \nu, \sigma\right\rangle$ |
| 9 | $(21,5,12)$ | $\left\langle\tau h_{1}, h_{1}^{4}, h_{4}\right\rangle$ | $h_{2} f_{0}$ | 0 | $\mathbb{C}$-motivic | Lemma 6.10 |
| 9 | $(21,5,12)$ | $\left\langle\rho, h_{2} e_{0}, h_{1}\right\rangle$ | $h_{2} f_{0}$ | $\rho^{2} h_{2} g$ | $d_{1}(\tau g)=\rho h_{2} e_{0}$ | $\left\langle\rho,\left\{h_{2} e_{0}\right\}, \eta\right\rangle$ |
| 10 | $(18,4,8)$ | $\left\langle\tau^{2} h_{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle$ | $\tau^{2} f_{0}$ | $\tau^{2} h_{2} \cdot h_{0}^{2} h_{4}, \rho^{5} h_{4} c_{0}$ | $\mathbb{C}$-motivic | Lemma 7.13 |
| 10 | $(21,5,11)$ | $\left\langle\tau h_{2}^{2}, h_{3}, h_{0}^{2} h_{3}\right\rangle$ | $\tau^{2} h_{1} g$ | $\rho^{3} h_{1} h_{4} c_{0}$ | $\mathbb{C}$-motivic | Lemma 7.13 |
| 11 | $(3,1,-8)$ | $\left\langle\rho^{2}, \tau^{9} h_{1}, h_{2}\right\rangle$ | $\tau^{10} h_{2}$ | 0 | $d_{2}\left(\tau^{10}\right)=\rho^{2} \tau^{9} h_{1}$ | $\left\langle\rho^{2}, \tau^{9} \eta, \nu\right\rangle$ |
| 11 | $(9,4,-2)$ | $\left\langle\tau h_{1} \cdot \tau^{5} c_{0}, \tau h_{1}, \rho^{2}\right\rangle$ | $h_{1} \cdot \tau^{8} c_{0}$ | 0 | $d_{2}\left(\tau^{2}\right)=\rho^{2} \tau h_{1}$ | Lemma 7.14 |
| 11 | $(11,5,0)$ | $\left\langle\rho^{2}, \tau^{5} h_{1}, P h_{2}\right\rangle$ | $\tau^{6} P h_{2}$ | $\rho^{16} h_{3} g$ | $d_{2}\left(\tau^{6}\right)=\rho^{2} \tau^{5} h_{1}$ | $\left\langle\rho^{2}, \tau^{5} \eta, \zeta_{11}\right\rangle$ |
| 11 | $(14,6,3)$ | $\left\langle h_{1}, \tau^{4} P h_{2}, \tau h_{1}\right\rangle$ | $\tau^{5} h_{0}^{2} d_{0}$ | 0 | $\mathbb{C}$-motivic | Lemma 7.14 |
| 11 | $(17,8,6)$ | $\left\langle\tau h_{1} \cdot \tau P c_{0}, \tau h_{1}, \rho^{2}\right\rangle$ | $h_{1} \cdot \tau^{4} P c_{0}$ | 0 | $d_{2}\left(\tau^{2}\right)=\rho^{2} \tau h_{1}$ | Lemma 7.14 |
| 11 | $(19,3,8)$ | $\left\langle\rho, h_{0}, \tau^{2} c_{1}\right\rangle$ | $\tau^{3} c_{1}$ | $\rho^{2} \tau^{2} h_{2} \cdot h_{2} h_{4}$ | $d_{1}(\tau)=\rho h_{0}$ | $\left\langle\rho, \mathrm{h}, \tau^{2} \bar{\sigma}\right\rangle$ |
| 11 | $(19,3,8)$ | $\left\langle\rho^{2}, \tau h_{1}, \tau c_{1}\right\rangle$ | $\tau^{3} c_{1}$ | $\rho^{2} \tau^{2} h_{2} \cdot h_{2} h_{4}$ | $d_{2}\left(\tau^{2}\right)=\rho^{2} \tau h_{1}$ | Lemma 7.15 |
| 11 | $(19,9,8)$ | $\left\langle\rho^{2}, \tau h_{1}, P^{2} h_{2}\right\rangle$ | $\tau^{2} P^{2} h_{2}$ | 0 | $d_{2}\left(\tau^{2}\right)=\rho^{2} \tau h_{1}$ | $\left\langle\rho^{2}, \tau \eta, \zeta_{19}\right\rangle$ |
| 11 | $(22,4,11)$ | $\left\langle\tau h_{1}, \tau c_{1}, h_{1}\right\rangle$ | $h_{2} \cdot \tau^{2} c_{1}$ | $\rho h_{4} \cdot \tau c_{0}$ | $\mathbb{C}$-motivic | Lemma 7.15 |
| 11 | $(22,10,11)$ | $\left\langle h_{1}, P^{2} h_{2}, \tau h_{1}\right\rangle$ | $\tau P h_{0}^{2} d_{0}$ | 0 | $\mathbb{C}$-motivic | Lemma 7.14 |
| 12 | $(20,4,8)$ | $\left\langle\rho, \tau^{2} h_{0}, \rho, h_{2} e_{0}\right\rangle$ | $\tau^{4} g$ | $\rho^{2} h_{2} \cdot \tau^{3} c_{1}$ | $\begin{aligned} d_{1}\left(\tau^{3}\right) & =\rho \tau^{2} h_{0}, \\ d_{1}(\tau g) & =\rho h_{2} e_{0} \end{aligned}$ | $\left\langle\rho, \tau^{2} \mathrm{~h}, \rho,\left\{h_{2} e_{0}\right\}\right\rangle$ |

Table 7: Hidden $h_{0}$ extensions in the $\rho$-Bockstein spectral sequence

| coweight | $(s, f, w)$ | source | target |
| :---: | :---: | :---: | :---: |
| 1 | $(1,1,0)$ | $\tau h_{1}$ | $\rho \tau h_{1}^{2}$ |
| 3 | $(3,3,0)$ | $\tau^{2} h_{0}^{2} h_{2}$ | $\rho^{6} h_{1} c_{0}$ |
| 3 | $(7,4,4)$ | $h_{0}^{3} h_{3}$ | $\rho^{3} h_{1}^{2} c_{0}$ |
| 4 | $(6,2,2)$ | $\tau^{2} h_{2}^{2}$ | $\rho^{2} \tau c_{0}$ |
| 4 | $(8,3,4)$ | $\tau c_{0}$ | $\rho \tau h_{1} c_{0}$ |
| 5 | $(1,1,-4)$ | $\tau^{5} h_{1}$ | $\rho \tau^{5} h_{1}^{2}$ |
| 5 | $(7,4,2)$ | $\tau^{2} h_{0}^{3} h_{3}$ | $\rho^{2} \tau P h_{1}$ |
| 5 | $(9,4,4)$ | $\tau^{2} h_{1} c_{0}$ | $\rho^{2} P h_{2}$ |
| 5 | $(9,5,4)$ | $\tau P h_{1}$ | $\rho \tau P h_{1}^{2}$ |
| 6 | $(6,2,0)$ | $\tau^{4} h_{2}^{2}$ | $\rho^{3} \tau^{3} h_{2}^{3}$ |
| 6 | $(14,6,8)$ | $h_{0}^{2} d_{0}$ | $\rho^{3} h_{1}^{3} d_{0}$ |
| 7 | $(3,3,-4)$ | $\tau^{6} h_{0}^{2} h_{2}$ | $\rho^{14} e_{0}$ |
| 7 | $(7,4,0)$ | $\tau^{4} h_{0}^{3} h_{3}$ | $\rho^{11} h_{1} e_{0}$ |
| 7 | $(11,7,4)$ | $\tau^{2} P h_{0}^{2} h_{2}$ | $\rho^{10} h_{1}^{4} e_{0}$ |
| 7 | $(15,8,8)$ | $h_{0}^{7} h_{4}$ | $\rho^{7} h_{1}^{5} e_{0}$ |
| 8 | $(8,3,0)$ | $\tau^{5} c_{0}$ | $\rho \tau^{5} h_{1} c_{0}$ |
| 8 | $(14,3,6)$ | $\tau^{2} h_{0} h_{3}^{2}$ | $\rho^{4} f_{0}$ |
| 8 | $(14,6,6)$ | $\tau^{2} h_{0}^{2} d_{0}$ | $\rho^{2} \tau P c_{0}$ |
| 8 | $(16,7,8)$ | $\tau P c_{0}$ | $\rho \tau P h_{1} c_{0}$ |
| 9 | (1, 1, -8) | $\tau^{9} h_{1}$ | $\rho \tau^{9} h_{1}^{2}$ |
| 9 | (7, 4, -2) | $\tau^{6} h_{0}^{3} h_{3}$ | $\rho^{2} \tau^{5} P h_{1}$ |
| 9 | $(9,3,0)$ | $\tau^{6} h_{1}^{2} h_{3}$ | $\rho^{8} \tau^{2} e_{0}$ |
| 9 | $(9,4,0)$ | $\tau^{6} h_{1} c_{0}$ | $\rho^{2} \tau^{4} P h_{2}$ |
| 9 | $(9,5,0)$ | $\tau^{5} P h_{1}$ | $\rho \tau^{5} P h_{1}^{2}$ |
| 9 | $(15,8,6)$ | $\tau^{2} h_{0}^{7} h_{4}$ | $\rho^{2} \tau P^{2} h_{1}$ |
| 9 | $(17,8,8)$ | $\tau^{2} P h_{1} c_{0}$ | $\rho^{2} P^{2} h_{2}$ |
| 9 | $(17,9,8)$ | $\tau P^{2} h_{1}$ | $\rho \tau P^{2} h_{1}^{2}$ |
| 10 | $(14,3,4)$ | $\tau^{4} h_{0} h_{3}^{2}$ | $\rho^{4} \tau^{2} f_{0}$ |
| 10 | $(18,5,8)$ | $\tau^{2} h_{0} f_{0}$ | $\rho^{5} \tau h_{2}^{2} e_{0}$ |
| 10 | $(20,6,10)$ | $\tau^{2} h_{0} h_{2} e_{0}$ | $\rho^{5} c_{0} e_{0}$ |
| 11 | $(3,3,-8)$ | $\tau^{10} h_{0}^{2} h_{2}$ | $\rho^{6} \tau^{8} h_{1} c_{0}$ |
| 11 | $(7,4,-4)$ | $\tau^{8} h_{0}^{3} h_{3}$ | $\rho^{4} \tau^{6} P h_{2}$ |
| 11 | $(11,7,0)$ | $\tau^{6} P h_{0}^{2} h_{2}$ | $\rho^{6} \tau^{4} P h_{1} c_{0}$ |
| 11 | $(15,8,4)$ | $\tau^{4} h_{0}^{7} h_{4}$ | $\rho^{4} \tau^{2} P^{2} h_{2}$ |
| 11 | $(19,3,8)$ | $\tau^{3} c_{1}$ | $\rho^{3} \tau^{2} h_{2} c_{1}$ |
| 11 | $(19,11,8)$ | $\tau^{2} P^{2} h_{0}^{2} h_{2}$ | $\rho^{6} P^{2} h_{1} c_{0}$ |
| 11 | $(23,12,12)$ | $h_{0}^{5} i$ | $\rho^{3} P^{2} h_{1}^{2} c_{0}$ |
| 12 | $(6,2,-6)$ | $\tau^{10} h_{2}^{2}$ | $\rho^{2} \tau^{9} c_{0}$ |
| 12 | $(8,3,-4)$ | $\tau^{9} c_{0}$ | $\rho \tau^{9} h_{1} c_{0}$ |
| 12 | $(14,3,2)$ | $\tau^{6} h_{0} h_{3}^{2}$ | $\rho^{6} \tau^{4} g$ |
| 12 | $(14,6,2)$ | $\tau^{6} h_{0}^{2} d_{0}$ | $\rho^{2} \tau^{5} P c_{0}$ |
| 12 | $(16,7,4)$ | $\tau^{5} P c_{0}$ | $\rho \tau^{5} P h_{1} c_{0}$ |
| 12 | $(18,5,6)$ | $\tau^{6} h_{0} f_{0}$ | $\rho^{5} \tau^{3} h_{2}^{2} e_{0}$ |
| 12 | $(20,6,8)$ | $\tau^{4} h_{0}^{2} g$ | $\rho^{6} j$ |

Table 7: Hidden $h_{0}$ extensions in the $\rho$-Bockstein spectral sequence

| coweight | $(s, f, w)$ | source | target |
| :--- | :--- | :--- | :--- |
| 12 | $(22,10,10)$ | $\tau^{2} P h_{0}^{2} d_{0}$ | $\rho^{2} \tau P^{2} c_{0}$ |
| 12 | $(24,11,12)$ | $\tau P^{2} c_{0}$ | $\rho \tau P^{2} h_{1} c_{0}$ |
| 12 | $(26,9,14)$ | $h_{0}^{2} j$ | $\rho^{4} h_{1}^{2} d_{0}^{2}$ |

Table 8: Hidden $h_{1}$ extensions in the $\rho$-Bockstein spectral sequence

| coweight | $(s, f, w)$ | source | target | proof |
| :--- | :--- | :--- | :--- | :--- |
| 2 | $(0,1,-2)$ | $\tau^{2} h_{0}$ | $\rho \tau^{2} h_{1}^{2}$ |  |
| 3 | $(3,1,0)$ | $\tau^{2} h_{2}$ | $\rho^{2} \tau h_{2}^{2}$ |  |
| 3 | $(6,2,3)$ | $\tau h_{2}^{2}$ | $\rho c_{0}$ |  |
| 5 | $(9,4,4)$ | $\tau^{2} h_{1} c_{0}$ | $\rho P h_{2}$ |  |
| 6 | $(0,1,-6)$ | $\tau^{6} h_{0}$ | $\rho \tau^{6} h_{1}^{2}$ |  |
| 6 | $(9,3,3)$ | $\tau^{3} h_{2}^{3}$ | $\rho^{4} d_{0}$ | Lemma 7.12 |
| 7 | $(14,3,7)$ | $\tau h_{0} h_{3}^{2}$ | $\rho^{2} e_{0}$ |  |
| 9 | $(9,3,0)$ | $\tau^{6} h_{1}^{2} h_{3}$ | $\rho^{7} \tau^{2} e_{0}$ |  |
| 9 | $(9,4,0)$ | $\tau^{6} h_{1} c_{0}$ | $\rho \tau^{4} P h_{2}$ |  |
| 9 | $(17,8,8)$ | $\tau^{2} P h_{1} c_{0}$ | $\rho P^{2} h_{2}$ |  |
| 9 | $(18,5,9)$ | $\tau^{2} h_{1} e_{0}$ | $\rho \tau h_{2}^{2} d_{0}$ |  |
| 10 | $(0,1,-10)$ | $\tau^{10} h_{0}$ | $\rho \tau^{10} h_{1}^{2}$ |  |
| 10 | $(14,2,4)$ | $\tau^{4} h_{3}^{2}$ | $\rho^{4} \tau^{2} c_{1}$ |  |
| 10 | $(18,4,8)$ | $\tau^{2} f_{0}$ | $\rho^{2} \tau^{2} h_{1} g$ | Lemma 7.13 |
| 10 | $(19,3,9)$ | $\tau^{2} c_{1}$ | $\rho^{2} \tau h_{2} c_{1}$ |  |
| 11 | $(3,1,-8)$ | $\tau^{10} h_{2}$ | $\rho^{2} \tau^{9} h_{2}^{2}$ |  |
| 11 | $(6,2,-5)$ | $\tau^{9} h_{2}^{2}$ | $\rho \tau^{8} c_{0}$ |  |
| 11 | $(9,4,-2)$ | $\tau^{8} h_{1} c_{0}$ | $\rho \tau^{6} P h_{2}$ | Lemma 7.14 |
| 11 | $(11,5,0)$ | $\tau^{6} P h_{2}$ | $\rho^{2} \tau^{5} h_{0}^{2} d_{0}$ | Lemma 7.14 |
| 11 | $(14,6,3)$ | $\tau^{5} h_{0}^{2} d_{0}$ | $\rho \tau^{4} P c_{0}$ |  |
| 11 | $(17,8,6)$ | $\tau^{4} P h_{1} c_{0}$ | $\rho \tau^{2} P^{2} h_{2}$ | Lemma 7.14 |
| 11 | $(19,3,8)$ | $\tau^{3} c_{1}$ | $\rho^{2} \tau^{2} h_{2} c_{1}$ | Lemma 7.15 |
| 11 | $(19,9,8)$ | $\tau^{2} P^{2} h_{2}$ | $\rho^{2} \tau P h_{0}^{2} d_{0}$ | Lemma 7.14 |
| 11 | $(22,10,11)$ | $\tau P h_{0}^{2} d_{0}$ | $\rho P^{2} c_{0}$ |  |
| 12 | $(21,5,9)$ | $\tau^{4} h_{1} g$ | $\rho \tau^{3} h_{2}^{2} e_{0}$ |  |
| 12 | $(22,9,10)$ | $\tau^{2} P h_{0} d_{0}$ | $\rho \tau^{2} P h_{1}^{2} d_{0}$ |  |
| 12 | $(23,6,11)$ | $\tau^{3} h_{2}^{2} e_{0}$ | $\rho^{2} j$ | Lemma 7.16 |
| 12 | $(26,7,14)$ | $j$ | $\rho d_{0}^{2}$ | Lemma 7.16 |
|  |  |  |  |  |

Table 9: Multiplicative generators of $\pi_{*, *}^{\mathbb{R}}$

| coweight | $(s, w)$ | element | detected by |
| :---: | :---: | :---: | :---: |
| 0 | $(-1,-1)$ | $\rho$ | $\rho$ |
| 0 | $(0,0)$ | h | $h_{0}$ |
| 0 | $(1,1)$ | $\eta$ | $h_{1}$ |
| 1 | $(1,0)$ | $\tau \eta$ | $\tau h_{1}$ |
| 1 | $(3,2)$ | $\nu$ | $h_{2}$ |
| 2 | $(0,-2)$ | $\tau^{2} \mathrm{~h}$ | $\tau^{2} h_{0}$ |
| 3 | $(3,0)$ | $\tau^{2} \nu$ | $\tau^{2} h_{2}$ |
| 3 | $(6,3)$ | $\tau \nu^{2}$ | $\tau h_{2}^{2}$ |
| 3 | $(7,4)$ | $\sigma$ | $h_{3}$ |
| 3 | $(8,5)$ | $\epsilon$ | $c_{0}$ |
| 4 | $(0,-4)$ | $\tau^{4} \mathrm{~h}$ | $\tau^{4} h_{0}$ |
| 4 | $(8,4)$ | $\tau \epsilon$ | $\tau c_{0}$ |
| 5 | $(1,-4)$ | $\tau^{5} \eta$ | $\tau^{5} h_{1}$ |
| 5 | $(9,4)$ | $\tau \mu_{9}$ | $\tau P h_{1}$ |
| 5 | $(11,6)$ | $\zeta_{11}$ | $P h_{2}$ |
| 6 | $(0,-6)$ | $\tau^{6} \mathrm{~h}$ | $\tau^{6} h_{0}$ |
| 6 | $(14,8)$ | $\kappa$ | $d_{0}$ |
| 7 | $(7,0)$ | $\tau^{4} \sigma$ | $\tau^{4} h_{3}$ |
| 7 | $(11,4)$ | $\tau^{2} \zeta_{11}$ | $\rho^{6} e_{0}$ |
| 7 | $(14,7)$ | $\tau \sigma^{2}$ | $\rho h_{4}$ |
| 7 | $(15,8)$ | $\rho_{15}$ | $h_{0}^{3} h_{4}$ |
| 7 | $(16,9)$ | $\eta_{4}$ | $h_{1} h_{4}$ |
| 8 | $(0,-8)$ | $\tau^{8} \mathrm{~h}$ | $\tau^{8} h_{0}$ |
| 8 | $(8,0)$ | $\tau^{5} \epsilon$ | $\tau^{5} c_{0}$ |
| 8 | $(14,6)$ | $\tau^{2} \sigma^{2}$ | $\tau^{2} h_{3}^{2}$ |
| 8 | $(16,8)$ | $\tau \eta_{4}$ | $\tau h_{1} \cdot h_{4}$ |
| 8 | $(17,9)$ | $\tau \nu \kappa$ | $\rho f_{0}$ |
| 8 | $(18,10)$ | $\nu_{4}$ | $h_{2} h_{4}$ |
| 8 | $(19,11)$ | $\bar{\sigma}$ | $c_{1}$ |
| 8 | $(20,12)$ | $\left\{h_{2} e_{0}\right\}$ | $h_{2} e_{0}$ |
| 9 | $(1,-8)$ | $\tau^{9} \eta$ | $\tau^{9} h_{1}$ |
| 9 | $(9,0)$ | $\tau^{5} \mu_{9}$ | $\tau^{5} P h_{1}$ |
| 9 | $(11,2)$ | $\tau^{4} \zeta_{11}$ | $\tau^{4} P h_{2}$ |
| 9 | $(15,6)$ | $\tau^{3} \eta \kappa$ | $\rho^{2} \tau^{2} e_{0}$ |
| 9 | $(17,8)$ | $\tau \mu_{17}$ | $\tau P^{2} h_{1}$ |
| 9 | $(19,10)$ | $\tau \bar{\sigma}$ | $\tau c_{1}$ |
| 9 | $(19,10)$ | $\zeta_{19}$ | $P^{2} h_{2}$ |
| 9 | $(21,12)$ | $\tau \eta \bar{\kappa}$ | $h_{2} f_{0}$ |
| 9 | $(23,14)$ | $\nu \bar{\kappa}$ | $h_{2} g$ |
| 10 | $(0,-10)$ | $\tau^{10} \mathrm{~h}$ | $\tau^{10} h_{0}$ |
| 10 | $(15,5)$ | $\tau^{4} \eta \kappa$ | $\rho^{3} \tau^{2} f_{0}$ |
| 10 | $(18,8)$ | $\tau^{2} \nu_{4}$ | $\tau^{2} h_{2} \cdot h_{4}$ |
| 10 | $(19,9)$ | $\tau^{2} \bar{\sigma}$ | $\tau^{2} c_{1}$ |
| 10 | $(20,10)$ | $\tau^{2} \mathrm{~h} \bar{\kappa}$ | $h_{2} \cdot \tau^{2} e_{0}$ |

Table 9: Multiplicative generators of $\pi_{*, *}^{\mathbb{R}}$

| coweight | $(s, w)$ | element | detected by |
| :--- | :--- | :--- | :--- |
| 10 | $(21,11)$ | $\tau \nu \nu_{4}$ | $\tau h_{2}^{2} \cdot h_{4}$ |
| 11 | $(3,-8)$ | $\tau^{10} \nu$ | $\tau^{10} h_{2}$ |
| 11 | $(6,-5)$ | $\tau^{9} \nu^{2}$ | $\tau^{9} h_{2}^{2}$ |
| 11 | $(8,-3)$ | $\tau^{8} \epsilon$ | $\tau^{8} c_{0}$ |
| 11 | $(11,0)$ | $\tau^{6} \zeta_{11}$ | $\tau^{6} P h_{2}$ |
| 11 | $(15,4)$ | $\tau^{4} \rho_{15}$ | $\tau^{4} h_{0}^{3} h_{4}$ |
| 11 | $(17,6)$ | $\tau^{4} \nu \kappa$ | $\tau^{2} h_{0} \cdot \tau^{2} e_{0}$ |
| 11 | $(19,8)$ | $\tau^{3} \bar{\sigma}$ | $\tau^{3} c_{1}$ |
| 11 | $(19,8)$ | $\tau^{2} \zeta_{19}$ | $\tau^{2} P^{2} h_{2}$ |
| 11 | $(23,12)$ | $\rho_{23}$ | $h_{0}^{2} i$ |
| 11 | $(26,15)$ | $\tau \nu^{2} \bar{\kappa}$ | $\rho h_{3} g$ |
| 11 | $(28,17)$ | $\left\{h_{1} h_{3} g\right\}$ | $h_{1} h_{3} g$ |

Table 10: Some Toda brackets in $\pi_{*, *}$

| coweight | $(s, w)$ | bracket | detected by | proof | used in |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | $(3,0)$ | $\left\langle\rho^{2}, \tau \eta, \nu\right\rangle$ | $\tau^{2} h_{2}$ | $\left\langle\rho^{2}, \tau h_{1}, h_{2}\right\rangle$ | Table 11 |
| 4 | $(8,4)$ | $\langle\epsilon, \mathrm{h}, \rho\rangle$ | $\tau c_{0}$ | $\left\langle c_{0}, h_{0}, \rho\right\rangle$ | Table 11 |
| 7 | $(7,0)$ | $\left\langle\rho^{4}, \tau^{2} \nu, \sigma\right\rangle$ | $\tau^{4} h_{3}$ | $\left\langle\rho^{4}, \tau^{2} h_{2}, h_{3}\right\rangle$ | Table 11 |
| 7 | $(14,7)$ | $\left\langle\rho, \mathrm{h}, \sigma^{2}\right\rangle$ | $\rho h_{4}$ | $d_{2}\left(h_{4}\right)=h_{0} h_{3}^{2}$ | Lemma 10.2 |
| 8 | $(8,0)$ | $\left\langle\tau^{5} \eta, \mathrm{~h} \nu, \nu\right\rangle$ | $\tau^{5} c_{0}$ | $\mathbb{C}$-motivic | Table 11 |
| 8 | $(14,6)$ | $\left\langle\tau^{2} \nu, \sigma, \nu\right\rangle$ | $\tau^{2} h_{3}^{2}$ | $\mathbb{C}$-motivic | Table 11, Lemma 9.9 |
| 8 | $(16,8)$ | $\left\langle\sigma^{2}, 2, \tau \eta\right\rangle$ | $\tau h_{1} \cdot h_{4}$ | $d_{2}\left(h_{4}\right)=\left(h_{0}+\rho h_{1}\right) h_{3}^{2}$ | Table 11 |
| 8 | $(16,8)$ | $\left\langle\tau \mu_{9}, \mathrm{~h} \nu, \nu\right\rangle$ | $\tau P c_{0}$ | $\mathbb{C}-$ motivic | Table 11 |
| 8 | $(17,9)$ | $\langle\rho, \mathrm{h}, \nu \kappa\rangle$ | $\rho f_{0}$ | $d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$ | Lemma 10.3 |
| 8 | $(18,10)$ | $\langle\nu, \sigma, \mathrm{h} \sigma\rangle$ | $h_{2} h_{4}$ | $d_{2}\left(h_{4}\right)=h_{0} h_{3}^{2}$ | Table 11 |
| 9 | $(15,6)$ | $\langle\rho, \rho \tau \eta, \tau \eta \cdot \kappa\rangle$ | $\rho^{2} \tau^{2} e_{0}$ | $d_{2}\left(\tau^{2} e_{0}\right)=\tau^{2} h_{1}^{2} d_{0}$ | Table 11 |
| 9 | $(21,12)$ | $\left\langle\rho,\left\{h_{2} e_{0}\right\}, \eta\right\rangle$ | $h_{2} f_{0}$ | $\left\langle\rho, h_{2} e_{0}, h_{1}\right\rangle$ | Lemma 9.4 |
| 9 | $(21,13)$ | $\left\langle\left\{h_{2} e_{0}\right\}, \eta, \mathrm{h}\right\rangle$ | $c_{0} d_{0}$ | $\mathbb{C}-$ motivic | Lemma 9.4 |
| 10 | $(18,8)$ | $\left\langle\rho^{2}, \tau \eta, \nu \nu_{4}\right\rangle$ | $\tau^{2} h_{2} \cdot h_{4}$ | Lemma 8.4 | Table 11 |
| 10 | $(19,9)$ | $\left\langle\tau^{2} \nu, \eta \sigma, \sigma\right\rangle$ | $\tau^{2} c_{1}$ | $\mathbb{C}-$ motivic | Table 11 |
| 11 | $(3,-8)$ | $\left\langle\rho^{2}, \tau^{9} \eta, \nu\right\rangle$ | $\tau^{10} h_{2}$ | $\left\langle\rho^{2}, \tau^{9} h_{1}, h_{2}\right\rangle$ | Table 11 |
| 11 | $(11,0)$ | $\left\langle\rho^{2}, \tau^{5} \eta, \zeta_{11}\right\rangle$ | $\tau^{6} P h_{2}$ | $\left\langle\rho^{2}, \tau^{5} h_{1}, P h_{2}\right\rangle$ | Table 11 |
| 11 | $(19,8)$ | $\left\langle\rho^{2}, \tau \eta, \zeta_{19}\right\rangle$ | $\tau^{2} P^{2} h_{2}$ | $\left\langle\rho^{2}, \tau h_{1}, P^{2} h_{2}\right\rangle$ | Table 11 |
| 11 | $(19,8)$ | $\left\langle\rho, \mathrm{h}, \tau^{2} \bar{\sigma}\right\rangle$ | $\tau^{3} c_{1}$ | $\left\langle\rho, h_{0}, \tau^{2} c_{1}\right\rangle$ | Table 11 |
| 12 | $(8,-4)$ | $\left\langle\tau^{9} \eta, \mathrm{~h} \nu, \nu\right\rangle$ | $\tau^{9} c_{0}$ | $\mathbb{C}-$ motivic | Table 11 |
| 12 | $(16,4)$ | $\left\langle\sigma^{2}, 2, \tau^{5} \eta\right\rangle$ | $\tau^{5} h_{1} \cdot h_{4}$ | $d_{2}\left(h_{4}\right)=\left(h_{0}+\rho h_{1}\right) h_{3}^{2}$ | Table 11 |
| 12 | $(16,4)$ | $\left\langle\tau^{5} \mu_{9}, \mathrm{~h} \nu, \nu\right\rangle$ | $\tau^{5} P c_{0}$ | $\mathbb{C}-$ motivic | Table 11 |
| 12 | $(20,8)$ | $\left\langle\rho, \tau^{2} \mathrm{~h}, \rho,\left\{h_{2} e_{0}\right\}\right\rangle$ | $\tau^{4} g$ | $\left\langle\rho, \tau^{2} h_{0}, \rho, h_{2} e_{0}\right\rangle$ | Table 11 |
| 12 | $(24,12)$ | $\left\langle\tau \mu_{17}, \mathrm{~h} \nu, \nu\right\rangle$ | $\tau P^{2} c_{0}$ | $\mathbb{C}-$ motivic | Table 11 |

Table 11: Some permanent cycles in the $\mathbb{R}$-motivic Adams spectral sequence

| coweight | $(s, f, w)$ | element | proof |
| :--- | :--- | :--- | :--- |
| 3 | $(3,1,0)$ | $\tau^{2} h_{2}$ | $\left\langle\rho^{2}, \tau \eta, \nu\right\rangle$ |
| 4 | $(8,3,4)$ | $\tau c_{0}$ | $\langle\epsilon, \mathrm{~h}, \rho\rangle$ |
| 7 | $(7,1,0)$ | $\tau^{4} h_{3}$ | $\left\langle\rho^{4}, \tau^{2} \nu, \sigma\right\rangle$ |
| 7 | $(11,4)$ | $\rho^{6} e_{0}$ | Lemma 8.14 |
| 8 | $(8,3,0)$ | $\tau^{5} c_{0}$ | $\left\langle\tau^{5} \eta, \mathrm{~h} \nu, \nu\right\rangle$ |
| 8 | $(14,6)$ | $\tau^{2} h_{3}^{2}$ | $\left\langle\tau^{2} \nu, \sigma, \nu\right\rangle$ |
| 8 | $(16,7,8)$ | $\tau P c_{0}$ | $\left\langle\tau \mu_{9}, \mathrm{~h} \nu, \nu\right\rangle$ |
| 8 | $(16,2,8)$ | $\tau h_{1} \cdot h_{4}$ | $\left\langle\sigma^{2}, 2, \tau \eta\right\rangle$ |
| 8 | $(18,2,10)$ | $h_{2} h_{4}$ | $\langle\nu, \sigma, \mathrm{~h} \sigma\rangle$ |
| 9 | $(15,4,6)$ | $\rho^{2} \tau^{2} e_{0}$ | $\langle\rho, \rho \tau \eta, \tau \eta \cdot \kappa\rangle$ |
| 10 | $(18,2,8)$ | $\tau^{2} h_{2} \cdot h_{4}$ | $\left\langle\rho^{2}, \tau \eta, \nu\right\rangle$ |
| 10 | $(19,3,9)$ | $\tau^{2} c_{1}$ | $\left\langle\tau^{2} \nu, \eta \sigma, \sigma\right\rangle$ |
| 11 | $(3,1,-8)$ | $\tau^{10} h_{2}$ | $\left\langle\rho^{2}, \tau^{9} \eta, \nu\right\rangle$ |
| 11 | $(11,5,0)$ | $\tau^{6} P h_{2}$ | $\left\langle\rho^{2}, \tau^{5} \eta, \zeta_{11}\right\rangle$ |
| 11 | $(19,3,8)$ | $\tau^{3} c_{1}$ | $\left\langle\rho, \mathrm{~h}, \tau^{2} \bar{\sigma}\right\rangle$ |
| 11 | $(19,9,8)$ | $\tau^{2} P^{2} h_{2}$ | $\left\langle\rho^{2}, \tau \eta, \zeta_{19}\right\rangle$ |
| 11 | $(23,4,12)$ | $h_{4} \cdot \tau c_{0}$ | $\sigma \cdot \tau \eta_{4}$ |
| 12 | $(8,3,-4)$ | $\tau^{9} c_{0}$ | $\left\langle\tau^{9} \eta, \mathrm{~h} \nu, \nu\right\rangle$ |
| 12 | $(16,2,4)$ | $\tau^{5} h_{1} \cdot h_{4}$ | $\left\langle\sigma^{2}, 2, \tau^{5} \eta\right\rangle$ |
| 12 | $(16,7,4)$ | $\tau^{5} P c_{0}$ | $\left\langle\tau^{5} \mu_{9}, \mathrm{~h} \nu, \nu\right\rangle$ |
| 12 | $(20,4,8)$ | $\tau^{4} g$ | $\left\langle\rho, \tau^{2} h_{0}, \rho, h_{2} e_{0}\right\rangle$ |
| 12 | $(24,11,12)$ | $\tau P^{2} c_{0}$ | $\left\langle\tau \mu_{17}, \mathrm{~h} \nu, \nu\right\rangle$ |

Table 12: Adams $d_{2}$ differentials

| coweight | $(s, f, w)$ | $x$ | $d_{2}(x)$ | proof |
| :--- | :--- | :--- | :--- | :--- |
| 7 | $(15,1,8)$ | $h_{4}$ | $h_{0} h_{3}^{2}$ | classical |
| 7 | $(17,4,10)$ | $e_{0}$ | $h_{1}^{2} d_{0}$ | classical |
| 7 | $(14,3,7)$ | $\tau h_{0} h_{3}^{2}$ | $\rho^{2} h_{1} d_{0}$ | Lemma 8.8 |
| 8 | $(18,4,10)$ | $f_{0}$ | $h_{0}^{2} e_{0}$ | Lemma 8.9 |
| 9 | $(17,4,8)$ | $\tau^{2} e_{0}$ | $\left(\tau h_{1}\right)^{2} d_{0}$ | classical |
| 10 | $(18,4,8)$ | $\tau^{2} f_{0}$ | $\tau^{2} h_{0}^{2} e_{0}+\rho^{3} \tau h_{2}^{2} \cdot d_{0}$ | Lemma 8.10 |
| 10 | $(21,5,11)$ | $\tau^{2} h_{1} g$ | $\rho^{2} c_{0} d_{0}$ | Lemma 8.11 |
| 11 | $(23,8,12)$ | $h_{0} i$ | $P h_{0}^{2} d_{0}$ | classical |
| 11 | $(27,5,16)$ | $h_{3} g$ | $h_{1}^{3} h_{4} c_{0}$ | $\mathbb{C}$-motivic |
| 12 | $(26,7,14)$ | $j$ | $P h_{2} \cdot d_{0}$ | classical |

Table 13: Adams $d_{3}$ differentials

| coweight | $(s, f, w)$ | $x$ | $d_{r}(x)$ | proof |
| :--- | :--- | :--- | :--- | :--- |
| 7 | $(15,2,8)$ | $h_{0} h_{4}$ | $h_{0} d_{0}+\rho h_{1} d_{0}$ | Lemma 8.16 |
| 12 | $(23,6,11)$ | $\tau h_{2}^{2} \cdot \tau^{2} e_{0}$ | $\rho \tau P h_{1} \cdot d_{0}$ | Lemma 8.17 |
| 12 | $(25,7,13)$ | $c_{0} \cdot \tau^{2} e_{0}$ | $\tau P h_{1} \cdot h_{1} d_{0}$ | Lemma 8.17 |

Table 14: Hidden $\rho$ extensions in the $\mathbb{R}$-motivic Adams spectral sequence

| coweight | $(s, f, w)$ | source | target |
| :--- | :--- | :--- | :--- |
| 7 | $(15,4,8)$ | $h_{0}^{3} h_{4}$ | $\rho^{4} h_{1} e_{0}$ |
| 7 | $(17,5,10)$ | $h_{2} d_{0}$ | $\tau h_{1} \cdot h_{1} d_{0}$ |
| 8 | $(15,2,7)$ | $\rho \tau h_{1} \cdot h_{4}$ | $h_{0} \cdot \tau^{2} h_{3}^{2}$ |
| 8 | $(15,4,7)$ | $\rho^{3} f_{0}$ | $\tau^{2} h_{0} \cdot d_{0}$ |
| 10 | $(15,2,5)$ | $\rho^{3} \tau^{2} h_{2} \cdot h_{4}$ | $\tau^{4} h_{3} \cdot h_{0} h_{3}$ |
| 10 | $(15,4,5)$ | $\rho^{3} \tau^{2} f_{0}$ | $\tau^{4} h_{0} \cdot d_{0}$ |
| 10 | $(23,8,13)$ | $h_{1} \cdot \tau c_{0} \cdot d_{0}$ | $P h_{0} d_{0}$ |
| 11 | $(15,4,4)$ | $\tau^{4} h_{0} \cdot h_{0}^{2} h_{4}$ | $\tau^{5} h_{0}^{2} d_{0}$ |
| 11 | $(17,5,6)$ | $\tau^{2} h_{0} \cdot \tau^{2} e_{0}$ | $\tau^{5} h_{1} \cdot h_{1} d_{0}$ |
| 11 | $(18,5,7)$ | $\rho^{3} f_{0} \cdot \tau^{2} h_{2}$ | $h_{0} \cdot \tau^{2} h_{0} \cdot \tau^{2} e_{0}$ |
| 11 | $(23,9,12)$ | $h_{0}^{2} i$ | $\tau P h_{0}^{2} d_{0}$ |

Table 15: Hidden h extensions in the $\mathbb{R}$-motivic Adams spectral sequence

| coweight | $(s, w)$ | source | target |
| :--- | :--- | :--- | :--- |
| 7 | $(11,4)$ | $\rho^{6} e_{0}$ | $\tau^{2} h_{0} \cdot P h_{2}$ |
| 9 | $(21,12)$ | $h_{2} f_{0}$ | $\rho c_{0} d_{0}$ |
| 9 | $(23,14)$ | $h_{0} h_{2} g$ | $h_{1} c_{0} d_{0}$ |
| 10 | $(22,12)$ | $\tau c_{0} \cdot d_{0}$ | $P h_{0} d_{0}$ |
| 11 | $(23,12)$ | $\tau^{2} h_{0} \cdot h_{2} g$ | $\tau P h_{1} \cdot d_{0}$ |

Table 16: Hidden $\eta$ extensions in the $\mathbb{R}$-motivic Adams spectral sequence

| coweight | $(s, f, w)$ | source | target |
| :--- | :--- | :--- | :--- |
| 7 | $(15,4,8)$ | $h_{0}^{3} h_{4}$ | $\rho^{3} h_{1}^{2} e_{0}$ |
| 9 | $(15,5,6)$ | $\tau^{2} h_{0} \cdot h_{0}^{3} h_{4}$ | $\rho \tau h_{1} \cdot \tau P c_{0}$ |
| 9 | $(21,5,12)$ | $h_{2} f_{0}$ | $c_{0} d_{0}$ |
| 10 | $(20,5,10)$ | $h_{2} \cdot \tau^{2} e_{0}$ | $\rho \tau c_{0} \cdot d_{0}$ |
| 10 | $(21,7,11)$ | $\rho \tau c_{0} \cdot d_{0}$ | $P h_{0} d_{0}$ |
| 11 | $(15,4,4)$ | $\tau^{4} h_{0} \cdot h_{0}^{2} h_{4}$ | $\tau^{4} P c_{0}$ |
| 11 | $(23,9,12)$ | $h_{0}^{2} i$ | $P^{2} c_{0}$ |

Table 17: Hidden values of extension by scalars

| coweight | $(s, f, w)$ | source | target |
| :--- | :--- | :--- | :--- |
| 7 | $(11,4,4)$ | $\rho^{6} e_{0}$ | $\tau^{2} P h_{2}$ |
| 7 | $(14,1,7)$ | $\rho h_{4}$ | $\tau h_{3}^{2}$ |
| 7 | $(16+k, 6+k, 9+k)$ | $\rho^{3} h_{1}^{k+2} e_{0}$ | $P h_{1}^{k} c_{0}$ |
| 8 | $(17,4,9)$ | $\rho f_{0}$ | $\tau h_{2} d_{0}$ |
| 9 | $(15,4,6)$ | $\rho^{2} \tau^{2} e_{0}$ | $\tau^{3} h_{1} d_{0}$ |
| 10 | $(15,4,5)$ | $\rho^{3} \tau^{2} f_{0}$ | $\tau^{4} h_{1} d_{0}$ |
| 10 | $(22,7,12)$ | $\tau c_{0} \cdot d_{0}$ | $P d_{0}$ |
| 10 | $(23,8,13)$ | $h_{1} \cdot \tau c_{0} \cdot d_{0}$ | $P h_{1} d_{0}$ |
| 11 | $(20,5,9)$ | $\tau^{2} h_{2} \cdot \rho f_{0}$ | $\tau^{3} h_{0}^{2} g$ |
| 11 | $(26,5,15)$ | $\rho h_{3} g$ | $\tau h_{2}^{2} g$ |

## References

[1] Alexey Ananyevskiy, Oliver Röndigs, and Paul Arne Østvær, On very effective hermitian K-theory, preprint, available at arXiv:1712.01349.
[2] Shôrô Araki and Kouyemon Iriye, Equivariant stable homotopy groups of spheres with involutions. I, Osaka J. Math. 19 (1982), no. 1, 1-55. MR656233 (83h:55028)
[3] Tom Bachmann, Motivic and real étale stable homotopy theory, Compos. Math. 154 (2018), no. 5, 883-917, DOI 10.1112/S0010437X17007710. MR3781990
[4] Mark Behrens, Some root invariants at the prime 2, Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, pp. 1-40, DOI $10.2140 / \mathrm{gtm} .2007 .10 .1$. MR2402775
[5] Mark Behrens and Jay Shah, $C_{2}$-equivariant stable homotopy from real motivic stable homotopy (2019), preprint, available at arXiv:1908. 08378.
[6] Eva Belmont, Bertrand J. Guillou, and Daniel C. Isaksen, $C_{2}$-equivariant and $\mathbb{R}$-motivic stable stems, II (2020), preprint.
[7] Eva Belmont and Daniel C. Isaksen, $\mathbb{R}$-motivic Adams charts (2020), preprint, available at s.wayne.edu/isaksen/adams-charts.
[8] Glen E. Bredon, Equivariant stable stems, Bull. Amer. Math. Soc. 73 (1967), 269-273, DOI 10.1090/S0002-9904-1967-11713-0. MR206947
[9] Robert Bruner and John Greenlees, The Bredon-Löffler conjecture, Experiment. Math. 4 (1995), no. 4, 289-297. MR1387694
[10] Daniel Dugger and Daniel C. Isaksen, Motivic Hopf elements and relations, New York J. Math. 19 (2013), 823-871. MR3141814
[11] _, Low-dimensional Milnor-Witt stems over $\mathbb{R}$, Ann. K-Theory 2 (2017), no. 2, 175-210.
[12] Bertrand J. Guillou, Michael A. Hill, Daniel C. Isaksen, and Douglas Conner Ravenel, The cohomology of $C_{2}$-equivariant $\mathcal{A}(1)$ and the homotopy of $k o_{C_{2}}$, Tunisian J. Math. 2 (2020), no. 3, 567-632.
[13] Bertrand J. Guillou and Daniel C. Isaksen, The $\eta$-local motivic sphere, J. Pure Appl. Algebra 219 (2015), no. 10, 4728-4756, DOI 10.1016/j.jpaa.2015.03.004. MR3346515
[14] , The motivic Adams vanishing line of slope $\frac{1}{2}$, New York J. Math. 21 (2015), 533-545. MR3386536
[15] , The $\eta$-inverted $\mathbb{R}$-motivic sphere, Algebr. Geom. Topol. 16 (2016), no. 5, 3005-3027, DOI 10.2140/agt.2016.16.3005. MR3572357
[16] Michael A. Hill, Ext and the motivic Steenrod algebra over $\mathbb{R}$, J. Pure Appl. Algebra 215 (2011), no. 5, 715-727, DOI 10.1016/j.jpaa.2010.06.017. MR2747214 (2012i:55020)
[17] P. Hu, I. Kriz, and K. Ormsby, Convergence of the motivic Adams spectral sequence, J. KTheory 7 (2011), no. 3, 573-596, DOI 10.1017/is011003012jkt150. MR2811716 (2012h:14054)
[18] Daniel C. Isaksen, Stable stems, Mem. Amer. Math. Soc., to appear.
[19] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, More stable stems (2020), preprint.
[20] Mark E. Mahowald and Douglas C. Ravenel, The root invariant in homotopy theory, Topology 32 (1993), no. 4, 865-898, DOI 10.1016/0040-9383(93)90055-Z. MR1241877
[21] J. Peter May, Matric Massey products, J. Algebra 12 (1969), 533-568.
[22] Fabien Morel, An introduction to $\mathbb{A}^{1}$-homotopy theory, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 357-441 (electronic). MR2175638 (2006m:19007)
[23] R. Michael F. Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970), 283-310. MR0266216 (42 \#1123)
[24] J. D. Quigley, The motivic Mahowald invariant (2018), preprint, available at arXiv:1801. 06035.
[25] _, Real motivic and $C_{2}$-equivariant Mahowald invariants (2019), preprint, available at arXiv:1904.12996.
[26] Vladimir Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Etudes Sci. 98 (2003), 59-104, DOI 10.1007/s10240-003-0010-6. MR2031199 (2005b:14038b)
[27] _, Motivic Eilenberg-Maclane spaces, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 1-99, DOI 10.1007/s10240-010-0024-9. MR2737977 (2012f:14041)

Department of Mathematics, Northwestern University, Evanston, IL 60208
E-mail address: ebelmont@northwestern.edu
Department of Mathematics, Wayne State University, Detroit, MI 48202
E-mail address: isaksen@wayne.edu


[^0]:    2000 Mathematics Subject Classification. 14F42, 55Q45, 55S10, 55T15.
    Key words and phrases. motivic stable homotopy group, motivic Adams spectral sequence, $\rho$-Bockstein spectral sequence, Mahowald invariant, root invariant.

